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ABSTRACT 
Student knowledge modeling is an important part of modern 
personalized learning systems, but typically relies upon valid 
models of the structure of the content and skill in a domain. These 
models are often developed through expert tagging of skills to 
items. However, content creators in crowdsourced personalized 
learning systems often lack the time (and sometimes the domain 

knowledge) to tag skills themselves. Fully automated approaches 
that rely on the covariance of correctness on items can lead to 
effective skill-item mappings, but the resultant mappings are often 
difficult to interpret. In this paper we propose an alternate 
approach to automatically labeling skills in a crowdsourced 
personalized learning system using correlated topic modeling, a 
natural language processing approach, to analyze the linguistic 
content of mathematics problems. We find a range of potentially 

meaningful and useful topics within the context of the 
ASSISTments system for mathematics problem-solving.  
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1. INTRODUCTION 
Accurate estimation of student knowledge in online learning 
environments generally relies on the existence of skill model 
frameworks that map specific problems to a broader theme, topic, 

or skill. Models such as Bayesian Knowledge Tracing (BKT; [9]) 
and Performance Factors Analysis (PFA; [18]) utilize skill models 
as an underlying structure for drawing inferences about student 
knowledge. However, this process of associating problems in an 
intelligent tutoring system (ITS) with annotations of the skills and 
knowledge that are associated with the problem benefits more 
than just knowledge tracing models. Teachers and researchers can 
use information about the underlying skill model to determine if  

skills differ in important ways, such as determining which skills 
are more likely to be associated with disengagement (e.g. [1]) or 

negative affect [11], and to study how hint requests and other 
metacognitive behaviors vary between different skills [24].  Skill 
models can also help to inform teachers’ assessments of student 
learning and performance, and identify areas where students may 
need additional practice or scaffolding in order to succeed. 

However, the human creation and curation of models of domain 
structure can be challenging [22] especially in online learning 
environments which utilize crowdsourced or teacher-generated 

problem content. With the rising interest in scaling high-quality 
online education, there is also increasing effort to engage a 
broader community including teachers in creating content [12]. 
However, teachers frequently lack the time and training to 
produce high-quality annotations of the skills associated with 
specific content, and there are no guarantees that skill tags will be 
consistent between different authors using a crowd-sourced 
system. Definitions of skills, and the granularity of skills 

associated with particular problems, may vary from author to 
author, and render the overall skill model across the system 
uninterpretable, or worse, inconsistent. 

While newer knowledge estimation approaches such as recurrent 
neural networks (RNNs) do not require expert-coded domain 
structure knowledge or skill models [19], it is unclear whether 
RNNs offer a tangible increase in performance for knowledge 
estimation compared to more traditional approaches such as 

Bayesian Knowledge Tracing (BKT) (see discussion in [15]). 
Additionally, RNNs have poor interpretability, as their predictions 
cannot be straightforwardly tied to specific skills or features of the 
problems themselves. As such, RNNs are an incomplete substitute 
for having a skill-problem mapping. When it is not feasible to 
manually author the mapping between skills and problems, 
automatically deriving this model may have substantial value. 

There have been efforts to automate the process of determining 
which skills are associated with each of a set of problems by using 

the co-occurrence of correctness across problems. For example, 
[2] derived the mapping between test items and latent skills by 
taking several initial mappings (with randomized restart), testing 
their fit to the data, and using a search algorithm to enhance the 
mapping.  Other approaches to automatically deriving mappings 
between problems and skills, such as those used by [10] and [23], 
utilize matrix factorization to infer skills based on student 
responses. These approaches assume that student patterns of 

correct and incorrect responses have less variance within skills 
than between skills, and that this difference in variance can be 
used to draw inferences about the latent skill structure of the data. 
This approach has been shown to have high accuracy, provided 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. Copyrights 

for components of this work owned by others than ACM must be 
honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior 

specific permission and/or a fee. Request permissions from 
Permissions@acm.org. 
LAK '17, March 13-17, 2017, Vancouver, BC, Canada  © 2017 ACM. 

