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The interplay between magnetic fields and interacting particles 
can lead to exotic phases of matter that exhibit topological order 
and high degrees of spatial entanglement1. Although these phases 
were discovered in a solid-state setting2,3, recent innovations in 
systems of ultracold neutral atoms—uncharged atoms that do 
not naturally experience a Lorentz force—allow the synthesis of 
artificial magnetic, or gauge, fields4–10. This experimental platform 
holds promise for exploring exotic physics in fractional quantum 
Hall systems, owing to the microscopic control and precision 
that is achievable in cold-atom systems11,12. However, so far these 
experiments have mostly explored the regime of weak interactions, 
which precludes access to correlated many-body states4,13–17. Here, 
through microscopic atomic control and detection, we demonstrate 
the controlled incorporation of strong interactions into a two-body 
system with a chiral band structure. We observe and explain the 
way in which interparticle interactions induce chirality in the 
propagation dynamics of particles in a ladder-like, real-space 
lattice governed by the interacting Harper–Hofstadter model, 
which describes lattice-confined, coherently mobile particles in 
the presence of a magnetic field18. We use a bottom-up strategy to 
prepare interacting chiral quantum states, thus circumventing the 
challenges of a top-down approach that begins with a many-body 
system, the size of which can hinder the preparation of controlled 
states. Our experimental platform combines all of the necessary 
components for investigating highly entangled topological states, 
and our observations provide a benchmark for future experiments 
in the fractional quantum Hall regime.

The Harper–Hofstadter Hamiltonian is a model for describing lattice 
systems in the presence of a gauge field. When such a system is popu­
lated with interacting particles, chiral many-body states can emerge 
in the ground state. Here we study this model on a real-space, finite 
lattice for which single-site- and single-particle-resolved control and 
imaging are possible. The versatility of our platform enables us to build 
chiral systems and then to tune the particle number within a chiral 
state atom-by-atom and to control the real-space lattice size (Fig. 1a). 
Similar experiments using photonics19 and atomic lattices20 with syn­
thetic dimensions14,15,21 have been able to access the single-particle 
limit, but interaction effects have not been reported.

We can incrementally study our system by probing the single-particle  
band structure in the presence of a magnetic flux and then incorpo­
rating interactions through inclusion of an additional atom. In the  
single-particle limit, we observe the two chiral bands that emerge in 
the presence of a ladder or strip geometry22. By engineering a well- 
defined initial state, we can preferentially load an atom into one of 
the chiral bands, which results in shearing in the propagation of the 
particle (Fig. 1b). This shearing indicates a coupling of the dynamics 
along the leg (x) and rung (y) directions of the ladder that is reminis­
cent of a Lorentz force.

In the two-particle regime, interactions between the particles modify  
the eigenspectrum such that states of both a scattering and bound 

nature emerge. These interactions provide an avenue through which 
states of a certain chirality can be preferentially populated, giving rise to 
chiral trajectories that would otherwise be absent, even in the presence 
of a gauge field (Fig. 1b). By using quantum gas microscopy23,24, we 
experimentally identify the mechanisms through which interactions 
produce these chiral dynamics. Importantly, although the measure­
ments performed here are non-equilibrium, the agreement between 
theory and experiment, in the presence of interactions, paves the way 
for equilibrium measurements of chiral ground states11,25,26.

Our experiments begin with a two-dimensional Bose–Einstein con­
densate of 87Rb atoms located at the focus of a high-resolution imaging 
system. We use this imaging system to project a square optical lattice 
with spacing a = 680 nm and to resolve the parity of atomic site occu­
pations through fluorescence imaging. A digital micromirror device 
enables the projection of nearly arbitrary optical potentials27, which 
we use in state preparation and to confine evolution to a 2 × N ladder 
region, where N quantifies the leg (x) dimension of the ladder. On this 
platform, we realize the Harper–Hofstadter Hamiltonian:
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where U is an on-site, pairwise, repulsive interaction energy, K and J 
are tunnelling amplitudes between nearest neighbour sites, âi j,

