
Incorporating Rich Features into Deep Knowledge Tracing
Liang Zhang

Worcester Polytechnic
Institute

Worcester, MA 01609 USA
lzhang6@wpi.edu

Xiaolu Xiong
Worcester Polytechnic

Institute
Worcester, MA 01609 USA

xxiong@wpi.edu

Siyuan Zhao
Worcester Polytechnic

Institute
Worcester, MA 01609 USA

szhao@wpi.edu

Anthony Botelho
Worcester Polytechnic

Institute
Worcester, MA 01609 USA

abotelho@wpi.edu

Neil T. Heffernan
Worcester Polytechnic

Institute
Worcester, MA 01609 USA

nth@wpi.edu

ABSTRACT

The desire to follow student learning within intelligent tutor-
ing systems in near real time has led to the development of
several models anticipating the correctness of the next item
as students work through an assignment. Such models have
included Bayesian Knowledge Tracing (BKT), Performance
Factors Analysis (PFA), and more recently with developments
in deep learning, Deep Knowledge Tracing (DKT). This DKT
model, based on the use of a recurrent neural network, exhib-
ited promising results. Thus far, however, the model has only
considered the knowledge components of the problems and
correctness as input, neglecting the breadth of other features
collected by computer-based learning platforms. This work
seeks to improve upon the DKT model by incorporating more
features at the problem-level. With this higher dimensional
input, an adaption to the original DKT model structure is
also proposed, incorporating an auto-encoder network layer
to convert the input into a low dimensional feature vector to
reduce both the resource requirement and time needed to train.
Experiment results show that our adapted DKT model, observ-
ing more combinations of features, can effectively improve
accuracy.

ACM Classification Keywords

H.5.m Information interfaces and presentation: Miscellaneous

Author Keywords

Knowledge Tracing, Deep Learning, Deep Knowledge
Tracing (DKT), Recurrent Neural Networks (RNN), Auto
Encoder

1. INTRODUCTION

Models that attempt to follow the progression of student learn-
ing often represent student knowledge as a latent variable. As

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

L@S 2017 April 20-21, 2017, Cambridge, MA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 123-4567-24-567/08/06. . . $15.00

DOI: http://dx.doi.org/10.475/123_4

students work on new problems, these models update their
estimates of student knowledge based on the correctness of re-
sponses. The problem emerges to be time series prediction, as
student performance on previous items is indicative of future
performance. Models then use the series of questions a student
has attempted previously and the correctness of each question
to predict the student’s performance on a new problem.

Two well-known models, Bayesian Knowledge tracing (BKT)
[2] and performance factor analysis (PFA) [5] have been
widely explored due to their ability to capture this progression
of knowledge with reliable accuracy. Both of these models,
exhibiting success in terms of predictive accuracy, use differ-
ing algorithms to estimate student knowledge. BKT uses a
Bayesian network to learn four parameters per knowledge com-
ponent, or skill, while the PFA model uses a logistic regression
over aggregated performance to determine performance for
each skill.

Deep learning is an emerging approach which has proved to
yield promising results in a range of areas including pattern
recognition, natural language processing and image classifica-
tion. The deep aspect of deep learning refers to the multiple
levels of transformation that occur between input nodes and
output nodes; these levels are usually referred to as layers, with
each layer consisting of numerous nodes. The hidden nodes
are used to extract high level features from previous layers
and pass that information on to the next layer. However, the
features extracted by deep learning are largely uninterpretable
due to the complexity. This complexity makes it infeasible to
explain the meaning behind every parameter learned by the
model, unlike BKT and PFA which attempt to incorporate
interpretability with its estimates.

Many deep learning algorithms like Recurrent Neural Network
(RNN) and Convolutional Neural Networks (CNN) have been
proposed in recent years to benefit machine learning systems
with complex, yet more accurate representative models. Such
an attempt in the field of learning analytics is that of Deep
Knowledge Tracing (DKT) [6]. Building from the promising
results of that model, this work seeks to make better use of
the complex nature of deep learning models to incorporate
more features to improve predictive accuracy. We also explore

L@S 2017· Work in Progress April 20–21, 2017, Cambridge, MA, USA

169

how other deep learning structures can help reduce these high
dimensional inputs into smaller representative feature vectors.