ISBN 978-1-4503-4870-6/17/03�$15.00   

DOI: http://dx.doi.org/10.1145/3027385.3027438 





more sophisticated tools which tag words with semantic 
categories or other linguistic information (e.g. [20]), may struggle 
to represent this information correctly. However, there are 
disadvantages, especially when working with numeric 
information. A bag of words tagger will differentiate between 1, 

2, 3, and so on, even when there is no reason to think, for 
example, that the equations 4 + 3 and 2 + 5 are different in any 
relevant way. 

To address this limitation of the modeling approach, and to 
attempt to capture differences in meaning within the mathematics 
problems that would not be readily apparent to a pure bag-of-
words approach, we developed several dummy codes for the data. 
These dummy codes were implemented using string search and 

replace routines. The original text, and their replacements, can be 
found in Table 1. We selected our converted text notation in such 
a way that it would not resemble actual words and phrases used in 
the problems, This approach was necessary in order to reduce the 
variance that the CTM would attempt to identify between 
numbers, decimals, and degrees which are semantically very 
similar. 

Table 1. Conversions between raw texts and their 

corresponding labels in the data 

Original Text Converted Text 

{0-9} xxnumxx 

{10+} xxmanynumxx 

Decimals, e.g. 1.11 xxdecimalxx 

Fractions, e.g. 2/3 xxfracxx 

Dollar Amounts, e.g. $3.50 xxmoneyamtxx 

Percents, e.g. 76% xxpercentxx 

Degree Amounts, e.g. 90° xxdegreesxx 

“Explicit” Numbers, e.g. #41 
xxexplnumxx 

1
 Teachers often used this notation to denote questions which 

came from a worksheet or textbook that students had access 

to. 

 

After performing string replacement, all HTML elements within 
the problems – such as embedded videos, image links (URLs), 

and font changes – were removed. These HTML elements 
contained little data that could be meaningfully parsed by a bag of 
words model – URLs, for instance, were almost always unique by 
problem. Additionally, the textual content contained within the 
HTML tags was not visible to the learner. Punctuation and 
mathematical operators were all removed, as well as excess 
whitespace. While punctuation and mathematics operators serve a 
distinct purpose within the text, there was too much inconsistency 

between use cases and problem authors’ conventions for this 
information to be extracted reliably. The R package topicmodels 
was used to remove common grammatical words and words 
which contained less than three characters. This package was also 
used to stem the dataset (converting words such as contained, 
contains, and containing to contain – [14]. A sparse matrix was 
created with d = 0.9999, removing all words which appeared in 
less than 0.0001% of problems. These steps produced a final 

dataset consisting of 4,058 words mapped to 112,526 problems. 

Construction of the model was performed in R. Term frequency 
weightings were applied to the document term matrix, and three 
CTM models were calculated – one with five predicted topics, one 
with 15 predicted topics, and one with 25 predicted topics. 
Because of the exploratory nature of this work, optimal tf-idf 
weightings and optimal numbers of topics were not calculated. Tf-

idf (term frequency/inverse document frequency) weightings can 
help with the identification and exclusion of extremely common 
or extremely uncommon words, as well as weight frequencies of 
common and uncommon words more effectively. The current skill 
label proxy variable within ASSISTments estimates close to 330 

skills – a number which was not computationally feasible for our 
hardware at this time. In future work, we plan to continue this 
work on a cloud computing setup. Goodness of the resulting 
models was calculated via the perplexity of each model. 
Perplexity scores measure the ability of topic models to generalize 
to new and unseen text (in the case of these models, a test set of 
problems). A perplexity score can be thought of as the number of 
probable words that could follow any given word within the 

model, therefore, a lower perplexity represents a better model fit.  

3. RESULTS 
The perplexity scores for each of the three models are presented in 
Table 2. The 25-topic model was found to have the lowest 
perplexity among the three models tested, indicating that is it the 

best fit among the three models presented here. The downward 
trend in perplexity for higher K suggests that additional topics 
could more appropriately model problem content within 
ASSISTments.  

 
Table 2. Perplexity scores for the three topic models 

K = Perplexity 

5 319.91 

15 227.40 

25 189.28 

 
The 25 topics identified, along with the five most common words 
associated with each topic, are presented in Table 3. 
 

