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Abstract. Affect detection has become a prominent area in student
modeling in the last decade and considerable progress has been made
in developing effective models. Many of the most successful models have
leveraged physical and physiological sensors to accomplish this. While
successful, such systems are difficult to deploy at scale due to economic
and political constraints, limiting the utility of their application. Exam-
ples of “sensor-free” affect detectors that assess students based solely us-
ing data on the interaction between students and computer-based learn-
ing platforms exist, but these detectors generally have not reached high
enough levels of quality to justify their use in real-time interventions.
However, the classification algorithms used in these previous sensor-free
detectors have not taken full advantage of the newest methods emerging
in the field. The use of deep learning algorithms, such as recurrent neural
networks (RNNs), have been applied to a range of other domains includ-
ing pattern recognition and natural language processing with success,
but have only recently been attempted in educational contexts. In this
work, we construct new “deep” sensor-free affect detectors and report
significant improvements over previously reported models.

Keywords: Deep Learning; Affect; Sensor-Free; Recurrent Neural Net-
works; Educational Data Mining;

1 Introduction

While intelligent tutors have a long history of development and use, the most
widely-used systems remain less sophisticated than initial visions for how they
would operate. The systems now used at scale are often cost-effective and have
been shown in large-scale randomized controlled trials to lead to better learning
outcomes (e.g. [1],[2]), but do not reach the full level of interactivity of which
human tutors are capable. For example, one positive aspect of human tutors is
the ability to observe student affective state and adjust teaching strategies if
students are exhibiting disengaged behavior [3]. Student emotion and affective
state have been found to correlate with academic performance [4][5] and can
even be used to predict which students will attend college [6].
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With increasing evidence supporting the benefits of utilizing student affective
state to drive tutoring strategies [7], it is important to develop accurate means of
detecting these states from students working in these systems. While strides have
been made to build accurate detectors, many successful approaches include the
use of physical and physiological sensors [8][7][9]. However, it can be impractical
to deploy such sensors to classrooms at scale, both for political and financial
reasons. Detecting affect solely from the interaction between the student and
learning system, sometimes referred to as sensor-free affect detection, may be
more feasible to deploy at scale. However, while these models’ predictions have
been usable in aggregate for scientific discovery, the goodness of these approaches
has often been insufficient for use in real-world intervention.

Sensor-free affect detectors have existed for several years and have been used
to assess student affective states using low-level student data as students interact
with a mouse and keyboard [10] , but also using features extracted from a range
of learning platforms including Cognitive Tutor [11], AutoTutor [12], Crystal
Island [13], and ASSISTments [14][15]. While these detectors have been better
than chance, their goodness has fallen short of detectors of disengaged behavior,
for example (cf. [5]). Increasing the accuracy of sensor-free affect detectors would
lead to higher confidence in their use to drive intervention.

In this paper, we attempt to enhance sensor-free affect detection through the
use of “deep learning,” or specifically, recurrent neural networks (RNNs) [16].
Previous affect detectors have utilized a range of algorithms to detect student
affective state; we study whether deep learning can produce better predictive ac-
curacy than those prior algorithms. We study this possibility within a previously
published data set to facilitate comparison with and understanding of the benefit
derived from using this algorithm. Recurrent neural networks are a type of deep
learning neural network that incorporates at least one hidden layer, but also
provides an internal hidden node structure that captures recurrent information
in time series data.

RNNs are most appropriately applied to time series data, where the output
of the current time step is believed to be influenced or impacted by previous time
steps. In this way, it is believed that affect detection could benefit from a model
that observes the temporal structure of input data. Several internal node struc-
tures have been proposed, yielding variants of traditional RNNs such as Long-
Short Term Memory networks (LSTMs) [17] and more recently Gated Recurrent
Unit networks (GRUs) [18]. Applications of these deep learning algorithms have
been used in other domains for pattern recognition [19] and improving natural
language processing [20]. Performance in these domains certainly suggest large
benefits in using deep learning on temporal or time series information.

Deep learning prediction models have not yet been used extensively in edu-
cational domains, but have been studied as a potential method to improve the
decisions of virtual agents in game-based learning environments [21] and also to
improve the prediction of student correctness on the next problem [22]. How-
ever, the results of the “Deep Knowledge Tracing” (DKT) model presented in
[22] are as yet uncertain; initial reports suggested profoundly better performance
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than previous approaches, but later investigation by other researchers indicated
that the same data points were being replicated and used to predict themselves,
artificially inflating goodness [23]. When this error was corrected, performance
seemed to be equivalent to previous approaches [24]. Nonetheless, recurrent neu-
ral networks may be highly effective for problems with the complexity and the
quantity of data available to fully leverage their benefits.

