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Abstract—This paper examines the effect of different linguistic 

features (as identified through Natural Language Processing 

tools) on affective measures of student engagement using a 

discovery with models approach. We build on previous 

literature, using automated detectors that identify when a 

middle-school student using an online mathematics tutor is 

experiencing boredom, confusion, frustration, or engaged 

concentration, to identify which problems are most engaging (or 

not) at scale.  We then apply previously validated NLP tools to 

determine the degree to which engagement findings may be 

related to the linguistic properties of word problems, 

contributing to a growing literature on the effects of language on 

mathematics learning. 

 

1.  Introduction  

Affective research in education has often focused on 

constructs that are thought to increase or inhibit learning, 

such as boredom, confusion, engaged concentration, and 

frustration [2; 15]. Researchers have proposed theoretical 

models of the transitions between these constructs, such as 

[7]’s model, which predicts that when students reach an 

impasse in problem solving they are likely to alternate 

between episodes of confusion and concentration.  

Comparatively less work, however, has focused on aspects of 

the learning experience that may lead to these differences in 

affect.   

Much of the fine-grained focus on the impact of specific 

educational content/design has focused on the impact these 

details have on fairly direct measures of learning, including 

work examining the effectiveness of hints [11] and the 

learning associated with specific problems [9]. Other work 

has investigated the relationship between design features of 

learning systems and engagement [3] or affect [8]. However, 

the types of features found in that work – such as evidence 

that equation-solving problems lead to better affect and 

engagement than brief word problems – do not provide much 

scope for enhancing mathematics problems, since word 

problems are an established part of education.  

In this study, we seek to better understand how finer-

grained aspects of the design of learning content influence 

student affect during learning by utilizing two recent 

advances in computing research, natural language processing 

(NLP) [5] and interaction-based affect detection [4]. Namely, 

we extend recent research [23] which used NLP to examine 

the relationship between semantic categories and student 

affect while working on mathematics problems in the online 

tutor ASSISTments [10; 21], to look at these relationships in 

closer detail. In this study, we combine the semantic features 

studied in [23] with more sophisticated linguistic measures 

to develop multi-feature models of linguistic predictions of 

student affect, creating the potential for understanding how 

linguistic features may influence and moderate one another 

and how these relationships are associated with differences 

in student engagement. 

 

2.  Previous Research 

One potential area for understanding and evaluating how 

the fine-grained aspects of learning content is related to 

affective responses is through natural language processing, 

or NLP. Languages are highly complex, and often exhibit 

non-compositional patterns such as idioms and metaphors. 



Comprehensibility and structure of textual content may 

underlie differences in student engagement and learning, but 

relationships between the features of the language in learning 

content can be difficult to study at scale. 

As linguistic tools have become more powerful and more 

sophisticated, researchers have used them to better 

understand the role of language in mathematics education.  

For example, [24] found that correct answers and fewer hint 

requests are associated with word problems using third-

person singular pronouns (e.g., he, she). They also found 

relationships between specific semantic categories in 

problem content and learning. 

Although there is a growing literature on the 

relationships between language and mathematics learning, 

there are fewer studies that examine the relationship between 

the language of the learning context and student engagement. 

At the same time, interest in the complex relationships 

between student engagement and learning continues to grow 

[19]. Research by [23] examined the correlations between 

442 semantic tags from the linguistic analysis tool Wmatrix 

[20] towards understanding the relationship between word 

choice and student affect and behavior in the mathematics 

tutor ASSISTments. However, this correlation mining 

approach suffered from the inability to investigate the effects 

of multiple features used in tandem.  It was also limited in 

the kinds of linguistic features it investigated (semantic 

categories), and other factors, including those related to 

readability, are likely to show relationships with student 

engagement. 

