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Though loop quantization of several spacetimes has exhibited existence of a bounce via an explicit
evolution of states using numerical simulations, the question about the way central singularity is
resolved in the black hole interior has remained open. The quantum Hamiltonian constraint in loop
quantization turns out to be a finite difference equation whose stability is important to understand
to gain insights on the viability of the underlying quantization and resulting physical implications.
We take first steps towards addressing these issues for a loop quantization of the Schwarzschild
interior recently given by Corichi and Singh. Von-Neumann stability analysis is performed using
separability of solutions as well as a full two dimensional quantum difference equation. This results
in a stability condition for black holes which have a very large mass compared to the Planck mass.
For black holes of smaller masses evidence of numerical instability is found. In addition, stability
analysis for macroscopic black holes leads to a constraint on the choice of the allowed states in
numerical evolution. States which are not sharply peaked in accordance with this constraint result
in instabilities. With the caveat of using kinematical norm, sharply peaked Gaussian states are
evolved using the quantum difference equation and singularity resolution is obtained. A bounce is
found for one of the triad variables, but for the other triad variable singularity resolution amounts
to a non-singular passage through the zero volume. States are found to be peaked at the classical
trajectory for a long time before and after the singularity resolution, and retain their semi-classical
character across the zero volume. Our main result is that quantum bounce occurs in loop quantized
Schwarzschild interior at least for macroscopic black holes. Instability of small black holes which
can be a result of using kinematical norm nevertheless signifies the need of further understanding

of the viability of the considered quantization and its physical Hilbert space.

I. INTRODUCTION

Existence of physical singularities in classical gravity
is often tied to the underlying continuum differentiable
spacetime manifold. As vanishingly small scales are
probed, spacetime curvature grows unboundedly eventu-
ally resulting in a divergence at the classical singularity
where the evolution breaks down. The hope in quan-
tum theories of gravity is that incorporating the quan-
tum discreteness of spacetime results in a resolution of
singularities. In the last decade, this hope has been real-
ized for the many spacetimes quantized using techniques
of loop quantum gravity [1, 2]. Here, thanks to the quan-
tization procedure, the classical differential geometry is
replaced by a discrete quantum geometry where geomet-
rical operators have discrete eigenvalues with a non-zero
minimum. The quantum discreteness becomes significant
only in the Planck regime, and results in a classical con-
tinuum spacetime at larger scales. In all the spacetimes
where a rigorous loop quantization has been performed,
the above picture results in the resolution of the physical
singularity at the Planck curvature scale. An agreement
with general relativity (GR) is found at the scales when
curvature becomes much smaller. The success is notable
for cosmological models where the big bang is replaced
by a big bounce [3]. States peaked at classical trajec-
tories in a large expanding macroscopic universe, when
evolved backward towards the big bang using the discrete

quantum evolution equation, follow the classical trajec-
tory for a long time, and bounce in the Planck regime to
a contracting branch. Quantum evolution is stable and
non-singular, and the results of existence of a bounce
hold even if the states have very wide spreads and large
fluctuations [4].

In the isotropic cosmological models, singularity reso-
lution in loop quantum cosmology (LQC) has been es-
tablished using analytical [5, 6] and numerical investiga-
tions (for a review see Refs. [7, 8]). There also have
been numerical studies on Bianchi-I spacetimes [9, 10],
which confirm the resolution of singularities. But, such
numerical investigations are so far absent for black hole
spacetimes. And, unlike the isotropic model, it is quite
difficult to solve anisotropic and black hole spacetimes
analytically, except in an effective spacetime description
where strong hints are present for a generic resolution
of strong curvature singularities [11]. Especially in the
black hole case, given the technical difficulties, none of
the loop quantization attempts has so far addressed the
construction of the physical Hilbert space. Hence, even
numerical studies need to be performed under certain as-
sumptions such as the unavailability of the physical inner
product. These numerical studies are in any case quite
non-trivial. This is because the loop quantization of black
hole spacetimes results in a quantum Hamiltonian con-
straint, which is a coupled quantum difference equation
in two triad variables. The discreteness in both the vari-



ables is fixed by the underlying quantum geometry and
a priori there is little guarantee that the evolution is sta-
ble. Here, we recall that the loop quantization of the
Schwarzschild interior is performed using a Kantowski-
Sachs vacuum spacetime with a phase space expressed
in terms of holonomies of Ashtekar-Barbero connection
components b and ¢, and the two conjugate triad vari-
ables py and p.. Here p. is proportional to gon, and
pg /De is proportional to g, components of the metric.
(For more details, see Sec. II). Due to the associated
quantization ambiguities, different quantization prescrip-
tions for the Schwarzschild interior exist [12-20]. These
amount to variations in the way minimum area loops are
constructed with different triad dependencies. Of these
prescriptions, a recently proposal by Corichi and Singh
is notable [20]. Unlike other attempts, it results in a
consistent infra-red limit as GR and is free from fiducial
structures used in the quantization procedure. Quantum
Hamiltonian constraint of this model, here after referred
to as the CS model, is known to be non-singular in the
sense that one can analytically show that initial data can
be propagated through the classical singularity at p. = 0,
at least at the kinematical level. But as with any other
loop quantization of the Schwarzschild interior, explicit
singularity resolution via evolution of quantum states has
so far not been shown.

