PHYSICAL REVIEW A 96, 042302 (2017)

Error rates and resource overheads of encoded three-qubit gates

Ryuji Takagi, Theodore J. Yoder, and Isaac L. Chuang
Department of Physics, Massachuselts Instititfe of Technology, 77 Massachuselts Avenue, Cambridge, Massachusetis 02139, USA
(Received 4 July 2017; published 4 October 2017)

A non-Clifford gate is required for nniversal quantum computation, and, typically, this is the most error-prone
and resource-intensive logical operation on an error-correcting code. Small, single-qubit rotations are popular
choices for this non-Clifford gate, but certain three-qubit gates, such as Toffoli or controlled-controlled- Z (CCZ),
are equivalent options that are also more suited for implementing some quantum algorithms, for instance, those
with coherent classical subroutines. Here, we calcunlate error rates and resource overheads for implementing
logical ¢cZ with pieceable fanlt tolerance, a nontransversal method for implementing logical gates. We provide
a comparison with a nonlocal magic-state scheme on a concatenated code and a local magic-state scheme
on the surface code. We find the pieceable fault-tolerance scheme particularly advantaged over magic states
on concatenated codes and in certain regimes over magic states on the surface code. Our results suggest that
pieceable fanlt tolerance is a promising candidate for fanlt tolerance in a near-future quantum computer.

DOI: 10.1103/PhysRevA .96.042302

I. INTRODUCTION

Quantum error-correcting codes are the most promising
route to scalable quantum computation. However, some of
their limitations are well known. For instance, a major problem
is that a single code cannot support a full set of universal,
transversal operations [1-3]. Often, and always for 2D designs
[4], the missing gate is not in the normalizer of the Pauli group;
that is, it is non-Clifford.

The techniques of gate teleportation [5] and magic states
[6] can overcome the lack of a non-Clifford gate. Different
magic states can be created to implement small Z rotations
such as the T-gate or 3-qubit operations, like Toffoli or
controlled-controlled- Z (ccz). However, the process to create
a magic state occurs postselectively and recursively, and leads
to large resource overheads. Although improving consistently
[7,8], approaching believed fundamental limits [9], large
resource demands remain a serious obstacle for near-future
architectures.

Certain other approaches exist in the literature for imple-
menting a universal gate set while circumventing the use of
magic states. A popular approach is gauge fixing [10-12], in
which a subsystem code can implement complementary sets of
transversal logical gates depending on the settings of the gauge
qubits. Another approach [13-15] concatenates different codes
with complementary transversal gate sets to achieve the same
effect in one larger code. Recently, this approach was shown to
lead to asymptotic thresholds around ~1072, albeit using more
physical qubits than, for example, surface code magic-state
distillation [16,17].

Any fault-tolerant, universal computing scheme operating
without magic states is expected to be a promising candidate
for near-future architectures where fairly accurate physical
components are supplied, but space-time resources, like qubit
count and circuit depth, are limited. The primary goal in this
near-future regime is to achieve some desired target error rate
after a finite-sized computation with small resource overheads.
Such constraints imply that the logical error rates of encoded
gates and the first-level pseudothreshold [18] (called just
pseudothreshold hereafter) are more important measures than
asymptotic threshold, which only becomes meaningful with
access to huge amounts of resources.
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To evaluate near-future fault-tolerant computation, we
focus on another magicless alternative that allows for a
logical implementation of 3-qubit gates, the pieceable fault-
tolerance scheme [19]. In this approach, a logical gate is
done nontransversally through the “round-robin” construction
and made fault tolerant via partial error correction performed
throughout the circuit. This construction has recently been
used in [20] to perform fault-tolerant, universal computing
on seven logical qubits, requiring only four ancillary qubits
and 15 code qubits. The circuit volume metric, a space-time
resource measure that counts all gates weighted by the number
of qubits involved, was used in [19] to argue that pieceable fanlt
tolerance reduces the logical gate overhead by nearly a factor
of 2 over magic-state creation and injection. However, little
was said about error rates of pieceable gates.

In this paper, we calculate these error rates and compare
them to magic-state schemes for implementing 3-qubit non-
Clifford gates. Our contenders are (1) a nonlocal magic-state
scheme: magic states created postselectively on Steane’s 7-
qubit code (also known as the smallest color code); (2) a local
magic-state scheme: surface code magic-state distillation; and
(3) pieceable fault tolerance on the (a) 5-qubit [19], (b) 7-qubit
[19], (c) 3 x 3 Bacon-Shor [21], and (d) 3 x ¢ Bacon-Shor
[21] codes. Our metrics are (1) error rate of the logical gate
and (IT) circuit volume. Among concatenated schemes (1) and
(3), we can definitively declare pieceable 3 x 3 Bacon-Shor
the winner in both metrics (I) and (IT). When comparing to (2),
the picture is more complicated and interesting. The pieceable
3 x 3 Bacon-Shor beats the surface code in error rate at low
distance and in circuit volume when the physical error rate is
sufficiently low compared with the desired target logical error.
On the other hand, asymptotically in code distance, the surface
code outperforms the pieceable 3 x 3 Bacon-Shor due to better
scaling of the logical error rate and volume with distance.

II. METHODS

We first describe our method to evaluate the logical error
rates. Bvaluating the surface code scheme (2) draws on the
extensive literature on the topic [22]. Our calculations of the
logical error rates of schemes (1) and (3) at code distance
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d = 3 are done by exact enumeration of all combinations of
up to two faults in the circuit extended-rectangle (exREC) [23]
under the standard depolarizing noise model (which serves
as a model of average-case noise). In [23], a rigorous upper
bound on the logical error rate under depolarizing noise is
given. In contrast, we provide formulas giving arigorous lower
bound as well as a tighter rigorous upper bound. The lower
and upper bounds on the logical error rate also determine
lower and upper bounds on the pseudothreshold. Having both
bounds allows us to definitively prove a separation between
two different schemes when it exists. Our method also confers
some advantages over a Monte Carlo simulation. First, we can
rigorously verify our circuits are fault tolerant under the chosen
noise model by checking that all single faults are correctable.
Second, once the counting is complete, we can independently
vary noise for each type of gate.

Our standard noise breakdown assigns single-qubit gates,
2-qubit gates, and 3-qubit gates each their own failure probabil-
ities py, pa, and pa, respectively. In the circuit depolarization
noise model, an r-qubit gate fails with one of the 47 — 1 r-
gubit Pauli errors with probability p,/(4" — 1). In principle,
preparation and measurement could be treated separately as
well, though we will assign them failure probabilities also
equal to p;. Bounds on the error rate can always be written as
polynomials in pq, po, p3 as we discuss below.