 

3.  Data 

3.1.  ASSISTments Math Problems 

We used data from the ASSISTments intelligent tutoring 

system for this study. ASSISTments is designed to assess 

students’ mathematics knowledge while using automated 

scaffolding and hint messages to assist in learning [10]. The 

ASSISTments ITS is used by tens of thousands of students 

nationally each year, concentrated mostly in the northeastern 

US. One important feature of the design of ASSISTments 

that makes it particularly well-suited for the analysis 

conducted here is that ASSISTments contains a large variety 

of mathematics problems, as it allows teachers to author their 

own mathematics problems and share them with other 

teachers [21]. As such, ASSISTments content has a much 

broader variation in design than most other online learning 

systems.  

3.2.  Learners 

Data for this study was generated from the 22,225 unique 

students nationwide who completed mathematics problems 

through the ASSISTments system as part of their regular 

instruction during the 2012-2013 school year.  

4.  Methods 

4.1.  Data Selection/Aggregation Across Word 

Problems 

Learners in this study completed 179,908 different 

mathematics problems within ASSISTments, however, 

problems were filtered based on their appropriateness for 

analysis. Exclusion criteria included problems with fewer 

than 10 words or which were completed by fewer than 50 

students. This resulted in 114,893 different problems in the 

final dataset. Data were aggregated at the problem-level, 

such that an average value for each outcome measure was 

produced for each problem. 

4.2.  Measures of Engagement 

Models constructed from in situ classroom observations 

of student engagement, developed using the Baker Rodrigo 

Ocumpaugh Monitoring Protocol (BROMP 2.0), were 

applied to student log files to allow a for retrospective 

analysis. In this method, which has been used to study 

student engagement in over a dozen different learning 

systems, a BROMP-certified coder records observations on a 

handheld app [HART; 18]. The data are then synchronized 

with the log files of the students who were observed, 

allowing researchers to examine how patterns of student 

interactions with the software vary depending on the 

observed indicators of student engagement [4]. Models 

developed for ASSISTments and cross-validated for 

differences in subpopulations [17] were used in the present 

study. 

TABLE I.  MODEL-FIT PERFORMANCE OF AFFECT MODELS 

[17] 

Affect Model Kappa  A' 

Boredom 0.19 0.67 

Confusion 0.38 0.74 

Engaged Concentration 0.27 0.63 

Frustration 0.17 0.59 

 

4.3.  Tools for Linguistic Analysis 

To generate features for use in linguistic analyses, we used 

Wmatrix [20] and the Tool for the Automatic Analysis of 

Lexical Sophistication (TAALES)  [13]. Wmatrix has been 

used in previous research on the language of ASSISTments 

word problems, which demonstrated that semantic features 

of mathematics problems correlated individually to 

engagement [23]. While TAALES has not yet been applied 

to ITS and other online learning contexts, it has been used to 

assess written essay quality on the Michigan English 

Language Assessment Battery (MELAB; [12]) and to model 

students’ vocabulary knowledge [1].  



Wmatrix is a linguistic analysis tool that provides tags 

and identifiers for semantic domains (e.g. words that share 

similar meanings, such as ‘sailboat’ and ‘yacht’) and 

grammatical categories (e.g. first-person and second-person 

pronouns). The tagger matches individual words to a bank of 

42,300 single word entries and 18,400 multi-word 

expressions, and also classifies individual words to a 

hierarchical structure of 21 lexical fields, with 234 base tags. 

Additionally, words can be tagged as antonyms, 

comparatives, superlatives, gender, and anaphorics. Our 

analyses identified 442 distinct Wmatrix tags within the set 

of problems we examined in ASSISTments, and full 

documentation for Wmatrix tags is available through the 

UCREL Semantic Analysis System (USAS) website at 

http://ucrel.lancs.ac.uk/usas/usas_guide.pdf. 

TAALES is a tool for the evaluation of linguistic 

sophistication. It provides information about word 

frequency, range, bigram and trigram frequency, academic 

language, age of exposure, and updated psycholinguistic 

norms, which were not included in other current linguistic 

tools such as Cohmetrix [14]. Previous studies have used 

TAALES to predict second language acquisition and 

assessment [13] and math performance in standardized tests 

[6]. In the ASSISTments data, we calculated 137 of 485 

TAALES indices for each word problem in our corpus, and 

full documentation for all 485 TAALES indices is available 

by downloading the Index Description Spreadsheet at 

http://www.kristopherkyle.com/taales.html. 

