
SciTokens: Capability-Based Secure Access to Remote Scientific
Data

Alex Withers
NCSA

alexw1@illinois.edu

Brian Bockelman
University of Nebraska-Lincoln

bbockelm@cse.unl.edu

Derek Weitzel
University of Nebraska-Lincoln

dweitzel@cse.unl.edu

Duncan Brown
Syracuse University
dabrown@syr.edu

Jeff Gaynor
NCSA

gaynor@illinois.edu

Jim Basney
NCSA

jbasney@illinois.edu

Todd Tannenbaum
University of Wisconsin-Madison

tannenba@cs.wisc.edu

Zach Miller
University of Wisconsin-Madison

zmiller@cs.wisc.edu

ABSTRACT
The management of security credentials (e.g., passwords, secret
keys) for computational science workflows is a burden for scientists
and information security officers. Problems with credentials (e.g.,
expiration, privilege mismatch) cause workflows to fail to fetch
needed input data or store valuable scientific results, distracting sci-
entists from their research by requiring them to diagnose the prob-
lems, re-run their computations, and wait longer for their results.
In this paper, we introduce SciTokens, open source software to help
scientists manage their security credentials more reliably and se-
curely. We describe the SciTokens system architecture, design, and
implementation addressing use cases from the Laser Interferometer
Gravitational-Wave Observatory (LIGO) Scientific Collaboration
and the Large Synoptic Survey Telescope (LSST) projects. We also
present our integration with widely-used software that supports
distributed scientific computing, including HTCondor, CVMFS, and
XrootD. SciTokens uses IETF-standard OAuth tokens for capability-
based secure access to remote scientific data. The access tokens
convey the specific authorizations needed by the workflows, rather
than general-purpose authentication impersonation credentials, to
address the risks of scientific workflows running on distributed
infrastructure including NSF resources (e.g., LIGO Data Grid, Open
Science Grid, XSEDE) and public clouds (e.g., AmazonWeb Services,
Google Cloud, Microsoft Azure). By improving the interoperability
and security of scientific workflows, SciTokens 1) enables use of
distributed computing for scientific domains that require greater
data protection and 2) enables use of more widely distributed com-
puting resources by reducing the risk of credential abuse on remote
systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6446-1/18/07. . . $15.00
https://doi.org/10.1145/3219104.3219135

CCS CONCEPTS
• Security and privacy → Authorization;

KEYWORDS
OAuth, capabilities, distributed computing

ACM Reference Format:
Alex Withers, Brian Bockelman, Derek Weitzel, Duncan Brown, Jeff Gaynor,
Jim Basney, Todd Tannenbaum, and ZachMiller. 2018. SciTokens: Capability-
Based Secure Access to Remote Scientific Data. In PEARC ’18: Practice and
Experience in Advanced Research Computing, July 22–26, 2018, Pittsburgh, PA,
USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3219104.
3219135

1 INTRODUCTION
Access control on remote data is an essential capability for com-
putational science. Maintaining the privacy of scientific data prior
to publication helps avoid premature science claims and facilitates
a healthy competition between research groups. Maintaining the
integrity of scientific data (i.e., preventing intentional or uninten-
tional data alteration) helps avoid erroneous scientific claims and
preserves the provenance of scientific results. Computational sci-
ence is often geographically distributed, with scientists collaborat-
ing across organizations and using computational resources spread
across distributed facilities such as the LIGO Data Grid, the Open
Science Grid, XSEDE, and public cloud providers (Amazon, Google,
Microsoft, etc.). Secure remote access to scientific data enables these
collaborations.

Access control for distributed scientific computing across admin-
istrative domains is fundamentally different from local computing
environments. When computing on the desktop or a local high
performance cluster, the local operating system provides filesystem
access control using local accounts, groups, and file permissions.
In contrast, when computing across distributed facilities, access
control is managed by the collaboration (often called a virtual orga-
nization or VO), and access to computing resources and scientific
data is determined by membership in that collaboration. A remote
compute job, which is often part of a larger computational science
workflow, will read input data and write output data to/from re-
mote file servers. These network-accessible file servers may be

1

https://doi.org/10.1145/3219104.3219135
https://doi.org/10.1145/3219104.3219135
https://doi.org/10.1145/3219104.3219135

PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA A. Withers et al.

operated on a long-term basis, serving multiple VOs, or they may
be instantiated on-the-fly by the VO (often called a glide-in).

The remote compute job needs security credentials to access
those file servers. In common practice today, those credentials are
identity tokens, carrying the identity of the individual researcher
or the VO, enabling the job to act on behalf of that researcher or VO
when accessing remote resources like file servers. Using identity
tokens in this way creates significant risk of abuse, since they are
used by jobs that are running on remote, less trusted systems and
if stolen, these tokens provide wide access to the attacker. The
continuous stream of news reports about compromised passwords
at sites like LinkedIn and Yahoo! teach us how using the same
credential across multiple sites enables attacks to spread widely.
The same concern applies to the credentials we use for academic
and scientific computing.

To address this risk for current distributed scientific workflows
and to enable use of additional distributed computational resources
for more scientific domains, SciTokens applies the well-known
principle of capability-based security to remote data access. Rather
than sending unconstrained identity tokens with compute jobs, we
send capability-based access tokens. These access tokens grant the
specific data access rights needed by the jobs, limiting exposure to
abuse. These tokens comply with the IETF OAuth standard [15],
enabling interoperability with the many public cloud storage and
computing services that have adopted this standard. By improving
the interoperability and security of scientific workflows, we 1)
enable use of distributed computing for scientific domains that
require greater data protection and 2) enable use of more widely
distributed computing resources by reducing the risk of credential
abuse on remote systems.