Table 3. 25 Topics identified by algorithm 

Topic Correlated Terms Topic Label 

1 Many, student, xxpercentxx, 

look, take 

Number/percentage 

conversion1 

2 Left, attempt, xxexplnumxx, 
xxmanynumxx, xxdecimalxx 

System generated – you 
have XX attempts left. 

3 Origin, problem, let, try, 
solution 

System generated, after 
scaffolding – “Let’s try 
the original problem” 

4 Xxdecimalxx, express, 
divide, paper, point 

Teacher reminder – 
“express your answer as 

a decimal to the 
hundredths point” 

5 Step, one, problem, break, 
button 

System reminder – “do 
not press break this 
problem into steps” 

6 Question, sorry, next, 
incorrect, attempt 

System generated – 
“Sorry, that’s incorrect. 

Let’s move onto the next 
question” 

7 Fraction, number, answer, 
mix, improper 

Improper and mixed 
fractions 

8 Triangle, angle, length, 

figure, side 

Side length and angles 

of triangles 

9 Xxexplnumxx, page, unit, 
xxmanynumxx 

Textbook and worksheet 
problems; “Page 25 #4” 

10 Equation, line, variable, 
write, slope 

Slope problems 

11 Nearest, round, place, 

answer, hundredth 

Teacher reminder – 

“round your answer to 



the nearest hundredth” 

12 Best, choose, follow, part, 
two 

A vs. B comparison 
problems 

13 Day, xxnumxx, time, play, 
month 

Time problems 

14 Xxmanynumxx, point, score, 
game, name 

Sports problems 

15 Xxmoneyamtxx, number, 
cost, answer, total 

Currency questions 

16 Xxnumxx, power, 
xxdecimalxx, 

xxmanynumxx, number 

Metric explanation 
problems2 

17 Answer, make, type, fraction, 
enter 

Teacher reminder – how 
to enter fraction answers 

18 Area, xxnumxx, scale, 
square, xxdecimalxx 

Area problems 

19 Xxfracxx, number, whole, 
fraction, example 

Whole fraction problems 

20 Mile, xxnumxx, per, ball, car Distance problems 

21 Xxnumxx, divid, conversion, 
formula, number 

Unit conversion 
problems 

22 Xxnumxx, xxmanynumxx, 
number, find, value 

Simple algebra problems 

23 Xxdecimalxx, fraction, 
numerator, multiply, 

denominator 

Decimal – fraction 
conversion problems 

24 Xxnumxx, factor, simplify, 
follow 

Factorization problems 

25 Follow, correct, select, 
subtract, label 

Instructions about 
subsequent parts of a 

problem 
1 

These problems often took the form of interpreting a pie 

chart, and calculating the number of students who constituted 

a given percentage of the overall population. 
2
 These problems scaffolded students by explaining the nature 

of the metric system in base ten, using decimals to show that 

relationship. “Powers of ten” was a common phrase as well. 
 

There are a number of surprising findings in the CTM results. 
First, we expected that CTM would distinguish between different 

topics within problems, which it appears to be able to do. For 
example, topics 10 (slope problems), 15 (currency problems), 21 
(unit conversion problems), and 23 (fraction conversion problems) 
appear to be well-formed. What we didn’t anticipate, however, 
was that CTM would also pick up on common phrases or hints 
that the system provided to students, such as topic 2 (reminders 
about the number of attempts a student has left), topics 4 and 11 
(reminders about significant figures), and topic 3 (when a student 

returns to an original problem after a scaffolding problem). 
 
Additionally, the model appears to identify non-mathematics 
themes, such as topic 14 (sports) and topic 15 (currency). Similar 
approaches to identifying the semantic content of problems have 
been used before [21], and topic modeling may be an additional 
approach to identifying themes that are present within problems. 
While these categories and the reminders/hints to students don’t 

lend themselves towards the goal of automated skill tagging of 
problems, they are interesting for assessing features of problem 
construction, such as the use of reminder texts and feedback about 
student performance, or the use of specific themes in word 
problems. If CTM is able to reliably tag these features, then it is 
possible to use them in models assessing the relationship between 
problem design and student affect, learning, and behavior. As 

such, even the categories which are less useful for our initial 
research goal are likely to have other potentially productive uses. 

