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ABSTRACT

Student knowledge modeling is an important part of modern
personalized learning systems, but typically relies upon valid
models of the structure of the content and skill in a domain. These
models are often developed through expert tagging of skills to
items. However, content creators in crowdsourced personalized
learning systems often lack the time (and sometimes the domain
knowledge) to tag skills themselves. Fully automated approaches
that rely on the covariance of correctness on items can lead to
effective skill-item mappings, but the resultant mappings are often
difficult to interpret. In this paper we propose an alternate
approach to automatically labeling skills in a crowdsourced
personalized learning system using correlated topic modeling, a
natural language processing approach, to analyze the linguistic
content of mathematics problems. We find a range of potentially
meaningful and useful topics within the context of the
ASSISTments system for mathematics problem-solving.
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1. INTRODUCTION

Accurate estimation of student knowledge in online learning
environments generally relies on the existence of skill model
frameworks that map specific problems to a broader theme, topic,
or skill. Models such as Bayesian Knowledge Tracing (BKT; [9])
and Performance Factors Analysis (PFA; [18]) utilize skill models
as an underlying structure for drawing inferences about student
knowledge. However, this process of associating problems in an
intelligent tutoring system (ITS) with annotations of the skills and
knowledge that are associated with the problem benefits more
than just knowledge tracing models. Teachers and researchers can
use information about the underlying skill model to determine if
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skills differ in important ways, such as determining which skills
are more likely to be associated with disengagement (e.g. [1]) or
negative affect [11], and to study how hint requests and other
metacognitive behaviors vary between different skills [24]. Skill
models can also help to inform teachers’ assessments of student
learning and performance, and identify areas where students may
need additional practice or scaffolding in order to succeed.

However, the human creation and curation of models of domain
structure can be challenging [22] especially in online learning
environments which utilize crowdsourced or teacher-generated
problem content. With the rising interest in scaling high-quality
online education, there is also increasing effort to engage a
broader community including teachers in creating content [12].
However, teachers frequently lack the time and training to
produce high-quality annotations of the skills associated with
specific content, and there are no guarantees that skill tags will be
consistent between different authors using a crowd-sourced
system. Definitions of skills, and the granularity of skills
associated with particular problems, may vary from author to
author, and render the overall skill model across the system
uninterpretable, or worse, inconsistent.

While newer knowledge estimation approaches such as recurrent
neural networks (RNNs) do not require expert-coded domain
structure knowledge or skill models [19], it is unclear whether
RNNs offer a tangible increase in performance for knowledge
estimation compared to more traditional approaches such as
Bayesian Knowledge Tracing (BKT) (see discussion in [15]).
Additionally, RNNs have poor interpretability, as their predictions
cannot be straightforwardly tied to specific skills or features of the
problems themselves. As such, RNNs are an incomplete substitute
for having a skill-problem mapping. When it is not feasible to
manually author the mapping between skills and problems,
automatically deriving this model may have substantial value.

There have been efforts to automate the process of determining
which skills are associated with each of a set of problems by using
the co-occurrence of correctness across problems. For example,
[2] derived the mapping between test items and latent skills by
taking several initial mappings (with randomized restart), testing
their fit to the data, and using a search algorithm to enhance the
mapping. Other approaches to automatically deriving mappings
between problems and skills, such as those used by [10] and [23],
utilize matrix factorization to infer skills based on student
responses. These approaches assume that student patterns of
correct and incorrect responses have less variance within skills
than between skills, and that this difference in variance can be
used to draw inferences about the latent skill structure of the data.
This approach has been shown to have high accuracy, provided



that (1) there are relatively few latent skills in the data and (2) that
the skills are substantially different from one another. These
assumptions are difficult to maintain in a specialized mathematics
tutor that considers potentially hundreds of individual skills, all
within the same overall domain. Another limitation to these
approaches is that they typically assume that knowledge is static
when analyzing covariance, but knowledge in online learning
environments is in fact changing as it is being measured.