Our ultimate goal in error-rate estimation is to find the
probability the exREC is incorrect given that all ancillas pass
verification. Denote this Pgijjace = Pr[faillacc]. Our counting
gives the exact values of

P& . = Prlfailace, < 2 faults], (1)
Ps(uzgc,acc = Pr[—fail, ace, < 2 faults], (2)
Prfj) = Pr[—ace, < 2 faults], (3)

as polynomials in py, p2, p3 with degree equal to the number
of potentially faulty components in the entire exREC. These
exactly calculated quantities are enough to bound Py a0 =
Pr[fail, accl, Poucc,ace = Prl—fail, acc], and Py = Prlacc] as

2
Pf(ai%,aoc g Pfail,awa (4)
PP o S Pocoaces (5)
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More details on the simulation, including the description on
how to obtain these polynomials, can be found in Appendix B.

Next, we consider evaluating the resource overhead. There
exist various resource measures such as qubit count, circuit
volume, gate counts, and so on. The number of reusable
physical qubits is often taken as a physical resource measure in
the literature. However, it is not the best, especially when we
would like to compare resource overheads between different
codes, because there is ambiguity that comes with the level
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of parallelization we assume. In this paper, we mainly focus
on circuit volume, a space-time resource measure that counts
all gates weighted by the number of qubits involved. Unlike
physical qubit count, circuit volume takes into account the
tradeoff between space and time resources. The circuit volume
is a space-time metric in the same vein as the “quantum
volume” [24], except for evaluating specific circuits rather
than a universal quantum computer.

The circuit volume at a high concatenation level is easy to
compute using the volume of the logical construction at the first
level of encoding. Let Vg{) be the volume for implementing
circuit component G at the kth level of concatenation. Then
there is a recursion relation between two concatenation levels,
VgH'l) =3 N ng), where N is the number of the circuit
component ' in the logical construction of component &. We
can understand this as evolution of a vector of circuit volumes
of each component via a transformation matrix determined by
the logical gate constructions. Namely, we get

V8 = AW, (8)

where A is the matrix A4;; = Ngf, vk, — Vg‘:), and V((;O)
is the volume of an unencoded component. We set V& —
(V?fk),Vz(k),Vl(k),Vlfr];)p,Vrg?ﬂs)T, where the components refer to
the circuit volume of 3-qubit gates, 2-qubit gates, single-qubit
gates, |0} or |+ preparation, and measurement, respectively.

Note that (V" 1,2, V¥ v© v©O y— (321,1,1).

prep* ' meas

III. LOGICAL CONSTRUCTIONS

Here, we describe the logical constructions used in the
simulation. BExplicit descriptions of the circuits at the gate
level can be found in [25]. All of our constructions begin
with a round of syndrome measurement and recovery (the
leading error correction) and end with the same (the trailing
error correction), in accordance with the exREC formalism
[23]. The rest of the circuit may also include rounds of error
correction, called intermediate, in accordance with pieceable
fault tolerance [19].

For the 3-qubit code, we implement a logical CCZ gate by
the round-robin construction [19] with three intermediate error
corrections. The leading error correction and trailing error
correction are done by Steane’s error correction [26]. Since the
5-qubit code is non-CSS, a 10-qubit ancilla is needed to extract
the entire syndrome simultaneously. We actually find that the
circuit in [26] needs some modification for non-CSS codes,
which we discuss in the Appendix A in detail. For intermediate
error corrections, we use Shor-type error cotrection with cat
states [27]. The size of the cat states is always 4 for measuring
constant stabilizers (those that commute with the preceeding
circuitry), but it varies for measuring nonconstant stabilizers
because their weight changes as they go through the CCZ gates.
For our circuit, we need to use 9-cat, 13-cat, 9-cat at maximum
for the first, second, and third intermediate error correction,
respectively.

For the 7-qubit code, we consider the construction that
requires only one intermediate error correction [19]. All of the
error corrections are done by Steane’s error correction. Since
the 7-qubit code is a CSS code, correction of Z-type errors
can be done separately from that of X-type errors, and only
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the encoded states |0) and |+) are needed. The state |0} (| +))
is verified by applying CNOT gates transversally to another
noisy |0}(] +}) and measuring it transversally (a Steane ancilla
factory [28]). If some error is detected, we discard the state
and start again. For estimating the circuit volume, we consider
a more resource-efficient state preparation method proposed
by Goto [29]. Although we did not estimate the logical error
rate using Goto’s method, we suspect that the change in the
logical error rate between different verification methods would
be small, as indicated in [29]. Since intermediate Z-type error
correction is not needed, we simply apply the X-type error
correction in the middle and notify the trailing error correction
about possible locations of Z-type errors as described in [19].

Logical ccZ on the Bacon-Shor code is implemented as
proposed in [21]. On the 3 x 3 Bacon-Shor we need no
mntermediate correction, although we do use a non-Pauli
recovery at the end. Furthermore, since the ancilla for the
error correction is a tensor product of 3-cat states, there is no
need for verification since, modulo its stabilizers, an error on
a 3-cat is equivalent to a weight-1 error. In contrast, the 3 x 9
Bacon-Shor implements logical CCZ transversally, but it comes
with a substantially larger overhead [21].

For the nonlocal magic-state scheme, we use magic-state
injection on the 7-qubit code to implement a logical cCzZ
gate. The CcCzZ magic state is defined by the stabilizers
(X1CZ(2,3),X,C7(1,3), X3CZ(1,2)). The protocol consists of
two parts, a state preparation circuit and a teleportation circuit.
The state preparation starts with the 41 eigenstate of the
second and the third stabilizer, |0)| F}| ¥}, and measures the
first stabilizer [30]. Our circuit is a variant of the circuit in
[31], which we modify to create the CCZ state instead. Two
measurements of X,CZ(2,3) are done with complete error
correction in between. This makes the circuit fault tolerant (to
one fault). If the two measurement results do not match, we
discard the created state and start over again. If they match
and they both show the result —1, we apply Z on the first code
block to put it back to the desired magic state. If both show
+1, we do not need to apply a correction. Like the pieceable
7-qubit case, all the error corrections are done using Steane's
method [26].