2. DEEP LEARNING IN EDUCATION

Deep knowledge tracing (DKT), introduced in paper [6], ap-
plies a RNN for this educational data mining task of following
the progression of student knowledge. Similar to BKT, this
adaptation observes knowledge at both the skill level, observ-
ing which knowledge component is involved in the task, and
the problem level, observing correctness of each problem. The
input layer of the DKT model is described as an exercise-
performance pair of a student. In other words, the skill and
correctness of each item is used to predict the correctness of
the next item, given that problem’s skill.

The DKT algorithm uses a RNN to represent latent knowl-
edge state, along with its temporal dynamics. As a student
progresses through an assignment, it attempts to utilize infor-
mation from previous timesteps, or problems, to make better
inferences regarding future performance. Specifically, the
DKT model implements a popular variant of RNN, Long
Short-Term Memory (LSTM), that employs cell states and
three gates to determine how much information to remember
from previous timesteps and also how to combine that memory
with information from the current timestep.

Due to the recency of the DKT model, it is not as deeply
researched as other established methods. We believe that DKT
is a promising approach due to its comparable performance,
and with the emergence of new neural network optimization
algorithms, the structure has space for improvement. Thus
far, only question (or skill) and correctness are considered as
input to the model, but the neural network can easily consider
more features. In this paper, we explore the inclusion of more
features to improve the predictive accuracy of the model. In
addition to these added features, we explore the usage of an
Undercomplete Auto Encoder that incorporates a small central
layer to convert high dimensional data to low dimensional
representative encodings in order to increase the feasibility of
implementing feature vectors of larger dimensionalities.

3. IMPROVING DKT WITH MORE FEATURES

Intelligent tutoring systems (ITS) often collect numerous fea-
tures as students work, including information pertaining to
problems, instructional aid, and time spent on individual tasks.
Models and algorithms that make use of these additional infor-
mation have been proposed. For example,students response
time, hint request and number of attempts are added to make
better student model [3]. In this paper, we do something sim-
ilar using these extra features. In our experiment, students
responce time, attempt number, and first action are selected
for consideration as these are recorded by almost all such
learning platforms. All input information is converted into
a sequence of fixed-length input vectors in the RNN model,
representing problem-level covariates while working through
a possible multitude of assignments.

3.1 Feature process

Feature engineering plays a vital role in representing features
effectively. The goal of this process, as it pertains to this

work and coincides with how input is represented in the DKT
model, is to convert the features to categorical data to simplify
the input without losing much information. This process is
described briefly for each considered feature as follows:

• Exercise tag exhibits differing representations described
by either a numeric skill id or the name of the knowledge
component in different dataset. Regardless of representation
in the data, this is strictly categorical and is handled as such.

• Correctness is represented as a binary value where 1 indi-
cates correctness and 0 represents an incorrect response.

• First Response Time is z-scored within skill and discretized
based on its relationship with correctness as shown in Fig-
ure 1.

Figure 1. ASSISTments 2009 dataset z-scored time feature (X axis) and

problem correctness (Y axis). Two reference lines of correctness, 50%

and 70%, are selected to form the discretized boundaries.

• Attempt count is the number of attempts needed to correctly
answer each item and are discretized as [0,1,other] in AS-
SISTments and [== 1,1 < and <= 5,> 5,other] in Open
Learning Initiative as described further in a later section.

• First action is strictly categorical, representing if a student
makes an attempt or requests help within the system as a
first action.

After converting to categorical data, features are represented
as a sparse vector by a one-hot encoding. These form cross
features, where, for example, correctness is expressed as two
values (correct and incorrect) for each skill. The combina-
tion of some features into cross features can improve model
accuracy. The cross features of exercise and correctness, as
well as time and correctness are selected in our model. All
the ecodeed features are concatenated to construct the input
vector in Figure 2.