An alternative to methods utilizing patterns of correct and
incorrect answers is topic modeling approaches, such as Latent
Semantic Analysis (LSA; [16]), Latent Dirichlet Analysis (LDA;
[5]), and Correlational Topic Modeling (CTM; [4]) Topic models
are not dependent on human tagging of skills — the only input
required is the textual content of the problem itself. Using topic
modeling approaches to label skills and topics utilizes both the
relationships between words and symbols within problem texts, as
well as inferred knowledge about the absence of particular words,
a similar approach to how students themselves come to
understand and learn material [16]. Novice learners often come to
understand complex material by first learning via semantic,
surface-level features, and relies heavily on information that is
available perceptually [13]. Therefore, an approach which utilizes
the textual information contained in a problem may serve to better
map to students’ emerging understanding of skills, rather than
experts’ higher-order determinations. Additionally, this approach
can model the underlying lexical similarity that exists within
problems that share a common skill.

Topic modeling is a form of natural language processing that
utilizes word co-occurrence patterns to identify clusters of words,
called “topics”, that appear in large collections of documents.
Topic modeling can be loosely characterized as factor analysis
conducted on words, rather than numerical variables. Topic
models have been used for a range of applications, such as
automated matching of reviewers to scientific papers within
particular fields of study [17] and utilizing latent topics within
capital facility finance bond elections to examine which topics are
more likely to pass [6].

From this family of models, we select correlated topic modeling
(CTM) [4], which models the intercorrelations of words in text to
infer topics — as the most appropriate modeling approach to use
for our data. LDA assumes that all topics are present in differing
proportions across the component documents [3], an assumption
which almost certainly doesn’t hold across the scope of math
topics present within ASSISTments. Additionally, mathematics
problems tend to be highly focused on a single or very small
selection of topics, and so modeling the proportionality of topics
between problems is unnecessary. Finally, although LDA can
model proportions of topics present in a document or documents,
it cannot measure the correlations that may be present between
documents — for example, a math problem about trigonometry is
much more likely to involve geometry than fractions. LSA suffers
from this same limitation. This is the aspect of CTM that makes it
valuable for this particular data — because of the possible
relationships existing between skills, we expect a strong
underlying correlational structure between the topics that we are
attempting to model. Because of this, as well as the wide scope of
problems within our dataset, we selected CTM as our modeling
approach of choice.

2. METHODS

Data for this research comes from the ASSISTments platform
[12]. ASSISTments is an online intelligent tutoring system used

by over 50,000 students, primarily in the northeastern United
States. ASSISTments provides formative and summative
assessment, as well as student support, scaffolding, and detailed
teacher reports.

Within the ASSISTments system, students work through problem
sets, consisting of mathematics questions which they provide
answers to. There are several types of problem sets: complete all
problem sets, which require all problems to be answered correctly;
if-then-else problem sets, which require a certain percentage of
problems to be answered correctly; and skill builder problem sets,
which require students to answer three consecutive problems
correctly in a row. Within most problems, students have the
opportunity to request hints from the system. On many problems,
students providing incorrect answers are asked to complete
scaffolding problems — sub-problems which work on a specific
aspect or skill associated with the base problem. Problem
responses are generally fill in the blank, but can also be multiple
choice or short answers. Problem sets can be assigned as
classwork, to be completed with the supervision of a teacher, or as
homework, to be completed when the student has study hall or is
at home.

Figure 1. Example of a problem in ASSISTments

Assistment ID: 254835 Comment on this question
What is the measure of angle A?
B
70°
130°
A C D

Submit Answer  Break this problem into steps

We analyzed the textual content of 112,526 problems, nearly all
of them mathematics problems, and most of them developed and
used by teachers in the 2012-2013 school year. In ASSISTments,
teachers author problems and hints using a text editor, and have
the ability to add in mathematical symbols, images, embed video,
and use rich HTML formatting.

2.1 Text Processing

Preprocessing of text is an important step for NLP approaches.
ASSISTments text data includes HTML tags and markup and
HTML characters, which must be removed before they can be
used in modeling. Additionally, because a majority of the
problems included numbers and mathematical symbols, we had to
develop additional coding methods for numbers and mathematical
symbols.

