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Abstract—This study explored the hidden biomedical 
information from knee MR images for osteoarthritis prediction. 
We have computed the Cartilage Damage Index (CDI) 
information from 36 informative locations on tibiofemoral 
compartment from 3D MR imaging reconstruction and used 
PCA analysis to process the feature set. The processed feature set 
and original raw feature set were severed as input to four 
machine learning methods (artificial neural network (ANN), 
support vector machine (SVM), random forest and naïve Bayes) 
respectively. To examine the different effect of medial and lateral 
informative locations, we have divided the 36-dimensional feature 
set into 18-dimensional medial feature set and 18-dimensional 
lateral feature set and run the experiment on four classifiers 
separately. Experiment results showed that the medial feature set 
generated better prediction performance than the lateral feature 
set, while using the total 36-dimensional feature set generated the 
best. PCA analysis is helpful in feature space reduction and 
performance improvement. The best performance was achieved 
by ANN with area under the receiver operating characteristic 
(ROC) curve = 0.761 and F-measure = 0.714. Experiment results 
indicated that the informative locations on medial tibiofemoral 
compartment contain more valuable information than 
informative locations on lateral tibiofemoral compartment, for 
OA severity prediction. Therefore, to improve the design of the 
clinically used CDI, it could be considered to select more points 
from the medial tibiofemoral compartment while reduce the 
number of points selected from the lateral tibiofemoral 
compartment.  
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I.  INTRODUCTION 
Knee osteoarthritis (OA) is the most common form of 

arthritis and the major cause of activity limitation and physical 
disability in older people. In 2000, 35 million people (13% of 
the U.S. population) were 65 and older, and more than half of 
them have radiological evidence of osteoarthritis in at least one 
joint [1]. By 2030, about 70 million people (20% of the U.S. 
population) will have passed their 65th birthday and will be at 
risk for OA [1]. As a major cause of work absenteeism, early 
retirement and joint replacement, OA disease has caused a high 
economic expense burden on the society [3]. 

It is still unclear what causes the disease and how to treat it 
effectively. In clinical study, OA is mainly diagnosed through 

medical images. Measurement of hyaline cartilage change is a 
primary assessment of structural progression of OA and is used 
to evaluate the effectiveness of new clinical treatments. 
Magnetic resonance (MR) imaging is a noninvasive technology 
that can generate 3-dimensional images of intra-articular soft-
tissue structures, including hyaline cartilage. However, the 
process of measuring cartilage morphology on MR images is 
time-consuming and burdensome. Each 3-dimensional (3D) 
knee MR sequence may take up to six hours for a reader to 
manually segment. Furthermore, operators who use cartilage 
segmentation software often need extensive training [4] which 
further contributes to the time and cost.  

Over the past decade, researchers have developed different 
approaches to reduce the burden of measuring knee cartilage 
on MR images. These includes segmenting alternate MR slices 
or confining measurements to partial regions of cartilage [8-10]. 
Computer-aided algorithms (e.g., active contours, B-splines) 
have also been developed to assist with cartilage segmentation 
for MR images [5-9]. Unfortunately, these methods lack 
sufficient accuracy and reliability to detect small cartilage 
changes [10]. Thus, there remains a need among researchers 
for a quantification method that can be rapidly computed and 
has good reproducibility, validity, and sensitivity to change. 

Recently, a novel and efficient knee cartilage damage 
quantification method, called cartilage damage index (CDI), 
was proposed by Zhang et al. [11, 12]. The method quantifies 
cartilage thickness by measuring certain informative locations 
on the reconstructed cartilage layer instead of measuring 
cartilage on all MR slides. The informative locations are 
selected based on the statistical analysis that certain articular 
cartilage locations are more susceptible to occurrence of OA 
damage and thus may be more informative in the measurement 
of OA progression. To measure CDI, totally 60 locations on the 
cartilage layer are selected, including 18 locations from medial 
tibiofemoral compartment, 18 locations from lateral 
tibiofemoral, and 24 locations from patella compartment (Fig. 
1).  CDI has been validated using images from Osteoarthritis 
Initiative (OAI) database and successfully applied to clinical 
trials [23]. Statistical studies show that CDI is associated with 
commonly used OA severity measures including Joint Space 
Narrowing (JSN) grade, Kellgren and Lawrence (KL) score, 
Joint Space Width (JSW), and knee alignment with p-values 
<0.05 [11, 12].  