To understand the consistency of the quantum Hamil-
tonian constraint and the resulting physics, one needs
to ensure that the quantum difference equation is von-
Neumann stable. Only then the resulting quantization
has a well defined classical limit. This is a non-trivial
problem in loop quantum gravity. To address this prob-
lem, one has to overcome some challenges which are not
found in classical numerical relativity. In the latter, given
the underlying continuum spacetime manifold of GR, one
has freedom to appropriately choose discreteness in space
and time grids to get a stable evolution. Due to the
underlying quantum geometry, this freedom is absent in
loop quantum gravity. Since the underlying discreteness
of ‘space’ degrees of freedom is fixed by quantum geome-
try, there is no guarantee whether the evolution is intrin-
sically stable or unstable. This is required to be verified
explicitly by understanding the growth of the solutions in
a ‘time’ degree of freedom on the stencil provided by the
finite difference quantum Hamiltonian constraint. Exam-
ples of quantum constraints yielding stable and unstable
evolution exist in LQC [7, 8, 16]. It turns out that the
quantizations where von-Neumann stability is problem-
atic, there are often other problems with the quantization
prescription which independently reveal them to be in-
consistent [21]. On the other hand, when the quantum
constraint turns out to be stable, conditions for existence
of classical solutions are fulfilled [22], ensuring the agree-
ment of infra-red limit obtained at large scales with the
classical theory. However, stability of the quantum dif-
ference equation, via the Courant-Friedrichs-Lewy con-
dition, imposes further requirements on the choice of
numerical discreteness used for any continuous variable

playing the role of intrinsic time variable. An example is
in the case of a massless scalar field coupled to gravity
in isotropic LQC where new algorithms, or high perfor-
mance computing becomes necessary to overcome asso-
ciated computational challenges [23]. Fortunately, these
problems do not arise for the Schwarzschild interior where
the role of the clock can be played by one of the direc-
tional triad variables. But, an additional difficulty in
comparison to isotropic LQC is that the clock as well as
the other directional triad being measured are both dis-
cretized due to the underlying quantum geometry. This
leaves no wiggle room for the quantum evolution to be
stable.

The goal of our analysis is two fold. First to investi-
gate the von-Neumann stability in the loop quantization
of the Schwarzschild interior in the CS model, and second
to gain insights on the dynamical resolution of singular-
ity by evolving states peaked at late times towards the
classical central singularity. The latter analysis is based
on the caveat that as in the case of all other loop quanti-
zations of the Schwarzschild spacetime, an inner product
or the physical Hilbert space is not known. Rather we
use a kinematical L2 norm to understand the behavior of
the expectation values of one of the triads p, with respect
to the other triad p.. Due to this reason, this part of our
analysis can be considered as a first step towards investi-
gating singularity resolution using numerical simulations
for the loop quantized black holes. Let us note here that
it is not for the first time that a kinematical norm is
being used in LQC. Early works in LQC on isotropic
cosmological models used the kinematical norm and cap-
tured semi-classical regime with a reasonable success in
the sense that there was agreement with the effective dy-
namics [24, 25]. More recently, in isotropic models nor-
malization of the wavefunction valid only for the massless
scalar field case [3, 5], has been used to capture the be-
havior for models with positive and negative potentials
yielding a good agreement with the effective dynamics
[26, 27]. The latter results show that even without using
the true physical inner product, crucial features of singu-
larity resolution can be deciphered. Our use of kinemat-
ical norm is in the same spirit as above works. The hope
is that it might provide some useful clues on singularity
resolution in the black hole interior.

The main results from our analysis are the follow-
ing. We find that in the approximation of studying von-
Neumann stability on values of triads much larger than
the Planck values the quantum difference equation is sta-
ble in the limit where one of the two quantum discrete-
ness parameter vanishes or equivalently the mass is ex-
tremely large compared to the Planck mass. The limit
is consistent with the underlying approximation because
it is only for the large mass black holes that the triads
can take large values. However, exponential growth is
numerically found to be present for masses which are not
large. This implies that black holes with smaller masses
are unstable in the CS quantization. This instability can
have many causes. It might be caused by the lack of



physical Hilbert space in our analysis and not knowing
the spectrum of the quantum Hamiltonian constraint op-
erator which does not allow correctly choosing the eigen-
functions for allowed states in numerical simulations. As
we discuss later in Sec IV, such an example of instability
[28], and its resolution [29] already exists in LQC. Given
the main caveat of our analysis, the lack of the physical
Hilbert space as in other loop quantization of black hole
spacetimes, it is not possible to address this issue in this
manuscript. However, if this instability is caused inde-
pendent of the above issue, then it points to the lack of
viability of CS quantization for the small black holes.

