Journal of Physics A: Mathematical and Theoretical

PAPER Related content

- Dispersive shock waves in systems with

Whitham modulation theory for (2 + 1)-dimensional s deson orbenamnom uoe
. . e ) guyen an my
equations of Kadomtsev-Petviashvili type

- Evolution of initial discontinuities in the
DNLS equation theory

. . . . A M Kamchatnov

To cite this article: Mark J Ablowitz ef al 2018 J. Phys. A: Math. Theor. 51 215501

- Dam break problem for the focusing
nonlinear Schrdédinger equation and the
generation of rogue waves
G A El, E G Khamis and A Tovbis

View the article online for updates and enhancements.

This content was downloaded from IP address 198.11.28.179 on 12/06/2018 at 16:40



I0OP Publishing

Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 51 (2018) 215501 (28pp) https://doi.org/10.1088/1751-8121/aabbb3

Whitham modulation theory
for (2 + 1)-dimensional equations
of Kadomtsev—-Petviashvili type

Mark J Ablowitz', Gino Biondini’® and Igor Rumanov'

! Department of Applied Mathematics, University of Colorado, Boulder, CO 80309,
United States of America

2 Department of Mathematics, State University of New York at Buffalo, Buffalo,
New York 14260-2900, United States of America

E-mail: igor.rumanov @colorado.edu

Received 15 November 2017, revised 22 March 2018
Accepted for publication 5 April 2018
Published 20 April 2018
CrossMark
Abstract

Whitham modulation theory for certain two-dimensional evolution
equations of Kadomtsev—Petviashvili (KP) type is presented. Three specific
examples are considered in detail: the KP equation, the two-dimensional
Benjamin—Ono (2DBO) equation and a modified KP (m2KP) equation. A
unified derivation is also provided. In the case of the m2KP equation, the
corresponding Whitham modulation system exhibits features different from
the other two. The approach presented here does not require integrability
of the original evolution equation. Indeed, while the KP equation is known
to be a completely integrable equation, the 2DBO equation and the m2KP
equation are not known to be integrable. In each of the cases considered, the
Whitham modulation system obtained consists of five first-order quasilinear
partial differential equations. The Riemann problem (i.e. the analogue of
the Gurevich—Pitaevskii problem) for the one-dimensional reduction of the
m2KP equation is studied. For the m2KP equation, the system of modulation
equations is used to analyze the linear stability of traveling wave solutions.

Keywords: nonlinear waves, dispersive shock waves, Whitham theory

(Some figures may appear in colour only in the online journal)

1. Introduction and main results

Beginning with the seminal work of Whitham [29], small dispersion limits and dispersive
shock waves (DSWs) have been intensely studied. Using the framework of Whitham modula-
tion theory, Gurevich and Pitaevskii [13] analyzed the Korteweg—de Vries (KdV) equation and
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found a physically important solution of the modulation equations corresponding to the
evolution of step initial conditions. This solution is described by a rapidly varying cnoidal
function with a modulated envelope, which today is referred to as a DSW. Many interesting
analytic and numerical results have been obtained over the intervening years, see e.g. the
recent reviews [ 14, 16] and references therein. The vast majority of the results obtained relate
to (1 4+ 1)-dimensional partial differential equations (PDEs) such as the KdV equation, the
nonlinear Schrodinger (NLS) and the Benjamin—Ono (BO) equation.

Until recently, relatively few corresponding results had been available for
(2 + 1)-dimensional PDEs. Whitham modulation theory for (2 + 1)-dimensional integrable
PDEs and the KP equation in particular was presented in [24]. The approach was based on
spectral properties of Baker-Akhiezer wavefunctions of the associated Lax pairs. There also
were early derivations of Whitham systems for the KP equation along the lines of the original
Whitham approach, see [8, 19]. But none of those works derived associated hydrodynamic
systems, such as those found in [13], which is a crucial component in the development of the
theory. For further details on this issue, we refer the reader to the discussion at the end of sec-
tion 2 of [1].

Recently, however, several studies have been devoted to Whitham theory for
(2 + 1)-dimensional systems. In particular, [3] demonstrated the derivation and physical
relevance of the Whitham systems for certain reductions of the KP and two-dimensional
Benjamin—Ono (2DBO) equations. These reductions lead to the cylindrical KdV and cylindri-
cal BO equations, hence they are quite different from the standard (1 + 1)-dimensional KdV
and BO reductions of the KP and 2DBO equations, respectively. From the point of view of
Whitham theory, the reductions of these (2 + 1)-dimensional PDEs can be considered on the
same footing as the (1 4 1)-dimensional ones. Subsequently Whitham theory has been con-
sidered for the (2 4 1) dimensional KP [1] and 2DBO [2] without using any one-dimensional
reductions. We also mention that the underlying structure of solutions that will develop disper-
sive shocks in the small dispersion limit of the generalized KP equations has been studied in
[11]. We refer the reader to these papers for additional background and references.

In this work we present an approach that applies equally well to integrable and non-integrable
PDE:g, since at the heart of it lies Whitham’s WKB type expansion and separation of fast and
slow scales. We consider (2 4+ 1)-dimensional PDEs of the form

Oy[Ou + F(u, Ouu, . . ., 0%us €)] + ayyu = 0. (1.1)

We refer to these PDEs as KP-type equations because of the common y-dependence and the
functional F(u, O, . . .,0"u; €) employed, which consists of one nonlinear convective term
and one dispersive term. Here € is a dispersion parameter, which is assumed to be small. We
show here that the Whitham modulation systems for PDEs of this form can be derived in a
unified way, which also clarifies and simplifies the derivations given in [1, 2]. The examples
we treat in this paper are the following:

1. The KP equation corresponds to

F(u, O, ..., 0%u; €) = 6udsu + €2 Dyl (1.2a)

The above equation is completely integrable and has been widely studied. It is an
important model in the study of nonlinear dispersive waves, and arises in many physical
contexts including surface water waves, plasmas, ferromagnetics and cosmology. The
case o = 1 is known as the KP II equation, and describes water waves with small surface
tension, while the case a = —1 is called the KP I equation, and describes water waves
with strong surface tension [4, 19].
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2. The 2DBO equation has
F(u, 0, ...,00u;€) = udu + eH[Oxul, (1.2b)
where H[f] denotes the Hilbert transform of f (see appendix A for the definition). This

equation describes two-dimensional internal waves in stratified fluids [5].
3. The modified Kadomtsev—Petviashvili (m2KP) equation is associated with

F(u,0uu, ..., 00u;e) = —6u DU + €20yt (1.2¢)

This equation arises in the description of sound waves in anti-ferromagnets [27]. Note
that this m2KP equation should not be confused with an integrable modified KP equation
[20, 23] which is also related to the (1 + 1)-dimensional modified KdV (mKdV) equation.
The mKdV equation is the case o = 0 of the m2KP equation considered here; this m2KP
equation is not known to be integrable. It is also the n = 2 member (in the defocusing
case) of the generalized KP equations with a nonlinear term in F of the form +6u"0,u
considered in [27, 28], see also [11] for a recent review. Each of these generalized KP
equations also belongs to the class of KP type equation (1.1) and, in principle, could be
treated along the same lines as the three examples above.

Importantly, all the evolution equations of the type (1.1) can also be written as systems of
the form

Ot + F(u, O, . .., 0%us €) + adyy = 0, (1.3a)

Oy = Oyu. (1.3b)
We look for solutions of the system (1.3) depending on fast and slow scales, namely

u=u(l,x,y,t€), v=v(0,x,,1€), (1.4)
where we impose the following conditions for the fast phase 6:

k 14
00="=, O0=-. Of=-—=, (1.5)
€ € €
with 0 < € < 1, and where k, ¢ and w are slowly varying quantities. Equation (1.5) imply
immediately

Ok + Oyw = 0, Ol + Oyw =0, Ok = O,L. (1.6)

The first two equations are referred to as conservation of waves, and will provide the first and
second modulation equations, while the third equation is a constraint that will be used in the
derivation. It is convenient to introduce the notations

=(/k, V=uw/k - ag, (1.7)

as well as the convective derivative

Dy = 8y - qax' (18)
Then equation (1.6) can be rewritten respectively as

Ok + 0, (k(V + ag®)) = 0, (1.9a)

O,(kq) + 0y(k(V + ag®)) =0, (1.9b)

Dyk

f = 0y. (1.9¢)
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Next we substitute 0,k expressed from equations (1.9¢) into (1.96), and, using also equa-
tion (1.9¢), obtain the Whitham modulation equation which determines the evolution of ¢,
namely

g+ (V+ ag*)oq + Dy(V + ag*) = 0. (1.10)

Equations (1.9a), (1.9¢) and (1.10) are the part of the Whitham modulation equations that is
common to all examples considered here. These ‘kinematic’ equations remain intact at all
higher orders in €, since they are just a consequence of the definition of the fast phase 6 via
equation (1.5).