As illustrated in Figure 1, our SciTokens model applies capability-
based security to three common domains in the computational
science environment: Submit (where the researcher submits and
manages scientific workflows), Execute (where the computational
jobs run), and Data (where remote read/write access to scientific
data is provided). The Submit domain obtains the needed access
tokens for the researcher’s jobs and forwards the tokens to the jobs
when they run, so the jobs can perform the needed remote data
access. The Scheduler and Token Manager work together in the
Submit domain to ensure that running jobs have the tokens they
need (e.g., by refreshing tokens when they expire) and handle any
errors (e.g., by putting jobs on hold until needed access tokens are
acquired). The Data domain contains Token Servers that issue ac-
cess tokens for access to Data Servers. Thus, there is a strong policy
and trust relationship between Token Servers and Data Servers. In
the Execute domain, the job Launcher delivers access tokens to the
job’s environment, enabling it to access remote data.

The SciTokens model adopts token types from OAuth (see Fig-
ure 2). Users authenticate with identity tokens to submit jobs (work-
flows), but identity tokens do not travel along with the jobs. Instead,
at job submission time the Token Manager obtains OAuth refresh
tokens with needed data access privileges from Token Servers. The
Token Manager securely stores these relatively long-lived refresh
tokens locally, then uses them to obtain short-lived access tokens
from the Token Server when needed (e.g., when jobs start or when
access tokens for running jobs near expiration). The Scheduler then

Figure 1: The SciTokens Model

Figure 2: Different Token Types

sends the short-lived access tokens to the jobs, which the jobs use
to access remote data.

The remainder of our paper is organized as follows: We first
discuss the target use cases for our work. Then we discuss existing
capabilities in the software used by LIGO and other science projects
that we leverage. Then we detail our technical approach for imple-
menting the SciTokens model. Lastly, we discuss related work, our
implementation status, and our conclusions and next steps.

2 USE CASES
Our SciTokens work is motivated by use cases from the LIGO, LSST,
OSG, and XSEDE projects.

2.1 LIGO
The observation of binary black hole mergers [9, 10, 22] by the
Advanced Laser Interferometer Gravitational-wave Observatory
(LIGO) [17] marks a transformative moment for physics and astron-
omy. Gravitational waves are ripples in the fabric of spacetime pro-
duced by the coherent relativistic motion of masses. Gravitational-
wave observatories can peer into the cores of exploding stars, study
the interiors of neutron stars, and explore the physics of colliding
black holes. The challenge of gravitational-wave detection is to sepa-
rate the tiny mirror motions caused by gravitational waves from the
motion caused by all the other noise sources in the detector. LIGO’s
searches are most sensitive when we have prior knowledge of the
shape of the gravitational waves. In this case, we can use matched
filtering to extract the signals from the noisy data. Since we do not
know the physical parameters of any given source in advance, we

2

SciTokens: Capability-Based Secure Access to Remote Scientific Data PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA

must search for many different sources bymatched filtering the data
against a large "bank" of gravitational-waveform templates. The
noise in the LIGO detectors consists of a stationary, Gaussian com-
ponent from fundamental sources and non-Gaussian "glitches" of
both environmental and instrumental origin. To eliminate glitches
from the data, we record a large amount of instrumental health and
status information that must be folded into the search. To make
confident detections, we demand that a gravitational-wave signal
is present in two or more detectors in the network with consis-
tent signal parameters. To measure the significance of a particular
candidate signal, wemust compare its amplitude to that of the noise-
induced background in the network. We measure this background
by repeating the search many times with the detector data offset
by time intervals larger than the gravitational-wave travel time
between the detectors. The statistical significance of candidates
is then computed and any significant events are followed-up by
additional analysis of auxiliary and environmental detector status
channels.

Successfully executing all of the steps described above requires
the execution of a search workflow with components that span
scientific algorithms, cyberinfrastructure, data management, and
distributed computational hardware [6]. A typical gravitational-
wave search may generate a workflow of hundreds of thousands
of discrete computational tasks, with job dependencies and a large
numbers of intermediate data products. The structure of a work-
flow will vary depending on the input parameters for a specific
search. Advanced LIGO uses the "PyCBC" search [28] to detect and
study gravitational-waves from binary black holes, and to search
for binary neutron stars and neutron-starâĂŞblack-hole mergers.
PyCBC-generated workflows are written in an abstract workflow
format that can be planned by the Pegasus Workflow Management
System [12] and executed by HTCondor [26] on LIGO Data Grid,
Open Science Grid, and XSEDE HTC resources (Comet and Stam-
pede).

Authentication tokens are needed at multiple stages during the
creation, planning, and execution of the PyCBC search workflow.
A program pycbc_make_coinc_search_workflow is used to create
a workflow to analyze a specific block of data; this is typically two
calendar weeks, an interval chosen to allow measurement of the
search’s noise background to a level where detections can be made.
The workflow creation script must make an authenticated query to
two metadata servers: the first reports the on the availability and
quality of LIGO data, and the second is used to locate the input
data files needed. These files may be stored on a local filesystem,
on a XrootD server, or available via GridFTP. At execution time,
the jobs use an authentication token to access the LIGO data via
CVMFS/XrootD or via GridFTP and to fetch any additional work-
flow data from the submission site via either the GridFTP or scp
protocols. The token is then used to push the data from a job back
to the submission site for publication (if it is a final data product)
or use by other jobs in the workflow (in the case of an intermediate
data product).