Interestingly, an additional constraint is found on the
allowed values of the triads which translates to a restric-
tion on the kind of states one can choose in a stable
evolution. Using such states with a Gaussian profile we
find that the expectation values of the triad p, reach a
non-zero minimum value in a relational evolution with re-
spect to the (radial) triad p. which acts as a clock. Hence,
there is a bounce of the triad p, with respect to p.. States
pass through the singularity at p. = 0, from positive val-
ues to the negative values, in a non-singular way without
any breakdown of the quantum evolution. States grow
in fluctuations near the classical singularity but retain
their characteristics quite symmetrically across the re-
solved singularity. At early times, beyond the singularity
resolution, a typical state regains its sharply peaked na-
ture, and is peaked on a classical trajectory as is the state
at late times. In fact, states remain sharply peaked on
the classical trajectory till they reach Planck scale where
a striking departure from the classical theory occurs due
to the underlying quantum geometry.

The manuscript is organized as follows. In Sec. II,
we start with the quantum difference equation of the CS
model and using separation of variables and express it as
two uncoupled quantum difference equations in two inde-
pendent triads. Using the approximation of large values
of triads, in Sec. ITA we analytically obtain the limiting
behavior of solutions of these difference equations which
shed light on the pre-classicality of these equations. In
particular we find that the discreteness parameter asso-
ciated with the holonomies of the connection component
conjugate to p, must vanish, implying that within the
numerical precision the mass of the black hole must be
very large compared to the Planck scale. In Sec. IIB,
this analysis is repeated using numerical techniques and
stability is studied yielding the same conclusion. A com-
parison of analytical and numerical methods for separa-
ble solutions and their close agreement is also discussed
in Sec. IIB. Gaining insights from the 1-D behavior of
the quantum difference equation for the CS model we
perform a stability analysis using the full 2-D quantum
difference equation in Sec. III. The result turns out to
be the same along with a restriction that k£ < 4n where
k and n are measures of p, and p. respectively. Further,
in this section we study the behavior of states using n as
a clock and find the results on singularity resolution. We
conclude with a summary of results and their discussion

in Sec. IV.

II. SEPARABLE SOLUTIONS

In this section, we study the space of separable solu-
tions of the quantum Hamiltonian constraint resulting
from the loop quantization of Schwarzschild interior as
presented in Ref. [20]. We first briefly summarize the
main steps leading to the quantum constraint. As noted
before, in the Ashtekar-Barbero phase space, the gravi-
tational phase space variables are conjugate pairs (b, pp)
and (c¢,p.). The spacetime metric in terms of the triad
variables is given by

v}
pe| L2

ds? = —N2d¢2 + daz? 4 |p.|(d6? +sin? 0de?) . (1)

Here L, is a fiducial length scale in the z-direction of the
spatial manifold which has topology R x S2. The fiducial
length scale is necessary to be introduced to define the
symplectic structure. In terms of the conventional form
of the Schwarzschild metric, py and p. satisfy:

where m = GM, with M as the ADM mass of the black
hole spacetime. In the classical theory, the horizon at t =
2m is identified with p, = 0 and p, = 4m? (its maximum
value). From the classical solutions one finds that at the
horizon, b vanishes and ¢ = vL,/4m, where v &~ 0.2375 is
the Barbero-Immirzi parameter. The classical evolution
breaks down at the central singularity where both p, and
pe vanish, and their conjugates b and c diverge. The
triad p, takes its maximum value equal to p*** = m in
the interior spacetime when b takes the value equal to v
[20].
The classical Hamiltonian constraint is given by

Cy = —/d3x 6_1Eij]€EmEbj(’y_2F£b — st) (3)

where e denotes the determinant of the triads E%* whose
symmetry reduction yields components p, and p., F!,
is the field strength of the Ashtekar-Barbero connection
and Qib is the curvature corresponding to the spin con-
nection. In the loop quantization, the classical Hamilto-
nian constraint is expressed in terms of the holonomies
of the connection components b and c. The holonomies
of b are considered over edges labeled by p in angular
directions, where as the holonomies of ¢ are labeled by 7
in the z-direction.