Next we expand u = u(6, x,y,t) and v(6, x, y, t) in series in €, namely,

u = ug + eu; + O(e?), v =1+ ev; + O(e?) (1.11)
and introduce the multiple scales
Oy — (k/€)Dy + Oy, Oy — (£/€)0p + Oy, O — —(w/€)0y + 0, (1.12)

We substitute equations (1.11) and (1.12) into the system (1.3). Requiring that secular terms
be absent in the expansion then yields the remaining three modulation equations. The general
formalism for the derivation of these equations is discussed in section 6. On the other hand,
one of the remaining three modulation equations also has a universal form, as we show next.
We denote 9yf = f’ for brevity. At leading order (i.e. O(1/¢)) of equation (1.3b) we have

kv6 — qku6 =0. (1.13)
Equation (1.13) is readily solved to obtain
Vo = qug + P, (1.14)

where the integration ‘constant’ p = p(x,y, ) is a slow variable to be determined at the next
order in the expansion. At the next order (i.e. O(1)) of equation (1.3b) we have

kv — gku', = dyuo — Ox(quo + p). (1.15)

The Whitham equations can be derived as secularity conditions ensuring that the corrections
uy and vy to the leading order solution are periodic rather than growing in 6. Let f denote the
average of a periodic function f(#) over its period, which, without loss of generality, we can
fix to be 1;i.e.

7= [ o

Imposing periodicity in 6 of the functions involved and integrating equation (1.15) over the
period leads to the secularity condition

This Whitham equation is also common to all PDEs of the KP type. The form of the remain-
ing two Whitham equations depends on the specifics of the function F in equation (1.3a), as
discussed in section 6.

In sections 2—4 we show in detail how, in the three specific examples considered here,
this method yields the complete Whitham modulation systems for the KP, 2DBO and m2KP
equations. We also show how, in all three cases, one can express each of these modulation
equations in terms of the three known Riemann invariants ry, 7, r3 of the corresponding
(1 + 1)-dimensional Whitham system, together with the additional variables ¢ and p intro-
duced above. In this way one can ‘diagonalize’ the evolution equations for the dependent

4
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variables other than ¢ and p with respect to these Riemann variables in exactly the same way
as this would have been done for its (1 4+ 1)-dimensional counterpart.

The current method simplifies the earlier treatment of the KP and 2DBO equations in
[1, 2]. In particular, it turns out that the singularity considerations in [1, 2] are not necessary.
The Whitham equation (1.10) remains intact, with only the velocity V in it expressed in terms
of the Riemann type variables. Equation (1.16) also remains intact up to expressing #g in
Riemann variables (and optionally using equation (1.9¢) in it). The only equations subject to
transformation are equation (1.9a) and the two secularity equations specific to each case (see
sections 2—4), which, however, are also derived in a unified way for KP-type systems, see
equations (6.9) and (6.18) in section 6. In other words, e.g. for the case of the KP equation,
we transform only the counterpart of the corresponding KdV-Whitham equations to make
their KdV parts diagonal in terms of the Riemann variables of the KdV-Whitham system.
For the KP equation, a similar approach was recently presented in [17], where four modula-
tion equations were derived, and no analogue of the dependent variable p was introduced.
The system in [17] can be obtained from the system (1.17) or that of [1] if p(x,y,#) = 0 and
equation (1.16) is omitted. We emphasize, however, that, as shown in [1], in order to correctly
describe the dynamics of the original (2 4+ 1)-dimensional evolution equation, non-trivial
values of p(x,y, t) must be considered, and equation equation (1.16) is therefore required. The
same considerations are valid for the other two evolution equations mentioned above (namely,
the 2DBO and m2KP equations), and indeed apply to any equation of the type (1.1).

Following this approach, in sections 2—4 we obtain ‘hydrodynamic’ Whitham systems for
the three cases at hand in the final form presented below, consisting in each case of five quasi-
linear first-order PDEs for the dependent variables 7y, 72, 73, g, p as functions of the slow coor-
dinates x,y and z. In each case, the Riemann variables ry, r,, r3 are introduced in an identical
manner as in the corresponding one-dimensional case, while the variable p is the part of vy that
is independent of # and depends only on the slow coordinates. Specifically, we have:

1. The KP—Whitham system:

or; + (v + ag?)our; + 2agDyr; + (2rj - ﬁ) Dyg + aDyp =0, i=12.3, @Ll7a)

6

g+ (V+ ag*)oq + Dy(V + ag*) =0, (1.17b)
E E

op— 11— X Dyry — gDyrg +(rn—r2+r)dg=0. (1.17¢)

where V =2(r; + r, + r3) and v; are the well-known characteristic velocities for the
KdV-Whitham system [29, 30], namely

2

Vj:V—FW,

(1.18a)
where 0jk/k = 0Ink/0r; are logarithmic derivatives of k with respect to the Riemann
invariants ry, 1, 3, given by

ok _ (1-E/K) Ok 1 (1-E/K E/K Ok __E/K (18

’ k N 2(7‘3 - rz) ’ .

kK 2n-rn) k 2\ rn-n n-n
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and K = K(m), E = E(m) are the first and second complete elliptic integrals, respec-

tively, with m = (r, — r1)/(rs — r1) (see appendix A for details). The system (1.17) is

equivalent to the KP—Whitham system derived in [1], as discussed at the end of section 2.
. The 2DBO-Whitham system:

Oty + 2ri0cr; + (qzaxrj +2gDyrj + ¢jDyq + Dyp) =0, j=1,2,3,

(1.19a)
g+ (V+ ag*)oq + Dy(V + ag*) =0, (1.19b)
0w = Dyry — r10xq, (1.19¢)

with V=r;+nr, co=r;—r+r, ¢coc =c3 =r;+r,—r; and where we redefined
p — 2p for simplicity. The system (1.19) is equivalent to the the 2DBO system in [2], as
discussed at the end of section 3.

. The m2KP-Whitham system:

Oirj + (vj + aq’)der + 2agDyr;
Ty [(”]QZ - rirlQ)qu + ("]Q — rirl)Dy ]

+ (8% - 09 _] == 19 29 37
(7 = M7 ~ ORIk
(1.20a)
g+ (V+ ag*)oq + Dy(V + ag*) =0, (1.20b)
> rir Ok
0, 5T D=0,

P*; P (1.20¢)
with j #i# [ # j, where V = —2(r} + 13 + r3) and v; are the characteristic velocities
for the mKdV-Whitham system [10], namely

vy A

w=Vo g (121a)

where 0jk/k = 0lnk/Or; are logarithmic derivatives of k with respect to the Riemann
invariants ry, r2, r3, given by

ok _ _nE/K ok _ ( E/K l—E/K) ok r3(1—E/K)
e =nr — R = —

k r%fr%’ k r%fr% rgfr% k rgfrg(l 2’1[,)
with K = K(m) and E = E(m) as before, ’
1I E
Q="2+r3—r1—2(7’2—r1)i, Qr=ry+r5—r1—2(r5—r)=,
(1.21¢)
r2— 2 3 —r r2— 2
JRIN L _ , _5B7n .
4K v r3—ri m r3—r (1.21d)

and where IT = II(-y, m) is the third complete elliptic integral (see appendix A for details).
The above m2KP-Whitham system (1.20) is new.

Note that while the above systems of PDEs are closed and can be studied in their own right,
if one wants to use them to study the behavior of solutions of the original PDEs in the small
dispersion limit, one has to add to each of them the important constraint equation (1.9¢).