† , â i j,  and 
n̂i j,  are the creation, annihilation and number operators for site (i, j), 
with ∈Zi  and j ∈ {0, 1} for a ladder geometry, and h.c. is the Hermitian 
conjugate. The spatially varying complex tunnelling phases, 
φi,j = Φi + πj, are realized through the combination of a magnetic field 
gradient and a running lattice (a moving standing wave that is formed 
by the interference of two intersecting, non-degenerate beams) to drive 
Raman transitions16,17. The non-trivial net phase (hereafter, flux) Φ for 
a loop around a unit cell yields an effective magnetic field analogous to 
the Aharonov–Bohm phase that is acquired by a charged particle in a 
real magnetic field. The flux Φ is controlled in our system by the angle 
between the running lattice and the static lattice on which the atoms 
reside. Because the Raman (running) lattice is projected through the 
objective (Fig. 2a), we are able to dynamically tune the effective mag­
netic field from the weak- to strong-field limits within a single experi­
ment, without having to change the wavelength of the laser. For the 
experiments that follow, we operate in the regime in which K/h ≈ 10 Hz, 
J/h ≈ 30 Hz and U/h ≈ 130 Hz, with h being Planck’s constant (see 
Supplementary Information).

We probe the chiral band structure of this system by studying  
single-particle dynamics22. An atom is repeatedly prepared in a known 
initial state and the density distribution is obtained for several evolution 
times28. By means of a Landau–Zener sweep, this atom is delocalized 
to create the ground state of the central rung subsystem, ψ| 〉 =initial 1p   

+ | 〉/ ≡ | 〉a a a(ˆ ˆ ) vac 2 ˆ vac0,1
†

0,0
†

0,S
†  where subscripts ‘i,S’ (‘i, A’) indicate 

the creation of a symmetric (anti-symmetric) superposition on rung  
i and |vac〉 is the vacuum state. A sweep in the opposite direction would  
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prepare | 〉≡ − | 〉/a a aˆ vac (ˆ ˆ ) vac 20,A
†

0,1
†

0,0
† . From the initial state | 〉â vac0,S

† , 
we investigate the effect of the artificial magnetic field on the propaga­
tion dynamics of the atom after suddenly reducing the lattice depth in 
the x direction14,15.

At zero flux, the motion of the particle is separable and so we expect 
no dynamics along the y direction because we prepared the atom in the 
ground state along this dimension. However, the coupling of a particle 
to a magnetic field gives rise to a non-separable Hamiltonian, yielding 
chirality and multi-dimensional dynamics in the motion of the atom. In 
Fig. 3b, the y components of the centre-of-mass (yCOM) for the left and 
right halves of the system are plotted as a function of evolution time. 
The density in both halves oscillates between the upper and lower legs 
of the ladder, but these oscillations occur out of phase with each other 
and are biased towards opposite legs. The population that propagates 
to the right (left) is initially biased towards the upper (lower) leg of the 
ladder—a behaviour that is reminiscent of skipping orbits.

We explain the chiral trajectories that are observed in the quantum 
walk using the band structure of the ladder. An isolated rung sub­
system (K = 0) admits eigenstates with antisymmetric and symmet­
ric superpositions of the atom occupying each constituent site, with 
the antisymmetric state being higher in energy by 2J. In the limit that 
J > K > 0, these eigenstates hybridize with plane-wave states that run 
along the legs of the ladder such that there are two sub-bands with 
non-zero width of the order of K, split by an energy of the order of J  
(Fig. 3c). Each band is composed of Bloch states of quasi-momentum q, 
with the rung subsystems defining the unit cells of a one-dimensional 
lattice. The population of each site in the rung subsystems (colour scale 
in Fig. 3c) depends on the quasi-momentum of the eigenstate.