In the quantum theory, the eigenvalues of triad opera-
tors are given by:

. Y2 .
Dol ) =l ), el m) = oy 7 o) - (4)



Loop quantization of the classical Hamiltonian constraint
using the holonomies of the connection components b and
¢ yields the following quantum difference equation [20]:
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Here, for a Schwarzschild black hole interior correspond-
ing to mass m,

oy = @, and J. = VA (6)
2m

where A denotes the minimum area eigenvalue in loop
quantum gravity: A = 4v/37y¢%,. Above, k = u/8, with
k > 4 a measure of eigenvalues of py.

Starting from the quantum Hamiltonian constraint (5),
we extract a number of important features using separa-
bility that appear to hold more generally. For the main
part of this section, these correspond to the stability con-
ditions, but we also find that the CS model appears to
resolve the 7 = 0 (classical) singularity cleanly. And the
evolution passes through it without any sign of a break-
down of the quantum dynamics.

Let us begin with performing a very traditional
separation-of-variables solution of the CS model under
consideration. In particular, for (5), define 7 = nd, and
then substitute the ansatz ¥,, , — A, B,. This allows us
to perform a separation of variables on the two dimen-
sional partial difference equation and cast into a system
of two simpler sequences:

(k4+2)Apts + (k—2)Ap_s =
2k(1+ 29208 A 4+ 2M(Apyo — Ap_2) (7)

and

[n| +|n+2|)Bnta — [n| +/|n —2|)Bn-2

=-A|n+1] — \/n—l n (8)

where A\ is the separation parameter. Note that these
equations are similar to the ones presented in Refs. [1§]
and [14].

A. Large n,k limit

We begin our study of these sequences by considering
them in the large n, k limit. This essentially translates to
examining the CS model’s semi-classical behavior. Note
that in this limit, we expect the quantum solutions to
take a smooth form and resemble the solutions from a

differential equation. This expectation is connected to
the notion of preclassicality that was studied in depth
in research papers [22] over a decade ago, and recently
reviewed in Ref. [7, 8].

To derive the limiting behavior associated to the se-
quences above in the large n,k limit, we perform the
substitutions B,, — B(n) and Ay — A(k), then do Tay-
lor series expansions to second-order in inverse powers
of n, k and finally substitute those expressions into the
system (7) and (8). This results in two relatively simple
ordinary differential equations that can be solved analyt-
ically to obtain:

A+2

B(n)=Cn""3 (9)

and

A
4

1
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where J and Y are Bessel functions of the first and sec-
ond kind. It is interesting to note that the presence of
the Y function generates unbounded exponential growth
generically. This manifests itself in the form of a generic
instability that appears in the A sequence itself (as is
discussed in later sections) and also the full model as a
whole.

It is also worth noting that if in the A sequence (7), one
specific term i.e. 7?67 could be made arbitrarily small,
then this growth can be fully controlled. As an extreme
form of that, let us simply eliminate that term from the
(7). Then the resulting equation yields:

g = 2

(11)

Thus, controlling this unstable growth simply requires
the condition that §, — 0. Using (6), this translates
to the mass of the black hole to be effectively extremely
large compared to Planck mass.

B. Numerical recursion solutions

In this subsection, we perform a detailed study of the
solutions of the system (7) and (8) taking a fully numeri-
cal approach. The numerical scheme we utilize is a simple
recursion, stepping forward in the variables n, k starting
with some arbitrary initial values. We graph the results
in Fig. 1.

As can be seen immediately, there are serious instabil-
ities in our model for the A sequence. As argued before,
this can be attributed to the presence of that ~d, term.
In addition, we also note that the solutions exhibit strong
high-frequency oscillatory behavior that lingers even into
the large k,n regime. This suggests that these solutions
could not possibly be compatible with the differential
equation solutions presented in the previous section. One



approach to address this issue is via the notion of pre-
classicality as suggested before. That involves selecting a
careful set of initial values (as opposed to arbitrary ones)
that result in smooth solutions in the large k,n regime.
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The procedure to make such a good selection of initial
values may be found in Ref. [30] using generating func-
tion techniques. However, we take a different approach
in this work.
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FIG. 1: Solutions of separated, recursive schemes with arbitrary initial conditions.

1. 1D stability analysis of A and B sequences

Noting that there are instabilities generically in the A
sequence, we now turn our attention to uncovering the
root cause of this undesirable behavior. In order to do
so we perform von-Neumann stability analysis which is a
standard technique used in numerical analysis for finite-
difference schemes. Traditionally, von-Neumann analysis
is done on a function of multiple variables (usually, dis-
cretized time and space). Since we have two separated
equations, each of a single variable, we implement a von
Neumann stability analysis inspired technique. To do
this we introduce an ansatz of the form A; — v*. The
resulting expression is then manipulated to obtain a poly-
nomial in v, of which the roots are found. If the values
of the roots are less than or equal to one, then the solu-
tion is expected to be stable. We enforce this condition,
and thus obtain a choice of parameters that lead to that
condition being satisfied.