6



J. Phys. A: Math. Theor. 51 (2018) 215501 M J Ablowitz et al

The outline of the remainder of this work is the following. In sections 2 and 3 we describe
the derivation of the Whitham systems for the KP and 2DBO equations, respectively, which,
as mentioned above, simplifies the derivation in [1, 2]. Section 4 describes the derivation of
the Whitham system for the m2KP equation, which has novel features. Section 5 is devoted to
applications of the m2KP—Whitham equations. Namely, we study the linear stability of peri-
odic solutions of the m2KP equation using the m2KP—Whitham system (1.20). This is similar
to what was done for the KP equation in [1] and the 2DBO equation in [2]. Interestingly,
however, in the case of the m2KP equation the (in)stability picture turns out to be richer than
in the previous two cases. Specifically, the stability properties of the cnoidal solutions of
the m2KP equation depend on two parameters rather than one. Moreover, both linear spec-
tral stability and instability can occur for each sign of constant .. In section 6 we present
the general derivation of the Whitham modulation equations for equations in the form (1.1),
and section 7 offers some concluding remarks. Appendices A—D contain related material. In
particular, Appendices B and C discuss the diagonalization of the Whitham systems for the
KP and m2KP equations respectively, and in appendix D we discuss the analogue of the
Gurevich—Pitaevskii problem for the defocusing mKdV.

2. Derivation of the KP-Whitham system

2.1. Modulation equations

The Kadomtsev—Petviashvili (KP) equation can be written as the evolution system (1.3),
where in particular equation (1.3a) takes the form

Ou + 6udu + €20l + adyy =0, (2.1a)
while the common equation (1.3b), which we repeat for convenience, is
Oxv = dyu. (2.1b)

After introducing fast and slow scales, the system (2.1) becomes

3
(f%ag +0,) u+ bu <’6‘ag +ax) s (’Zaa +ax> u+ o <kjag +ay) v =0,
(2.2a)

k k
(669 + ax> y= (jag + ay> . (2.2b)

The cubed operator in the third (dispersive) term of equation (2.2a) expands in powers of € as

k s
€ <89 + ax) = — 0} + 3k*0;50, + 3k0.kI} + €(3kDpO? + 30:k0yp + OpikDy) + €207
€ €
Equations (1.9a), (1.10) and (1.9¢) are the first three Whitham equations for the KP equation.
After substituting equations (1.14) into (2.2a) the last equation yields, at leading order,
—kVugy + 6kuoufy + Kuf’ = 0. (2.3)
Integrating equation (2.3) once, one gets

—Vaug + 3ud + Kul = C). (2.4)



J. Phys. A: Math. Theor. 51 (2018) 215501 M J Ablowitz et al

Multiplying equation (2.4) by 2u(, and integrating again, one obtains the well-known equa-
tion for the elliptic (‘genus one’) solution of KdV,

K (uh)?* = —2ud + Vg 4+ 2Cyug + 2Cs = —2(up — Ai) (o — A2) (o — A3).

(2.5)
Its general solution can be written as
uyp = a+ b cn® (2K(m)(6 — 60,);m), (2.6)
where @, is an integration constant,
A3 — X\
= A2, b=X— A, = , .
a= X 3— A2 m= A (2.7)

A1 € Ay < A3 are the roots of the cubic in equation (2.5) and we have the following relations
among the parameters (slow variables):

Vv
5261 =M+ A+ As, —Cir=e = AN+ A3+ Az, Cr = e3 = M.
(2.8)
The normalization of the elliptic function with fixed period one implies that
2 b _ )\3 - A]
- 8mK2(m)  8K2*(m)’

(2.9)

where K (m) is the first complete elliptic integral. With the variable 6 and the other parameters
constant, these solutions are known as cnoidal waves. A dispersive shock wave (DSW) solu-
tion can be described by a modulated cnoidal wave in equation (2.6) where the parameters are
slow variables i.e. they slowly change (as compared to 6) in space and time.

At first order in € we find, after substituting equation (1.14) and the expression for v} from
equations (1.15) into (2.2a),

k(k*ul + 6uou; — Vi)'
+ Oty + 6uoOyuo + 3K*Ouy + 3kdckul + o (qzﬁxuo + 2¢Dyug + upDyq + Dyp) = 0.

2.10
The other Whitham equations can be derived as secularity conditions ensuring thgt the):
solutions u; and v; of equations (2.10) and (1.15) are periodic; i.e. not growing in 6. Imposing
periodicity and integrating equations (2.10) and (1.15) over the period in 6 leads to two secu-
larity conditions, respectively,

Aiito + 38, (ud) + a (¢*dTto + 2gD,ii5 + WDyq + Dyp) = 0, @2.11)

and equation (1.16). The third (and the last needed) secularity condition is readily obtained
when one notices that the terms depending on u; in equation (2.10) are the same as for KdV
(and v; is absent in it). So we multiply equation (2.10) by u( and integrate over the period to
find

(9;17(2) + 48)517(3) — 35x(k2(u6)2) + a (qzax;% + 2Dy(q;%) + ZLTODyp) =0. (2.12)

Define

1
0, = / (0(6))"d0 = . 2.13)
0
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‘We have

E(m) 1—’") =+ (s — Al)g, (2.14)

mK(m) m

QElea—i—b(

where K = K(m) and E = E(m) are the first and second complete elliptic integrals, respec-
tively. Integrating equation (2.4) we find

- VO + ¢4

O, =ul 3 (2.15)
Integration of equation (2.5) gives the relation
Gi = K (up)? = —205 + VQ, + 2C1Q + 2C, (2.16)
while multiplying equation (2.4) by up and integrating, one gets
=G, = =305 + VO, + C10. (2.17)
Combining equations (2.16) and (2.17) yields
1[/2v? 2ve
0= |(Z-+3C ) o+ =L 206, (2.18a)
5 3 3
1[[/V? VCy
G1:§ ?+4C1 Q+T+6C2 . (2.18b)

Using equations (2.15), (2.18a) and (2.18D), we get the secularity equations in the form
(Q =ug)

9,0 + 0,(VQ + Cy) + a(Dy + q0y) (g0 + p) = 0, (2.19a)

(VO + Cy) + 0, (VO + VC) — 6C)

2 (2.19b)
+ a [¢°0:(VQ + C1) + 2Dy(q(VQ + C1)) 4+ 60D,p] =0,

0w = DyQ — 00,q. (2.19¢)

The secularity equations (2.19a)—(2.19c¢), plus the kinematic equations (1.9a) and (1.10) com-
prise the KP-Whitham equations in physical coordinates.

2.2. Whitham equations in KdV Riemann variables

The roots of the cubic in equation (2.5), A;, i = 1,2, 3, are simply related to the so-called KdV
Riemann variables [29, 30]

Al =11+ —r3, X =71 —r+rs3, M=-r+nrn+r. (220

We are going to express the equations (1.9a), (1.10), (1.9¢), (2.19a)—(2.19¢) in terms of
Riemann variables for KdV, r;, i = 1, 2, 3. First, we use equation (2.8) and introduce the ‘total’
time derivative

D = 8t + Vax,
to rewrite equations (1.9a), (2.194) and (2.19b), respectively, as
1 Dk «
S B+ Y =0, (221a)



J. Phys. A: Math. Theor. 51 (2018) 215501 M J Ablowitz et al

DQ +2Q0.e1 —20er + Y =0, (2.21b)
DP + 2P0.e; — 60ce3 + Y, =0, (2.21c¢)
where we denoted for further use
_ 8x(kq2) _ _ 2
Yo = —x Yy = (Dy +q0,)(qQ + p) = q"0:0 + 24D,Q + OD,q + D,p,

P=VO+Ci =2e0— e, Y = ¢*0,P + 2D, (qP) + 6QD,p. (2.22)

Below, we transform equations (2.21a)—(2.21¢) into ‘diagonal’ form in terms of the variables
1,12, r3. As for equations (1.10), (2.19¢), (1.9¢) and (2.20) is used to express the functions
k, V and Q = up inside them in terms of the Riemann-type r-variables. This leads to the final
form of the KP—Whitham system.
Next we diagonalize the KdV parts of equations (2.21a)—(2.21¢) in terms of the above

Riemann r-variables using also their power sums

pn=7]+1;+15. (2.23)
The details are given in appendix B. After this procedure, the above three Whitham
equations become

Oy +viOwrj + gy =0,  j=1.23, (2.24)
where v; are the KdV velocities (see section 1 or equation (A.6) in appendix A) and

2 (Fﬂ‘mwl — (rl —+ rm)Wz + W3)

g = . JAEIEmME], 2.25
Y R | (o s @23
with
() q Oik Oik
W= =7 > faxrj +q) nyr,, (2.26a)
j j
Y+ (p ODyq + Dyp
sz—l (411 —zzjkar,Jqurj Dy/Jr y4 =, (2:260)
1[Y- 2
Wi =< 2~|—191Y1+ (p2+p? —2p10)Y,
8|6 3
q Ok Ok  Q—pi q
=6 Z [rj (4101;c + 1) + ((Pz —p%)f += (Eaxrj +Dyrj)
(5P1Q+2P2 - pi)D, g, (Q +p1)D, (2.26¢)

24 8

In order to express the quantities W; in terms of r-variables, we use equations (B.5) and (B.6) of
appendix B and equation (2.27). To simplify the quantities g; in equation (2.25), we use equa-
tions (2.26a)—(2.26¢) and (B.9) of appendix B. Thus, after some algebra, we bring Whitham
equation (2.24) to the final explicit form given by equation (1.17a) in section 1. The universal
equations (1.10) becomes (1.175) upon substitution V = 2 Zj rj.