We identify the bands as + or − on the basis of their symmetric and 
antisymmetric character in the unperturbed K = 0 limit22. In 
the + band, a population imbalance towards the upper (lower) leg of 
the ladder is associated with a rightward (leftward) group velocity, lead­
ing to chiral behaviour. The − band exhibits the opposite chirality. The 
initial state shown in Fig. 3a more heavily populates the + band, result­
ing in the chiral behaviour associated with that band. The converse 
would occur for the initial state | 〉â vac0,A

† .
We study the interplay between interparticle interactions and  

the synthetic gauge field by preparing two bosons on the two neigh­
bouring sites of the central rung in the ladder. We express this  
initial state in terms of the single-particle states discussed above: 
ψ| 〉 = | 〉= − | 〉/a a a aˆ ˆ vac [(ˆ ) (ˆ ) ] vac 2initial 2p 0,1

†
0,0
†

0,S
† 2

0,A
† 2 . This decompo­

sition shows that the upper and lower chiral bands of Fig. 3c are equally 

populated. Hence, despite the presence of a gauge field, such a state 
would exhibit no chirality in the non-interacting limit because there is 
equal weight in bands of opposite chirality and because these weights 
are preserved in time as a result of the non-interacting eigenstates being 
products of the single-particle eigenstates. In contrast, we observe clear 
chiral orbits as the particles evolve from ψ| 〉initial 2p in our experiment in 
which interactions play a critical part (Fig. 4a–c). By varying the flux 
with our projective scheme, we see that the observed chirality is present 
in the two-particle trajectories whenever the applied flux induces chi­
rality in the single-particle bands (Fig. 4d), or specifically, when the 
flux Φ is neither zero nor π. Our data establishes that the observed 
chiral dynamics depend on both interparticle interactions and the 
applied gauge field.

To understand the way in which interactions introduce chirality into 
the dynamics of the two-particle quantum system, we delineate two 
classes of eigenstates. In one class, the bosons are bound through inter­
actions. The other class corresponds to unbound scattering states in 
which the particles are largely independent and approximately equal 
to products of the single-particle eigenstates. We label this latter cate­
gory | ++ 〉, | +− 〉 or | −− 〉, depending on the bands that are popu­
lated by the bosons. Because the bosons in our initial state are close to 
each other, we expect that there can be sizable overlaps with both types 
of eigenstates for our experimental parameters. To study the decom­
position of the initial state experimentally, we measure the probability 
P11 for two bosons to occupy neighbouring sites of the same rung  
anywhere in the system as a function of time and gauge field strength 
(Fig. 5a). Even at long times we find a sizable, flux-dependent proba­
bility for the bosons to remain close to each other, consistent with the 
presence of a bound state.

To analyse which trajectories contribute most to the chiral signal, we 
study the shearing amplitude (as in Fig. 4c) as a function of the inter­
particle distance. At long times, we expect population in eigenstates of 
largely free-particle (bound) character to yield atoms that are farther 
apart (closer together). We find that shearing increases for bosons that 
are farther apart (Fig. 5b), which suggests that the populated, unbound 
scattering states contribute more to the observed chirality. This finding 
implies that there is an imbalance in the populations of | ++ 〉 and 
| −− 〉 states. Given the stationary and equal population of the chiral 
bands in the non-interacting case, the imbalance in these observed 
dynamics must be induced by interactions. We confirm this conclusion 
by numerically calculating the overlap of our initial state with the eigen­
states of the full interacting Hamiltonian, and the associated chirality 
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Figure 1 | Strongly interacting atoms in a gauge field. a, From a two-
dimensional lattice (grey), we isolate a 2 × N ladder region (black) in which  
we study the interacting Harper–Hofstadter model. Nearest-neighbour 
lattice sites in the x and y directions are coupled by complex- and real-
valued tunnellings with magnitudes of K and J, respectively, realizing an 
artificial gauge field B with constant flux Φ per unit cell. The x, y and z 
directions are defined by the unit vectors ex, ey and ez, respectively. When 
multiple atoms occupy the same lattice site, they experience a pairwise 
interaction shift U. b, We first study the motion of a single particle that is 
delocalized over two sites of a given rung (green shading). Owing to the 