This work is inspired by the observation that in the process 
of computing CDI score for a knee joint, each of the 60 index 
locations was measured separately, but only the summation of 
all these locations or a subgroup of these locations were used to 
compute CDI. For example, the summation of 9 medial tibia 
locations and summation of 9 medial femur locations were 
studied in [12] to find the correlation between CDI and OA 
severity grades. In this work, we focus on using data mining 
and machine learning methods to fully explore the information 
contained in each index location. We treat CDI information 
from each location as an individual feature dimension and use 
principle component analysis to find the optimum feature 
representation. The optimum feature set serves as the input for 
machine learning methods to learn the mapping function 
between cartilage change at CDI locations and OA severity 
grade change. We used KL score as OA severity grade in this 
work.  

The rest of the paper is organized as follows. In Section II, 
we described the materials and methods used in this research, 
including OAI database, definition and measurement of CDI 
locations, feature analysis, machine learning methods and 
evaluation metrics. In Section III, we presented and analyzed 
the results from the experiments described in Section II. 
Finally, in Section IV, we drew conclusion and discussed 
future work. 

II. MATERIALS AND METHODS 

A. Data 
In this study we used data and MR images from the 

Osteoarthritis Initiative (OAI), which was initiated to promote 
the evaluation of OA biomarkers as potential surrogate 
endpoints [14]. The OAI has institutional review board 
approval (IRB) from the coordinating centers and the four 
clinical centers (University of Maryland and John’s Hopkins 
comprise a single recruitment center, Brown University, Ohio 

State University, University of Pittsburgh). All participants 
provided informed consent to participate in the OAI. The four 
OAI clinical centers recruited approximately 4800 men and 
women (ages 45–79 years) with or at risk for knee OA. The 
OAI participants had weight-bearing posterior-anterior fixed-
flexion knee radiographs obtained at the baseline and 24-month 
visits. We obtained a convenience sample of 100 pairs of knee 
(both baseline and 24-month MR scans) that had complete data 
(i.e., clinical, static knee alignment, semi-quantitative 
radiographic grading, and joint space width). We selected our 
samples to represent the range of radiographic OA severity 
(Kellgren-Lawrence [KL] scores 0 to 4) enriched with knees 
that showed radiographic worsening over time (KL scores 
changes between baseline and 24-month follow-up).  

B. Cartilage Damage Index 
Cartilage Damage Index (CDI) is a novel osteoarthritis 

cartilage damage quantification method that utilizes 
informative locations on knee MR images [11-13]. These 
informative locations are selected from regions on articular 
surface where cartilage denudation frequently happen. In the 
study to find the most informative locations, a 3D articular 
surface of the distal femur and proximal tibia is constructed 
using sequence of 2D MR slides, as shown in Fig. 1. Then the 
3D surface is projected to a 2D rectangular coordinate systems 
to represent the articular surface of the distal femur and 
proximal tibia. 18 informative locations are selected within 
medial and lateral femur compartments (yellow dots in Fig. 1), 
18 informative locations are selected within medial and lateral 
tibia, and 24 informative locations are selected within patella. 
In specific, 9 locations were selected within the region of the 
most commonly denuded areas on the medial femur, medial 
tibia, lateral femur and lateral tibia, and 12 locations within 
medial patellofemoral and lateral patellofemoral respectively. 
In this paper, we used 36 informative locations from medial 
and lateral tibiofemoral compartments to do the analysis 
because they are more related with OA progression. 

 
 

Fig. 1. Informative locations (yellow points) on 3D cartilage layer [13].
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To measure the CDI information for a new set of MR 
images (one knee), first step is to indicate the most medial and 
lateral MR image slices within the knee. These images 
designate the minimum and maximum values of the medial-to-
lateral axis on the 2D coordinate system. Next, the software 
automatically determines the MR image slices that contain the 
informative locations. On each of these slices the bone-
cartilage boundary need to be manually traced by an 
experienced expert using predefined segmentation rules. The 
software then translates the length of the bone-cartilage 
boundary to a standardized anterior-to-posterior axis and 
indicates the predefined informative locations so that the expert 
could measure the cartilage thickness at those points (Fig. 2). 
The software then computes the CDI score by summing the 
products of cartilage thickness, cartilage length (anterior-
posterior), and voxel size from each informative location. 

 
 
Fig. 2. The thickness measurement of six CDI locations on one MR slide of 
the medial tibiofemoral compartment [12]. 