Using cross features leads to a rapid increase of the dimen-
sionality of the input vector. RNNs are considerably more
computationally expensive due to the comparatively larger
number of parameters. For example, training a LSTM DKT
model with 50 skills and 200 hidden nodes, which needs to
learn 250,850 parameters, takes 3.5 minutes per epoch, equat-
ing to more than 14 hours when using a 5 fold cross validation
run over 50 epochs. To this extent, the network structure of
DKT may benefit from reduced dimensionality, particularly
if this can be achieved without sacrificing performance. Auto
Encoder[4] is one such approach to this problem. It is a multi-
layer neural network with a small central layer that can convert

L@S 2017· Work in Progress April 20–21, 2017, Cambridge, MA, USA

170

Figure 2. Concatenated encoded features to input layer

high dimensional data to low dimensional representative en-
codings that can be used to reconstruct the high dimensional
input vectors; in this way dimensionality is reduced without
the loss of too much important information.3 Once trained, the
output layer can be removed, and the hidden layer can connect
to another network layer. Auto Encoder may be stacked in this
way but each layer must be trained one at a time. Like other
neural network, the gradient descent method is used to train
the weight values of the parameters. In our experiment, the
dimension is reduced to a half of the input size.

Figure 3. Representation of an Auto Encoder that reconstructs its input

layer from a hidden layer of smaller dimensionality.

3.2 Model
1 The input vector is constructed by concatenating one-hot
encodings for separate features as illustrated in Figure 2, where
vt represents the resulting input vector of each student exercise.
et refers to the exercise tag, while ct refers to correctness, and
tt represents time.

C(et ,ct) = et +(max(e)+1)∗ ct (1)

vt = O(C(et ,ct))
_O(C(tt ,ct))

_O(tt) (2)

v′t = tanh(Wae ∗ vt +bae) (3)

C() is the cross feature, O() is the one-hot encoder format, and
the _ operator is used to denote concatenation. In Equation 1,
1 is added to represent the unincluded exercise. Figure 4
depicts the resulting model representation utilizing an Encoder
layer to support the added features. v′t represents the feature
vector extracted by Auto Encoder according to Equation 3.

1https://github.com/lzhang6/DKT-extension

Figure 4. New DKT LSTM Model to incorporate more featuers with

fixed Auto Encoder weights

The gray arrows mean that weights between the two layers
are held constant, meaning the encoder weights are trained
separately in advance. ht represents the LSTM hidden nodes
while yt represents output layers nodes. The performance of
every exercise is predicted but just one is supervised because
only one label exists at each time step. We use a loss function
of binary cross entropy. Only one LSTM layer with 200 hidden
nodes is used and a dropout probability of 0.4 is applied during
training.

4. DATASETS

ASSISTments and Open Learning Initiative (OLI) are
computer-based learning platforms which embed practice and
assessment throughout the learning process. Table 1 show
running hyperparamters and information on the two data sets.

ASSISTments 2009-2010 OLI Statics F2011

Student 3,866 332
Skill 124 82

Record 303k 257k
TimeStep 1,218 1,500
BatchSize 30 10

Epoch 40 40

Table 1. ASSISTments 2009-2010 and Statics 2011 dataset statistics and

running hyper parameter setting

ASSISTments 2009-20102 dataset was gathered from
mastery-based, skill builder problem sets. Three issues discov-
ered [7] had unintentionally inflated the performance of DKT
in initial reported results, so the updated version is utilized
here.

2https://sites.google.com/site/assistmentsdata/home/assistment-
2009-2010-data/skill-builder-data-2009-2010

L@S 2017· Work in Progress April 20–21, 2017, Cambridge, MA, USA

171

Model
Auto ASSISTments OLI Statics

Encoder AUC(%) R2 AUC(%) R2

Baseline: skill/correct No 83.1±0.6 0.324±0.012 70.6±0.7 0.105±0.009
Baseline_time/correct No 85.8±0.7 0.391±0.015 73.1±0.5 0.135±0.010
Baseline_time/correct Yes 86.7±0.4 0.410±0.008 73.5±0.9 0.142±0.012
Baseline_time/correct_time_action_attempt No 86.1±0.4 0.398±0.011 73.2±0.5 0.140±0.011
Baseline_time/correct_time_action_attempt Yes 86.7±0.2 0.411±0.005 74.0±0.5 0.148±0.009
Baseline_time/correct_time/skill_time_action_attempt Yes 86.7±0.5 0.412±0.012 74.0±0.9 0.147±0.016

Table 2. Test Result

OLI Statics F20113 dataset was from a college-level engi-
neering statics course in OLI. The exercise tag is a numerated
knowledge component derived from the text description.

Since it is a time-series algorithm, students whose records
contain less than 2 time steps are not considered.

5. RESULTS

We use a 5-fold student level cross validation and the result
is evaluated by AUC and square of Pearson correlation (R2).
Many possible feature combinations exist, but only a select
few are explored here.