coupling of motion in the x and y directions induced by the gauge field, 
chiral dynamics emerge through which rightward (leftward) motion 
is correlated with a bias towards the lower (upper) leg of the ladder, as 
illustrated by the green arrows. For comparison, a pair of non-interacting 
particles (U = 0) initialized onto opposite sides of a single rung is shown. 
In this case, the system does not exhibit chirality even in the presence of a 
gauge field. Finally, we study the addition of interactions between particles 
(U ≠ 0) in the two-particle system. These interactions break the symmetry 
between particles moving to the left and to the right, thereby reintroducing 
chiral motion.
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Cn (see Supplementary Information) of these eigenstates (Fig. 5c, d). In 
addition, a short-time perturbative expansion shows that, to leading 
order in the evolution time t (see Supplementary Information), 
yCOM(t) = ±a(2πt/h)5(KJ)2Usin(Φ) for the right (+) and left (−) side 
of the ladder, indicating that the dynamics depend on both the flux Φ 
and the interactions U.

To illustrate the process by which interactions induce a population 
imbalance between | ++ 〉 and | −− 〉 scattering states, we analyse the 
eigenstates of two interacting bosons on the central rung and study the 
way in which they hybridize with delocalized states as the tunnel cou­
pling K is introduced. In the limit �U J , two of the three two-boson 
eigenstates involve double occupancy of one site, causing an energy 
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Figure 2 | Schematic of the experiments. Using a quantum gas 
microscope, we realize artificial gauge fields of variable strength by 
projecting a running (Raman) lattice with variable spacing through the 
same objective that was used to project the static (two-dimensional) 
lattice and image the atoms. a, A pair of beams (grey) interfere in the 
image plane of the microscope, creating one axis of the two-dimensional 
optical lattice. A pair of Raman beams (brown) with wavevectors k1 
and k2 and slightly different frequencies ω1 and ω2 also interfere in the 
image plane, creating a Raman lattice. We adjust the periodicity and 
orientation of the Raman lattice by moving the position of the beams 
in the Fourier plane of the microscope. b, Examples of realizing fluxes 
of Φ = π (top) and Φ = π/2 (bottom) in the system. In the Fourier plane 
of the microscope (left), grey and brown disks correspond to the beams 
used to create the two-dimensional and Raman lattices, respectively, 
with corresponding wavevectors klattice and δk ≡ k1 − k2. In this case, the 
ratio of the y component of the wavevector of the Raman lattice and the 
magnitude of the wavevector of the two-dimensional lattice determines 
the flux in the system16,17: δk · ey/|klattice| = Φ/π. In the resulting image 
plane structure (right), the two-dimensional lattice is represented by 
the black grid and the brown shading represents the spatial intensity 
distribution of the Raman lattice at one instance in time. In this case, 
the product of the y component of the wavevector of the Raman lattice 
and the lattice constant a determines the flux in the system: δk · aey = Φ. 
The black triangle indicates the potential gradient imposed by a physical 
magnetic field, which is used to detune lattice sites along the x direction. 
c, Resultant dynamics for the example cases of fluxes of Φ ≈ π (top) and 
Φ ≈ π/2 (bottom). The upper diagram in each example illustrates the time 
dynamics of the centre-of-mass for particles travelling to the left and to 
the right from the initial rung, with the shading corresponding to atomic 
density. The lower diagram is the measured density distribution following 
time evolution, with black corresponding to lower densities and green 
to higher densities. The density distribution for Φ ≈ π/2 demonstrates 
asymmetric propagation, whereas that for Φ ≈ π demonstrates symmetric 
propagation.
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Figure 3 | Single-particle chiral dynamics and band structure.  
a, In the presence of a gauge field, a particle that is initially delocalized 
across a single rung (top) exhibits chiral motion (an exemplary  
trajectory is indicated by the green arrows). b, To quantify the chiral 
dynamics, we track the time evolution of the x and y components of  
the centre-of-mass (xCOM and yCOM) for the left (blue) and right (orange) 
halves of the system for a flux of Φ = 0.47π. Population on the initial  
rung is always excluded from the centre-of-mass determination.  
Although the particle symmetrically delocalizes over multiple sites in  
the x direction (see Supplementary Information), its motion in the  
y direction is asymmetric with respect to the central rung. The data  
(filled circles and squares) are well matched by exact diagonalization of  
the Harper–Hofstadter model (solid lines), which was performed  
for our system with the tunnellings fitted to K/h = 12(1) Hz and 
J/h = 29(2) Hz (see Supplementary Information). Owing to technical  
errors in the preparation of the initial state (see Supplementary 
Information), the chiral trajectory is slightly modified from the case of a 
symmetric superposition. The error bars correspond to the standard  
error. c, Band structure computed for the simulation parameters  
used in b. The spectrum exhibits two bands with width of the order of K, 
split by an energy of the order of J, with the upper-leg population  
fraction of each eigenstate encoded by the colour scale. In each band,  
there is a correlation between the sign of the group velocity and the  
leg towards which the particle is biased. However, the sign of the 
correlation differs between the two bands, giving rise to chiral bands of 
opposite sign, which we denote by + and −. The states that make up 
the + (−) band are plane-wave states with a mostly symmetric 
(antisymmetric) delocalization across the constituent rungs and a  
quasi-momentum-dependent admixture εq of the symmetric 
(antisymmetric) delocalization: | 〉+ | 〉 ⊗ | 〉εS A q( )q  ( | 〉+ | 〉 ⊗ | 〉εA S q( )q ).  
The chirality of each band is shown in the insets, with particles 
preferentially sticking to one of the legs depending on the propagation 
direction. For the example shown in b, the initial state preferentially 
populates the lower band, resulting in chiral dynamics associated with  
that band.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