CTM is a bag-of-words approach to text analysis — it solely
considers what words are present, and does not consider ordering
or other relationships between words, or any special qualities of
the words themselves. This approach has advantages and
disadvantages to working with the data for this research. For
example, special symbols such as the degree symbol or the square
root operator are HTML encoded (as &deg; and &sqrt;. A bag of
words model will treat these strings like any other word, while



more sophisticated tools which tag words with semantic
categories or other linguistic information (e.g. [20]), may struggle
to represent this information correctly. However, there are
disadvantages, especially when working with numeric
information. A bag of words tagger will differentiate between 1,
2, 3, and so on, even when there is no reason to think, for
example, that the equations 4 + 3 and 2 + 5 are different in any
relevant way.

To address this limitation of the modeling approach, and to
attempt to capture differences in meaning within the mathematics
problems that would not be readily apparent to a pure bag-of-
words approach, we developed several dummy codes for the data.
These dummy codes were implemented using string search and
replace routines. The original text, and their replacements, can be
found in Table 1. We selected our converted text notation in such
a way that it would not resemble actual words and phrases used in
the problems, This approach was necessary in order to reduce the
variance that the CTM would attempt to identify between
numbers, decimals, and degrees which are semantically very
similar.

Table 1. Conversions between raw texts and their
corresponding labels in the data

idf (term frequency/inverse document frequency) weightings can
help with the identification and exclusion of extremely common
or extremely uncommon words, as well as weight frequencies of
common and uncommon words more effectively. The current skill
label proxy variable within ASSISTments estimates close to 330
skills — a number which was not computationally feasible for our
hardware at this time. In future work, we plan to continue this
work on a cloud computing setup. Goodness of the resulting
models was calculated via the perplexity of each model.
Perplexity scores measure the ability of topic models to generalize
to new and unseen text (in the case of these models, a test set of
problems). A perplexity score can be thought of as the number of
probable words that could follow any given word within the
model, therefore, a lower perplexity represents a better model fit.

3. RESULTS

The perplexity scores for each of the three models are presented in
Table 2. The 25-topic model was found to have the lowest
perplexity among the three models tested, indicating that is it the
best fit among the three models presented here. The downward
trend in perplexity for higher K suggests that additional topics
could more appropriately model problem content within
ASSISTments.

Table 2. Perplexity scores for the three topic models

K= Perplexity
5 319.91
15 227.40
25 189.28

Original Text Converted Text
{0-9} XXNUMXX
{10+} XXmanynumxx
Decimals, e.g. 1.11 xxdecimalxx
Fractions, e.g. 2/3 xxfracxx
Dollar Amounts, e.g. $3.50 xxXmoneyamtxx
Percents, e.g. 76% XXpercentxx
Degree Amounts, e.g. 90° xxdegreesxx
“Explicit” Numbers, e.g. #4' xxexplnumxx

The 25 topics identified, along with the five most common words
associated with each topic, are presented in Table 3.

" Teachers often used this notation to denote questions which
came from a worksheet or textbook that students had access
to.

After performing string replacement, all HTML elements within
the problems — such as embedded videos, image links (URLs),
and font changes — were removed. These HTML elements
contained little data that could be meaningfully parsed by a bag of
words model — URLs, for instance, were almost always unique by
problem. Additionally, the textual content contained within the
HTML tags was not visible to the learner. Punctuation and
mathematical operators were all removed, as well as excess
whitespace. While punctuation and mathematics operators serve a
distinct purpose within the text, there was too much inconsistency
between use cases and problem authors’ conventions for this
information to be extracted reliably. The R package topicmodels
was used to remove common grammatical words and words
which contained less than three characters. This package was also
used to stem the dataset (converting words such as contained,
contains, and containing to contain — [14]. A sparse matrix was
created with d = 0.9999, removing all words which appeared in
less than 0.0001% of problems. These steps produced a final
dataset consisting of 4,058 words mapped to 112,526 problems.