IV. COMPARISON OF CONCATENATED SCHEMES

We compute the logical error rates and resource overheads
of pieceably fault-tolerant CCZ gates on the 5-qubit code, 7-
qubit code [19], 3 x 3 Bacon-Shor code, and 3 x 9 Bacon-
Shor code [21], and compare them to a magic-state scheme on
the 7-qubit code. Figure 1 shows the obtained logical error rates
for these cases using two different settings of physical error
rate, p; — po — p3s — pand 10p; — po — 0.1 p3s = p. Lower
and upper bounds on pseudothresholds are the crossing points
of the “break-even” line and the upper and lower bounds for
logical error rates. For both settings of physical error rate, the
3 x 3 Bacon-Shor code has a lower logical error rate than the
magic-state scheme below pseudothreshold. For the 7-qubit
code, whether the pieceable scheme has a lower rate than the
magic-state scheme depends on the physical error-rate setting.
The 5-qubit code has a large logical error rate due to a large
number of pieces in the round-robin construction. Similarly,
the 3 x 9 Bacon-Shor code has a higher logical error rate than
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FIG. 1. Logical error rates of 3-qubit gate on (a, b) pieceable
7-qubit code (green, dot-dashed), pieceable 3 x 3 Bacon-Shor code
(blue, dashed), (¢, d) pieceable 5-qubit code (green, dot-dashed),
pieceable 3 x 9 Bacon-Shor code (blue, dashed), and magic-state
injection on 7-qubit code (orange, solid) with (a,¢) p; = p = p2 =
pand (b, d) 10p, = p, = 0.1p; = p, where p; refers to the physical
etror rate of an i-qubit gate. Initialization of single-qubit states |0},
|4} also fails with probability p;. Dotted line is the “break-even™ line
where the logical error rate coincides with the physical error rate.
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TABLEIL Resource overheads toimplementlogical €Ccz. Volume
refers to the circuit volume, which counts all gates weighted by the
number of qubits involved. Qubits are the number of physical qubits,
including data qubits and ancilla qubits, where ancilla qubits are
assumed to be not reugable. Numbers for the 5-qubit code include all
the resources for the adaptive measurements.

Volume Qubits 2-qubit gates  3-qubit gates

Pieceable 5-qubit 3841 364 445 46
Pieceable 7-qubit 771 93 162 21
3 x 3 Bacon-Shor 414 81 90 27
3 x 9 Bacon-Shor 1350 252 306 27
Magic state 1332 154 267 14
3 x 3 BS/Magic 0.31 0.59 0.34 1.9

the 3 x 3 Bacon-Shor code because the size of the logical code
block is obviously much bigger. Moreover, the 3 x 9 Bacon-
Shor needs to implement verification for 9-qubit cat states.

We now compare the resource overheads. Table I shows
the resource overheads to implement a logical €CZ gate with
these constructions. We assume that the ancillas are not
reusable. Due to a finite ancilla verification rejection rate, the
effective resource count is slightly higher than the values in the
table. However, the rejection rate of the verification is Q(p),
and the effective resource count is obtained by multiplying
(1 — 71 )~ where M 18 the number of error locations
that lead to rejection. Since we are interested in the region
p < 107, and the largest module involving verification is the
magic-state preparation circuit, which has n; = 100, increase
in the resource due to verification is within 1%. Thus, it is
safe to ignore the effects of verification. Besides using more
3-qubit gates, pieceable constructions on the 7-qubit and 3 x 3
Bacon-Shor code have smaller resource overheads compared
to the magic-state scheme. In particular, they have a significant
reduction in circuit volume. Figure 3 shows circuit volumes
for the pieceable 7-qubit code, 3 x 3 Bacon-Shor code, and
magic-state scheme. Transformation matrices A [see Eq. (8)]
for these codes are given in Appendix D.

Combining the results for the logical error rates and circuit
volume, we conclude that the pieceable construction on the
3 » 3 Bacon-Shor code beats the magic-state scheme on the
7-qubit code in both the criteria. The pieceable construction
on the 7-qubit code also beats magic-state injection in circuit
volume, and in logical error rate when p; = po = pa.

V. COMPARISON TO SURFACE CODES

Next, we compare logical error rate and resource overheads
to a local magic-state scheme on surface codes. We find that
the pieceable construction can have a significant advantage in
circuit volume in a certain region in terms of physical error
rate and target logical error rate.

A. Logical error rates

Surface codes are known to have a high asympiotic
threshold, which is 0.1%—1% depending on assumptions and
error model [22,32-35], and thus they have attracted attention
as a candidate for a scalable quantum computer. However,
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FIG. 2. Logical error rates for 3-qubit gate on the surface codes
and (a) pieceable 3 x 3 Bacon-Shor code and (b) pieceable 7-qubit
code in terms of code distance. Shown rates for pieceable codes are
upper bounds obtained by concatenating the upper bounding function
from Eq. (7). Black dashed curves are only a guide to the eye.

having a high asymptotic threshold does not automatically
imply that the logical error rate is always low for reasonably
sized codes.

Firstly, as can be seen in [22], in the low-distance regime
the pseudothreshold of the surface code is much smaller than
the asymptotic threshold. Thus, if the physical error rate is
lower than the asymptotic threshold but not below the relevant
pseudothreshold, encoding at low distance does not help to
reduce the error rate.

Second, the logical error rate of a logical gate can be large
even if the error rate for one surface code cycle is small,
because a logical gate is made up of many cycles. Each cycle
consists of measuring the complete error syndrome once via
measurement qubits, one per stabilizer generator, as in [22].
Let peyele be the logical error rate for the surface code per
surface code cycle. Let Cx be the number of surface code
cycles it takes to implement a logical version of gate G. Then,
the logical error rate of gate G is Pz 72 Cg Peyele- Since Cp ot d
and Peyere o pH? where d is the surface code distance,
Poycle dominates for large distance. However, when 4 is small,
the contribution to ps from Cg isnotnegligible. In Appendix B
we find a specific form of Cg for the logical Toffoli gate for
two different implementations.

Figure 2 shows logical error rates of a 3-qubit gate on
the surface code using a Toffoli state, and upper bounds of
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FIG. 3. Circuit volume for logical 3-qubit gate on pieceable
T-qubit code (circles), pieceable 3 x 3 Bacon-Shor code (squares),
and magic-state scheme on 7-qubit code (diamonds) in terms of
code distance. The dots correspond to every concatenation level in
the range. Although it may be hard to see the data for the pieceable
7-qubit code because they are close to the data for the magic-state
scheme, the pieceable 7-qubit has slightly lower volume than
the magic-state scheme for every distance shown.

logical error rate of pieceable 3 x 3 Bacon-Shor code and
pieceable 7-qubit code in terms of code distance with three
different physical error rates. Upper bounds are obtained by
concatenating the function upper bounding the actual rate in
Eq. (7). Since the 3-qubit gate is the largest component among
the components that appear in the logical construction of a
3-qubit gate, concatenating the upper bounding error function
for the 3-qubit gate upper bounds its error rates at a higher
concatenation level. However, because logical 3-qubit gates
have an order of magnitude higher error rate than 2-qubit
gates and the logical constructions of 3-qubit gates mostly
consist of single gates and 2-qubit gates, this upper bound
is highly pessimistic. A careful analysis taking into account
error functions for other types of components and possibly
even using a better decoding algorithm [36,37] at higher levels
may greatly reduce estimates of logical error rates.