Analysis of two weeks of data by a PyCBC workflow typically
requires approximately 2500 CPU days and takes several wall-clock
days to complete. It is not uncommon for intervals of poor data
quality (which trigger additional processing in the workflow) to
extend the runtime of a workflow to approximately one wall-clock

week. At present all authentication during the workflow is per-
formed using a user’s X.509 grid proxy credential, which is created
with a lifetime that nominally exceeds the execution time of the
workflow. This single credential must exist on the submission site
and be copied to all of the job execution sites, which can be of order
10,000 individual nodes for a production OSG/XSEDE run. This
credential is the same token that can be used to log in to LIGO clus-
ters and authenticate to many LIGO services. If it is compromised,
then an attacker can masquerade as the compromised user for the
duration of the credential, gaining access to all of the user’s files
and to all LIGO data.

2.2 LSST
LSST’s Batch Production service for computing jobs and data pro-
cessing is still currently being implemented and tested. While the
overall design of the system has been architected, there are many
details that have to be decided upon [19]. LSST has yet to determine
authentication and authorization access methods at remote sites.
One key stated requirement of LSST’s Batch Production service is
to provides credentials and endpoint information for any needed
LSST services. It is anticipated that access will be in part governed
and managed through X.509 certificate infrastructure. It is clear
that with LSST’s remote computing and data access needs, OAuth
token support would greatly simplify access.

The LSST Batch Production service executes campaigns on com-
puting resources to produce the desired LSST data products. A
campaign is composed of a set of pipelines, a set of inputs to run
the pipelines against, and a method of handling the outputs of the
pipelines. A pipeline is a body of code. A campaign is the set of
all pipeline executions needed to achieve an LSST objective and
pipelines within a campaign can have a dependency chain since out-
puts from one pipeline might be required as inputs for an following
pipeline.

LSST’s pipeline orchestration follows a fairly typical pattern.
Initially, the best site and computing resources are scheduled or
reserved for the pipeline. Pipeline preparation is then run on the
remote site and monitored. The pipeline interfaces with LSST’s
Data Backbone–which serves and manages LSST data products–for
required data which then stages the input data and other supporting
files into the staging area. It is expected that the Data Backbone
will make use of Pegasus [12] to manage a pipeline’s needed data
products. The Data Backbone does not include the handling of au-
thorization or authentication of users or services. This functionality
is expected to be provided by layers on top of the Data Backbone.

Using HTCondor DAGman [11], LSST’s pipeline workflow cre-
ates a DAG representing pipeline execution. A pipeline would gen-
erate multiple condor jobs, comprising the tasks of the pipeline.
During execution of the pipeline, a task may require additional data
to be staged-in and may require expansion of initial computing
resources using “pilot job” functionality. As each task ends, any out-
put might be staged from the compute nodes to the Data Backbone
or this might not occur until the pipeline concludes. At completion
of the pipeline output data is staged out, various custodial tasks
concerning the pipeline are executed, a clean up process is executed
and the pipeline releases nodes it may have reserved.

3

PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA A. Withers et al.

SciTokens is being explored for use in LSST’s Science Platform.
The LSST Science Platform (LSP) are a set of web applications and
services deployed at the LSST Data Access Centers through which
the scientific user community will access, visualize, subset and per-
form analysis of LSST data [18]. One critical component of the LSP
is the enforcement of data access rights. While LSST data will be
made available to the public, there is a period of time when data
rights holders will have exclusive access to LSST data for a partic-
ular data release [8]. To that end, the LSP integrates with LSST’s
identity and access management system to enforce these data ac-
cess rights. The LSP has web and database components in which
SciTokens could greatly enhance the LSP’s ability to authorize user
access to data releases. An example of this would be the LSP aspect
that allows user access to data through a RESTful web API. The
LSP would allow users to leverage SciTokens to ensure they are
authorized to access the data.

2.3 OSG
The Open Science Grid is national, distributed computing partner-
ship for data-intensive research. It allows participating universities
and labs to perform distributed, high-throughput computing across
heterogeneous resources and at large scale: over 1.3 billion CPU
hours were reported in the last year. While the OSGwas historically
dominated by HEP experiments, it has been rapidly diversifying
in the last few years. An important enabler of this diversification
is migrating from the legacy X.509-based authentication and au-
thorization layer to more user-friendly mechanisms. Unfortunately,
this migration has only been performed for computing jobs: sup-
ported storage services still require X.509 authentication. SciTokens
is enabling OSG to make progress in storage and data access, an
important new capability for the broad set of OSG users.

2.4 XSEDE
NSF’s Extreme Science and Engineering Discovery Environment
(XSEDE) provides a single virtual system that scientists can use
to interactively share computing resources, data, and expertise to
enhance the productivity of scholars, researchers and engineers.
Its integrated, comprehensive suite of advanced digital services is
designed to federate with other high-end facilities and with campus-
based resources, serving as the foundation for a national e-science
infrastructure ecosystem.

Secure distributed access to scientific data is an essential function
of the XSEDE infrastructure. Today access control in XSEDE is
primarily identity-based, via user accounts, certificates, Duo, and
InCommon. The SciToken approach, using OAuth for capability-
based (rather than identity-based) access to remote scientific data,
can provide new options for XSEDE integration with remote data
services (on campus, in the cloud, operated by virtual organizations,
etc.). XSEDE has experience using OAuth for web single sign-on to
components including CILogon, Globus, MyProxy, and the XSEDE
User Portal.

