
A Memory-Augmented Neural Model for Automated Grading
Siyuan Zhao

Worcester Polytechnic
Institute

Worcester, MA 01609, USA
szhao@wpi.edu

Yaqiong Zhang
Worcester Polytechnic

Institute
Worcester, MA 01609, USA

yzhang19@wpi.edu

Xiaolu Xiong
Worcester Polytechnic

Institute
Worcester, MA 01609, USA

xxiong@wpi.edu

Anthony Botelho
Worcester Polytechnic

Institute
Worcester, MA 01609, USA

abotelho@wpi.edu

Neil Heffernan
Worcester Polytechnic

Institute
Worcester, MA 01609, USA

nth@wpi.edu

ABSTRACT

The need for automated grading tools for essay writing and
open-ended assignments has received increasing attention
due to the unprecedented scale of Massive Online Courses
(MOOCs) and the fact that more and more students are relying
on computers to complete and submit their school work. In
this paper, we propose an efficient memory networks-powered
automated grading model. The idea of our model stems from
the philosophy that with enough graded samples for each score
in the rubric, such samples can be used to grade future work
that is found to be similar. For each possible score in the rubric,
a student response graded with the same score is collected.
These selected responses represent the grading criteria spec-
ified in the rubric and are stored in the memory component.
Our model learns to predict a score for an ungraded response
by computing the relevance between the ungraded response
and each selected response in memory. The evaluation was
conducted on the Kaggle Automated Student Assessment Prize
(ASAP) dataset. The results show that our model achieves
state-of-the-art performance in 7 out of 8 essay sets.
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INTRODUCTION

Automated grading is a critical part of Massive Open Online
Courses (MOOCs) system and any intelligent tutoring systems
(ITS) at scale. Some standard tests, such as Test of English as
a Foreign Language (TOEFL) and Graduate Record Examina-
tion (GRE), assess student writing skills. Manually grading
these essay will be time-consuming. Moreover, as massive
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open online courses (MOOCs) become widespread and the
number of students enrolled in one course increases, the need
for grading and providing feedback on written assignments
are ever critical.

As part of the automated grading system, AES has employed
numerous efforts to improving its performance. AES uses
statistical and Natural Language Processing (NLP) techniques
to automatically predict a score for an essay based on the essay
prompt and rubric. Most existing AES systems are built on the
basis of predefined features, e.g. number of words, average
word length, and number of spelling errors, and a machine
learning algorithm [1]. It is normally a heavy burden to find
out effective features for AES. Moreover, the performance
of the AES systems is constrained by the effectiveness of
the predefined features. Recently another kind of approach
has emerged, employing neural network models to learn the
features automatically in an end-to-end manner [5]. By this
means, a direct prediction of essay scores can be achieved with-
out performing any feature extraction. The model based on
long short-term memory (LSTM) networks in [5] has demon-
strated promise in accomplishing multiple types of automated
grading tasks.

Memory Networks (MN) [6, 4] have been recently introduced
to deal with complex reasoning and inferencing NLP tasks
and have been shown to outperform LSTM on some complex
reasoning tasks [4]. MN is a class of models which contains
an external scalable memory and a controller to read from and
write to that memory.

To our knowledge, no study has been conducted to investigate
the feasibility and effectiveness of MN applied in automated
grading tasks. In this study, we develop a generic model for
such tasks using Memory Networks inspired by their capabil-
ity to store rich representations of data and reason over that
data in memory. For each essay score, we select one essay
exhibiting the same score from student responses as a sample
for that grade. All collected sample responses are loaded into
the memory of the model. The model is trained with the rest
of student responses in a supervised learning manner on these
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Figure 1. An illustration of memory networks for AES. The score range
is 0 - 3. For each score, only one sample with the same score is selected
from student responses. There are 4 samples in total in memory. Input
representation layer is not included.

data to compute the relevance between the representation of
an ungraded response and that of each sample. The intuition
is that as a part of a scoring rubric, a number of sample re-
sponses of variable quality are usually provided to students and
graders to help them better understand the rubric. These col-
lected responses are characterized with expectations of quality
described in the rubric. The model is expected to learn the
grading criteria from these responses. We evaluate our model
on a publicly available essay grading data set from the Kaggle
Automated Student Assessment Prize (ASAP) competition
(https://www.kaggle.com/c/asap-aes). Our experiments show
that our model achieves state-of-the-art results on this dataset.

MODEL

An illustration of our model is given in Figure 1, which is
inspired by the work of memory networks applied in ques-
tion answering [4]. Our model consists of four layers: in-
put representation layer, memory addressing layer, memory
reading layer, and output layer. Input representation layer is
responsible for generating a vector representation for a student
response. Memory addressing layer loads selected samples
of student responses to memory, and assigns a weight to each
memory piece. Afterward memory reading layer gathers the
content from memory by taking weighted sum of each memory
piece based on the weights calculated from previous layer, and
produces a resulting state. Finally the output layer makes the
prediction on the basis of the resulting state. Neural networks
models are usually featured with multiple computational layers
to learn a more abstract representation of the input. Our model
is extended to have the structure of multiple layers (hops) by
stacking memory addressing layer and memory reading layer
repeatedly.