Nevertheless, in Fig. 2, we can see that surface codes have
better scaling with distance than pieceable concatenated codes,
which should be attributed to the high threshold. However, for
small d, Croeron has a significant contribution, and when 4 = 3
the logical error rate of the pieceable constructions is 2 orders
of magnitude lower than that of the surface code.

B. Resource overheads

We also count the circuit volume for implementing logical
Toffoli on surface codes. This allows us to compare the circuit
volume between pieceable codes and the surface codes, shown
in Fig. 3. Although surface codes have better scaling with
distance, pieceable constructions have a significant advantage
until three concatenations. This is especially true at distance
3, where the difference is 3 orders of magnitude.

Consider now the space consisting of pairs (physical
error rate, target logical error rate) = (p,pr). Combining
volume and error-rate estimates, the region of this space
where concatenated pieceable constructions require less circuit
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FIG. 4. The region where pieceable 3 x 3 Bacon-Shor code
(orange and purple) and pieceable 7-qubit code (purple) use less
volume than surface codes to implement 3-qubit gate to achieve fixed
target logical error rate pr with fixed physical error rate p. Dashed
lines labeled by ST are upper bounds on the logical error rate at the
jth concatenation level of the pieceable 7-qubit code (Steane code).
The dotted line labeled by SC(7) is the logical error rate for the
surface code with distance 7. The dot-dashed line 1abeled by BS; is
an upper bound of logical error rate at the third concatenation level
of the 3 x 3 Bacon-Shor code. The solid line on the upper boundary
is the pr = p line.

volume for implementing Toffoli than the surface code can
be obtained. Figure 4 shows this region for the pieceable
3 x 3 Bacon-Shor code and the 7-qubit code. It shows that
in large range, the pieceable 3 x 3 Bacon-Shor code has
an advantage in circuit volume over surface code, and the
difference can be significant, as can be seen in Fig. 3. This
region is actually determined by the upper bound of error rates
at the third-level concatenation. This is because the surface
code with distance 5 has already larger volume than 3 x 3
Bacon-Shor code with three concatenations, as can be seen in
Fig. 3. For the 7-qubit code, Fig. 3 shows that a 3-qubit logical
gate at two concatenations of the 7-qubit code has less circuit
volume than the surface code of any size. Thus, whenever two
concatenations are sufficient to achieve the target logical error
rate, the 7-qubit code will be advantaged, as is represented by
the region in Fig. 4. Figure 3 also shows that the volume for the
7-qubit code with three concatenations is slightly larger than
that for the surface code with distance 7. Thus, the surface
code is advantaged for the region where distance 7 is enough
for the surface code, but three concatenations are needed for
the 7-qubit code, which corresponds to the region between the
upper purple region and the lower purple region in Fig. 4. The
7-qubit code again starts to have an advantage over the surface
code for the region where the surface code needs distance 9,
whereas the 7-qubit code needs to be concatenated only three
times, which corresponds to the lower purple region in Fig. 4.

VI. CONCLUSIONS

Tn this paper, we calculated logical error rates and resource
overheads of 3-qubit gates using pieceable fault-tolerant
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constructions, a nonlocal magic-state scheme (on the 7-qubit
code), and a local magic-state scheme (on the surface code). In
comparison with the nonlocal magic-state scheme, we found
that while pieceable constructions have comparable, or even
lower logical error rate to the magic-state scheme, the required
circuit volume can be as little as 30%. This suggests that the
pieceable construction is a promising complement to schemes
relying on magic states.

We also compared the pieceable construction to the surface
codes and found that in quite a large region, in terms of
physical error rates and target logical error rates, pieceable
constructions can have significantly lower circuit volume than
surface codes.

Although realizing physical components with a small
physical error rate such that pieceable constructions have a
great advantage is challenging, one should notice that surface
codes also have as hard a challenge as this in terms of resource
overheads. Just as surface codes are good candidates given
access to large overheads, the pieceable construction appears
to be a good candidate given access to small physical error
rates.

Another difference between pieceable constructions and
the surface code is locality, i.e., the constraint that the physical
gates involved act only between qubits that are neighboring
in some chosen low-dimensional layout. Although the locality
property is desirable in many experimental setups, some sys-
tems allow nonlocal interaction, too [31]. Our result indicates
that such a nonlocal techniques can lead to a significant
reduction of resource use for quantum error-correcting codes.
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APPENDIX A: STEANE’S ERROR CORRECTION
FOR ARBITRARY STABILIZER CODES

Here, we describe the error correction used for the leading
error correction and trailing error correction of the 5-gqubit
code. Since the 5-qubit code is not CSS, one might think
Steane’s error correction is inappropriate. However, in [26],
Steane proposes a circuit to do just that for the 5-qubit code.
Unfortunately, Steane’s construction as written is not quite
correct. We present the correct method that works for any
stabilizer code. We will also see that this method gives a
conceptually simple way to prepare the necessary ancilla state
in line with Steane's original proposal [26].

Consider afn, k] stabilizer code C with stabilizer

§=1(8 |5 (AD)
and logical operators

N =(N, | N, (A2)
written in  symplectic  matrix form. That s,

Se,S, e T3 x T2 and N, N, e To* x FL. Also, if we
define A = (? é) S ]F%” e IF%” using k x k block notation,

then the canonical commutation relations are expressed by
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FIG. 5. Circuit for Steane’s error correction on a non-CSS code.
|¥} is an arbitrary encoded state, and |4} is the 2r-qubit ancilla state
from Eq. (A3). The notation % and z means that the » CZ gates are
transversally coupled to the top » qubits in the ancilla and that the »
CNOT gates are transversally coupled to the bottom five qubits in the
ancilla. Measurement is done transversally, from which the syndrome
can be classically computed.

3|
=

SAST = SANT and NANT = A for the 2k x 2k matrix A
with 15 on only the antidiagonal.