5 2 2  |  N A T U R E  |  V O L  5 4 6  |  2 2  J u n e  2 0 1 7

LetterRESEARCH

Figure 4 | Interacting chiral trajectories. a, We initialize two particles  
on opposite sides of the central rung and track the density distribution  
in the presence of a gauge field. The interactions (U ≠ 0) lead to chirality  
in the propagation dynamics. b, The interaction-induced chirality 
manifests in the y component of the centre-of-mass yCOM; data for the  
left and right halves of the system are shown in blue and orange, 
respectively. The solid lines result from an exact diagonalization at 
Φ = 0.55π with U/h = 131.2(6) Hz, J/h = 34.1(6) Hz and K/h = 11(1) Hz, 
each of which are obtained from independent calibrations. c, Exemplary 
density distributions at the times indicated in a. The colour of a given 
square indicates the occupation probability of that lattice site normalized 
to the total population in its half of the system (L, left; R, right), 
〈 〉/ ∑ 〈 〉∈( )n nˆ ˆi j i j i j, , L,R , ; ‘Max.’ refers to the maximum average density on 
either the left or right side. Blue (orange) circles indicate the position of 
the centre-of-mass at the given point in time for the left (right) half; solid 
lines trace its evolution over earlier times. d, We quantify the amount of 
chirality by the shearing ΔyCOM at t = 7.2 ms, which roughly corresponds 
to the first maximum in the evolution of the centre-of-mass yCOM for all Φ 
(see upper inset). Our data (green circles) shows that chirality is absent for 
fluxes of Φ ≈ 0 and Φ ≈ π, highlighting the role of the gauge field in the 
chiral dynamics. To further illustrate our projection scheme, in the lower 
inset we show where the Raman lattice beams (brown disks) are situated in 
the Fourier plane to realize a flux of Φ = δk · aey ≈ π/2 in the image plane. 
The solid line results from an exact diagonalization with the parameters 
used in b, carried out at the independently calibrated flux values. The error 
bars in b and d correspond to the standard error.
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Figure 5 | Physical mechanism for chirality with interactions. 
The interacting two-particle dynamics give rise to bound and scattering 
states. The solid lines (a, b) and coloured regions (c, d) are obtained  
from exact diagonalization, with the independently calibrated values 
U/h = 131.2(6) Hz, J/h = 34.1(6) Hz and K/h = 11(1) Hz at the indicated 
flux values. a, We plot the probability P11 that the particles are on  
different sites of the same rung (see schematic above the plot) as a 
function of time and flux; this quantity provides a measure of the 
population in the lowest-energy bound state (see d). The dynamics  
in P11 are shown for fluxes of Φ = 0, Φ = 0.47π and Φ = 0.55π. b, The 
degree of shearing ΔyCOM after 22 ms of evolution in the ladder is  
plotted as a function of the interparticle spacing R (see schematic  
above the plot), that is, the average ΔyCOM when the atoms are a distance 
R apart. The shearing, a proxy for the chirality, suggests that the scattering 
states in which particles are further separated contribute most to the 
chirality. The error bars in a and b correspond to the standard error in the 
associated measurement. c, We show the population of the eigenstates of 
the initial rung in the K = 0 limit, where | 〉= | 〉i j a a, ˆ ˆ vaci j0,