3 BUILDING BLOCKS
SciTokens builds on the software currently in use for LIGO scientific
workflows and in many other NSF science projects, which will
ease deployment of our work in these environments by updating

existing software rather than forcing use of new software. In this
section we describe the existing authentication, authorization, and
credential management capabilities of HTCondor, CVMFS, and
CILogon OAuth that provide the foundational building blocks for
SciTokens.

3.1 HTCondor
The general architecture of HTCondor [26] is best explained at
a high level by understanding three major components. The first
major component is known as the "Submit Machine" and is where
users typically interface with HTCondor. They submit their jobs
and workflows, monitor progress, and see the results of their jobs
from this point. The second component is a pool of "Execute Ma-
chines" that can vary in size. These are the compute resources which
actually execute the users’ jobs, and the user does generally not
interface with these machines directly. In some environments, users
may have access to multiple pools of execute machines that are
controlled by different organizations. The third component is the
"Matchmaker", which handles the scheduling of jobs and matches
them to compute resources according to their requirements, priority
of the user, and several other factors. This process runs continu-
ously so that as new jobs enter the queue, they are matched to
available resources. Also, if the pool of resources grows (for exam-
ple, in a cloud computing environment) then again jobs are matched
to the newly available resources. When a job is matched, HTCon-
dor spawns a new process on the Submit Machine called the job
"Shadow", as well as a new process on the Execute Machine called
the job "Starter". These two processes exist for the lifetime of the job
and are responsible for moving data, monitoring the job, reporting
the status of the job back to the submit machine while the jobs is
running, and moving data again when the job has completed.

The HTCondor components communicate with each other over
a network using TCP/IP. Sometimes all components of the cluster
belong to a single institution and are on a private network behind a
firewall and additional security measures are not needed. In other
scenarios, the HTCondor components are spread widely across
the insecure Internet. HTCondor has a wide array of possible se-
curity configurations depending on the requirements of the site
and system administrator. In the recommended configuration, com-
munication channels from one HTCondor process to another are
authenticated using one of HTCondor’s supported mechanisms
such as a Shared Secret, Kerberos, or X.509 certificates. Thus, all
components of an HTCondor system can trust the other compo-
nents they interface with. HTCondor also supports encryption of
data, both for communication between HTCondor components and
also for transferring data as part of running users’ jobs. Because
the authentication process can be relatively computationally inten-
sive when thousands of nodes are involved, it is desirable not to
authenticate every single time a new network connection is made.
HTCondor accomplishes this by setting up secure and reusable ses-
sions between components which greatly increases the scalability
of the system. For SciTokens, we leverage the secure communica-
tion channel between a job’s Shadow (on the Submit Machine) and
its Starter (on the Execute Machine). It is through this channel that
all of a job’s executable files, credentials, input, and output data are
transmitted. When a large HTCondor system is running, it may be

4

SciTokens: Capability-Based Secure Access to Remote Scientific Data PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA

Figure 3: CVMFS Architecture

starting dozens of jobs per second, all of which need to establish
secure connections between their Shadow and Starter. In this case,
the use of sessions does not help. Instead, we rely on a mechanism
in which the Matchmaker delegates a trust relationship at the time a
job is matched by providing both the Submit and Execute machines
with a unique secret key, or “match password,” they can use only
with each other [20].

HTCondor currently has a sub-component on the Submit Ma-
chine which manages credentials, called the "CredD". The CredD
is responsible for securely managing all credentials. The CredD
has a plug-in architecture for storing and managing credentials
of different types, which we leverage to add support for OAuth
tokens as described below. The plug-in architecture includes hooks
for refreshing credentials and performing other credential trans-
formations. For example, CERN uses a plug-in to manage Kerberos
tickets for jobs and uses also transforms the Kerberos ticket into
an AFS token for the running job.

3.2 CVMFS
CVMFS (originally, “CernVM File System”) is a highly-scalable, read-
optimized, global distributed filesystem. End-to-end data integrity is
achieved through the use of a public key signing and a Merkle-tree-
based integrity scheme. CVMFS repositories can consist of millions
of files, yet the global system has far more scalable namespaces
than traditional cluster filesystem such as Lustre.

This scalability is achieved by performing all writes at one loca-
tion (the “repository”) and introducing transaction-based seman-
tics namespace updates. All data and namespace metadata is then
content-addressed. The resulting filesystem is extremely amenable
to caching techniques; cache hit rates at each layer in the deployed
system are often greater than 99%. Files are distributed using a
multi-layer, HTTP-based content distribution network (CDN), site-
local HTTP caches, and worker node disk. The traditional CVMFS
architecture is outlined in Figure 3.

The traditional CVMFS infrastructure works extremely well for
distribution of software environments or containers where the data
is public and the working set size is one to ten gigabytes (typi-
cally, working set size limitations are limited by the HTTP cache

Figure 4: Accessing LIGO files in OSG

Figure 5: Accessing Restricted Data

and worker node disk size). In 2016, Bockelman and Weitzel imple-
mented a set of changes to the CVMFS client to efficiently handle
user authentication / authorization and larger working set sizes
[32]. This was achieved by allowing CVMFS to access a separate
data access infrastructure based upon the XRootD software, uti-
lizing both a high-performance storage system at Nebraska and a
series of very large caches run by OSG. This allowed the Nebraska
team, in collaboration with the OSG, to configure a CVMFS repos-
itory containing the LIGO frame files [31]. Figure 4 outlines the
architecture used to access LIGO files on the OSG.