As such, this work seeks to apply deep learning to utilize student information
to better detect students’ affective states without the use of sensors. We explore
the application of recurrent neural networks for the task of detecting affective
states using data collected in the context of the ASSISTments online learning
platform.

2 Dataset

The dataset1 used to evaluate our proposed deep learning approach to detecting
affective state is drawn from the ASSISTments learning platform [25]. ASSIST-
ments is a free web-based platform that is centered around providing immediate
feedback to the many students who use it in the classroom and for homework
daily. ASSISTments also provides on-demand hints and sequences of scaffold-
ing support when students make errors. The system was used by over 40,000
students across nearly 1,400 teachers during the 2015-2016 school year, and has
been found to be effective in a large-scale randomized controlled trial [2].

2.1 Data Collection and Feature Distillation

The ground truth labels used in this dataset come from in-class human obser-
vations conducted using the Baker-Rodrigo Ocumpaugh Monitoring Protocol
(BROMP) [26]. These quantitative field observations (QFOs) were made by
trained human coders who observed students using the ASSISTments learn-
ing platform in a classroom environment. The coders observed students and
labeled their affect as bored, frustrated, confused, engaged concentration, or
other/impossible to code. They collected affect observations over 20-second in-
tervals in a round-robin fashion, cycling through the entire class between observa-
tions of a specific student. Unlike approaches using video coding or retrospective
emote-aloud (e.g. [27]), this approach inherently leads to missing labels between
observations of the same student. These missing intervals for each student are
known, as timestamps are recorded for each observation, and will be taken into
account when formatting the data for input into the recurrent neural network;
this process is described in more detail in a later section.

A total of 7,663 field observations were obtained from 646 students in six
schools in urban, suburban, and rural settings. In prior work [15], a set of 51
action-level features was developed using an extensive feature engineering pro-
cess; these features consist of within- and across-problem behaviors including re-
sponse behavior, time working within the system, hint and scaffold usage within

1 Our dataset is made available at http://tiny.cc/affectdata
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the system, and other such features attempting to capture various low-level stu-
dent interactions with the system. As the observation intervals, or clips, often
contain more than one student action within the learning system, the features
were aggregated within each clip by taking the average, min, max, and sum of
each feature. The end result was 204 features per clip.

In this paper we will compare our deep learning-based detectors of student
affect to two earlier sensor-free models of student affect within ASSISTments
(e.g. [14][15]). In doing so, we will use the exact same training labels and features
as in [15], in order to focus our comparison solely on the use of deep learning.

3 Methodology

We input these labels and features into three deep learning models representing
three common variants of recurrent networks including a traditional recurrent
neural network (RNN), a Gated Recurrent Unit (GRU) neural network, and a
Long-Short Term Memory network (LSTM). The GRU variant was chosen when
exploring network structures and hyperparameters for training for both its faster
training times in comparison to the LSTM variant and also for its increased
ability to avoid problems such as vanishing gradients to which traditional RNNs
are more susceptible. The models explored in this work were built in python
using the Theano [28] and Lasagne [29] libraries.

3.1 Network Structure

Our implementations each use the same three layer design, with an input layer
feeding into a hidden recurrent layer of 200 nodes, progressing to an output layer
of four nodes corresponding to each of four classes of affective state. The input
layer accepts a student-feature vector of 204 generated covariates per time step
normalized using the mean and standard deviation of the training set, and each
network ultimately outputs 4 values representing the network’s confidence that
the input matches each of the four labels of engaged concentration, boredom,
confusion, and frustration. A rectified nonlinear activation function is used on
the output of the hidden layer, while a softmax activation function is used for
the final model output.

Due to the large number of parameters present in deep learning networks, it
is common to implement techniques to avoid overfitting. We adopt the common
practice of incorporating dropout [30] into our model, which, in a general sense,
sets some network weights to 0 with a given probability during each training step.
This creates a changing network structure in terms of its interconnectivity during
training to help prevent the model from relying on just a small number of input
values. In our three layer model, dropout can be applied before and/or after the
recurrent layer, and this is explored to determine which location of placement
produces superior performance. We incorporate 30% dropout, such that each
weight in the network, in the location dropout is applied, has a 30% chance of
being dropped for a single training step; many implementations instead describe



Improving Sensor-Free Affect Detection Using Deep Learning 5

dropout in terms of a “keep” probability, but is described here as a “drop”
probability to remain consistent with the library used to build the models. As is
standard practice, dropout is not used when applying the model to the test set.