Input Representation

Each student response is represented as a vector in our model.
Given a student response x = {x1,x2,x3, ...,xn}, where n is
the length of the response, we map each word into a word

vector wi = Wxi. All word vectors come from a word em-
bedding matrix W ∈ Rd×V , where d is the dimension of word
vector and V is the vocabulary size. To represent an essay
in a vector, we selected position encoding (PE) described in
[4]. By the scheme of PE, the vector representation of a re-
sponse is calculated by m = ∑ j l j ·Wxi j, where · is an element-
wise multiplication. l j is a column vector with the structure
lk j = (1− j/J)− (k/d)(1−2 j/J) (assuming 1-based index-
ing), where J is the total number of words in the response, d
is the dimension of word vector, and k is the embedding index.
PE is a simple and efficient way to represent a response, and
does not need to learn extra parameters.

Memory Addressing

After generating the representation of the responses, we select
a sample from student response for every possible score, which
is graded with the same score. The selected samples work as
a representation of the criteria in the rubric for all possible
scores. Expert knowledge can be used here to choose most
representative sample for each score or even generate a number
of ideal samples. For our experiment, we randomly pick a
sample from student responses for each score, which is graded
with that score.

All sampled responses are loaded into the memory as an
array of vectors m1,m2, ...,mh, where h is the total number
of sampled essays. An ungraded response is denoted as x.
The basic idea of memory addressing is that it assigns a
weight/importance to each sampled response mi by calculating
a dot product between x and mi followed by a softmax.

pi = So f tmax(xAT ·miB
T ) (1)

where So f tmax(yi) = eyi/∑ j ey j , A is a k×d matrix and so is
B. Defined in this way p is a weight vector over all sampled
responses. A and B are learned matrices used to transfer the
response representation to a d-dimensional features space.

Memory Reading

After weight vector p is calculated, the output of the memory
is computed as a weighted sum of each piece of memory in m:

o = ∑
i

pimiC
T (2)

where C is a k× d matrix used to transfer the response rep-
resentation to the feature space. The k×d matrix C may be
identical to A, but from our experiment, we found that training
a separate C leads to a better performance. From the equation,
we can see that weight vector p controls the amount of content
that is read from each memory piece.

Multiple Hops

The success of neural networks is due to its ability of learning
multiple layers of neurons and each layer can transform the
representation at previous level into a higher level of abstract
representation. Inspired by this idea, we stack multiple mem-
ory addressing steps and memory reading steps together to
handle multiple hops operations.
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Set # Essays Avg len Max len Min score Max score

1 1,783 350 911 2 12
2 1,800 350 118 1 6
3 1,726 150 395 0 3
4 1,772 150 383 0 3
5 1,805 150 452 0 4
6 1,800 150 489 0 4
7 1,569 250 659 0 30
8 723 650 983 0 60

Table 1. Selected Details of ASAP dataset

After receiving the output o from equation 2, the ungraded
response u is updated with:

u2 = Relu(R1(u+o)) (3)

where R1 is a k× k matrix, u = xAT and Relu(y) = max(0,y).
Then memory addressing step and reading memory step are
repeated, using a different matrix R j on each hop j. The
memory addressing step is modified accordingly to use the
updated representation of the ungraded response.

pi = So f tmax(u j ·miB) (4)

Output Layer

After a fixed number H hops, the resulting state uH is used to
predict a final score over the possible scores:

ŝ = So f tmax(uHW +b) (5)

where W is k× r matrix, r is the number of possible scores
and b is the bias value. Note that the number of output nodes
equals to the length of score range. We calculate a distribu-
tion over all possible scores and select most probable score
as the prediction. The matrices A,B,C,W and R1, ...,RH are
learned through backpropagation and stochastic gradient de-
scent by minimizing a standard cross entropy loss between the
predicted score ŝ and the actual score s.

EXPERIMENTAL SETUP

Dataset

Dataset used in this study comes from Kaggle Automated
Student Assessment Prize (ASAP) competition sponsored by
William and Flora Hewlett Foundation (Hewlett). There are 8
sets of essays and each set is generated from a single prompt.
All responses collected in the dataset were written by students
ranging from grade 7 to grade 10. Score range varies on essay
sets. All essays were graded by at least 2 human graders. The
average length of the essays differs for each essay set, ranging
from 150 words to 650 words. Selected details for each essay
set is shown in Table 1.

Evaluation Metric

Quadratic weighted Kappa (QWK) is used to measure the
agreement between the human grader and the model. We
choose to use this metric because it is the official evaluation
metric of the ASAP competition. Other work such as [1, 5,
3] that uses the ASAP dataset also uses this evaluation metric.