We also use equations (B.5) and (B.6) of appendix B and equation (1.9¢) in the form

10
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Ok
~Dyrj = 0.q, 2.27)
J

to express equation (1.16) as

Ok
O = (25— p1)=-Drj. (2.28)

J
Equation (1.17a), j = 1,2, 3, together with equations (2.28) and (1.17b) obtained above, com-
prise the Whitham system for KP. One can verify that it is equivalent to the system in [1], but
it is somewhat simpler. Equations (1.10) or (1.17b) here is simpler than equation (1.4b) of [1],
although they are in fact equivalent. The right-hand side of equation (2.28) is transformed,
using equations (2.27) and (1.18b), into equation (1.4c) of [1], which is equation (1.17¢) of
section 1. The equations (1.4a) of [1] and our equation (1.17a) are clearly identical except for
the coefficients before D,q. The last, however, must match since they are the quantities appear-
ing in the cylindrical KdV reduction. Our expression 2r; — v;/6 is exactly the right form of
these quantities (it would have been 2r; — v; had we taken the nonlinear term in KP as uO,u
rather than 6u0,u, and this is verified to correspond to the terms found by [3]). Rearranging
the terms in the corresponding equations (2.33) of [1] one confirms that the considered coef-
ficients indeed match. But, as mentioned in the introduction, the present approach does not
introduce (removable) singularities.

3. Derivation of the 2DBO-Whitham system

3.1. Modulation equations

The two-dimensional Benjamin—Ono (2DBO) equation can be written as the system com-
prised by

Ot + udsu + €H[Oxcu] + adyv =0, (3.1)

where H[f]is the Hilbert transform of f, and equation (1.3b) as before. Then, after introducing
fast and slow scales as described in the prior section, it takes the form

2
(ffu' + 8,14) +u (Eu' + Bxu) +eH {I%u" + 2§8xu' + %u’ + 8”14} +a (k—qv' + Byv) =0,
€ € € € € €
3.2)

where again f/ = 0yf. Again the kinematic equations (1.9a), (1.10) and (1.9¢) are the first
Whitham equations for 2DBO. Substituting equation (1.14) into the leading order of equa-
tion (3.2) implies

—kVugy 4 kuouly + K> H[uf] = 0. (3.3)
Then integration leads to

2
—Viug + % + kH[ug) = Cy.

Its physically relevant periodic solution can be written as
4k*
u =
O VAR ke —Acos(f —6,)

where the slow variables A, k, 3 and V satisfy the relation

+ 5, (34)

1
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1
V=3 VA 4R+ 3.5)

At the subsequent order in € we get, after substituting equation (1.14) and the expression for
v} from equations (1.15) into (3.2)

k(kH[u)'] + ((uo — V)ur)")
+ Oug + uoOyutg + H[2kOsuy, + Ockug) + (qzt?xuo + 2gDyug + uoDyq + Dyp) = 0.
(3.6)
The other Whitham equations can be derived as secularity conditions ensuring that the
solutions u; and v, of equations (3.6) and (1.15) are periodic rather than growing in 6. Imposing

periodicity and integrating equations (3.6) and (1.15) over the period in 6 leads to two secular-
ity conditions, respectively,

1 J—
O,y + Eax(ug) + a (q*0g + 2gDyiy + WDy + Dyp) = 0, (3.7)

and equation (1.16) which we rewrite below

Op = D,Q — 00.q. (3.8)

We denote this equation as (3.8) because the value of Q comes from the 2DBO equation. The
third (and the last needed) secularity condition is readily obtained when one notices that the
terms depending on u; in equation (3.6) are the same as for BO (and vy is absent in it). So we
multiply equation (3.6) by u, and integrate over the period to find

N 2 J— J— P
O + S0ut; + 2ugH2kDaty + D] + (40 +2Dy(@) + 2m@Dyp) =0.  (3.9)

The averages over the period entering the secularity equations have the following expressions
in terms of the parameters in equation (3.4) [2] (see also [26]):

Q =1y =22k + f3), (3.10a)
Q) = 12 = 27 (4Vk + 3°), (3.10b)
03 = 13 = 2m(8K> + 3kA® + 12Vkf — 6k + %), (3.10¢)
.G = —2ugH 2k, ufy + Okul)] = 2710, (kA?). (3.10d)

The secularity equations (3.7)—(3.9) and the kinematic equations (1.9a) and (1.10) comprise
the Whitham 2DBO equations in physical coordinates.

3.2. Whitham equations in BO Riemann variables

The original one-dimensional Benjamin—Ono (BO) equation is known [26] to have Riemann
variables 7, j = 1,2, 3, with r; < r» < r3, which are defined as follows:

V=r+rnr, k=r3—r, B =2r. (3.11)
The relation equation (3.5) implies that

\/A2+4k2:2(r2+r3—2r1), A=4 (rz—rl)(r3—r1). (3.12)

12
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In terms of these Riemann variables the leading order solution uy is

2(r; — 1ry)?
uy = s — ) +2r. (3.13)
r2+r3—2r1—2 (rz—rl)(r3—r1)cos(9—9*)

Then, in terms of the r-variables, the averages in the Whitham equations read

% =2(rs —r+n), (3.14a)
O

= 4r3 =3+ 1), (3.14b)
% = S(rg — rg + r?) +24(r, —r1)(r3s — r2)(r3 — 1), (3.14¢)
G 2

E = kA = 16(7‘2 — }”1)(}’3 — 7‘2)(7‘3 — }"1). (314d)

Similar to the KP-Whitham system, only three equations, namely (1.9a), (3.7) and (3.9), are
further substantially transformed. After substituting these expressions into equations (1.9a),
(3.7) and (3.9) the latter are brought into the form,

Oi(rs — ) + 0u(r3 — 1) + adi(¢*(rs — 1)) = 0, (3.15a)
Ors = ra 1) + 003 = B4 r) + 5Dy + D) 2q(rs — 2+ 11) +p) = 0,
(3.15b)
@(r% —r+ )+ %&c(”g —n+r)
+ %(4q28X(r§ — 15+ 1) +8Dy(q(r3 — 13 + 1)) +4(r3s — ra + 11)Dyp) =0,
(3.15¢)

respectively. Now, following what we did for the KP equation, we transform the last three
equations to the form that would be diagonal in the r-variables if o were zero. Let

Yo = 0:(q*(rs — 12)), Yy = (Dy + q0)(2q(r3 — r2 +11) +p),
V= 4404 ~ 7+ )+ 8D,(g03 — A+ ) + (s~ k). G16)
Subtracting equations (3.15a) from (3.15b), we get
Oy +2r10yn + a(Y1/2 — Yy) = 0. (3.17)

Taking the combination of equation (3.15¢) minus (r3 + r») times equation (3.154) minus 2ry
times (3.17) yields

(Ya/4 — Y1 4 (2r1 — ry — 13)Y)) (3.184)

8f(r3 —|—r2) +2(r36xr3 +r23xr2)+0¢ :0
(r3 = r2)
Adding and subtracting equations (3.18a) and (3.15a) yields, respectively,
Y2/4—nrY, —2(rn —n)Y,
Oy + 2rs0ury + o LA 22 2 )h) (3.18h)

2(7’3 — }"2)

13
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(Y2/4 — rlYl — 2(1’3 — rl)Yo)
2(7‘37]”2)

To obtain the final form of the Whitham equation (1.19a), j = 1,2, 3, we use the expressions
equation (3.16) together with equation (1.9¢) rewritten for the present case as

Oy + 2r0i1) + «

=0. (3.18¢)

(r3 = 12)0xq = Dy(r3 — 12), (3.19)
and equation (3.8) which now takes form
0w =2Dy(r3s —ry+r1) —2(r3s — 2 + 11)0xq. (3.20)

Taking equation (3.19) into account, equation (3.20) simplifies to equation (1.19¢) of sec-
tion 1. Then, using equations (3.16), (3.19) and (1.19¢), one can show that equations (3.17),
(3.18¢) and (3.18b) can be written in the form of equation (1.19a) in section 1. These equa-
tions constitute the final 2DBO—Whitham system, together with equation (1.19¢) just men-
tioned and equation (1.19h) (which comes from equation (1.10) with the above identification
of V).