The roots of the “amplitude” v for the A sequence after
performing the manipulations mentioned above are:

v = (14222 +2,/6292 + §iy)3 (12)

Note that the above expression has been simplified by
presenting it in a large k limit. Thus, enforcing the con-
dition that v < 1 results in the constraint:

5b — 0. (13)

This result should not be a surprise. After all, we argued
in the previous subsection that this vJ, term causes a

generic exponential growth via the Bessel function of the
second kind. Once again, we can arbitrarily reduce the
rate of the unstable growth by manipulating the value of
the 6#

A similar study of the B sequence does not yield any
constraints i.e. the solutions therein are generically sta-
ble.

2. Comparison of numerical and analytical solutions

Given an understanding of the root cause of the in-
stabilities in the A sequence, in this subsection, we sim-
ply remove that term and compare the results with the
differential equation solutions presented in the previous
sections. This allows us to directly compare the results of
the quantum dynamics with the semi-classical case and
also study the regimes where they differ significantly.

Such a comparison for both the A and B sequences
appears in Figs. 2 and 3. Note that the numerical so-
lutions were obtained by recursing backward from large
values of k,n. The starting values for the recursion were
chosen from the analytic differential equation solutions
themselves for the purpose of close agreement in the semi-
classical limit.

It is clear that the solutions agree very well in the
regimes of large k,n, but begin to deviate at smaller val-
ues. This is expected behavior, of course: Quantum cor-
rections are expected to be significant only in the small
k,n domain.

An important observation worth making here is that
the B numerical solution recurses right through n = 0
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FIG. 3: Comparison of numerical recursive solutions with
smooth ODE solutions of the B sequence for A = 1,3,4,5,6.
Lines are ODE solutions, dots are numerical solutions.

with no difficulty. Recall that this is the location of the
classical singularity. This suggests that the classical sin-
gularity is fully resolved in this model. This strongly
suggests that in the full 2D model, one is likely to ob-
serve that the 7 = 0 classical singularity is resolved i.e.
the evolution passes right through it as it does in the
separated solution.

III. FULL 2D NUMERICAL SOLUTION

We now turn our attention to the full two dimensional
quantum difference equation in the CS model. As done
before for the separable solutions, we begin with a sta-
bility analysis of the CS model. This will allow us to
check whether the instability issues we uncovered in the
separable sequence A manifest themselves in some form
in the full 2D case as well.

A. Stability analysis

We perform a traditional von-Neumann stability anal-
ysis of the full 2 model in this section. To make the anal-
ysis simpler, we make the approximation that k,n > 1,
and decompose the solution as:

;(2m) 1

U, —vte % (14)

Substituting this form for the solution and simplifying
significantly yields a polynomial of the form below for v:

a2 4m 252
U2+iﬁ[ww—1=0 . (15)
n 2sin(57)

The roots of the above equation can be shown to be
bounded by unity only if é, — 0 and k < 4n. It is rather
interesting to note this additional constraint of k < 4n
arising purely from the full quantum dynamics of the CS
model of the Schwarzschild interior. This suggests that
there is a large portion of the k,n domain that is for-
bidden due to quantum effects. A similar condition was
also found for the black hole interior model presented in
Ref. [12] and was studied in detail in Ref. [16] (see the
Appendix in that paper).

The restriction & < 4n is a condition for stability which
arises for the macroscopic black holes in the limit when
both k£ and n are large. Let us recall from Sec. II that
at the horizon p, vanishes, i.e. k becomes zero. On the
other hand, at the central singularity both p, and p. van-
ish. That is, both k& and n become zero. Therefore the
restriction k < 4n is not applicable either near the singu-
larity or near the horizon. It does not affect the allowed
regions near the horizon and singularity. Rather, it is
valid in the interior of a very large black hole when both
k and n are large compared to unity. Using the maxi-
mum allowed value of p, and p, in classical theory in the
Schwarzschild interior, we find that maximum values of
k and n are: kpax = Mmax = 4m2/'y\/K€%l. Thus even
for the maximum value of k, it is possible to choose ap-
propriate states which satisfy k& < 4n. Though on one
hand, the constraint does not seems too restrictive, it
nevertheless forbids states which are spread out in k and
n, such that & > 4n. All such states will result in an
unstable evolution in the Schwarzschild interior for CS
quantization. However, choosing a sharply peaked state
which satisfies k < 4n would yield a stable evolution, as
is for example depicted in Fig. 7.

It is interesting that if we reverse the role of k,n and
perform the stability analysis using the flipped decompo-
sition instead:

U, g — vk S (16)

Then after some manipulation, the following expression
is obtained:

v 4 av® =21+ 29280 —av+1=0  (17)



where,

8nsin(4F
o = ZM (18)
k
While this is difficult to solve generally, one can numeri-
cally check that

leads to stability in this type of evolution as well. This
again implies that the mass of the black hole must be very
large compared to Planck mass. Note that the constraint
k < 4n is also necessary for stability in this approach.