QWK is calculated using

k = 1−
∑i, j wi, jOi, j

∑i, j wi, jEi, j
(6)

where matrices O, w and E are the matrices of observed
scores, weights, and expected scores respectively. Matrix
Oi, j corresponds to the number of student responses that re-
ceive a score i by the first grader and a score j by the second
grader (the model in our experiment). The weight matrix are
wi, j = (i− j)2/(N −1)2, where N is the number of possible
scores. Matrix E is calculated by taking the outer product
between the score vectors of the two graders, which are then
normalized to have the same sum as O.

Implementation Details

We used the publicly available pre-trained Glove word em-
beddings [2], which was trained on 42 billion tokens of web
data, from Common Crawl (http://commoncrawl.org/). The
dimension of each word vector is 300.

5-fold cross validation was used to evaluate our model. For
each fold, the data was split into two parts: 80% of the data
as the training data and 20% as the testing data. The sampled
response for each score is randomly selected from the training
data. A model was trained on each essay set due to the fact
that score range varies among 8 essay sets.

Baselines

Similarly to [5], our model is compared with Enhanced AI
Scoring Engine (EASE), an open-source AES system, to
demonstrate the improvements on performance. The reason
we use this system as baseline is that it achieved best QWK
scores among all open-source systems participated in ASAP
competition. [3] described a set of reliable features and re-
ported the results of two models using these features: support
vector regression (SVR) and Bayesian linear ridge regression
(BLRR).

[5] examined several neural networks models, e.g. RNN and
Convolutional Neural Networks (CNN), on ASAP dataset. We
also compared our model with their models

To verify the efficacy of GloVe word embeddings and external
memory, we developed a simple multi-layer forward neural
networks (FNN) model, which is similar to our model with
respect to the model structure, but without an external memory.
We refer this model as FNN for the rest of paper for conve-
nience. As shown in Figure 2, each word of a student response
is first converted to a continuous vector using GloVe word
embeddings and the vector representation for the response is
obtained by applying PE on all word vectors. Afterward the
representation is fed into 4 hidden layers, each of which has
100 hidden nodes. FNN is properly defined by the equations
below:

h0 = Relu(AT x) (7)

hi = Relu(Rihi−1), f or i ≥ 1 (8)

ŝ = So f tmax(hHW ) (9)

where x is the representation generated by GloVe with PE for
a student response. hi is the output of hidden layer i. H is
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Figure 2. An illustration of baseline FNN. Use GloVe with PE to repre-
sent a student response. The representation is fed into 4-layer networks
and each layer has 100 hidden nodes.

Set MN FNN EASE LSTM

1 0.83 0.75 0.76 0.78
2 0.72 0.7 0.61 0.69
3 0.72 0.7 0.62 0.68
4 0.82 0.8 0.74 0.8
5 0.83 0.8 0.78 0.82
6 0.83 0.79 0.78 0.81
7 0.79 0.73 0.73 0.81
8 0.68 0.63 0.62 0.59

Avg 0.78 0.74 0.71 0.75

Table 2. QWK scores on ASAP dataset.

the total number of hidden layers. A, Ri ,and W are weight
matrices. The bias vectors are omitted in the equations.

RESULTS

In this section, we describe the results of our experiments on
the ASAP dataset and compare these results with baselines
mentioned above. Column MN of Table 2 presents the QWK
scores of our model. Column EASE contains the results from
EASE. We also compare our model to other neural models in
[5] and pick the best performance achieved by a single model
(LSTM) from their paper. The results are listed in Column
LSTM of Table 2.

As indicated in Table 2, our model outperforms in 7 out of 8
sets (except for set 7) and improves the average QWK score
by 4.0% compared to the baseline LSTM. As expected, our
model surpasses EASE in all 8 sets and improves average
QWK score by 10%.

The results from the FNN model mentioned above is presented
in column FNN of Table 2. When comparing these results
to the best results from EASE, we find that this basic model
outperforms EASE in 7 out of 8 sets of essays (except for
essay set 1) and is even comparable with the complex model
(LSTM). This proves that using Glove word embeddings with
PE to represent a student response is able to capture important
features useful for grading the response. The effectiveness
of the external memory is demonstrated by the fact that MN
accomplishes better performance on 7 sets (set 4 is equal) than
FNN does.

DISCUSSION AND CONCLUSION

In this study, we develop a generic model for automated grad-
ing tasks using memory networks. To our best knowledge
this is the first study that memory networks are applied for
this kind of task. Our model is tested on ASAP dataset and
achieves state-of-the-art performance in 7 out of 8 essay sets.

Our model can be generalized to automatically grade assign-
ments from other subjects. As shown above, there are two key
factors to the performance: reliable representation and mem-
ory component. In order to apply our model to other kinds
of assignment, learning a good vector representation for the
assignment is the first step. The next step is to select character-
ized samples and store these samples to memory. The purpose
of this step is to teach the model to understand the grading
strategy and eventually associate a vector representation to a
score.

However, we only test our model on one dataset. There is a
need to explore our model with more datasets that contain var-
ious formats of assignments. Furthermore, the representation
of the assignment and the mechanism for measuring relevance
among assignments is still elementary. Future work should
therefore focus on these two areas to improve the generaliz-
ability of the model.
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