This result agrees with that obtained in [2]. Like with the KP—Whitham system, however,
using this approach does not introduce (removable) singularities.

4. Derivation of the m2KP Whitham system

4.1. Modulation equations
The defocusing m2KP equation can be written as the system,
Ot — 6P Dut + €Dyt + adyy =0, “4.1)

and equation (1.30). Then, after introducing fast and slow scales, equation (4.1) takes form

3
(f%ag +0,)u - 62 (’e‘ae + ax> ut e <’6‘ag + ax) u+a ("jag + ay> v =0.
“4.2)

Once again, the kinematic equations (1.94), (1.10) and (1.9¢) are basic Whitham equations for
m2KP. After substituting equation (1.14) into the leading order of equation (4.2) we find

—kVugy — 6kudufy + Kuf’ =0, @3)
and, integrating it once, get
—Vup — 2ul + Kuf = Ay. 4.4)

Multiplying equation (4.4) by 2u; and integrating again, one obtains the equation for elliptic
(‘genus one’) solution of m2KP (or mKdV),

k(1)) = ug + Vil + 2A1up + A,, 4.5)
or

K (up)* = (uo — a)(uo — b)(ug — ¢)(uo — d), azb>c>d (4.6)
A bounded periodic solution can be written in terms of Jacobian elliptic functions as

7 a—>b
1 — v sn? (2K(m)(0 — 0.);m)’

uy = a

4.7)

14
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where @, is an arbitrary integration constant,

b—c _(b—c)(a—ad)

Tame "Taob-ay @9
and we have the following relations among the parameters (slow variables):
a+b+c+d=0, (4.9a)

V=ab+bc+ca+ (a+b+c)d=ab+bc+ca—(a+b+c),  (4.9b)
2A, = —abc — (ab + bc + ca)d = (a + b + c)(ab + bc + ca) — abe,  (4.9¢)

Ay = abed = —(a+ b + c)abc. (4.9d)

Note that, for the case of real roots a, b, ¢, d, the phase velocity V must be negative; so the
waves travel only in one direction. The normalization of the elliptic function with fixed period
one implies that

(a—c)(b—4d)

K= ,
16K2(m)

(4.10)
where K(m) is the first complete elliptic integral. Then ¢ < ug < b, i.e. ug oscillates between
the two middle roots of the quartic in equation (4.6).

At the next order in € we get, after substituting equation (1.14) and the expression for v/
from equations (1.15) into (4.2),

k(k*u) — 6ubu; — Vi)'
+ O — 6u86xuo + 3k28Xu6/ + 3kdckugy + (qzaxuo + 2gDyuy + ugDyq + Dyp) =0.
(4.11)
Similar to the KP and 2DBO equations, the other Whitham equations can be derived as secu-
larity conditions ensuring that the solutions #; and v; of equations (4.11) and (1.15) are peri-

odic rather than growing in 0. Imposing periodicity and integrating equations (4.11) and (1.15)
over the period in 6 leads to two secularity conditions, respectively,

Ao — 28 (u) + a (0Tt + 2qD,ii5 + WDyq + Dyp) = 0, (4.12)

and equation (1.16). The third (and the last needed) secularity condition is readily obtained
when one notices that the terms depending on u; in equation (4.11) are the same as for mKdV
(and v; is absent in it). So we multiply equation (4.11) by u( and integrate over the period to
find

O — 30, — 30,y )?) + o (0 + 2Dy (i) + 2D,p) = 0, (413)
We also use the notation equation (2.13); from equation (4.7) we obtain
T
O=ug=a—(a—b)—, (4.14a)
K
_ 2 _ _
QZEuéza +alb+c)—bc (a—c)la+2b+c)E (4.14b)

2 2 K’

where K = K(m), E = E(m) and II = TI(y, m) are the first, second and third complete elliptic
integrals, respectively. Integrating equation (4.4) we find

15
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203 = —2u3 = VQ + A,. (4.15)
Integration of equation (4.5) gives

G =K (u))? = Q4 + VQy + 24,0 + Ay, (4.16)
while multiplying equation (4.4) by uy and integrating gives

—G =204+ V0, +A0. (4.17)
Combining equations (4.16) and (4.17) yields

304 = —2VQs — 3A10 — A, (4.18a)

3G =VQ, +3A,0 + 2A,. (4.18b)
Using equations (4.15), (4.18a) and (4.18b), we get the secularity equations in the form

910 + 0:(VQ + A1) + a(Dy +90:)(qQ +p) =0, (4.19a)

9102 + 0x (VO2 — A) + o [¢°0,:0 + 2Dy (qQ2) + 20Dyp| = 0, (4.19b)

0w = DyQ — Q0.q. (4.19¢)

The secularity equations (4.19a)—(4.19¢) and the kinematic equations (1.9a) and (1.10) com-
prise the m2KP—Whitham equations in physical coordinates.

4.2. Whitham equations in mKdV Riemann variables

The three independent roots of the quartic in equation (4.6), which we label a, b, ¢, are simply
related to the mKdV Riemann variables by [10]
a=r+r—r, b=rs+r —nr, c=r+nrn—rs; (4.20)
i.e. exactly as in the KdV case (see section on KP equation). From equation (4.20), we express
the functions of the roots V, A; and A, in terms of the r-variables,
V==201+rn+n)., A =4nnr,  Ay=r+r+r3 =201 +n55+n5m0).
(4.21)

We want to express the equations (1.9a), (1.10), (1.9¢) and (4.19a)—(4.19¢) in terms of
Riemann variables for mKdV, r;, i = 1, 2, 3. With the ‘total’ time derivative D = 0, + VO,, we
rewrite equations (1.9a), (4.19a) and (4.19b) respectively as

Dk
- ToV+a¥ =0, (4.22a)
DO + 00,V + 0,A; + aY; =0, (4.22b)
DQy + 020,V — 0:A; + aY, = 0, (4.22¢)
where we denoted for further use
Y, = aX(qu) Y, = (D a _ 28
0= P 1= y + g ) (g0 +p) =q .0 + 2qDyQ + ODyq + Dyp,

Y, = ¢*0.0> + 2Dy(qQ>) + 20D, p. (4.23)
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Similar to KP and 2DBO, using above Riemann r-variables we transform equations (4.22a)—
(4.22¢) then we diagonalize the mKdV parts of equations (4.22a)—(4.22¢). The details are
given in appendix C. This yields three of the Whitham equations in the form given in sec-
tion 1. One can readily verify, using equations (1.21¢) and (1.21d), that the last terms in equa-
tion (1.20a) remain finite in the limits as m — 0 and m — 1 when their denominators become
zero due to the limits r3 — 3 or r3 — r, respectively. In the other Whitham equations, equa-
tions (1.10), (4.19¢) and (1.9¢), we use equation (4.21) to bring them to the final form in terms
of rj, g and p-variables.