3.2 Handling Time Series Data and Labels

The dataset used for the previous detectors in ASSISTments, and again in this
work, consists of 20 second interval clips to which an affect label has been applied.
The recurrent network takes as input a sequence of these clips to make use of the
recurrent information within the sequence. The labeled clips, however, are not
consecutive due to the design of the field observations, leading to gaps in student
observations; during a gap in one student’s sequence, the human coders present
in the classroom were observing other students. It is possible to represent the
non-consecutive clips as a full sequence, however, treating clips that are distant
in time as consecutive may confuse the network and reduce performance. For
this reason, we treat clips as consecutive only if they occur within 5 minutes
of the previous labeled clip. Clips that occur beyond this threshold form a new
sequence sample, resulting in a larger number of samples consisting of shorter
sequences.

Another issue presented by the classification task is the non-uniformity of the
distribution of the labels. The vast majority, approximately 80% of the clips, are
labeled as engaged concentration, followed by 12% labeled as boredom, and only
4% each of confusion and frustration. While it is perhaps encouraging to know
that students are mostly concentrating when working within ASSISTments, a
model trained with labels in such non-uniformity may bias in favor of the more
frequent labels. While it is often beneficial for the model to understand this
distribution to some extent, it is better for the model to learn the trends in
the data that correspond to each label rather than simply learn the overall
distribution.

The original, non-recurrent affect detectors corrected for this issue by re-
sampling each of the labels [5], but this cannot be directly reproduced here due
to the time-series input into the recurrent network. In that previous work, the
training data was sampled with replacement proportional to the distribution
such that the resulting dataset is balanced across the distribution of labels and
then evaluating on a non-resampled test set [31]. Rather than representing each
sample as independent as in previous detectors, the recurrent network observes
a sequence of observations within a single training sample. As such, we resam-
ple entire sequences including rarer affective states. Resampling in this way is
likely to also resample the other labels as well, particularly when resampling the
more scarce labels of frustration and confusion. While it is difficult to achieve
perfect uniformity, sampling with replacement is performed using a threshold to
balance the labels to a feasible degree. In this way, each sample of the training
set is selected at least once, duplicating only those sequences containing at least
20% of one of the less common labels. From the resulting resampled data, we
randomly downsample to the size of the original non-resampled training set for
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faster training times; training on the full resampled dataset did not produce
substantial gains in model goodness over using the downsampled training set.

In an effort to further account for the non-uniformity of the distribution of
labels, a final normalization is applied to the output of the network. The training
data is used to determine the minimum and maximum prediction values for each
label that is then used to scale the resulting predictions during model evaluation
to span the entire 0 to 1 range (any prediction values in the test set outside of this
range are truncated). This rescaling helps to deter the model from making overly
conservative estimates of the less frequent labels. The output normalization is
found to be necessary in this regard as estimates for the scarce labels rarely
surpassed a 0.5 rounding threshold after the softmax activation of the output.

3.3 Model Training

All models are evaluated using 5-fold cross validation, split at the student level
to evaluate how the model performs for unseen students. It is often common, in
working with neural networks, to train using mini-batches of samples, updating
model weights based on the outputs over several training steps. In the case of
recurrent neural networks, the data contains multiple time steps that the model
treats as a batch and updates the network weights at the end of the sequence. We
update the model after each sample sequence using an adaptive gradient descent
calculation [32], and categorical cross-entropy is used as the cost function for
model training due to its ability to handle multi-label classification; each sample
contains a varying number of individual time steps, over which the network
makes a single update from the aggregated cost.

Each model is trained over a multitude of epochs, or full cycles through the
training set. Training over too many epochs or too few can reduce performance
through overfitting and underfitting respectively. The appropriate number of
epochs will also differ when applying models of different complexities, as is being
done in this work. For this reason, we hold out 20% of each training set as a
validation set and incorporate an “early stop” criterion for model training. After
each epoch the model evaluates its performance on the unseen validation set to
determine the point in training where there is little or no improvement.

A moving average of the model’s error on the validation set, expressed as
average cross-entropy (ACE) for training, is calculated over the most recent 10
epochs (starting with the 11th epoch). The model stops training when it finds
that moving average value at a particular epoch is larger than or equal to the
previously calculated average (lower values indicate superior ACE values). Using
this criterion allows for a more fair comparison of the performance of each model.
Although a maximum number of 100 epochs was allowed, no models in this paper
reached that maximum threshold.