Construction of the model was performed in R. Term frequency
weightings were applied to the document term matrix, and three
CTM models were calculated — one with five predicted topics, one
with 15 predicted topics, and one with 25 predicted topics.
Because of the exploratory nature of this work, optimal tf-idf
weightings and optimal numbers of topics were not calculated. Tf-

Table 3. 25 Topics identified by algorithm

Topic Correlated Terms Topic Label
1 Many, student, xxpercentxx, Number/percentage
look, take conversion'
2 Left, attempt, xxexplnumxx, System generated — you
XXmanynumxx, xxdecimalxx have XX attempts left.
3 Origin, problem, let, try, System generated, after
solution scaffolding — “Let’s try
the original problem”
4 Xxdecimalxx, express, Teacher reminder —
divide, paper, point “express your answer as
a decimal to the
hundredths point”
5 Step, one, problem, break, System reminder — “do
button not press break this
problem into steps”
6 Question, sorry, next, System generated —
incorrect, attempt “Sorry, that’s incorrect.
Let’s move onto the next
question”
7 Fraction, number, answer, Improper and mixed
mix, improper fractions
8 Triangle, angle, length, Side length and angles
figure, side of triangles
9 Xxexplnumxx, page, unit, Textbook and worksheet
XXmanynumxx problems; “Page 25 #4”
10 Equation, line, variable, Slope problems
write, slope
11 Nearest, round, place, Teacher reminder —
answer, hundredth “round your answer to




the nearest hundredth”

12 Best, choose, follow, part, A vs. B comparison
two problems
13 Day, xxnumxx, time, play, Time problems
month
14 Xxmanynumxx, point, score, Sports problems
game, name
15 Xxmoneyamtxx, number, Currency questions
cost, answer, total
16 Xxnumxx, power, Metric explanation

xxdecimalxx, problems2

XXmanynumxx, number

17 Answer, make, type, fraction, | Teacher reminder — how
enter to enter fraction answers

18 Area, xxnumxx, scale, Area problems
square, xxdecimalxx
19 Xxfracxx, number, whole, Whole fraction problems
fraction, example
20 Mile, xxnumxx, per, ball, car Distance problems
21 Xxnumxx, divid, conversion, Unit conversion
formula, number problems
22 Xxnumxx, XXxmanynumxx, Simple algebra problems
number, find, value
23 Xxdecimalxx, fraction, Decimal — fraction

numerator, multiply, conversion problems

denominator

24 Xxnumxx, factor, simplify, Factorization problems
follow
25 Follow, correct, select, Instructions about

subtract, label subsequent parts of a

problem

" These problems often took the form of interpreting a pie
chart, and calculating the number of students who constituted
a given percentage of the overall population.

2 These problems scaffolded students by explaining the nature
of the metric system in base ten, using decimals to show that
relationship. “Powers of ten” was a common phrase as well.

There are a number of surprising findings in the CTM results.
First, we expected that CTM would distinguish between different
topics within problems, which it appears to be able to do. For
example, topics 10 (slope problems), 15 (currency problems), 21
(unit conversion problems), and 23 (fraction conversion problems)
appear to be well-formed. What we didn’t anticipate, however,
was that CTM would also pick up on common phrases or hints
that the system provided to students, such as topic 2 (reminders
about the number of attempts a student has left), topics 4 and 11
(reminders about significant figures), and topic 3 (when a student
returns to an original problem after a scaffolding problem).

Additionally, the model appears to identify non-mathematics
themes, such as topic 14 (sports) and topic 15 (currency). Similar
approaches to identifying the semantic content of problems have
been used before [21], and topic modeling may be an additional
approach to identifying themes that are present within problems.
While these categories and the reminders/hints to students don’t
lend themselves towards the goal of automated skill tagging of
problems, they are interesting for assessing features of problem
construction, such as the use of reminder texts and feedback about
student performance, or the use of specific themes in word
problems. If CTM is able to reliably tag these features, then it is
possible to use them in models assessing the relationship between
problem design and student affect, learning, and behavior. As

such, even the categories which are less useful for our initial
research goal are likely to have other potentially productive uses.