4. CONCLUSION 
In this paper we have developed a correlational text model (CTM) 
to attempt to identify common topics within a mathematics tutor. 
These approaches are important for being able to estimate student 
knowledge, as well as for guiding and informing teacher feedback 
and identification of student performance gaps. We developed a 
CTM which used 25 topics, and determined that it had better 
model fit than 15- and 5-topic alternatives. The CTM was able to 

identify not only mathematics subjects such as fraction problems, 
slope problems, and area problems, but also instances of system-
generated scaffolding and hints (such as reminders about 
rounding) and non-mathematics subjects, such as problems 
concerning sports and money. 

This approach is not without its limitations though – one of our 
goals in this effort was to develop an automated method of skills 
tagging, and the results of the CTM are somewhat murky in that 

respect. Only 9 of the 25 topics identified appear to be about a 
clearly defined mathematics skill/concept, the rest of the topics 
identifying either system-generated text or non-mathematics 
subjects. In other words, the CTM attempts to identify differences 
in problem content, problem structure and problem theme, all at 
the same time, and the resulting model is somewhat muddy as a 
result. It is unclear whether an increase in the number of topics 
will capture more skills and find more fine-grained skills, or just 

add more noise and variance to the underlying model. 

It is also likely that this is not an optimal mapping of the domain 
structure of these problems. Performing CTM beyond 25 topics 
was computationally limiting, but the ASSISTments system 
identifies roughly 330 unique skills within the database. Future 
efforts at using CTM to identify domain structure will need to 
utilize cluster or cloud computing, as this approach is 
computationally demanding. However, this expansion of topics 
comes with a cost – research by Chang et al. suggests that, while 

CTM tends to outperform LSA and LDA in terms of model fit and 
word intrusion metrics, it does so at the cost of human 
interpretability. In other words, while CTM does a better job of 
clustering topics than LSA and LDA, the topics themselves may 
not be as interpretable to human judges, especially as the number 
of topics to be modeled increases [7].  

An additional limitation of this modeling approach is the depth of 
structure that can be assessed. As the CTM does not take into 

account the order of words, grammar, and rhetoric, it may provide 
an oversimplified categorization of the math problems within the 
tutoring system. In particular, this approach may combine 
problems with similar surface features, but with different deep 
structure - the underlying principle that is necessary for a solution 
[8]. Analysis and tagging of deep structure of problems, therefore, 
currently still needs to be more reliant on human coders and 
expert judgment than the automated approach used here; trying to 

expand the depth of our categorizations with more sophisticated 
linguistic approaches will be an important area of future work. 

Finally, mathematics notation represents something of an 
unsolved problem. While string replacement worked to a degree, 
improvement in the identification of topics in mathematics 
problems will benefit from an improvement in the capacity for 
text analysis tools to work with and process mathematical 
notation, such as equations, unit notations (such as ft, in, km), and 

variables (none of which were captured with the current text 
replacement scheme). However, the analysis of mathematics text 



is not well-developed and this work further highlights the 
necessity for specialized tools for exploring data involving 
mathematics symbols and notation with NLP tools. Differences in 
the uses of numbers, equations, variables, operators, and symbols 
represent a large source of potential variance and structure within 

the data that cannot currently be explored in an effective way, and 
an enhanced ability to parse mathematics items in text could 
greatly enhance the ability of topic models to successfully 
distinguish individual skills. 

Future work in this domain may attempt to use the results from a 
CTM as a skill matrix for various knowledge inference 
techniques, such as BKT or PFA. If CTM and other forms of topic 
modeling can achieve an acceptable level of agreement with 

expert skill tagging, then we should expect to see improved model 
fit for these NLP-derived skill models compared to previous 
methods for automated skill tagging, at lower cost and time to 
implement than manual skill tagging. These improvements in the 
scalability of skill tagging would serve to improve the quality and 
consistency of skill identification in ITS environments, improving 
both the quality of personalized learning while making it easier 
for researchers to develop models that build on skill models and 

use these models to understand and enhance student learning. 
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