C. Feature Analysis 
Unlike the definition of CDI score which computes the 

summation of thickness information from each informative 
location, here, we treat the thickness information from each 
informative location as an individual feature. For each 
informative location, the thickness change over two years 
(subtracting baseline data from 24-month data) is computed as 
one input feature. Therefore, 36 informative locations generate 
a 36-dimensional feature set. The corresponding class label is 
the change of KL grades (change or no-change). These 36 
features are further divided into two groups, 18 features from 
medial tibiofemoral compartment (including medial tibia and 
medial femur) and 18 features from lateral tibiofemoral 
compartment (including lateral tibia and lateral femur). We 
plan to analyze the 36 features as well as the two subgroups 
(medial and lateral) separately as research showed that medial 
OA is more common than lateral OA [15, 16].  

We analyzed the feature space by principal component 
analysis (PCA) [17], with the purpose to find the most 
representative optimum feature set. PCA projects data onto a 
new space in which consecutive dimensions contain less and 
less of the variance of the original dataspace and compresses 

the most important information onto a subspace with lower 
dimensionality than the original space. Before running PCA, as 
a preprocessing step, we normalized data into range [0, 1] for 
each dimension. We tested the feature space with 5-100% of 
the projected subspace using 10-fold cross-validation to 
establish how many principal components needed to be 
included to reach full performance. 

D. Machine Learning Methods 
We explored the use of four machine learning methods to 

learn the mapping function between the CDI feature space and 
OA severity denoted by KL grades. The four machine learning 
methods are artificial neural network (ANN), support vector 
machine (SVM), random forest and naive Bayes.    

ANNs are powerful classifiers that are based on the 
structure and functions of biological neural networks [18]. An 
ANN is composed of an input layer, an output layer and one or 
more hidden layers. In this work, a single hidden layer with n 
neurons was employed as the network structure, where n is 
computed as (# of attributes + # of classes)/2. The 
backpropagation algorithm is used to update the weights of 
neurons. 

A SVM constructs a hyperplane or set of hyperplanes in a 
high- or infinite-dimensional space to separate data [19]. It uses 
a kernel function to map data into the higher dimensionality to 
obtain a better distribution and therefore a better classification 
result. SVMs are have been reported to be a superior method in 
many classification problems. In this work, the radial basis 
function (RBF) was adopted as the kernel function.  

A random forest is an ensemble learning method that 
constructs a multitude of decision trees at training time and 
outputs the class that is the overall prediction of the individual 
trees [20]. Random forests correct the overfitting problem of 
decision trees and are commonly used for classification, 
regression and other tasks with an efficient performance on 
large scale data bases. 

 Naive Bayes classifiers are a family of simple probabilistic 
classifiers based on applying Bayes' theorem with strong 
(naive) independence assumptions between the features [21]. It 
is a popular method for text categorization problem and finds 
application on automatic medical diagnosis. In other 
classification fields, naïve Bayes is usually not as competitive 
as other more advanced machine learning methods such as 
SVM and ANN, but in this work, we found that it often 
achieved good performance in the experiments of OA severity 
prediction.    

All the classifiers were implemented in Weka software 
package [22], which was used to run experiments in this work.   

E. Evaluation 
10-fold cross-validation was used for training and testing 

procedure for all four classifiers, in which data were divided 
into 10 equal groups, and for each iteration, one was held out 
for testing while the remaining nine groups were used for 
training, until all the data had been used as testing data once. 

https://en.wikipedia.org/wiki/Probabilistic_classifier�
https://en.wikipedia.org/wiki/Probabilistic_classifier�
https://en.wikipedia.org/wiki/Bayes%27_theorem�
https://en.wikipedia.org/wiki/Statistical_independence�


We used several metrics to evaluate performance of our 
classifiers: precision (also called positive predictive value 
(PPV)), recall (also called sensitivity), F-measure, Matthew’s 
correlation coefficient (MCC), and the area under the receiver 
operating characteristic (ROC) curve (AUC). ROC curves 
provide an indication of the tradeoff between classification 
sensitivity and specificity as the classifier confidence threshold 
increases or decreases. The F-measure, provides an indication 
of overall classification accuracy as a weighted average of 
precision and recall for a specified confidence threshold. MCC 
is a powerful accuracy evaluation criterion of machine learning 
methods. Especially, when the number of negative samples and 
positive samples are obviously unbalanced, MCC gives a better 
evaluation than overall accuracy. The formulas of the 
evaluation metrics are provided below.  

Precision = TP
TP+FP

   (1) 

Recall = TP
TP+FN

     (2) 

F − Measure = 2 ∙ Precision∙Recall
Precision+Recall

  (3) 

MCC =  TP∙TN−FP∙FN
�(TP+FP)(TP+FN)(TN+FP)(TN+FN)

 (4) 

where TP is the number of true positives, TN is the number of 
true negatives, FP is the number of false positives and FN is the 
number of false negatives. In this work, positive class is 
defined as KL grade is changed after 24-month follow-up and 
negative class is defined as KL grade has no-change after 24-
month follow-up.  