When a user process accesses a restricted-access repository, the
CVMFS process will request an external process to authenticate
and authorize the client (the list of authorizations is distributed as
an extended attribute in the CVMFS namespace). If the external
process can successfully authorize the user process, it will return
success and any user credentials back to CVMFS. This authorizes
the user to access the local disk cache; if the requested file is not
found locally, the user credentials are utilized by the CVMFS client
to authenticate the file download from the CVMFS CDN. This is
illustrated in Figure 5.

Previously, this plugin API utilized Globus GSI / X.509 certificates
for authentication and a list of authorized DNs or VOMS attributes
[1] for authorization. As described below, the SciTokens project has
implemented a new plugin for OAuth tokens.

3.3 CILogon OAuth
CILogon [3] provides open source software and an operational ser-
vice for using federated identities in science projects. CILogon’s

5

PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA A. Withers et al.

support for SAML [7] enables interoperability with the US InCom-
mon federation and other federations worldwide via the eduGAIN
interfederation service. CILogon’s support for X.509 certificates,
compliant with standards from the Interoperable Global Trust Fed-
eration (IGTF), enables distributed scientific computing in the Grid
Security Infrastructure [33]. Over 4,500 scientists regularly use
CILogon for authentication, including over 200 LIGO scientists.
CILogon includes support for OAuth [15] and the OpenID Connect
[25] standards, using open source software originally developed
for NSF science gateways [4]. This OAuth software contains light-
weight Java OAuth client/server libraries, with support for JSON
Web Tokens [16], which we use for our SciTokens implementation.

4 TECHNICAL APPROACH
In this section we present our technical approach for implementing
the capability-based tokens for remote data sharing, for LIGO, LSST,
and other scientific workflows. Our approach modifies HTCondor
to manage the tokens for the workflow, modifies CVMFS to accept
the tokens for authorizing remote data access, and implements
an OAuth Token Server that issues the capability tokens. In the
following subsections, we discuss our technical implementations
for each system component.

4.1 HTCondor
As the component that actually executes a scientific workflow, HT-
Condor serves as the linchpin that ties together all the SciTokens
components. To best communicate our HTCondor approach, we
first present a walk-thru of how HTCondor orchestrates the compo-
nent interactions upon submission of a job, followed by a discussion
of integration points.

As illustrated in Figure 6, the process begins when the researcher
submits the computational job using the condor_submit command
(or more likely using Pegasus or similar workflow front-end that
then runs condor_submit). As part of the submission, the researcher
specifies required scientific input data and locations for output data
storage in the condor_submit input file. For example, in a LIGO
PyCBC [28] submission, the researcher will specify a set of data
"frames" from the LIGO instrument that are the subject of the
analysis. Then condor_submit authenticates the researcher to the
token_server(s) to obtain the tokens needed for the job’s data ac-
cess; as an optimization, condor_submit may first check for any
locally cached tokens from the researcher’s prior job submissions.
The token_server determines if the researcher is authorized for the
requested data access, based on the researcher’s identity and/or
group memberships or other researcher attributes. If the autho-
rization check succeeds, the Token Server issues an OAuth refresh
token back to condor_submit, which stores the refresh token se-
curely in the condor_credd, and sends the job information to the
condor_schedd. Since condor_submit gathers all the needed data
access tokens, there is no need to store any identity credentials (e.g.,
passwords, X.509 certificates, etc.) with the job submission, thereby
achieving our goal of a capability-based approach.

The next phase of the process begins when the condor_schedd
has scheduled the job on a remote execution site. The condor_schedd
communicates with the condor_startd to launch the job, establish-
ing a secure communication channel between the condor_shadow

Figure 6: The SciTokens System Architecture

on the submission side and the condor_starter on the remote exe-
cution side. The condor_starter then requests access tokens from
the condor_shadow for the job’s input data. The condor_shadow
forwards the access token requests to the condor_credd, which uses
its stored refresh tokens to obtain fresh access tokens from the to-
ken_server. The condor_credd returns the access tokens to the con-
dor_shadow which forwards them securely to the condor_starter
which provides them to the researcher’s job. Note that only access
tokens are sent to the remote execution environment; the longer-
lived refresh tokens remain secured in the submission environment
which typically resides at the researcher’s home institution. Lastly,
the job uses the access tokens to mount CVMFS filesystem(s) to
access scientific data. CVMFS verifies each access token to confirm
that the token was issued by its trusted token_server and that the
token’s scope includes access to the scientific data being requested.
If verification succeeds, CVMFS grants the requested data access. If
the access token needs to be refreshed, the condor_starter makes
another request back to the condor_shadow.

Note that SciTokens can leverage additional aspects of HTCon-
dor, such as the fact that the condor_shadow can be made explicitly
aware if the job is staging input data, accessing data online while
the job is running, or staging output data. We allow the job sub-
mission to state three different sets of access tokens, which will
only be instantiated at file stage-in, execution, and file stage-out,
respectively. This enables long running jobs, for instance, to fetch
a very short-lived write token for output that will only be instanti-
ated once processing has completed. We also adjust the granularity
of access token restrictions; for instance, the condor_shadow may
request fresh access tokens for each job instance, allowing the token
to be restricted in origin to a specific execution node. Alternatively,
for greater scalability, access tokens can be cached at the credd and
shared across all condor_shadow processes serving jobs that need
the same data sets. Finally, we are investigating scenarios in which
the data service and its accompanying token service is not fixed
infrastructure, but instead is dynamically deployed upon execute
nodes, perhaps by the workflow itself. In this scenario, the token
service could be instantiated with a set of recognized refresh tokens
a priori.