4. CONCLUSION

In this paper we have developed a correlational text model (CTM)
to attempt to identify common topics within a mathematics tutor.
These approaches are important for being able to estimate student
knowledge, as well as for guiding and informing teacher feedback
and identification of student performance gaps. We developed a
CTM which used 25 topics, and determined that it had better
model fit than 15- and 5-topic alternatives. The CTM was able to
identify not only mathematics subjects such as fraction problems,
slope problems, and area problems, but also instances of system-
generated scaffolding and hints (such as reminders about
rounding) and non-mathematics subjects, such as problems
concerning sports and money.

This approach is not without its limitations though — one of our
goals in this effort was to develop an automated method of skills
tagging, and the results of the CTM are somewhat murky in that
respect. Only 9 of the 25 topics identified appear to be about a
clearly defined mathematics skill/concept, the rest of the topics
identifying either system-generated text or non-mathematics
subjects. In other words, the CTM attempts to identify differences
in problem content, problem structure and problem theme, all at
the same time, and the resulting model is somewhat muddy as a
result. It is unclear whether an increase in the number of topics
will capture more skills and find more fine-grained skills, or just
add more noise and variance to the underlying model.

It is also likely that this is not an optimal mapping of the domain
structure of these problems. Performing CTM beyond 25 topics
was computationally limiting, but the ASSISTments system
identifies roughly 330 unique skills within the database. Future
efforts at using CTM to identify domain structure will need to
utilize cluster or cloud computing, as this approach is
computationally demanding. However, this expansion of topics
comes with a cost — research by Chang et al. suggests that, while
CTM tends to outperform LSA and LDA in terms of model fit and
word intrusion metrics, it does so at the cost of human
interpretability. In other words, while CTM does a better job of
clustering topics than LSA and LDA, the topics themselves may
not be as interpretable to human judges, especially as the number
of topics to be modeled increases [7].

An additional limitation of this modeling approach is the depth of
structure that can be assessed. As the CTM does not take into
account the order of words, grammar, and rhetoric, it may provide
an oversimplified categorization of the math problems within the
tutoring system. In particular, this approach may combine
problems with similar surface features, but with different deep
structure - the underlying principle that is necessary for a solution
[8]. Analysis and tagging of deep structure of problems, therefore,
currently still needs to be more reliant on human coders and
expert judgment than the automated approach used here; trying to
expand the depth of our categorizations with more sophisticated
linguistic approaches will be an important area of future work.

Finally, mathematics notation represents something of an
unsolved problem. While string replacement worked to a degree,
improvement in the identification of topics in mathematics
problems will benefit from an improvement in the capacity for
text analysis tools to work with and process mathematical
notation, such as equations, unit notations (such as ft, in, km), and
variables (none of which were captured with the current text
replacement scheme). However, the analysis of mathematics text



is not well-developed and this work further highlights the
necessity for specialized tools for exploring data involving
mathematics symbols and notation with NLP tools. Differences in
the uses of numbers, equations, variables, operators, and symbols
represent a large source of potential variance and structure within
the data that cannot currently be explored in an effective way, and
an enhanced ability to parse mathematics items in text could
greatly enhance the ability of topic models to successfully
distinguish individual skills.

Future work in this domain may attempt to use the results from a
CTM as a skill matrix for various knowledge inference
techniques, such as BKT or PFA. If CTM and other forms of topic
modeling can achieve an acceptable level of agreement with
expert skill tagging, then we should expect to see improved model
fit for these NLP-derived skill models compared to previous
methods for automated skill tagging, at lower cost and time to
implement than manual skill tagging. These improvements in the
scalability of skill tagging would serve to improve the quality and
consistency of skill identification in ITS environments, improving
both the quality of personalized learning while making it easier
for researchers to develop models that build on skill models and
use these models to understand and enhance student learning.
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