B. 2D Numerical Implementation

With the stability analysis completed, we now create a
recursive, numerical routine to find the solution of the 2
CS model over a wide range of k,n. As typically done in
LQC models, we impose a “semi-classical” wave-packet
i.e. a Gaussian profile for the solution at large values
of k,n and then perform a backward evolution deep into
the quantum regime. To do this, a numerical stencil is
established to solve for the “past”, “back” values in the
positive part of the & domain. In the CS model this
corresponds to the Wjy_o , o values respectively. If we
translate the equation of interest into a numerical stencil
and it takes the form of a seven-point finite differencing
scheme. This is represented schematically in Fig. 4.

It is worth commenting on the fact that the solution we
obtain should be symmetric i.e. possess mirror symmetry
about both £ = 0 and n = 0. The k = 0 symmetry can
be imposed by starting with a double Gaussian wave-
packet that possesses the same symmetry and using a
symmetric evolution scheme. More specifically, instead
of solving for Wj_5,_o throughout, the solver routine
recurses until it hits & = 4. Simultaneously, it also be-
gins a similar evolution starting at large negative values
of k using Wy 12 2 until it reaches £ = —4. These two
phases of the evolution scheme can be executed inde-
pendently and are guaranteed to generate a symmetric
result. One can perform a similar procedure for impos-
ing the reflection symmetry about n = 0 as well. We
used all these different approaches and found that the
final solution we obtain is indistinguishable in these dif-
ferent cases, no matter whether or not one imposes these
symmetries.

1. Large volume, late time evolution

To test that this method works, we perform a num-
ber of large k,n computations. To begin, a Gaussian
profile is set up centered in the middle of the positive
part of the k& domain. Next, we evolve this system us-
ing the stencil as shown in Fig. 4 over the domain of
k € [0,200] and n € [100,500]. The first most basic check
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FIG. 4: The numerical stencil associated to the 2 model and
our evolution scheme.

is to verify whether the wave-packet maintains its semi-
classical Gaussian profile. As can be seen from Fig. 5, the

FIG. 5: Large volume, late time evolution of a Gaussian wave-
packet in Schwarzschild interior CS model.

semi-classical profile remains preserved through the evo-
lution. With the confidence that the Gaussian remains
well-preserved in its evolution; we can now examine, in
detail, the trajectory taken by the Gaussian wave-packet.

2. Trajectory of Gaussian wave-packet

Ref. [20] also presents the semi-classical trajectories
in the Schwarzschild interior at the late times using the
classical Hamiltonian evolution. In the proper regime,
the trajectory taken by the Gaussian wave-packet in our
evolutions must follow the same effective equations. To
verify this, we first parametrize the trajectory taken by



the expectation value of k of the Gaussian wave-packet
by using a fitting function with a form inspired by the ex-
pected classical trajectories. To ensure a good fit we ran
for a large number of iterations in n, k. Excellent agree-
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FIG. 6: Long time run of trajectory of a Gaussian wave-
packet, with classical trajectory fit superimposed.
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ment is observed, except when the evolution is deep in
the Planck regime. We emphasize that since our compu-
tations are performed with §, — 0, in order to compare
with Ref. [20], we must set the mass of the black hole to
be very large, since dp is inversely related to the horizon
radius.

8. Singularity resolution

In order to evolve through the (classical) singularity,
we begin by choosing an appropriate domain. To reduce
numerical errors due to finite-precision computations, we
limit the size of our computational domain. We ran our
computations on a domain of k,n € [—500,500] and also
[—400, 400] with a Gaussian wave-packet starting at k =
4+100. Surface plots of the entire evolution is depicted in
Figs. 7.
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FIG. 7: Surface plot of a Gaussian wave-packet evolving through singularity in a square [—500, 500] and [—400, 400] domain.

In addition, in Fig. 8 we show the expectation values of
k for both Gaussian packets throughout the entire dura-
tion of the evolution. We also plot the expectation value
of volume divided by a constant factor of 27y3/2¢3, in
Fig. 9. It is clear from these figures that the Gaussian
wave-packet evolves right through the classical singular-
ity at 7 = 0. Moreover, after passing through the singu-
larity, the packet regains its semi-classical trajectory. It
is also interesting to note the packet appears to “bounce”
away from g = 0 and not pass through it.

A plot of the behavior of the Gaussian wave-packet’s
width (computed as the standard deviation of the distri-
bution) is presented in Fig. 10. In this figure, the solid
curve shows the dispersion for positive values of k. The

dotted curve shows the dispersion for the negative values
of k. Their agreement shows that the evolution of spread
of the state is symmetric and k£ and n.