5. Stability analysis of the periodic solutions of the m2KP equation

The leading order solution (4.7) in terms of the Riemann-type variables 7y, r», r3 is

2(7‘2 — }"1)

1) = —r - , .
w6 ) =124 15 = N e K ) (0 — 0.y m) -1
where
2_ 2
o r3s —nr _ 7‘3 — }’2
Py_r3—r|’ m r%—r%' (5.2)

Exact periodic solutions of the m2KP equation have the form equation (5.1) with constant
values of 71, 2, 3, g and p. In other words, the periodic solutions of the m2KP equation corre-
spond to constant solutions of the m2KP—Whitham equations. As a special case, when g = 0,
equation (5.1) yields the cnoidal soluions of the mKdV equation. Like for the KdV and BO
equations, DSW of the mKdV equation can be described as a slow modulation of the cnoidal
waves. One such solution is shown in figure 1(left), and is described in detail in appendix D.
Next we use the m2KP—Whitham system to study stability of the cnoidal wave solutions of
the m2KP equation. We do so by considering small perturbations to the periodic solution (5.1)
with constant parameters. That is, we take 7; = 7 + dr, ¢ = dq, p = Op, with 7; constant for
j=1,2,3, and where for simplicity we set g = p = 0, and we linearize the Whitham equa-
tions by taking drj, dg and dp to be small. We consider plane wave perturbations of the form

or; = pjelmtl=en i — 103 8g = nel e, op = vellmt—wn,
(5.3)

The five linearized Whitham equations then reduce to the following homogeneous linear alge-
braic system of equations:

(KV; = w)pj + al(®n + Tv) =0, j=1,2,3 (5.4a)
(KV —w)n —4¢ Z Fip; = 0, (5.4b)
J
wo =3 Tp; =0, (5.40)
J
where the coefficients are V; = v;(7), V = V(F),
o — @:j(ﬁQZ —7H0) T (7,0 — FiFy) - _@% iditit

T e -1

R — =
: Fw=m =) ik

J

and
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Up(x,t=0.5) 1
| 09l unstable
for a <0
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Figure 1. Left: A typical DSW solution of the mKdV equation with step IC for
€ =0.05 and = 0.5 using equations (5.1) and (D.4) (see appendix D for details).
Right: Stability-instability regions of the periodic solutions of the m2KP equation (see
text for details).

0=0(r), =0, 9Q=200(F). k/k= (9k/k)(r)

(see equation (1.21) in section 1 for the definitions of Q, Q> and 0;k/k). Equating the determi-
nant of the system to zero yields the stability/dispersion relation for the perturbation param-
eters w, k and £. In general this relation is somewhat complicated but it simplifies in two
important special cases. For longitudinal perturbations ¢ = 0 the relation reduces to

(w—Vk) H(w —Vik) =0,
J
which shows that the solution is linearly stable with respect to such perturbations since all
eigenvalues w are real for real «. This is expected since the problem has been reduced to one
dimension; i.e. defocusing mKdV which is known to be stable.

The interesting case, however, is £ = 0. This corresponds to purely transverse per-
turbations. Since we are within Whitham theory these perturbations are relatively slow;
i.e. they are long wave perturbations. Then the dispersion relation reduces to the form
w(w? + al?f(ry,r2,13)) = 0. Besides the simple real solution w = 0, its eigenfrequencies are
given by the following explicit formula (here and further on we write r; instead of 7; but the
constant values are implied):

(@~ Qg (kg — 14m) — gl — ) —ri(l = 2)(x — 1 +m)]
(R -mEI-RE - T+m |

W/ = —4a

Here all factors multiplying —a on the right-hand side are nonnegative except for the last fac-
tor in the numerator which can change sign. This last factor can be rewritten as

brrar) = A [ (@-mE —20-m)) - — (1-%) (a+mE-1+m)].
(5.5)

18



J. Phys. A: Math. Theor. 51 (2018) 215501 M J Ablowitz et al

which shows that the stability essentially depends on two parameters, m and (r;/r3)%. For
r; = 0, which we took in appendix D to describe a DSW solution, the factor # can be shown
to be nonnegative for all m. Thus, in this case the periodic solution equation (5.1) is linearly
unstable for o > 0 and stable for o« < 0. This is exactly opposite to the stability dependence
on « for KP [1]. However, as (r/ r3)2 increases from zero, one sees from equation (5.5) that
h decreases for any fixed m, 0 < m < 1. This in fact leads to the change of sign of & on a
certain curve in the domain of parameters 0 < m < 1, 0 < (r1/r3)? < 1, given by the equa-
tion h(m, (r1/r3)?) = 0, see figure 1(right). Since £ is always zero for m = 0 or m = 1, the
curve where the sign changes (and therefore stability changes) ends at certain points on the
intervals m = 0 and m = 1. Thus, e.g. for the cases when rZ — r? < r3 the periodic solution is
stable for o > 0 and unstable for o < 0, opposite to the case r; = 0. The left end (at m = 0)
of the stability boundary curve occurs at |r; /r3| = 1/4/2 ~ 0.7071. It turns out, however, that
its right end occurs at the corner m = 1,r; = 0 of the parameter m, |r; /r3|-plane. This means
that the complete stability for o < 0 can be reached only when r; = 0. All the above results
agree well with numerical computations of linear spectral stability, see figures 1(right) and 2.

Thus, for a < 0 (like in KP I), a stable DSW may exist but only if 7; = 0. On the other
hand, for a > 0 (like in KP II), a stable DSW may only exist if the ratio 77/r3 > 0.5. In all
other cases the DSWs are unstable for some range of m.

6. Unified derivation of (2 + 1)-dimensional Whitham equations for KP-type
systems

As discussed in section 1, two of the modulation equations are an immediate consequence of
the definition of the fast variable 6. In this section we show in general how the remaining three
equations arise as secularity conditions in the multiple scales expansion for all equations of
the form (1.1).

Following the definition of § via equations (1.6), we substitute the expansion (1.11) into the
system (1.3), recalling that 0y — (k/€)0g + Oy, Oy — (£/€)0p + Oyand O, — —(w/€)Dy + O,
We then expand the resulting equations in powers of €. In particular, we expand F(-) as

1
F(u,0u,...,00m;e) = EF(*l)(uo) + F(()O)(uo) + Ffo) (ug,u1) + O(e).  (6.1)

(The fact that the leading-order term is at order 1/¢ is what allows one to obtain a nontrivial
equation at leading order. In practice, the explicit dependence of F(-) on € is usually deter-
mined precisely to ensure that this condition is satisfied.) For example, denoting dgf = f for
brevity, for the KdV equation one has:

FOD(ug) = Kulll + 6kuguy, — FL (ug) = 3k>0,uf] + 3kdoku] + 6uodyitg, (6.2a)
F (ug, uy) = Kul” + 6k(uouy ). (6.2b)

For the BO equation one has:

FOD(ug) = RHUY] + kuouly,  F (uo) = 2kH[Out)] + OkHup] + kuodyurg,  (6.3@)

FO (ug, u1) = KRH[u') + k(uour)'- (6.3b)

Finally, for the mKdV equation one has:
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R,=0 osaf | P40 12 R,-08
15 >0 0.12 @0 4 <0 08 o<0

Figure 2. Instability growth rates relative to the transverse wavenumber for periodic
solutions of m2KP equation. From left to right: cases r; = 0, > 0; r; = 0.6, > 0;
rp =0.6,a < 0 and r; = 0.8, & < 0. In each plot both theoretical and numerical rates
are presented but they lie on top of one another, hence they are difficult to distinguish
from each other.

FOD (ug) = i3ul)’ — 6kudul, F(go) (uo) = 3k*Opuf) + 3kO,kuf — 6ud0.ug,

(6.4a)

F (ugouy) = KPul’ — 6k(uduy)’. (6.4b)

We substitute equations (1.11) and (6.1) in the general system (1.3). At leading order (i.e.
O(1/¢)) we have

—willy + F(fl)(uo) + agkv) = 0, (6.5a)

kv6 — qku() =0. (6.5b)

Equation (6.5b) is readily solved to obtain equation (1.14). Substituting equation (1.14) into
the first one of equation (6.5) yields

FD (ug) — Qul) = 0, (6.6)

where €2 = Vk and V is given by equation (1.7) as before. The solution of this ordinary differ-

ential equation (ODE) yields uq as a function of 6, in which, like with equation (1.14), all

integration ‘constants’ are actually functions of (x, y, t), to be determined at the next order.
At the next order in the expansion (i.e. O(1)) we have

—wu| + F%O) (uo,u1) + agkv'y = —0Ougp — Féo)(uo) —ady(quo+p), (6.7a)

kv — gku', = dyup — Ox(quo + p). (6.7h)

One must now impose suitable conditions to prevent secular growth of the higher-order cor-
rections #; and v;. In particular, three conditions must be imposed: (i) zero-mean condition for
the right-hand side (RHS) of the ODE (6.7a) with respect to 0; (ii) zero-mean condition for
the RHS of the ODE (6.7b) with respect to 0; and (iii) Fredholm solvability condition for the
system (6.7). These three conditions, which ensure that the corrections #; and v; to the lead-
ing order problem are periodic rather than growing in 0, yield the remaining three Whitham
modulation equations.