Together, Wmatrix and TAALES comprise a broad set of 

English-language features, but working with mathematics 

tutor data involves the identification of mathematics-specific 

language such as equations, symbols, and numeric 

expressions. To identify these features we used HTML data 

in the ASSISTments problems to identify common 

mathematical features, such as the symbol for degrees 

(&deg;) and square roots (&sqrt;). We also included multiple 

design features that have been previously highlighted in 

research on affect in online learning [17] – this included 

descriptive information about the number of hints and 

scaffolds associated with a problem, the type of answer 

expected by the system (e.g. multiple choice, fill in the 

blank), as well as averaged performance data on the 

problems such as the number of successful and failed 

attempts. These features allowed us to account for 

differences in non-linguistic problem construction, 

differences in the degree of support provided to students, and 

differences in general problem ease or difficulty. 

4.4.  Model Development 

We constructed a set of four linear regression models 

predicting affect from problem design features, one for each 

affective state, using the machine learning software 

RapidMiner [16]. RapidMiner is a machine learning package 

that fits and validates a variety of models. For this research, 

we used forward feature selection processes to determine 

which features contributed most strongly to the prediction of 

our outcome variables. In forward feature selection, an 

algorithm chooses the one feature that makes the greatest 

contribution to the outcome, and adds this feature to the 

model. It then adds the feature that makes the second-

greatest contribution, after taking the first feature into 

account, and tests the model improvement. We continued 

this iterative process until we failed to significantly improve 

the regression model, or we had included eight features, 

whichever happened first.  

Three-fold student level cross validation was used to 

split training and testing sets for model validation. Forward 

feature selection was only conducted using the training set; 

each testing set was entirely held out from analysis.  

5.  Results 

5.1.  Overview of Model Performance  

We inspect the model-fit of our regression models 

based on the following goodness metrics: RMSE, Squared 

Error, and Spearman ρ. Table II shows the performance of 

each of our affect models. In general, we find that the 

confusion model performed the best, with the highest 

correlation and lowest RMSE and squared error values. 

When considering the strength of the correlations, the next 

best performing model is that of boredom, followed by 

frustration. The concentration model performs the worst, 

with a considerably weaker correlation and higher error 

values relative to the other affect models. 

TABLE II.  CROSS-VALIDATED MODEL-FIT PERFORMANCE OF 

NLP-BASED AFFECT MODELS 

Affect Models 

Goodness Metrics 

RMSE 
Squared 

Error Ρ
 

Confusion  0.042 0.002 0.238 

Boredom  0.138 0.019 0.203 

Frustration  0.078 0.006 0.165 

Concentration 0.441 0.195 0.079 

 

To better understand how the linguistic content, semantic 
content, and mathematics-specific language relate to affect, 

we examine the features of each of our affect models. 

Because of the size of the dataset we will primarily be 
examining the features with the highest β value and 

coefficients, rather than those with the lowest p values. 

5.2.  Linguistic Features of Confusion  

 Table III shows the list of features for our confusion 

model, which drew from all three feature types. BNC Written 

Trigram Frequency Normed (word) was found to be the 

strongest predictor of confusion, when controlling for other 
features, β = -1.503, p < 0.0001. In particular, commonly 
written trigrams were associated with less confusion whereas 

commonly spoken bigrams were associated with more 

confusion. These findings are somewhat surprising as we 



would have expected the opposite pattern of results, with 

students experiencing less confusion during problems that 
using words more typical of spoken (rather than written) 
language. Other features associated with more confusion 

included the Wmatrix feature X9.2- (words associated with 
failure, e.g. incorrect) and whether the problem had a single 
hint associated with it. 