On both datasets in Table 2, models with incorporated features
outperform the original DKT model. In the ASSISTments
2009 dataset, AUC value is improved to 85.8 from 83.1 and
R2 value increases to 0.391 from 0.342 after adding the cross
feature of skill and correctness. In the Statics 2011 dataset,
the AUC value increases to 73.1 from 70.6 and R2 value is
from 0.105 to 0.135 if only add cross feature of skill and
correctness. Actually, if only incorporating cross feature of
skill and correctness, the dimension of input layer dimension
just increases 8,4(time)∗2(correctness) so that it almost has
smiliar running efficiency as original DKT model. However,
it exhibits only a marginal increase to this upon adding time,
first action, and attempt count into the input vectors.

The adoption of Auto Encoder when compared to models
using the same features also shows increased performance,
supporting its usage for reducing dimensionality. In the AS-
SISTments 2009 dataset, AUC value is improved to to 86.7
from 85.8 and R2 value increases from 0.391 to 0.410. While
in OLI Statics dataset, AUC value is from 73.1 to 73.5 while
R2 value is from 0.135 to 0.142. In our analyses, the model
incorporating all features in the last record in Table 2 was not
even feasible without the use of this auto encoder, deeming it
necessary to use when given large dimensional inputs.

6. DISCUSSION

Extending this model encompasses several potential directions
to pursue. One such direction can explore even more student
features like class-level features and school-level features, en-
gineered in different manners, such as tokening the words of
knowledge components for different exercise representations.
Similarly, a wide and deep approach can be explored in how
the features are represented within model training. The nu-
merical data like time and hint usage can also be revisited

3https://pslcdatashop.web.cmu.edu/Project?id=48

in future work. Another direction is the usage of differnet
dimensionality reduction methods like Principal Component
Analysis (PCA) and Locally Linear Embedding (LLE), or
different Auto Encoder methods, like adding noise, stacking
layers or using RBM for initial weights. Because of flexible
structure of deep learning, another research direction is to
use similar RNN model structures to multi-task predictions
in education data mining such as wheel spinning [1], student
dropout, or hint usage.

ACKNOWLEDGMENTS

We acknowledge funding from multiple NSF grants (ACI-
1440753, DRL-1252297, DRL-1109483, DRL-1316736 &
DRL-1031398), the U.S. Department of Education (IES
R305A120125 & R305C100024 and GAANN), the ONR,
and the Gates Foundation.

REFERENCES

1. J. E. Beck and Y. Gong. 2013. Wheel-spinning: Students
who fail to master a skill. In International Conference on
Artificial Intelligence in Education. Springer, 431–440.

2. A. T. Corbett and J. R. Anderson. 1994. Knowledge
tracing: Modeling the acquisition of procedural
knowledge. User Modeling and User-Adapted Interaction
4, 4 (1994), 253–278.

3. M. Feng, N.T. Heffernan, and K. R. Koedinger. 2009.
Addressing the assessment challenge with an online
system that tutors as it assesses. User Modeling and
User-Adapted Interaction 19, 3 (2009), 243–266.

4. G. E. Hinton and R. R. Salakhutdinov. 2006. Reducing
the dimensionality of data with neural networks. Science
313, 5786 (2006), 504–507.

5. P.I. PAVLIK JRa, H. Cen, and K. R. Koedinger. 2009.
Performance Factors Analysis–A New Alternative to
Knowledge Tracing. Online Submission (2009).

6. C. Piech, J. Bassen, J. Huang, M. Sahami S. Ganguli, L.
Guibas, and J. Sohl-Dickstein. 2015. Deep knowledge
tracing. In Advances in Neural Information Processing
Systems. 505–513.

7. X. Xiong, S. Zhao, E.G. VanInwege, and J. E. Beck.
2016. Going deeper with deep knowledge tracing. In
Proceedings of the 9th International Conference on
Educational Data Mining (EDM 2016). 545–550.

L@S 2017· Work in Progress April 20–21, 2017, Cambridge, MA, USA

172

	1. Introduction
	2. Deep Learning in Education
	3. Improving DKT with More Features
	3.1 Feature process
	3.2 Model

	4. Datasets
	5. Results
	6. Discussion
	Acknowledgments
	References