Following Steane, we propose the circuit in Fig. 3 to extract
the syndrome of C. The ancilla state used is twice the size of
the code C. The stabilizer of the ancilla state |z) can be written

s, S| 0 S

s,=lo ofs s
0o o |N N,

(A3)

We show that this ancilla state and the circuit in Fig. 3
successfully extract the syndrome without giving information
about the logical operators by propagating the observables of
the code C and the stabilizer S, through the circuit. Begin with

aS; 0 0 ]S 0 0
BN, 0 O |N 0 0
0o s Sslo o s (A4)
0o 0 oo s 8
0O 0 0|0 N N,

where the syndrome is a € IF;’]{ and logical operator values
are b = I5*. After the controlled-Z gates,

as, 0 oS5 S O
bN, O 0 |N, N, O
0 S 8|5 0] Sz (A
0] 0 0 0 S 5
0] 0 0 0 N, N
After the controlled-X gates,
as, 0 18 S 5
EN, O 0 |N, N, N,
S S 8|85 0 0 (A6)
6] 0 0 0 S5
6] 0 0 0 N, N
This is equivalent to the stabilizer,
as, 0 (U 0 O
bN, O 0| N, 0 O
ad §, 5| O 0 01, (AT
0 0 6] 0 5y
0 0 6] 0 N, N

and so we see that measuring all ancilla qubits in the X basis
results in a bitstring m < I3 such that SAm = a.

We note that |@) is simply related to a Bell pair |$) =
(|00 + [11))/+/2 encoded in C. If CX,;, denotes n CX gates
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[y 1 [y ]

Y] Y] —

FIG. 6. Preparing the error-correction ancilla state for the S-qubit
code for use in Fig. 5. Input states are all prepared in |0).

transversally acting from the top n qubits of the ancilla to
the bottom » and H; denotes n H gates applied to the top =
qubits, then |@) = H,CX,;,|®). Thus, we can think of |z} as an
encoded Bell pair that has been “transversally disentangled.”
Circuit identities can be used to rearrange Fig. 5 to Knill's error
correction [38]. Also, if C is CSS, Fig. 5 reduces to Steane’s
error correction for CSS codes [28].

Steane’s original proposal for non-Css error correction [26]
omitted the S5; on the right side of the first row of Eq. (A3).
Doing the same calculation as above shows that this will
not succeed in measuring the syndrome. Steane’s proposal
suggested that the ancilla state would always be CSS for any
code. This, unfortunately, is not true. Indeed, the 7-qubit code
from [39] has an ancilla that is not even local-Clifford (IL.C)
equivalent to a CSS state.

However, there are non-CSS codes for which 5, is LC
equivalent to a CSS code. The 3-qubit code with stabilizer

1 0 1 0 0lo 0o o 1 1
o1 0 0 1]l0 0 1 1 0

5=11 001 0lo 1 1 0 o (A8)
00 1 0 1|1 1 0 0 0

is one of these. Indeed, 5, can be written using only ¥ -type
and Z-type generators. This allows us to prepare the ancilla
using Fig. 6 and verify the ancilla against single-circuit faults
using Fig. 7, which are both standard constructions for CSS
states [28,40].

APPENDIX B: DETAILS OF THE SIMULATION
FOR LOGICAL ERROR ESTIMATION

Here, we describe some techniques used in the estimation
of logical error rates. For reasons of simulation efficiency, only
errors originating from at most two faults are considered, but
all such errors are counted. For Clifford circuits, propagating
the Pauli errors resulting from circuit depolarizing noise can
be done simply using the Gottesman-Knill theorem [41].
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3) ol K] K] o)
B —fpl Kt oA,

) gl KT A,

8a) ol Bt DAL

FIG. 7. Verification circuit for the ancilla state prepared by the
circuit in Fig. 6. |a,} is a noisy ancilla state that needs to be verified,
and |4, } is a purified one.

However, some of our circuits are built from non-Clifford
CCZ gates. In this case, a tracked error is modified to include
controlled-Z (CZ) terms. A Pauli error that propagates through
m CCZ gates picks up at most m CZ terms (some may cancel).
Upon measurement (e.g., in the error-correction circuits), the
CZ terms must be broken down into a sum of Paulis, only some
of which flip measurement bits to cause a signal. We treat each
term as a different error element with the probability equal to
the square of the amplitude of the term.

There is a subtlety in breaking down CZ errors. As a sum of
Pauli terms, a CZ erroriswritten (I + ZI + 172 — ZZ2)/2. If
there are multiple CZ errors, this Pauli sum has every possible
combination of I and Z on the qubits on which CZ errors
are applied, each with a plus or minus sign. Thus, m CZ
errors applied on different qubit pairs are decomposed into
a Pauli sum with 4™ terms. If we treated each term as different
error element at this point, each term would be assigned the
probability square of the amplitude. However, some terms may
be equivalent to other terms up to stabilizers. Such terms should
interfere coherently. In the simulation of pieceable ccZ on
3 x 3 Bacon-Shor code, all the terms in the Pauli sum are
rewritten in an unambiguous way up to stabilizers, and terms
interfere before assigning them a probability.

Now that we recognize the subtle issue as the coherent
addition of the Pauli terms, we argue that it does not affect
the logical error rate except for that of the 3 x 3 Bacon-Shor
code case. First, note that the coherent addition can only
happen when the number of gubits in one block on which
CZ errors are applied is more than or equal to the weight of
the stabilizers. This is because if the stabilizers have a higher
weight, multiplying a stabilizer necessarily gives extra Paulis
on the qubits that are not affected by CZ errors. It prevents
the term multiplied by a stabilizer being the same as another
term in the Pauli sum. In a pieceable CCZ circuit on the 3-qubit
code, CZ errors occur only on the three qubits, the support of
logical Z. Since stabilizers are weight 4, the coherent addition
will not happen for the above reason. For the pieceable ccz
circuit on the 7-qubit code, we argue that although the coherent
addition may happen, it will not affect logical error rate. Since
stabilizers for the 7-qubit code are weight 4, the coherent
addition could happen only when two X errors go through
in the same block in the first piece. However, these X errors
cannot be corrected because the 7-qubit code is a perfect CSS
code. Thus, all the error elements where the coherent addition
could happen end up with logical errors regardless, and it
does not matter whether we accurately interfere the terms.
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For the pieceable CCZ circuit on the 3 x 9 Bacon-Shor code,
the situation is similar to the 7-qubit code case; the coherent
addition could happen but will not affect the logical error rate.
Since ccZs on the 3 x 9 Bacon-Shor code are transversal, the
number of qubits in the same code block on which CZ errors
are applied is at most 2. Since weight-2 Z-gauge operators are
aligned along a row, the coherent addition could only happen
when two CZ, errors are applied on the two qubits in the same
row in some code block. However, all the terms inthe Pauli sum
for the CZ errors in that block are Z-type errors whose weight.
is less than or equal to 2 and whose support is in the same row.
Since weight-1 errors can be corrected by the standard error
correction, and weight-2 errors in the same row are equivalent
to the identities up to stabilizers for the Z-gauge Bacon-Shor
code, the terms in the Pauli sum are all correctable when the
concerned coherent addition could happen. Thus, it will not.
affect the logical error rate.