TABLE III.  FEATURES OF THE CONFUSION MODEL 

Features  Coeff. 
SE 

Coeff.  
β p 

KF Ncats Content Words  0.001 0.0000 0.000 <0.0001 

BNC Spoken Bigram 

Normed (bi) Freq 
0.010 0.0004 0.007 <0.0001 

One hint  0.009 0.0003 0.014 <0.0001 

BNC Spoken Bigram 

Normed (bi) Freq Log 
0.003 0.0002 0.001 <0.0001 

 

Average failed attempts 

over the year  

0.010 0.0002 0.017 <0.0001 

X9.2- (terms about 

success or failure)  
0.022 0.0006 0.088 <0.0001 

BNC Spoken Trigram 

Normed (word) Freq 
0.036 0.0011 0.018 <0.0001 

 

BNC Written Trigram 
Frequency Normed 

(word) 

-1.378 0.0340 -1.503 <0.0001 

 

5.3.  Linguistic Features of Boredom  

Table IV summarizes the list of features predicting 

boredom. Unlike the findings from the confusion model, 

written and spoken trigrams, as well as written bigrams, 

were positively associated with boredom. In other words, 

students were more bored when common combinations of 

words were present in the problems. Students were less 

bored, however, when problems used language from the 

Academic Formulas List (AFL; [22]), which contains 

linguistic sequences that appear more frequently in academic 

writing (e.g. “such as” and “an example of”). Taken 

together, these two findings suggest that academic wordings 

may be more interesting to students than simpler, more 

colloquial phrasings.  

TABLE IV.  FEATURES OF THE BOREDOM MODEL 

Features  Coeff. 
SE 

Coeff.   
β p 

Kuperman AoA Content 

Words  
0.002 0.0002 0.001 <0.0001 

Is a base problem 0.01 0.0012 0.005 <0.0001 

BNC Written Bigram 

Freq Normed (word) 

Log 

0.004 0.0014 0.001 0.0131 

 

BNC Spoken Trigram 

Freq Log 

0.001 0.0001 0.001 <0.0001 

Answer is fill in the 

blank  
0.002 0.0008 0.002 0.0038 

BNC Written Trigram 

Freq Normed (tri) Log 
0.005 0.0012 0.002 <0.0001 

Has hint 0.011 0.001 0.008 <0.0001 

All AFL Normed -0.028 0.0227 -0.074 0.3105  

 

Interestingly, none of the features selected for inclusion 

into the boredom model were drawn from the semantic 

tagger Wmatrix. Instead, 6 of 9 features were drawn from 

TAALES (text complexity) measures, while the remaining 

features had to do with other elements of the problem’s 

design. 

   

5.4.  Linguistic Features of Frustration  

 As shown in Table V, the strongest predictor of frustration 
(WMatrix’s A5.3- label) involves the semantic content of the 

problem text. This feature identifies words which concern the 

evaluation of accuracy, specifically inaccuracies (“wrong”, 
“error”, “mistake”), and is associated with more frustration, β 

= 0.493, p < 0.0001. This feature also appeared in instances of 
meta-text (e.g., instructions about mindset rather than about 

the operations necessary to complete the problem). 
 Semantics also drives the second strongest feature in the 
frustration model, WMatrix’s T3-, terms about relating to age/ 
maturity, β = 0.160, p < 0.0001. However, after these 

semantic categories are entered into the model, all of the other 
features related to confusion are drawn from the TAALES 

measures of lexical sophistication. Features associated with 
word frequency were associated with less frustration in 

students. This finding complements the findings for boredom, 
where the model shows that common function and spoken 
words appeared are associated with higher boredom, 

suggesting that problems written in a simple, non-academic 

vernacular are less frustrating, but also less interesting. 