4.2 CVMFS / XRootD
The CVMFS (client) and XRootD (server) stack was updated to un-
derstand the SciTokens authorization model. Fine-grained models
afforded by SciTokens, we are able to implement more restrictive

6

SciTokens: Capability-Based Secure Access to Remote Scientific Data PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA

access control policies – allowing reads or writes at individual direc-
tory level for groups inside the VO. This can be done without either
CVMFS client or data server needing to know a global identity of
the user (as is the case today).

We implemented a new authentication and authorization callout
process for CVMFS, based on the experience with our X.509 imple-
mentation. This validates the user’s authentication token and, as
appropriate, authorizes it for use with the CVMFS repository.

While any HTTPS server implementation can likely be made
to work with the OAuth model, we implemented changes to the
XRootD server suite to have its HTTPS protocol implementation
support bearer authentication and the tokens issued by the SciTo-
ken service. This server implementation was selected in order to
integrate cleanly with the existing service at Nebraska and provide
continuity with the existing X.509-secured LIGO repository. We
integrated our token authorization format with XRootD’s authoriza-
tion plugin framework, allowing token-based reading and writing
for appropriately enabled XRootD servers.

4.3 OAuth Tokens
The distributed, large-scale architecture of CVMFS presents a spe-
cial challenge for the OAuth access tokens. Tokens are usually
validated via the token server’s introspection endpoint [24]; how-
ever, the CVMFS client on each worker node must perform access
control. This presents a scalability challenge for the LIGO use case.
Ideally, the token’s verification should be decentralized as opposed
to relying on a token service callback. For this reason, we selected
JSON Web Tokens [16] as our token format. These tokens can be
verified knowing only the public key of the signing service; CVMFS
contains built-in mechanisms for secure public key distribution.

5 RELATED WORK
5.1 ALICE XrootD Tokens
One of the experiments on the LHC with a comparatively smaller
footprint within the US, ALICE never adopted the X.509-credential-
based authentication system used throughout the OSG. Instead
of using common interfaces (e.g., Globus GridFTP) for data man-
agement, ALICE runs private XRootD hosts on top of site storage
systems. Having control over an end-to-end VO-specific system al-
lowed ALICE to develop an innovative authorization system. Users
would request data access from the central ALICE file catalog; if
access was granted, the central service would return an encrypted,
base64-encoded XML document describing a list of read / write
permissions the bearer is granted. The ALICE-managed XRootD
servers would decrypt the token and allow the bearer appropriate
authorizations. The data servers would not need the user identity
to allow read / write access - effectively, they delegated the man-
agement of the ALICE VO’s storage allocation to the central ALICE
service.

ALICE demonstrated the viability of many of the concepts within
SciTokens; we further the approach by:

• Utilizing the standardized OAuth framework instead of a
homegrown format (admittedly, ALICE’swork predates these
standards by more than 5 years).

• Investigating token formats that allow decentralized valida-
tion: each CVMFS client will need to perform validation, not
just the data service.

• Integrate token generation with federated identity.

5.2 Globus Auth
Globus Auth [27] provides an OAuth-based cloud service for re-
mote scientific data access using GridFTP [2], with extensions for
delegated access tokens. In contrast to our SciTokens model, Globus
Auth has a strong dependency on a centralized, closed-source to-
ken service operated by the Globus organization. Tokens in Globus
Auth are opaque and require token introspection callbacks to the
central service for validation.

6 IMPLEMENTATION STATUS
All SciTokens code is open source and published at https://github.
com/scitokens.

6.1 HTCondor
HTCondor 8.7.7[13] includes an initial implementation of OAuth
support in the credential management subsystem, using a plug-in
model to support different OAuth services (i.e., SciTokens, Box.com,
Google Drive, DropBox, etc.).

6.2 Python Library
A Python SciTokens reference library [30] was developed and is
being used by both XRootD, CVMFS, and NGINX integrations. The
python library allows the parsing of tokens, as well as testing the
token for authorization to access resources.

6.3 XRootD
A extension to XRootD was developed that allows XRootD to in-
terpret SciTokens and enforce policies based on those SciTokens
[5]. XRootD receives connections requests through the HTTPs
protocol, which includes the SciToken for authorization. XRootD
uses the extension to verify the SciToken, then provides ACL’s that
the XRootD subsystem will use for resource access. In addition, a
third party transfer extension was developed for XRootD that used
SciTokens for authentication.

6.4 NGINX
NGINX [23] is a web server that serves 25% of websites [21]. An
extension was developed [29] which allows NGINX to verify a
Scitoken’s validity before allowing access to the resource. This has
been used in combination with NGINX’s built-in WebDav [34] to
create a SciTokens file server.

6.5 OAuth
Using our existing Java OAuth client/server libraries, we have de-
veloped a SciTokens Authorization Server [14] that issues JSON
Web Tokens in the SciTokens format, with user and group-based
authorization policies for the issued claims (audience, scope, etc.).
For example, the server policy can specify that a LIGO user who is
a member of the LDGUsers group can obtain a token for reading
LIGO frame files and writing to the user’s personal output directory.

7

https://github.com/scitokens
https://github.com/scitokens

PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA A. Withers et al.

7 CONCLUSIONS AND NEXT STEPS
The JSON Web Token and OAuth standards provide a solid foun-
dation for distributed, capability-based authorization for scientific
workflows. By enhancing existing components (CILogon, CVMFS,
HTCondor, XrootD) to support the SciTokens model, we have pro-
vided a migration path from X.509 identity-based delegation to
OAuth capability-based delegation for existing scientific infrastruc-
tures.