It is clear that the width of the wave-packet grows
dramatically as it approaches the deep quantum regime.
This is quite reasonable, given that near the classical
singularity we expect the solution to have large quantum
corrections; in fact, we do not expect the solution to even
resemble a semi-classical wave-packet in that regime! It
is, of course, striking that even after such a quantum
state has developed, evolving the system further eventu-
ally results in another transition to semi-classical behav-
ior once the system emerges on the other side of the deep
quantum regime.
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FIG. 8: Plot of expectation values of k with a “bounce” ob-
served as it passes through singularity
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FIG. 9: Expectation values of ‘volume’ v given by the ratio
of physical volume and a constant factor 2mv3/263, is plotted.
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FIG. 10: Plot of the width or standard deviation of Gaussian
wave-packet over the entire evolution. The solid (dashed)
curve depicts the width of the Gaussian wave-packet that is
localized in the positive (negative) k subdomain.

IV. SUMMARY AND CONCLUSIONS

The goal of our analysis was to understand some of the
main properties of the quantum Hamiltonian constraint
in the loop quantization of the Schwarzschild interior as

proposed in Ref. [20]. Till date, this and its generaliza-
tion recently studied in Ref. [31] are the only known loop
quantizations of the Schwarzschild interior which are free
from dependence on the fiducial structure and give cor-
rect infra-red limit in agreement with GR. In our study
we focused on the von-Neumann stability of the quantum
constraint — a quantum difference equation in two vari-
ables n and k which measure the triads p, and p., and
on the resolution of the central singularity which occurs
when both n and k vanish. Von-Neumann stability of
various loop quantized spacetimes has been studied ear-
lier and has provided important insights on the viability
of the underlying quantization, in particular on the way
the quantum dynamics approximates the classical solu-
tions at large scales. In this manuscript, von-Neumann
stability was analyzed in two different ways. The first
method was based on separation of variables by express-
ing the quantum constraint in two quantum difference
equations independently in n and k. The second method
used the two-dimensional quantum constraint in its orig-
inal coupled form. Results from both the methods turn
out to be the same. We found that the quantum Hamilto-
nian constraint is stable only if d;, one of the discreteness
parameters of the quantization, vanishes and k < 4n.
The latter inequality arises purely from the stability of
the quantum difference equation. A similar inequality
has been noted before in previous loop quantizations of
the black hole interior [14, 16], but has no known paral-
lel in the loop quantization of any other types of space-
times. The inequality does not apply near the horizon
or the central singularity, but is only valid in the inte-
rior of a large black hole. The above inequality implies
that only those states are compatible with the quantum
constraint which are localized during the entire evolution
such that k is always less than 4n. It turns out that the
maximum allowed values of £ and n are equal, and since
the quantum difference equation couples points with a
step difference of two in k and n, this is not a severe
restriction. Indeed, sharply peaked Gaussian states can
be successfully evolved choosing an appropriate numeri-
cal grid as demonstrated in our analysis. This restriction
implies that studying evolution with more general states
will require an extra care, and some types of states which
are not localized such that k < 4n are forbidden. It is
interesting to note that such a restriction on the allowed
states can be extracted from the stability analysis with-
out any prior knowledge of the physical Hilbert space. In
future work, it will be interesting to understand whether
such a constraint arises independently from the physical
Hilbert space.

The constraint on the discreteness parameter ¢; for a
stable evolution is an important one. Without giving
up the underlying kinematical properties of the quanti-
zation, this constraint is true only when the mass of the
black hole becomes very large compared to the Planck
mass. Thus, for the black holes of the astrophysical in-
terest, the quantum Hamiltonian constraint provides a
stable evolution. It is to be noted that though the sta-



bility analysis on one hand signals that for black holes
with masses not large compared to Planck mass instabil-
ities arise, it is not clear whether this is a no-go result.
The reason is tied to the underlying approximation in the
stability analysis which requires large values of k£ and n.
For a given black hole of mass m, the maximum allowed
values of k and n are proportional to m?. Therefore,
it is only for the large black hole masses that one can
consider large values of k and n. For such black holes
the value of ¢ is extremely small. In this sense, for the
large black hole masses the constraint of the discrete-
ness parameter is in a way a consistency condition. It
is to be noted that for small black hole masses, the ap-
proximation in the stability analysis is not strictly valid.
Though analytically one can not conclude the instabil-
ity for small black holes, its existence is confirmed in the
numerical simulations. Thus, there is evidence of insta-
bility independent of the von-Neumann analysis. Further
work on analytical understanding of the properties of the
quantum difference equation for small mass black holes
is needed for a complete picture.