4 Measures

We will evaluate the results of each of our model evaluations through three
statistics, AUC ROC/A’, Cohen’s kappa, and Fleiss’ kappa. Each kappa uses a
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Cohen’s Fleiss’
Model AUC Kappa Kappa

30% Dropout Before Recurrent Layer 0.74 0.12 0.22
30% Dropout After Recurrent Layer 0.74 0.13 0.23
30% Dropout Before & After Recurrent Layer 0.73 0.11 0.21

Table 1. Comparing locations of dropout within the GRU model.

0.5 rounding threshold. This is a multi-label classification task such that each
sample has one of four possible labels of confusion, concentration, boredom, or
confusion. For this reason, the metrics of AUC and Cohen’s kappa are first calcu-
lated for each of the four labels independently, and the final result is an average
across the four labels [33]. It is not common to report average Cohen’s kappa
for multi-label classification; we include this metric for comparison to previous
results reporting this metric. We also report Fleiss’ kappa, which is better suited
for multi-label classification, taking all label comparisons into account in a sin-
gle metric. Both kappa metrics are reported as secondary measures, as AUC is
unaffected by scaling and rounding threshold-setting procedures. In all cases, we
report performance on the test data, averaged across each fold of a 5-fold cross
validation.

5 Results

5.1 Adjusting the Dropout Context

Our initial analysis pertains to the degree of impact the context of dropout has
on model goodness. We investigate this question in the context of the GRU
model and the resampled training dataset, looking at whether dropout occurs
before the recurrent layer, after the recurrent layer, or both. In all cases, a 30%
hyperparameter is used for the dropout percentage. Table 1 shows that when
dropout occurs has little impact on performance. When dropout is applied to
both areas of the model, however, there is a mild reduction in both metrics,
suggesting that applying dropout in both locations impedes model training to
a noticeable degree. For this reason, all further models reported used dropout
applied after the recurrent layer. This placement is chosen as there is a very slight
increase in both Cohen’s and Fleiss’ kappa; additionally, it is more common for
researchers and practitioners to apply dropout after the recurrent layer.

5.2 Comparing RNN Variants

We next compare a traditional recurrent neural network (RNN), a Gated Recur-
rent Unit (GRU) network, and a Long-Short Term Memory network (LSTM),
which vary in their complexity, and as such in their number of parameters and
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Cohen’s Fleiss’
Model AUC Kappa Kappa

RNN With Resampling 0.73 0.14 0.22
GRU With Resampling 0.74 0.13 0.23
LSTM With Resampling 0.73 0.11 0.22

RNN Without Resampling 0.78 0.19 0.24
GRU Without Resampling 0.77 0.19 0.24
LSTM Without Resampling 0.77 0.21 0.27

Wang et al. [15] 0.66 0.25 –
Ocumpaugh et al. [14] 0.65 0.24 –

Table 2. Three recurrent model variants, trained on both the resampled and non-
resampled datasets, are compared to the previous highest reported results on the AS-
SISTments dataset.

flexibility of fit. These models are compared using the same training and test
data sets and differ only in the internal node structure used for the network. In
parallel, we examine the effects of adjusting the training data (but not the test
data) using resampling, by comparing each model variant trained on the resam-
pled dataset to that model variant trained on a data set without resampling.

The performance of each model is compared in Table 2. In all three model
variants, training on the non-resampled data produced superior performance in
all metrics over training with the resampled data, contrary to our initial hypoth-
esis. Also contrary to our initial hypothesis, the GRU models did not produce
the best outcomes; instead, the simplest model, the traditional RNN, was found
to have superior AUC performance to the other models, albeit only by a small
margin. This may be because it had the fewest parameters; the RNN trains
approximately 82,000 parameters as compared to the over 244,000 parameters
in the GRU model and nearly 326,000 parameters in the LSTM model. This
smaller number of parameters also leads to the RNN being the fastest model
to train. The LSTM model, however, had higher kappa values than the other
network variants, and as such, could also be argued to be the best model as it
exhibits comparably high AUC values and also would be able to handle longer se-
quences than a traditional RNN if used in real-time applications. All three deep
learning models achieve substantially better AUC than the best models pro-
duced through prior work using more traditional machine learning algorithms
(e.g. [14][15]). Cohen’s kappa, however, is found to be slightly worse than in the
prior efforts.