†
0,
† , and also how 

these eigenstates are energetically situated in terms of U and the super-
exchange energy Jex (left). We also show the full many-body spectrum as a 
function of flux, given the calibrated J, K and U (right). The left and right 
panels are energetically aligned to scale. The colour scale encodes the 
overlap between our initial state and these many-body eigenstates, with 
the boundaries of the different eigenstate regions of interest delineated by 
grey lines. The regions enclosing | −− 〉, | +− 〉 and | ++ 〉 are largely 
described by product states of the unbound eigenstates. d, Chiral character 
of the many-body eigenstates. The + and − labels indicate the single-
particle band that mostly describes the coloured bands in the plot; the 
composite two-particle states are illustrated on the left. The colour scale 
denotes the chirality Cn of the eigenstates within the bands (see 
Supplementary Information). The dark grey regions (labelled ‘B’) refer to 
the eigenstates that make up the bound states in the ladder system; the 
other states are scattering states.
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shift of order U (Fig. 5c). These states are detuned from the delocalized 
states and do not influence the dynamics. There is a third eigenstate 
near zero energy with large overlap with our initial state. Owing to the 
finite J and U, this eigenstate is shifted down in energy by Jex = 4J2/U 
through a super-exchange process (Fig. 5c). For U = 0, the tunnel cou­
pling K along the legs hybridizes this rung eigenstate equally with 
| −− 〉 and | ++ 〉 states. Because of the downward energy shift of  
Jex for U ≠ 0, the third eigenstate is energetically closer to the | ++ 〉 
states and hybridizes primarily with this chiral band (Fig. 5c). The 
interactions also create a delocalized bound state when Jex ≈ K, corres­
ponding to a particle on each site of a rung somewhere in the system, 
which is reflected by the non-vanishing P11. As the flux Φ is increased, 
the motion of particles in the x and y directions becomes increasingly 
coupled by the gauge field, leading to additional hybridization with the 
| +− 〉 states (Fig. 5c). This effect is also in agreement with the observed 
reduction of P11 at long times when introducing the gauge field  
(Fig. 5a).

In conclusion, the combination of interparticle interactions and 
a synthetic gauge field leads to our observation of chirality in the 
two-particle dynamics. Our observations depend on the interactions 
being finite—neither vanishing nor infinite. In either case, there is no 
exchange-energy shift Jex, leading to equal populations in the two chiral  
sectors. Operating in a regime in which the interactions and gauge 
field work in concert is crucial to accessing chiral Mott insulators and 
fractional quantum Hall physics. Regarding the latter, our use of a real-
space lattice enables us to achieve isotropic interactions in a scalable, 
versatile geometry, closely corresponding to the condensed matter  
systems in which this exotic physics was discovered. Finally, the 
dynamically tunable flux and site-resolved detection and manipula­
tion realized in our experiments are valuable tools for generating and 
characterizing topological phases of matter29.
Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.

Data Availability The data that support the findings of this study are available from 
the corresponding author upon reasonable request.
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