Now that we have a software suite that supports the SciTokens
model, our next step is to evaluate our end-to-end approach for
LIGO and LSST workflows. We will work with the LIGO PyCBC
workflow [28], which uses the Pegasus workflow management
system [12] to manage HTCondor job submissions. In addition to
demonstrating the use of OAuth tokens for fetching input frame
data from CVMFS as part of the LIGO workflows, we will also
demonstrate storing PyCBC output data to XrootD and OAuth-
capable cloud storage (e.g., Google Cloud Storage), features desired
by the PyCBC group.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. 1738962.

REFERENCES
[1] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, Á. Frohner, A. Gianoli, K.

Lõrentey, and F. Spataro. 2004. VOMS, an Authorization System for Virtual
Organizations. In Grid Computing, Francisco Fernández Rivera, Marian Bubak,
Andrés Gómez Tato, and Ramón Doallo (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 33–40.

[2] W. Allcock, J. Bresnahan, R. Kettimuthu, and M. Link. 2005. The Globus Striped
GridFTP Framework and Server. In Supercomputing, 2005. Proceedings of the
ACM/IEEE SC 2005 Conference. 54–54. https://doi.org/10.1109/SC.2005.72

[3] Jim Basney, Terry Fleury, and Jeff Gaynor. 2014. CILogon: A federated X.509 cer-
tification authority for cyberinfrastructure logon. Concurrency and Computation:
Practice and Experience 26, 13 (2014), 2225–2239. https://doi.org/10.1002/cpe.3265
CPE-13-0334.R1.

[4] Jim Basney and Jeff Gaynor. 2011. An OAuth Service for Issuing Certificates
to Science Gateways for TeraGrid Users. In Proceedings of the 2011 TeraGrid
Conference: Extreme Digital Discovery (TG ’11). ACM, New York, NY, USA, Article
32, 6 pages. https://doi.org/10.1145/2016741.2016776

[5] Brian Bockelman and Derek Weitzel. 2018. scitokens/xrootd-scitokens: Flexible
Authorization Handling. (March 2018). https://doi.org/10.5281/zenodo.1206218

[6] Duncan A. Brown, Patrick R. Brady, Alexander Dietz, Junwei Cao, Ben Johnson,
and John McNabb. 2007. A Case Study on the Use of Workflow Technologies for
Scientific Analysis: Gravitational Wave Data Analysis. Springer London, London,
39–59. https://doi.org/10.1007/978-1-84628-757-2_4

[7] Scott Cantor, John Kemp, Rob Philpott, and Eve Maler. 2005. Assertions and
Protocols for the OASIS Security Assertion Markup Language (SAML) V2.0.
OASIS. (2005).

[8] Charles F. et. al. Claver. 2018. Observatory System Specifications. Technical Report
LSE-30.

[9] LIGO Scientific Collaboration and Virgo Collaboration. 2016. GW151226: Obser-
vation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coales-
cence. Phys. Rev. Lett. 116 (Jun 2016), 241103. Issue 24. https://doi.org/10.1103/
PhysRevLett.116.241103

[10] LIGO Scientific Collaboration and Virgo Collaboration. 2016. Observation of
Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 116 (Feb
2016), 061102. Issue 6. https://doi.org/10.1103/PhysRevLett.116.061102

[11] Peter Couvares, Tevfik Kosar, Alain Roy, Jeff Weber, and Kent Wenger. 2007.
Workflow Management in Condor. Springer London, London, 357–375. https:
//doi.org/10.1007/978-1-84628-757-2_22

[12] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J.
Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira da Silva, Miron Livny,
and Kent Wenger. 2015. Pegasus, a workflow management system for science
automation. Future Generation Computer Systems 46 (2015), 17 – 35. https:
//doi.org/10.1016/j.future.2014.10.008

[13] Center for High Throughput Computing. 2018. HTCondor 8.7.7. (March 2018).
https://doi.org/10.5281/zenodo.1206284

[14] Jeff Gaynor. 2017. SciTokens for Java. (Dec. 2017). https://doi.org/10.5281/
zenodo.1206234

[15] D. Hardt. 2012. The OAuth 2.0 Authorization Framework. RFC 6749. http:
//www.rfc-editor.org/rfc/rfc6749.txt

[16] M. Jones, J. Bradley, and N. Sakimura. 2015. JSON Web Token (JWT). RFC 7519.
http://www.rfc-editor.org/rfc/rfc7519.txt

[17] LIGO Scientific Collaboration and Virgo Collaboration. 2016. GW150914: The
advanced LIGO detectors in the era of first discoveries. Physical Review Letters
116, 13 (31 3 2016). https://doi.org/10.1103/PhysRevLett.116.131103

[18] D. Ciardi M. JuriÄĞ and G.P. Dubois-Felsmann. 2017. Science Platform Vision
Document. Technical Report LSE-319.

[19] G. Daues M. Kowalik, H. Chiang and R. Kooper. 2016. A Survey of Workflow
Management Systems. Technical Report DMTN-025.

[20] Zach Miller, Dan Bradley, Todd Tannenbaum, and Igor Sfiligoi. 2010. Flexible
session management in a distributed environment. Journal of Physics: Conference
Series 219, 4 (2010), 042017. http://stacks.iop.org/1742-6596/219/i=4/a=042017

[21] Netcraft. 2018. February 2018 Web Server Survey. (2018). https://news.netcraft.
com/archives/2018/02/13/february-2018-web-server-survey.html

[22] B P. Abbott, Randy Abbott, T D. Abbott, Matthew Abernathy, Fausto Acernese, K
Ackley, C Adams, Toshiba Adams, Paolo Addesso, Ranjal Adhikari, Vaishali Adya,
C Affeldt, M Agathos, Kazuhiro Agatsuma, Nishu Aggarwal, Odylio Aguiar, L
Aiello, Anirban Ain, P Ajith, and John Zweizig. 2016. Binary Black Hole Mergers
in the first Advanced LIGO Observing Run. 6 (06 2016).