III. EXPERIMENT AND RESULTS 

A. Experiment 1: Predict KL grade change using 18 medial 
tibiofemoral informative locations 
Experiment 1 used 18 information locations on medial 

tibiofemoral compartment to predict the change of KL grade. 
For each informative location, the product of cartilage 
thickness, cartilage length (anterior-posterior), and voxel size 
was computed from both baseline and 24-month data, the 
change of the two products was used to represent CDI 
information of each informative location. The 18-dimensional 
feature set was normalized first and then processed by PCA. 
We tested the performance of all four machine learning 
methods with different PCA component percentages using 10-
fold cross-validation. The ROC performance of each of the 
four machine learning methods was plotted in Figs. 3-6. 

For ANN, the best performance was achieved with AUC 
0.731 and F-measure 0.708 when using the top 1 PCA 
component which covered 20% of PCA variance. For SVM, 
the best performance was achieved with AUC 0.691 and F-
measure 0.586 using the top 10 PCA components which 
covered 70% PCA variance. It should be noted that the MCC 
was 0, which indicated that the SVM classified all samples into 
one class. For random forest, using top 65% PCA achieved its 
best performance but the performance was weaker than the best 
performance of ANN. Surprisingly, among all the four 
classifiers, the best performance was achieved by naïve Bayes 

with raw data, i.e., AUC 0.742 and F-measure 0.700. The result 
indicated that PCA analysis did not help improving the 
performance of naïve Bayes classifier using the 18-dimensional  

 

Fig. 3. ROC curves of ANN classifier with different percentages of PCA 
components obtained from 18 medial features. 

 

Fig. 4. ROC curves of SVM classifier with different percentages of PCA 
components obtained from 18 medial features. 

 

Fig. 5. ROC curves of random forest classifier with different percentages of 
PCA components obtained from 18 medial features. 



 

Fig. 6. ROC curves of naïve Bayes classifier with different percentages of 
PCA components obtained from 18 medial features. 

medial feature set, but did help the other three classifiers 
improve the performance using this feature set. The best 
performance of each classifier was summarized in Table I with 
different evaluation metrics.  

TABLE I.  BEST PERFORMANCE OF EACH OF THE FOUR CLASSIFIERS 
ON 18 MEDIAL FEATURES  

Classifier PCA 
variance Precision Recall F-Measure MCC ROC area 

ANN Top 20% 0.714 0.737 0.708 0.285 0.731 

SVM Top 70% 0.5 0.707 0.586 0 0.691 
Random 
Forest Top 65% 0.653 0.697 0.655 0.144 0.702 
Naive 
Bayes Raw data 0.744 0.687 0.700 0.362 0.742 
 

B. Experiment 2: Predict KL grade change using 18 lateral 
tibiofemoral informative locations 
As research showed that cartilage damage is more likely to 

happen on medial tibiofemoral compartment than lateral 
tibiofemoral compartment [15, 16], we decided to analyze the 
informative locations from the two compartments separately. 
The similar experiments were conducted as described in 
Experiment 1, by replacing the 18 medial informative locations 
with 18 lateral informative locations. Figs. 7-10 plotted the 
performance of the four machine learning methods with 
different PCA component percentages using 10-fold cross-
validation.  

Using lateral feature set, we can see that the performance of 
all four classifiers dropped compared with using medial feature 
set (see Figs. 7-10). The best performance was achieved by 
random forest with AUC 0.594 and F-measure 0.612. The 
experiment results indicated that medial informative locations 
contain more important and distinguishing information than 
lateral informative locations, for KL grade change prediction. 
Table II summarized the best performance of each method 
using the 18-dimensional lateral feature set.  

 

Fig. 7. ROC curves of ANN classifier with different percentages of PCA 
components obtained from 18 lateral features. 

 

Fig. 8. ROC curves of SVM classifier with different percentages of PCA 
components obtained from 18 lateral features. 

 

Fig. 9. ROC curves of random forest classifier with different percentages of 
PCA components obtained from 18 lateral features. 



 

Fig. 10. ROC curves of naïve Bayes classifier with different percentages of 
PCA components obtained from 18 lateral features. 