Considering CZ errors as a Pauli sum is inefficient—m CZ
terms lead to 4™ Pauli addends. However, in the simulation,
we donot actually break down all the CZ errors. Under certain
cases, we definitely know that the final error correction will
succeed to correct the CZ error. One such case is when the
CZ error is applied over different code blocks, and those code
blocks do not have any Z errors. The other case is that the CZ
error is applied in one code block, there are no Z errors in the
block, and an intermediate error correction notifies the correct
locations that the CZ error is applied over.

Also, we can reduce the number of CZ errors by removing
harmless CZ errors before the measurements in the final error
correction take place. A harmless error is one that does not
affect encoded states. When errors are only Paulis, like in the
circuits that only consist of Clifford gates, such errors are just
stabilizers. The following theorem generalizes the condition
for the harmless errors to the non-Pauli case.

Theorem 1: Let E be an error operator, 8 = (g1, ..., &n %}
be the stabilizers, (g, x11 -+ - »&n1x; be the logical operators
of the code, and |} be an encoded state. If ng‘lng c § for
alli =1,...,n+ k, then E|i) = |1} up to global phase.

Proof. By the assumption, there exists a stabilizer s; such
that g, F — Eg;s;,¥i. Fori = 1,....,n — k, since

8 El¥) = Egisi| ) = El¥), (B1)

E preserves the codeword space. Now for i =n —k +
L...n+k, let \g(i)) be the eigenstate of the logical operator
g: with eigenvalue +1, then

I

§:Elg™) = Egisie) = +E|5). (B2)

r

Thus, E also preserves the logical space.

This theorem allows us to ignore the CZ errors that satisfy
the above condition, which greatly reduces the computational
task.

When intermediate error corrections are present, CZ errors
need to be broken down according to the Pauli sum in the
intermediate error corrections and need to be propagated until
the error correction at the end. If the number of intermediate
corrections is zero or 1, it is rather easy to deal with, because
the number of error elements due to the CZ errors that need to
be propagated until the end is limited. Actually, except for the
pieceable 3-qubit code, all the CZ errors that do not satisfy the
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condition of Theorem 1 were broken down upon measurement.
and tracked to see if they end with a logical error.

For the 5-qubit code, to reduce the computational demand,
we take the rule where we declare an error to be a logical error
as soon as some CZ errors are measured in an intermediate
error correction. Although this strategy would cause some
overestimation of the logical error rate, we argue that the pro-
bability that CZ errors are measured in an intermediate error
correction is rather small. CZ errors are measured in an
intermediate error correction in the following two cases. The
first case is that an X- or ¥Y-type error is caught by a €CZ
gate in the adaptive nonconstant-stabilizer measurement. It
is described in [19] that the adaptive nonconstant-stabilizer
measurement is only triggered when some constant stabilizer
measurements click due to an X- or Y-type error only for a
single code block. The adaptive measurement may contain CCZ
gates connected between the ancilla block and the code blocks
whose constant stabilizers did nof click. Thus, an X- or Y-type
error is caught by a CCZ gate in the adaptive measurement.
only when an X or ¥ error triggers the adaptive measurement;
the constant measurement in different code blocks fail with
X- or Y-type error, and it goes to a CCZ gate in the adaptive
measurement. The second case is that a CZ error is caught by
a CNOT gate in the adaptive measurement. Note that CZ error
only happens when an X- or ¥ -type error propagates through
the CCZ gates in the code blocks. CZ errors are then present in
code blocks other than the one in which the X- or Y -type error
exists. Also, CNOT gates in the adaptive measurement could
be applied only to the code block whose constant stabilizers
click. Thus, a CZ error is caught by a CNOT gate in the adaptive
measurement only when an X- or Y-type error generates CZ
errors in different code blocks, a later CCZ gate fails to cancel
the first X or ¥-type error and generate another X or ¥-type
error in the other code block that will make the constant
measurement click, and the CZ error goes into the CNOT gate
in the adaptive measurement. These two cases are realized in
very restricted situations, so the contribution to the total logical
error rate from these cases would be rather small.

Another situation arises with two or more intermediate
corrections. The pieceable construction onthe 5-qubit code has
multiple intermediate corrections, and they detect X errors and
notify possible error locations to the final error correction so
that the final error correction can correct up to weight-2 located
errors. However, multiple faults can cause two intermediate
error corrections to incorrectly notify more than two locations
to the final error correction. We declare those elements to be
logical errors.

APPENDIX C: DETAILS ON THE ERROR POLYNOMIALS

Here, we describe how to obtain Egs. (1)—(3) from the
exact counting. We first consider Eq. (1), the probability that
one or two faults occur and that pattem is accepted by all
the verification modules through the propagation but ends
up with a logical error. Due to the fault-tolerant property, a
single fault never causes a logical error. Thus, it suffices to
consider the cases when two faults occur. In the simulation,
each combination of two fault patterns is assigned a probability
(775)(555) if the faulty components are an r-qubit gate and
an s-qubit gate. We propagate all the errors until the end and
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sum up the probabilities of the errors that lead to logical
errors. During the propagation, these errors may encounter
verification processes. If they are accepted by the verification,
we keep propagating them. Otherwise, we stop propagating
them so that they do not contribute to the logical error rate.
Let Qgil ace denote the estimated logical error rate. Since each
physical error rate is either py, py, or ps, it looks like

3
Qtuitcc = Z F2p. ps. (C1)

r=1 sz=r

Let n, be the total number of r-qubit gates. Since we
assume that different components fail independently, Eq. (1)
is obtained as

Pl =20 Y S 02 2.

r=1 szr

(€2)

Similarly, €sce ace. the sum of the assigned probability of
the patterns that are accepted by all the verification modules
and do not cause a logical error, looks like

qucc acc — Z S(I)Pr =+ Z Z Sg)prps (C3)

F=1 827

and Eq. (2) is obtained as

SWp,
Ps(fczc,acc - [H3 1(1 — )”t (1 + Z 1—p
1,

+ii—sup’ps ) €4
2l T pya—p)

The patterns that are not counted in either Qi ace O Qwuce,ace
are rejected in some verification module. Thus, we obtain
Eq. (3) as

3

AL p
Pr(ez_l) - [Hg’:l(l - Pt)nf]( Z S

r=1

3 AQpp
L T oo s))’ (©

r=1 $>r
where
AD =y, — 5O (C6)
_ P _ 5@
AQ = e T T r#s) 5))
G)-FP -89 =9

Special care is required for the 5-gqubit code because
i, cammot be definitely determined because of the adaptive
measurements. Note that at most two adaptive measurements
are friggered when one or two faults occur. Thus, taking »,,
which includes the two largest adaptive measurements, which
are the ones with 13-cat and 9-cat, the lower bound in Eq. (7)