Integrating the RHS of equation (6.70) and imposing that the mean over one period is zero
yields equation (1.16),

8xP = Dleo - Toaxq (68)

Similarly, imposing the same condition on the RHS of equation (6.74a) yields
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0y(m0) + F” (o) + o 0, (qity + p) = 0. (6.9)

Equations (6.8) and (6.9) are two further Whitham modulation equations which are also com-
mon to all PDEs of the KP type in the form of equation (1.1). The final Whitham modulation
equation arises from the Fredholm solvability condition, which requires that the forcing term
in equation (6.7) be orthogonal to the solutions of the adjoint of the homogeneous problem. To
write this condition, one must threfore first study the homogeneous part of the system (6.7). To
this end, it is convenient to eliminate v} in equations (6.7a) using (6.7b), obtaining

—wu} + F{” (uo, m) + og*ku} = —G, (6.10)
where
G = Oy + F(()O)(uo) + o [0y (quo + p) + qOyuo — gOx(quo + p)]. (6.11)

The Fredholm solvability condition is then simply
WagiG = 0, (6.12)

where w,q; is the solution of the adjoint problem to (6.10) with zero RHS. To find w,g;, it is
convenient to write the ODEs (6.6) and (6.10) respectively as

Loug = 0, Liu; = -G, (6.13)
where
Low = F(_l)(w) — Q0yw, Liw= Ffo)(uo, w) — Q0pw. (6.14)

Importantly, in all three specific examples considered, the multiple scales expansion imparts a
certain structure on these two differential operators, namely:

FEV( ) =Lay,  FOup, ) = 9L (6.15)
Specifically:
Lygv = K05 + 6kug,  Lpo = KPOpH[] + kuo,  Lmkav = k*05 — 6ku. (6.16)

Thus, in each case we can write the homogeneous problem at O(1/¢) and O(1) respectively as

(L—Q)0gw =0, Op(L—Q)w=0. (6.17)
Because of this structure, and the fact that L is self-adjoint in each case, we have that the
adjoint of L; is simply LI = —Ly. Thus, since the two periodic solutions of equation Loyw = 0

are a constant and 1, and a constant yields already known condition G = 0, we take Wadj = Uo,
and the Fredholm solvability condition (6.12) becomes

uo0y (uo) + qu(gO) (uo) + uo(Dy(quo + p) + qdyug) = 0. (6.18)
Equation (6.18) provides the last Whitham modulation equation.

7. Conclusions

We have derived Whitham modulation equations for the KP, 2DBO and m2KP equations.
From these modulation equations we derived hydrodynamic systems which are the analog of
the (1 + 1)-dimensional Gurevich—Pitaevskii system. We also demonstrated how systems of
Whitham modulation equations for (2 + 1)-dimensional PDEs of KP type can be derived in a
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unified way. For that part of the system related to the underlying Riemann variables, the deri-
vation is in many respects similar to the derivation of its (1 + 1)-dimensional counterpart. The
(2 + 1)-dimensional Whitham equations obtained here are richer than their one-dimensional
reductions, and they can be expected to provide interesting new behavior and a larger variety
of solutions. We expect that the modulation systems obtained in this way will be useful in
studying various physical phenomena such as DSWs and stability of periodic solutions.

We point out that the form of the Fredholm solvability condition given in equation (6.18)
depends on the relation (6.15) between the homogeneous operators L, and L; which appear
respectively at O(1/¢) and at O(1) in the multiple scales expansion. Although this relation
holds for the three specific PDEs considered in this work we expect this approach to be useful
for many other systems.

It is also important to note that all the Whitham modulation systems that we have derived
here comprise a closed system of equations for the variables ry, r,, r3, g and p. As such, these
systems are interesting objects of study on their own right, without any need to go back to the
original PDEs (1.1). Nonetheless, if one wants to use these systems to study the behavior of
solutions of the original PDEs in the small dispersion limit, including the formation of DSWs,
the ICs for the dependent variables ry, 12, r3,q and p should be chosen so that the constraint
(1.9¢) is satisfied at time zero. For the Whitham systems for the KP and 2DBO equations, a
prescription for doing so in order to consider (2 + 1)-generalizations of the Riemann prob-
lem for the corresponding one-dimensional systems was given in [1, 2]. A similar procedure
applies to the Whitham system for the m2KP equation.
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Appendix A. Auxiliary formulas

The first and second complete elliptic integrals K = K(m) and E = E(m) satisfy the following

differential equations in m:
E—(1-mJK K—-E
K’ = — E =——,

from which it also follows e.g. that

E\ (m) = 1 (E 1 E? Ao
k)" T m\k 2 20-mK2)" (A-2)
The third complete elliptic integral, see e.g. [9]
K(m) dz
I = _— A3
(y,m) /0 1 — v sn?(z;m) (&.3)

has the following derivatives with respect to its two arguments:
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Oll(y,m)  E—(1—-m)l
om 21 —m)(m—2)’ (Ada)

Ol (v, — I —yE — (m—~)K
(vm) _ (m =)l —yE — (m—7)K (Adb)
Iy 29(1 =7)(m =)
The KdV equation is known to have the following diagonal leading order Whitham equa-
tions [30] in Riemann variables {r;}, j = 1,2,3,

Oty + viOyr; = 0, r < ry<rs, (A.5)
or, equivalently,
Drj+Aj8xrj:O, v = V+Aj:2(r1 +r2+r3)+Aj, (A.6)
where quantities A; are given by general formula [12]
k 2k 0
Ai=—0V=—, 0 =—.
ok ok T oy (A7)

Thus, they are determined by log-derivatives of k with respect to the Riemann r-variables.
These relations are obtained from definitions equations (2.8) and (2.9), the first formula of
equations (A.1) and (2.20); they are given by equation (1.18b).

The Hilbert transform of a function f(x) is defined as

1 (o]
1 ) dy
T ) oy —X

where f denotes the Cauchy principal value integral.

HIf()] = (A.8)

Appendix B. ‘KdV-diagonalization’ of the KP-Whitham system

First, we form the combinations of Whitham equations (2.215)-2Q- (2.21a) and (2.21¢)-2P-
(2.21a) to get, respectively

(DQ - QDkk> — Oker + (Y — QY)) =0, (B.1a)
<DP - PDkk> - 68xe3 + Oé(Yz - PY()) =0. (Blb)

From equation (2.20), we express the elementary symmetric functions of the roots ); in terms
of the power sums equation (2.23) of the r-variables,

38
el = pi, e2 = pi — 2pa, e3 =2pip> — % - % (B.2)
Now taking the combination 1/4 - (B.1a) 4+ p1/2 - (2.21a) gives
1 Dk Op2 «
1 k>+ 2 %

and taking the combination 1/48 - (B.1b) 4+ p1/2 - (B.3) + (2p» — p1)/8 - (2.21a), gives

Dk
(DQ - Q? +p1 (Y1 + (p1 — Q)Yo) =0, (B.3)
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1 DK\ p (2p2 + pi) Dk
48<DP_Pk> (DQ o ) 6 &

ops oY 2p> +p%—2p1Q P
S22 4y + (BEATE C )yl =o.
+ 3 +8 G +p1Y + 5 c) Yo 0

In terms of r-variables,

(B.4)

E
P=VQ+C; =2p;Q —pi+2p, OQ=ri+nrn—-r+2rn-r)-,
(B.5)
and

Oik
90=(Q-p1+ 2”j)fv
which is a consequence of equations (B.5), (1.18b) and (A.2) of appendix A. Upon using equa-
tions (B.5) and (B.6) and expressing everything in terms of r-variables and log-derivatives
0k [k, equations (2.21a), (B.3) and (B.4) are brought to the form, respectively,

(B.6)

3
1 Ok

> < ~=Dr;j+0 r,) +aW; =0, (B.7a)
j=1

1 Ok
er (2 - Dri+ ) rj) +aW, =0, (B.7b)
j=1

1 ik
Z r/2 < —=—Dr; + 0 rj> + aW; =0, (B.7¢)

J=1

where Wy, W, and W3 are given by equations (2.26a)—(2.26¢), respectively. The system of
equations (B.7a)—(B.7c¢) can be rewritten in matrix-vector form as