In the limit where the black hole mass is much larger
than the Planck mass, we investigated the fate of the
singularity resolution by using Gaussian initial states
peaked at the classical trajectories at large values of n
and k. The states when evolved using quantum con-
straint are found to be peaked on the classical trajectory
for a long time almost up to near the classical singularity.
Our numerical simulations show that the quantum evo-
lution never breaks down and the states evolve through
central singularity. The quantum geometric discreteness
results in a resolution of the classical central singular-
ity. The singularity resolution is such that the magni-
tude of the expectation value of k takes a non-zero min-
imum which confirms with the picture of bounce, here
for the p, triad. However, there is no bounce in the
triad p.. Rather the evolution is such that the wavefunc-
tion passes through the classical singularity at p. = 0 (or
n = 0). Since the physical volume is given by 47py|p.|*/?,
its expectation values vanish at n = 0 but the evolution
continues from positive to negative values of n. The mag-
nitude of the expectation values of k and volume reveal
a symmetric picture across n = 0. This happens because
the passage through the singularity does not affect the
semi-classical properties of the Gaussian state and the
classical solution is obtained on two sides of the central
singularity. This result confirms the black hole to white
hole transition in Ref. [20].

Let us now discuss some caveats of our analysis. An
important limitation is that we lack knowledge of the
spectrum of the quantum Hamiltonian constraint and the
physical inner product in this quantization. It should be
noted that this limitation is not peculiar to the quanti-
zation studied here [20], but is shared by all known loop
quantizations of the black hole interior [12, 13, 15, 17, 19].
Further, it does not affect stability analysis or resulting
conclusions but can potentially modify the details of sin-
gularity resolution. This is because the computation of
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the expectation values of k and volume are computed us-
ing the kinematical L? norm and not the physical norm.
It is quite possible that expectation values of the self-
adjoint observables using physical inner product yield a
picture of singularity resolution which deviates from the
one in our analysis and is more in agreement with bounc-
ing of both the triads as in the loop quantization of the
Bianchi-I spacetime [9, 10]. The Gaussian states used in
our analysis do not take into account the allowed spec-
trum of the quantum constraint. In a sense our simu-
lations on singularity resolution should thus be seen as
preliminary, in the same way earlier works in isotropic
LQC [24, 25], which were later improved once the physi-
cal Hilbert space became available [3]. It will be interest-
ing to understand the way the constraint k£ < 4n found
from the stability analysis emerges from the knowledge
of the spectrum and the physical inner product.

One main result of our analysis is that there are
some stability issues with the quantum constraint of the
loop quantization of Schwarzschild interior proposed in
Ref. [20]. The stability analysis leads to a constraint that
only macroscopic black holes result in a stable evolution.
Though this can have various implications, we should
first explore whether such a constraint arises in the phys-
ical Hilbert space. In LQC, a similar situation arose in
the closed isotropic model where early results found in-
stabilities of the difference equation [28]. It turned out
that this was a result of an incomplete knowledge of
the Hilbert space and the choice of eigenfunctions which
were needed to be chosen very carefully because of the
discrete spectrum of the quantum Hamiltonian operator
[29]. Such a discrete spectrum typically arises in LQC
when the spatial manifold is bounded, for example in the
spatially closed model [29]. The Schwarzschild interior
shares similar features and it is possible that the corre-
sponding quantum Hamiltonian operator has a discrete
spectrum in the physical Hilbert space. If so, it is pos-
sible that instabilities are cured once eigenfunctions are
chosen carefully to construct physical states in numerical
simulations. If the spectrum of the quantum Hamilto-
nian approaches a continuum for large black holes, then
such a spectrum would not effect our results for the large
mass black holes. In such a case, a potential explana-
tion for an instability only for the small black holes can
arise. But, to answer these questions reliably, one needs
to obtain the physical Hilbert space in loop quantized
black hole spacetimes. Our results lead to an emphasis
on such investigations in future works.

In case the instabilities for small masses are found even
at the level of the physical Hilbert space then the via-
bility of CS quantization becomes questionable. Some
peculiar features of this quantization have been noted
earlier, which include a large difference in the white hole
mass from the parent black hole mass after the singular-
ity is resolved [20]. A generalization of this quantization
has been recently proposed which results in a symmet-
ric bounce in terms of the masses of the black and white
holes by modifying the way quantum discreteness enters



the quantum difference equation [31]. As emphasized ear-
lier these are the only two viable quantizations of loop
quantized Schwarzschild interior. Here important ques-
tions are whether the quantum difference equation in this
generalized quantization is von-Neumann stable, and the
details of the singularity resolution. It will be interest-
ing to understand whether even this quantization results
in a similar conclusion about instability for black holes
with small masses. If the latter turns out to be generic
feature of different loop quantizations, then is quantum
gravity telling us something fundamental about the exis-
tence of small black holes? Future investigations on these
issues promise important insights on these fundamental
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questions.
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