PHYSICAL REVIEW A 96, 042302 (2017)

still holds. Instead of Eq. (C4), we take

i sV,
Ps(l.lzgc,acc = [HIB=1(1 - Pr) r] (]‘ + Z f—)

W=l 1-p
3 3
S( )prps
+[m2 - pom .k -
[Micsl = 2 ](,Zgu—p»u—m)

(C8)

where n’ is the number of fault locations not including adaptive
measurements.
For the 5-qubit code we also use

Pﬂm:HjPaCC,j :Hj(lfprej,j)‘(r[jﬁ(l P(z) )

rej], _]

(€9)

where j is taken over all the verification modules and ;'
is taken over all the verification modules except adaptive
measurements,

The following are the obtained values for the parameters
for each construction:

(a) 3 x 3 Bacon-Shor

ny = 252,m = 180,13 = 27 (C10)
SO = (252,180,27) (C11)
4216.8 42719 783.5
F& = 1194.5 461.5 (C12)
34.9
27409.2 41088.1 6020.5
52 — 14915.5 4398.5 (C13)
316.1
(b) Pieceable 7-qubit
ny = 648,n, = 480,13 = 21 (C14)
S = (383,224,21) (C15)
132584 12722.6 35814
F& — 3077.3  1855.3 (C16)
176.7
56460.9 689537 44616
S@ — 20748.8 28487 (C17)
3.5
(¢) 3 x 9 Bacon-Shor
ny = 2736,n, = 864,13 = 27 (C18)
SU = (1524,566.4,27) (C19)
52074 430984 7049.2
F® = 8663.0  2968.1 (C20)
183.3
1013640 748636 34098.8
5O = 138296 12324.7 (C21)
167.7
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(d) Pieceable 5-qubit

ny = 33651, = 1228,n3 = 41 (C22)
nl = 2967,n, = 1152,n) = 27 (C23)
SO = (1475,457.6.,27) (C24)
113030.0 85261.6 14679.2
F@ = 16067.4 55514 (C25)
3325
639301.0 482043.0 203924
s = 90716.0  7554.7 (C26)
59.3
(e) 7-qubit with magic state
ny = 11381, = 743,13 = 14 (C27)
SO = (612,324.3,6.9) (C28)
25436.5 245659 10785
F& — 62324  521.1 (C29)
26.9
154650 166625 3921.4
§O = 443083 2178.5 (C30)
18.6

APPENDIX D: TRANSFORMATION MATRIX
FOR VOLUME CALCULATION

As explained in the main text, the circuit volume for
concatenated codes at higher concatenation level is described

by a transformation matrix A, where A;; = N, g ! 'We show the
matrices for a pieceable 3 x 3 Bacon-Shor code, pieceable 7-
qubit code, and 7-qubit with magic state, which are denoted by
Apzs, Ay, and A7, respectively. We take the following order
for gates: G=13-qubit gate, 2-qubit gate, single-qubit gate, |0}
and |+} preparation, X-basis and Z-basis measurement}. For
preparation of |0} and | T} on 7-qubit code, we use the method
proposed by Goto [29], which requires just one additional
ancilla:

27 90 45 54 54
0 69 30 36 36

Apps=|0 30 24 18 18
0O 6 3 9 0

o 0 0 0 9

21 162 240 72 72

79 104 32 32

Apr = 36 59 16 16

11 22 8 1
0 0 o 7

14 267 504 136 136
0 79 104 32 32
0 36 59 16 16
0 11 22 8 1
0 0 0 0 7

0
0
0
0

Am? —
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APPENDIX E: DETAILED RESOURCE ANALYSIS
FOR THE SURFACE CODE

We describe the detailed resource analysis to implement
a logical Toffoli gate on the surface code. There are mainly
two ways to do it: synthesizing a Toffoli gate using Clifford
gates and T gates, and injecting a logical Toffoli state by gate
teleportation.

Consider the first method, in the context of the Toffoli im-
plementation proposed by Jones [42] using four T gates. The
T gates are implemented by | T} state and gate teleportation,
where the | T'} state is purified by a distillation protocol. We use
the 13-1 protocol [6,22], which reduces error rates of | T} from
O(p)to O(p*), because it requires the smallest circuit volume
compared to others [9,43,44]. Since the region of the physical
error rate that pieceable construction helps to reduce the error
rate is p < 107" as can be seen in Fig. 1, the logical error
rate of the magic state distilled once is <107". Although the
reduction in error rate may not be sufficiently low depending
on the goal logical error rate, one distillation already gives
large overheads. Thus, we consider the circuit volume for one
distillation as a lower bound and proceed with the discussion.

It may come as a surprise that other distillation protocols
with better conversion rates between a noisy magic state and
a purified magic state have larger circuit volumes. This is
because the Hadamard gate and phase gate are not transversal
on the surface code. For implementing the Hadamard gate or
phase gate fanli-tolerantly, some nontrivial techniques, such
as state injection, lattice surgery [45], code deformation [46],
or surface folding [47], are required. These take many surface
code steps, which affect the circuit volume. Even though the
conversion rate between the noisy T state and purified T state
is high, if it requires many costly Clifford gates, the circuit
volume will be large. Especially in the case when only one
distillation is required, a poor conversion rate does not hurt the
circuit volume that much.

Let us analyze the number of surface code cycles and
circuit volume for each gate that are necessary to implement
the logical Toffoli gate. Let Cy and Vi; be the surface code
cycles and circuit volume it takes to implement G. We discuss
circuit volume in units of [qubit x cycle] and then convert it
to [qubit x step] using the fact that one surface code cycle
consists of six steps [22]. Also, let 4 be the surface code
distance, and n = (24 — 1) be the number of physical qubits
on a surface. The necessary components here are {|0} and | )
preparation, CNOT, Hadamard, Phase}.

For logical state preparation, we initialize a surface with
physical |0} for |0} preparation, and |4} for |} preparation.
After d rounds of error correction, an appropriate recovery
can be determined to prepare the desired logical state fault-
tolerantly. Thus, we find Cprep = d, Vipp = nd.