10k
A (ZIiDr,—l—(“)rl)—kaWj:O, =123, B.8)
where
1 1 1
AZ ri r r3
7R

is the Vandermonde matrix. Multiplying equation (B.8) on the left by the inverse of the
Vandermonde matrix, we obtain the three equations equation (2.24) diagonal in the derivatives
Oyrj and Oyry. Finally, using equations (2.26a)—(2.26¢) and expressions

Oik o Oik
O=ri+rn —rj+4(rj—rl)(rj—rm)f =p —2r+4 (31"1»2 —2p1rj+p1 2p2) f,
(B.9)

in equation (2.25), we bring the Whitham equations (2.24) to their final explicit form, see
equation (1.17a) of section 1.
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Appendix C. ‘mKdV-diagonalization’ of the m2KP-Whitham system

First, we make the combinations of Whitham equations (4.22)-Q- (4.22a) and (4.22¢)-Q5-
(4.22a) to get, respectively

(DQ - QDkk) + 0.A1 + a(Y, — QYp) =0, (C.1a)

<DQ2 - Qszk> — 0y + a(Yy — OrY) = 0. (C.1b)

Using equation (4.21), we observe that derivatives 8xrj, Jj=1,2,3,inequations (4.22a), (C.1a)
and (C.1b) have coefficients polynomial in R-variables. So we diagonalize these equations with
respect to these x-derivative terms. Let {i, [, m} = {1, 2, 3} be the three different subscripts for
rj, j = 1,2,3. Now taking the combination of equations r; - (C.1a) + ryr,, - (4.22a) gives

D D
7 (DQ — Qkk) + rﬂ'mTk + 4[(ri2 — rlz)rmaxrl + (r,2 — rfn)r,axrm]

—|— a(ri(Yl — QYO) + rlrmYO) = 0, (C2)

and taking the combination of equation (C.1b) + (17 + r2 — r?) - (4.22a) gives

Dk Dk
(00 = 055 ) + 07 472~ )5 4 8107 = andn + (2 = i
—|—o¢[Y2—Q2Y0+(r12—|—r,2n—rl2)Y0] :0 (C3)

In equations (C.2) and (C.3) we have only two of the three J,rj-derivative terms left. Now we
combine them in r,, - (Q2Im) — 2r; - (Qlm) to get

Tin <DQ2 + (r,zn — rlz - "1'2 - Qz)Dkk) — 21 <DQ - QDkk) - 8(r,2n - rlz)(rrzn - riz)(')xrm

+« [rmYz —2rmiYy 4 (2r5iQ — 1 Qo + r(rs — 1} — riz))Yo] =0,
(C.4)

equation containing only 0,r,-derivative term. It must be diagonal also in the D-derivative
terms coming from mKdV. To see this, we use the identities

Ok 1i7i Opk
mQ—Q?f— P (C.5)

OnQ> — Qz% =(p—r -1 (C.6)

which can be derived from the explicit expressions equations (1.21d) and (1.21¢) in terms of
elliptic functions and the equations for their derivatives equations (A.4a) and (A.4b) of appen-
dix A. Then we obtain another two identities,

8,‘]( 61k 8,]( . .
i (&QQ - QZT + (P2 =17 — rl-z)k> — 2nr; (&Q - Qk) =0, i#l#Fm#I,
(C.7)
which implies vanishing of the non-diagonal D-derivative terms in equation (C.4), and
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T'm <6mQ2 _ Qza’;k + (”31 — rl2 — rlz)a;zk> — 2 (8mQ — Qalr:k>
2 2V 2
— Z(rm rt)(rm rl) amk’ (CS)
T'm k

which allows us to rewrite equation (C.4) as

47,04 Im [rmYa = 2rmYy 4+ (2r1iQ — rwQa + ru(ra, — 17 — 17)) Yo

Dr,, — :
" ok 203, ~ )7~ 17 )0uk )
Now we recall equation (4.23) and express
Oik Oik
Yo=q') -0 +24) Dy (C.10a)
J J
Yi=¢ Z 0;00xr; + 2q Z 0;0Dyrj + ODyq + Dyp, (C.10b)
J J
Yo=q*Y  80:0,17+2q Y 80:Dyr; + 202Dyq + 20D, p. (C.10¢)
J J

To simplify the last term in equation (C.9), we use equations (C.10a)—(C.10c) and the identities

rimr3 8k
a]Q: <Q_ }"2 ) fa

J

9k
k b

902 = (@ +2r} —r{ =13 —13) (C.11)
which are consequences of equations (1.21b), (1.21¢), (A.2), (A.4a) and (A.4b) of appendix
A. This way we finally obtain equation (1.20a) of the main text.

Appendix D. Gurevich—Pitaevskii problem for the defocusing mKdV equation

When a = 0, the Whitham equation (1.20) for the m2KP equation reduce to those for the
mKdV equation, namely to the three equation (1.20a), which then read

8,17 + vjaxrj =0. (Dl)

A natural step in preparation for the study of the m2KP equation is to look for (and find) an
analog of the seminal Gurevich—Pitaevskii KdV solution [13] for the mKdV equation. We note
that DSWs for the mKdV equation were first studied in [6]. Recently, a general classification of
DSWs and rarefaction waves arising from an initial step for the mKdV equation was presented
in [15, 21], while [25] studied the evolution of initial step for the focusing mKdV equation.

Here, however, we give full analytical details of the DSW solution for the defocusing
mKdV equation in a simple case, which is the counterpart of the Riemann problem for the
KdV equation studied in [13]. To do this, we consider the following piecewise constant initial
condition (IC) for u(x, t):

0, x<0,

It is relevant to consider such a step-up IC since we have seen that V < 0 for all real-valued
solutions of the m2KP equation (see equation (4.21)). This IC implies the corresponding ICs
for the Riemann invariants r;,
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1, x<0

0. x>0. (D.3)

ri(x,0) =0, r3(x,0) =1, r(x,0) = {
The above step IC for the mKdV equation is not the most general, and the corresponding solu-
tion, described below, is the borderline case between the single cnoidal DSW solutions real-
ized when 0 < r1(x,0) < r3(x, 0) and more complicated solutions realized when the values of
u(x,0) on two sides of the step are of the opposite sign, i.e. r1(x,0) < 0 < r3(x,0) [15, 21].
The cnoidal-wave solution (5.1) satisfies equation (D.2) e.g. for 6, = 0. Indeed, at r = 0,
for x < 0, we have r, = r3, m =0 and uy = r; = 0. On the other hand, for x > 0, we have
ry =ry, som = 1and uy = r; = 1. Looking for a self-similar solution of the Whitham equa-
tions, namely, r; = r;(§), £ = x/t, we find, as in the case of KdV, that

r(§) =0, n§) =1, vy =wp(r2) =&, (D.4)

Let r; = s = s(¢). Then m =1 — 5%, ¥ =1 — s and the solution for s(¢) in the oscillation
domain where 0 < s < 1 is implicitly given by formula

) 452(1 — 5?)

f— VZ(S) = —2(1 +s ) — W
In the domain 0 < s < 1, the solution uy, of equation (5.1) oscillates with maxima
Unax =7 + 13 —1rp =1 —s and minima upi, = r; — (r3 — r2) = —(1 —s). The highest
maximum is at the right (trailing) edge where s = 0 and u = 1 while the deepest minimum is
just to the left of the trailing edge with u approximately equal to — 1. The function v,(s) deter-
mines the leading and trailing edge velocities of the DSW for the mKdV equation. At the lead-
ing (left) edge s = 1 and we get v, = v»(1) = —12, and at the trailing (right) edge s = 0 and
va = v,(0) = —2. Thus, the DSW structure is expanding to the left of the initial jump, with
both leading and trailing edge velocities negative. A typical DSW is given in figure 1(left).
This is similar to the DSW for the one-dimensional (1D) NLS equation, where both velocities
have the same sign, and is different from the DSW for KdV, where their signs are opposite.
The DSW described by the function u(x,f) of equation (5.1) is shown in figure 1 for e = 0.05
at a typical time t = 0.5. At its trailing (right) edge ‘dark solitons’ are seen forming; this is
similar to the DSW that arises in the defocusing 1D NLS equation, see e.g. [7, 14, 18, 22] and
references therein.

(D.5)
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