TABLE II.  BEST PERFORMANCE OF EACH OF THE FOUR CLASSIFIERS 
USING PCA ANALYSIS ON 18 LATERAL FEATURES  

Classifier PCA 
variance 

Precision 
(PPV) 

Recall 
(Sensitivity) F-Measure MCC ROC 

Area 
ANN 85% 0.556 0.556 0.556 -0.073 0.525 

SVM 90% 0.5 0.707 0.586 0 0.548 
Random 

forest Raw data 0.6 0.677 0.612 0.028 0.594 
Naive 
Bayes Raw data 0.612 0.657 0.625 0.06 0.521 

C. Experiment 3: Predict KL grade change using 36 medial 
and lateral tibiofemoral informative locations 
In the last experiment, we combined both medial and lateral 

features to form the 36-dimensional feature set. We ran PCA 
analysis and machine learning methods on this feature set 
similar as described in Experiment 1 and Experiment 2. Figs. 
11-14 plotted the performance of the four machine learning 
methods with different PCA component percentages using 10-
fold cross-validation.  

 

Fig. 11. ROC curves of ANN classifier with different percentages of PCA 
components obtained from 36 features. 

 

Fig. 12. ROC curves of SVM classifier with different percentages of PCA 
components obtained from 36 features. 

 

Fig. 13. ROC curves of random forest classifier with different percentages of 
PCA components obtained from 36 features. 

 

Fig. 14. ROC curves of naïve Bayes classifier with different percentages of 
PCA components obtained from 36 features. 

When using the features from all the 36 informative 
locations, the performance of ANN and SVM improved 



compared with using medial or lateral features separately, 
while the performance of the random forest and naïve Bayes 
was about the same. The best performance of the four 
classifiers was achieved by ANN using top 55% PCA, with 
AUC 0.761 and F-measure 0.714. This is also the best 
performance among all classifiers using three different feature 
sets. Table III summarized the best performance of each 
method using the 36-dimensional feature set.  

TABLE III.  BEST PERFORMANCE OF EACH OF THE FOUR CLASSIFIERS 
USING PCA ANALYSIS ON BOTH MEDIAL AND LATERAL FEATURES  

Classifier PCA 
variance 

Precision 
(PPV) 

Recall 
(Sensitivity) F-Measure MCC ROC 

Area 
ANN Top 55% 0.712 0.717 0.714 0.304 0.761 

SVM Top 65% 0.703 0.717 0.624 0.145 0.651 
Random 

forest Raw data 0.681 0.717 0.660 0.182 0.677 
Naive 
Bayes Top 20% 0.699 0.727 0.685 0.237 0.724 

 

IV. DISCUSSION AND CONCLUSION 
In this paper, we have explored the hidden biomedical 

information contained in the clinically used Cartilage Damage 
Index (CDI), to predict the change of KL grade which indicates 
the progression of knee osteoarthritis. We have computed the 
CDI information from each of the 36 informative locations on 
tibiofemoral compartment from 3D knee MR imaging and used 
PCA analysis as feature selection method. The processed 
feature set and original raw feature set were severed as input to 
four machine learning methods (ANN, SVM, random forest 
and naïve Bayes) respectively. In particular, to examine the 
possible different effect of medial and lateral informative 
locations, we have divided the 36-dimensional feature set into 
18-dimensional medial feature set and 18-dimensional lateral 
feature set and run the experiment on all four classifiers 
separately.   

 Experiment results showed that the medial feature set 
generated better prediction performance than the lateral feature 
set, while the total 36-dimensional feature set generated the 
best. PCA analysis is helpful in feature space reduction and 
performance improvement. The best performance was achieved 
by ANN with AUC 0.761 and F-measure 0.714, using PCA 
analysis on the 36-dimensional feature set. Experiment results 
indicated that the informative locations on medial tibiofemoral 
compartment contain more valuable information than 
informative locations on lateral tibiofemoral compartment, for 
OA severity prediction. Therefore, to improve the design of 
CDI, it could be considered to select more points from the 
medial tibiofemoral compartment while reduce the number of 
points selected from the lateral tibiofemoral compartment.  

Our future work include three-fold. First, we need to solve 
the unbalanced training sample problem which affects the 
performance of machine learning methods badly. Second, we 
are going to incorporate cartilage information from patella into 
the analysis, i.e., another 24 informative locations defined by 
CDI. Patella compartment was usually paid less attention than 
femur and tibia. We will analyze the informative locations 

from patella and test the classifiers using combined feature set 
with medial and lateral data. At last, we will increase the size 
of our database by selecting more images from OAI. The 
current database size is limited and prevents us from applying 
more advanced deep learning strategies which require large 
amount of training samples.     
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