The CcNOT gate can be transversally implemented if we allow
nonlocality or a three-dimensionally layered architecture.
However, since one of the striking features of surface codes
is local interactions in a two-dimensional architecture, we use
lattice surgery to implement the CNOT gate [45]. First, prepare
a surface with the |+) state between the control surface and
the target surfaces. The control surface and the intermediate
surface are merged while obtaining measurement syndromes.
This corresponds to ZZ measurement. After that, the surface
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) S1)
) ——{H-O{H]- Is)

FIG. 8. Circuit identity used for implementing the S gate. Here
1S) = SI4+) = €10} +[1))/+/2.

is split into two original surfaces and the intermediate surface
is merged to the target surface, which corresponds to XX
measurement. It ends with splitting it into the two original
surfaces. Since merger and splitting each take & rounds of
error correction to stabilize the surface,

Cenor = Cprep + 4d = 5d (ED)
and
Venor = Vorep + [32 + 202d — D Cprep + 4d)
= 6d — 444% + 64d°. (E2)

The Hadamard gate is also implemented by the lattice
surgery. In the lattice surgery technique, first Hadamard gates
are applied transversally. To correct the orientation of the
boundary, additional qubits are merged to the boundary and
some qubits are split out so that it restores the original boundary
orientation. The protocol ends with moving the surface back
to the original position. It takes 4 cycles to stabilize the
original surface after applying transversal H, d cycles for
lattice merger, ¢ cycles for lattice splitting, and & cycles for
SWAP operations to move the lattice back to the original
position. Thus, Cx = 4d. For circuit volume, we need a bigger
surface to carry out merger and split by one more column and
row of qubits. Thus, Vi = 24)°Cy = 164°.

For implementing the phase gate, we use the circuit in Fig. 8.
A good thing about this circuit is that the ancilla state |5} =
S|+ =0} + i|1))/\/§ispreserved. Thus, once apurified|S)
state is prepared at the beginning of the computation, it can
be reused whenever a phase gate needs to be applied. After
averaging over a whole computation, the volume used for the
distillation process at the beginning will be negligible per one
logical gate construction. Note that if only local interactions
are allowed, it may take additional circuit volume when the
qubit to which the phase gate should be applied is far from the
stored |5} state. Thus, our estimation should be considered as
a lower bound of the actual circuit volume under the setting
in which only local interactions are allowed. It gives Cs =
2Cenor + 2Cg = 184 and Vi = 2Vnor + 2Vg + 20Cy =
20d — 1204% 4 1924°. Combining these building blocks, we
find the number of cycles and volume required to implement.
a T gate and a Toffoli gate.

For distilling a T state, |T) = T'|+), we use the circuit
in [22] which takes 15 |T) states and output 1 |T'} with
lower error rate. It takes seven surface code cycles for CNOTs
and two steps for transversal T and measurements, which
is 1/4 surface code cycle. Ignoring the last 1/4 cycles,
we get Oy = 7Cenor = 354, With some parallelization,
we get Vi = 16V + Vewor + 70 Venor + 6 Cenor) +
%(16710?) = 4464 — 250442 + 322443

For implementing a T gate, we use the usual gate tele-
portation technique [48]. The S gate correction is applied
with probability 1/2. We get Cr = Cenor + %Cg = 144 and
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Ve = Viry + Vewor + %VS =4624 — 26084> + 33844>. Since
the surface code is CSS, we can transversally make measure-
ments on all the data qubits and extract the eigenvalue for the
measurement operator. Thus, measurement is done with only
one time step, which is 1/8 of one surface code cycle, and we
ignore the volume due to the measurement.

Toffoli gate synthesis in [42] consists of two steps. In the
first part, one constructs the Toffoli* gate, which is a Toffoli
gate followed by a controlled-S! gate, where four T gates
and two H gates are used. Also, note that one logical ancilla
block is used. The second part takes the Toffoli* gate to the
usual Toffoli gate with help of one additional ancilla block. By
construction of the synthesis circuit, we get

Crottorit = 2Cg + 4Ceonor + Cr =424 (E3)
and
Viottolr = Vprep + 60Cx + 2Vy + 8Vonor +4Vr
= 19214 — 108844° + 141804°. (E4)
The second part of the circuit gives
Crottoli = Crotrotir + Cs + Conor + C + Oy = 1044
(ES)
and
Viototi = Vrotiont + Vorep + 2 Cotrorr + Vs + Venor
+ Vg + 3n(Cs + Cenor + Cx)
+1(Cwor + Conor + Cr)
— 21184 — 1173242 + 1513643, E6)

where the unit for the volume is [qubit x cycle]. We included
Cry in Cropron because cycles in the distillation circuit also
contribute to an increase in the final logical error rate. Note
that it includes the ancilla qubits for keeping the | 5} state that
is kept during the whole computation.

Another way to implement a logical Toffoli gate on the
surface code is to use the Toffoli state. To locally prepare
the Toffoli state, we use the protocol that takes eight |H}
states and outputs one Toffoli state [49]. In the preparation
circuit, there are two Y (z/4) gates and four Y(—m/4) gates,
which are rotations with respect to the ¥ axis. These gates are
implemented using the | H} state with a ¥ basis measurement,
controlled-¥Y gate, and Y(£mz/2) gate. To implement these
gates on the surface code, we use phase gates and Hadamard
gates to rotate them to X basis measurement, CNOT gate, and
phase gate. We then obtain

Crwm = Cs + Conor + Cs + QCx + C5)/2
— 544 (B7)
and
Vroeray = Vorep + Vs + Vowor + 2Vs + 2V + Vi)/2
— 77d — 4684° + 7564°. (E8)
Using these, we obtain
Ciromony = 7Cenot + (15/2)Cs + 3CxH
— 1824 (E9)
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FIG. 9. Circuit volume for two different implementations of the
Toffoli gate. Dashed: gate synthesis using a T gate. Solid: Toffoli
state scheme.

and

Vivottoly = 4Vprep + 32Vewor + 2V + 20Cy(nja))
+ Venor + 22Cenor

= 842d — 44684° + 63364°, (E10)

PHYSICAL REVIEW A 96, 042302 (2017)

where |Toffoli} refers to the Toffoli state. Cycles and volume
for the teleportation circuit, which we write Cij. and Vi, are

Ciele = Conor + 1/2(3Cenor + 2CxH)

— 16.54, (E11)

Viele = 3Venor + {40 Cyx 4 30Venor + nCenor) /2

=42.5d — 2604° + 3504°. (E12)
Combining all of them, we get
Crofiors = 198.54 (E13)
and
Vittonn = 7076d — 378244° + 5348847, (E14)

where the unit for the volume is [qubit x cycle]. Figure 9
shows circuit volume with unit [qubit x step] in terms of code
distance for both ways of implementation. We can see that the
scheme with the Toffoli state has a lower circuit volume. This
is the reason why the scheme with the Toffoli state is discussed
in the main text.
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