TABLE V.  FEATURES OF THE FRUSTRATION MODEL 

Features  Coeff. 
SE 

Coeff.   
β p 

BNC Spoken Bigram 

Normed (bi) Freq Log 
0.027 0.0005 0.010 <0.0001 

KF Nsamp All Words  0.000 0.0000 0.000 <0.0001 

A5.3- (terms about 

accuracy)  

 

0.083 0.0014 0.493 <0.0001 

SUBTLEXus Freq 

Content Words Log 
0.008 0.0003 0.003 <0.0001 

 

T3- (terms relating to 

age or maturity) 

0.031 0.0009 0.160 <0.0001 

Brown Freq Function 

Words 
0.000 0.0000 0.000 <0.0001 

BNC Written Freq 

Function Words Log 
-0.012 0.0003 -0.006 <0.0001 

 

BNC Spoken Freq All 
-0.004 0.0001 -0.003 <0.0001 



Words 

 

5.5.  Linguistic Features of Concentration  

 Lastly, Table VI summarizes a list of predictors for 
engaged concentration. As expected, we find that bigrams and 

trigrams are associated with more concentration. The 

frequency of bigrams and trigrams are based on the British 
National Corpus, which has extensively used in prior lexical 
research. Examples of the trigrams from BNC index are as 
follows: “one of the”, “I don’t know”, and “a lot of”. 

Examples of frequently used bigrams from the BNC index 
are: “of the” and “in the”. Interestingly, we also find that 
abstract words related to being (e.g., existence) or effort (e.g., 
trying) are likely to increase concentration, even when 

controlling for other commonly used combinations of words.  

TABLE VI.  FEATURES OF THE CONCENTRATION MODEL 

Features  Coeff. 
SE 

Coeff.  
β p 

KF Nsamp Content 

Words  
0.000 0.0000 0.000 0.0114 

 

BNC Spoken Trigram 

Normed (tri) Freq 

0.018 0.0037 0.019 <0.0001 

BNC Written Freq FW 0.000 0.0001 0.000 0.1723 

A3+ (abstract terms 

related to being) 
0.006 0.0015 0.010 <0.0001 

 

X8+ (terms depicting 

effort)  

0.018 0.0042 0.044 <0.0001 

BNC Spoken Bigram 

Normed (bi) Freq 
0.005 0.0043 0.004 0.3832 

SUBTLEXus Freq 

Content Words  
0.000 0.0000 0.000 1.0000 

 

BNC Written Trigram 

Freq Normed (word) 

Log 

0.016 0.0125 0.008 0.2712 

 

6.  Discussion/Conclusions 

In this study, we investigated the impact of linguistic 

features of mathematics problems on students’ affective 

states during work in an online mathematics tutor. While 

previous research has examined the language of word 

problems, this study expands that work in several 

dimensions, including the kinds of linguistic features that 

were investigated and the outcome measures that were 

considered. We examined these features by developing 

complex models of linguistic features that are associated 

with student affect.  

Our findings show that features related to commonly 

used combination of words are associated with positive 

concentration and negative confusion (and vice versa). These 

findings are aligned with previous research, which suggest 

that concentration and confusion are conceptually related to 

each other. Likewise, there appears to be relationships 

between the linguistic features associated with frustration 

and boredom, which are also theoretically aligned [7].  

        In addition to this, our findings reveal that features 

related to semantic content (i.e., WMatrix) are associated 

with frustration. Of particular interest, terms related to 

accuracy, such as “error” or “make a mistake” are associated 

with increases in student frustration. It is possible that the 

authors of these problems realized their difficulty and 

incorporated meta-instructions geared towards helping 

students to manage such emotions, but further research is 

needed to determine whether such messages are helpful.  

       Lastly, we find that the features most associated with 

boredom are related to the academic formula list (AFL). In 

particular, the use of academic words in math problems 

appears to lead to less boredom in problem solving. Our 

findings suggest that incorporating academic words in math 

problems could help in decreasing the likelihood of students’ 

boredom, as well as help improve their skills in receptive 

language when problem solving. 

     In sum, our findings provide implications for improving 

the design of math problems by focusing on key features 

linked to student’s affective states. It is our goal, going 

forward, to use these findings to help guide teachers to create 

math problems that promote better learning through 

improved student engagement.  
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