[23] Will Reese. 2008. Nginx: the high-performance web server and reverse proxy.
Linux Journal 2008, 173 (2008), 2.

[24] J. Richer. 2015. OAuth 2.0 Token Introspection. RFC 7662. http://www.rfc-editor.
org/rfc/rfc7662.txt

[25] N. Sakimura, J. Bradley, M. Jones, B. deMedeiros, and C. Mortimore. 2014. OpenID
Connect Core 1.0. (November 2014). http://openid.net/connect/

[26] Douglas Thain, Todd Tannenbaum, andMiron Livny. 2005. Distributed computing
in practice: the Condor experience. Concurrency - Practice and Experience 17, 2-4
(2005), 323–356.

[27] S. Tuecke, R. Ananthakrishnan, K. Chard, M. Lidman, B. McCollam, S. Rosen,
and I. Foster. 2016. Globus auth: A research identity and access management
platform. In 2016 IEEE 12th International Conference on e-Science (e-Science). 203–
212. https://doi.org/10.1109/eScience.2016.7870901

[28] Samantha A Usman, Alexander H Nitz, Ian W Harry, Christopher M Biwer,
Duncan A Brown, Miriam Cabero, Collin D Capano, Tito Dal Canton, Thomas
Dent, Stephen Fairhurst, Marcel S Kehl, Drew Keppel, Badri Krishnan, Amber
Lenon, Andrew Lundgren, Alex B Nielsen, Larne P Pekowsky, Harald P Pfeiffer,
Peter R Saulson, MatthewWest, and Joshua L Willis. 2016. The PyCBC search for
gravitational waves from compact binary coalescence. Classical and Quantum
Gravity 33, 21 (2016), 215004. http://stacks.iop.org/0264-9381/33/i=21/a=215004

[29] Derek Weitzel. 2018. scitokens/nginx-scitokens: Initial Release. (March 2018).
https://doi.org/10.5281/zenodo.1205539

[30] Derek Weitzel and Brian Bockelman. 2018. scitokens/scitokens: v1.0.2. (March
2018). https://doi.org/10.5281/zenodo.1187173

[31] DerekWeitzel, Brian Bockelman, Duncan A Brown, Peter Couvares, FrankWürth-
wein, and Edgar Fajardo Hernandez. 2017. Data Access for LIGO on the OSG.
arXiv preprint arXiv:1705.06202 (2017).

[32] Derek Weitzel, Brian Bockelman, Dave Dykstra, Jakob Blomer, and Ren Meusel.
2017. Accessing Data Federations with CVMFS. In Journal of Physics: Conference
Series, Vol. 898. IOP Publishing, 062044.

[33] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C. Kessel-
man, S. Meder, L. Pearlman, and S. Tuecke. 2003. Security for Grid services. In
High Performance Distributed Computing, 2003. Proceedings. 12th IEEE Interna-
tional Symposium on. 48–57. https://doi.org/10.1109/HPDC.2003.1210015

[34] E James Whitehead and Meredith Wiggins. 1998. WebDAV: IEFT standard for
collaborative authoring on the Web. IEEE Internet Computing 2, 5 (1998), 34–40.

8

https://doi.org/10.1109/SC.2005.72
https://doi.org/10.1002/cpe.3265
https://doi.org/10.1145/2016741.2016776
https://doi.org/10.5281/zenodo.1206218
https://doi.org/10.1007/978-1-84628-757-2_4
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1007/978-1-84628-757-2_22
https://doi.org/10.1007/978-1-84628-757-2_22
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.5281/zenodo.1206284
https://doi.org/10.5281/zenodo.1206234
https://doi.org/10.5281/zenodo.1206234
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc7519.txt
https://doi.org/10.1103/PhysRevLett.116.131103
http://stacks.iop.org/1742-6596/219/i=4/a=042017
https://news.netcraft.com/archives/2018/02/13/february-2018-web-server-survey.html
https://news.netcraft.com/archives/2018/02/13/february-2018-web-server-survey.html
http://www.rfc-editor.org/rfc/rfc7662.txt
http://www.rfc-editor.org/rfc/rfc7662.txt
http://openid.net/connect/
https://doi.org/10.1109/eScience.2016.7870901
http://stacks.iop.org/0264-9381/33/i=21/a=215004
https://doi.org/10.5281/zenodo.1205539
https://doi.org/10.5281/zenodo.1187173
https://doi.org/10.1109/HPDC.2003.1210015

	Abstract
	1 Introduction
	2 Use Cases
	2.1 LIGO
	2.2 LSST
	2.3 OSG
	2.4 XSEDE

	3 Building Blocks
	3.1 HTCondor
	3.2 CVMFS
	3.3 CILogon OAuth

	4 Technical Approach
	4.1 HTCondor
	4.2 CVMFS / XRootD
	4.3 OAuth Tokens

	5 Related Work
	5.1 ALICE XrootD Tokens
	5.2 Globus Auth

	6 Implementation Status
	6.1 HTCondor
	6.2 Python Library
	6.3 XRootD
	6.4 NGINX
	6.5 OAuth

	7 Conclusions and Next Steps
	Acknowledgments
	References