Performance was generally good for AUC across all affective states, as shown
in Table 3. It becomes apparent, however, that performance is not well-balanced
across the labels. The difference between AUC and kappa values suggests that
the model for confusion, for example, is generally able to distinguish between
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Resampled Non-Resampled

AUC Cohen’s Kappa AUC Cohen’s Kappa

Confused 0.67 -0.01 0.72 0.09
Concentrating 0.78 0.24 0.80 0.34
Bored 0.76 0.18 0.80 0.28
Frustrated 0.68 0.01 0.76 0.15

Average 0.73 0.11 0.77 0.21

Table 3. LSTM model performance for each individual affect label.

confused and non-confused students, but is poor at selecting a single threshold
for this differentiation. The difference between affective states is likely associated
with their relative frequency; the best-detected affective states (concentrating
and boredom) were also the most common ones. While resampling was chosen
to address this problem, Table 3 also shows that this technique, as implemented,
did not lead to better performance.

6 Discussion and Future Work

Despite their broad application in other domains, deep learning models have been
relatively under-utilized in education and their application often has not led to
better results than other common algorithms [24]. In this paper, we attempt
to apply deep learning to the problem of sensor-free affect detection, using a
data set previously studied using more traditional machine learning algorithms.
Three deep learning models (RNN, GRU, and LSTM) were compared to pre-
viously published work. All three deep learning models explored here obtained
substantially better AUC than past results reported using the same dataset,
although they did not lead to better values of Kappa. This difference between
metrics is not surprising, given that the cost function implemented in the deep
learning models does not round each prediction before evaluating each class la-
bel, but instead evaluates the degree of error across all classes each training step.
Nonetheless, the substantially higher AUC values argue that deep learning mod-
els may prove a very useful tool for research and practice in sensor-free affect
detection, eventually leading to models that can be more effectively used both
to promote basic discovery and to drive affect-sensitive intervention.

There are several aspects of the deep learning models that may have con-
tributed to the improved AUC over the previous machine learning approach to
constructing affect detectors for this dataset. In previous detectors, four separate
models were built, trained, and evaluated independently while the deep learning
model allows all four affective states to be evaluated and updated together with
each training sample; such a process likely helps the model determine aspects
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of the data that help to make more accurate distinctions between each affective
state in a temporal sense. Another aspect is in the flexibility of fit supplied by
the neural network, allowing the model to capture the high complexity in stu-
dent affect. This flexibility, however, also exhibits a drawback in terms of lacking
interpretability; the large number of parameters and complexity of each model
used in this work make it infeasible to study and understand how the model
makes its predictions from the features it has available, particularly as it learns
from previous time steps. At best, we can understand that the model is relatively
better at predicting the more common categories (boredom and concentration)
than the more scarce classes (frustration and confusion).

It is desirable to achieve excellent predictive accuracy for the more scarce,
yet very important, affective states, in addition to the more common labels.
It is possible that a different resampling approach could be more productive,
although any resampling approach will be limited by the inter-connection of
the observations, leading to non-uniformity across the labels; it is likely that in
duplicating sequences containing the scarce labels numerous times, the model
overfit to these sequences, which led to poorer extrapolation to unseen data. A
possible alternate approach for the iterative refinement of these models would
be to send field coders to classrooms working through material that is known to
be more confusing and frustrating (e.g. [34]).

One further aspect not addressed by this work is differences introduced by
student geographical factors. Earlier affect detectors in ASSISTments were found
to perform relatively poorly on rural students when trained on urban and sub-
urban populations [14]. Analyzing how robust deep learning models of affect are
to population differences will help us to understand the degree to which these
models generalize.
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29. Dieleman, S., Schlüter, J., Raffel, C., Olson, E. et al.: Lasagne: First release. DOI:
http://dx.doi.org/10.5281/zenodo.27878 (2015)

30. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal
of Machine Learning Research 15, 1, 19291958. (2014)

31. Estabrooks, A., Jo, T., Japkowicz, N.: A Multiple Resampling Method for Learning
from Imbalanced Data Sets. Computational intelligence 20(1), 1836. (2004)

32. Duchi, J., Hazan, E., Singer, Y.: Adaptive Subgradient Methods for Online Learn-
ing and Stochastic Optimization. Journal of Machine Learning Research 12, Jul,
21212159. (2011)

33. Hand, D.J., Till, R.J.: A Simple Generalisation of the Area Under the ROC
Curve for Multiple Class Classification Problems. Machine learning, 45(2), 171-
186. (2001)

34. Slater, S., Ocumpaugh, J., Baker, R., Scupelli, P., Inventado, P.S., Heffernan, N.:
Semantic Features of Math Problems: Relationships to Student Learning and En-
gagement. Proceedings of the 9th International Conference on Educational Data
Mining., 223-230. (2016)


