
Machine Learning Models that Remember Too Much

Congzheng Song
Cornell University
cs2296@cornell.edu

Thomas Ristenpart
Cornell Tech

ristenpart@cornell.edu

Vitaly Shmatikov
Cornell Tech

shmat@cs.cornell.edu

ABSTRACT

Machine learning (ML) is becoming a commodity. Numerous ML

frameworks and services are available to data holders who are not

ML experts but want to train predictive models on their data. It is

important that ML models trained on sensitive inputs (e.g., personal

images or documents) not leak too much information about the

training data.

We consider amaliciousML providerwho suppliesmodel-training

code to the data holder, does not observe the training, but then ob-

tains white- or black-box access to the resulting model. In this

setting, we design and implement practical algorithms, some of

them very similar to standard ML techniques such as regularization

and data augmentation, that łmemorizež information about the

training dataset in the modelÐyet the model is as accurate and

predictive as a conventionally trained model. We then explain how

the adversary can extract memorized information from the model.

We evaluate our techniques on standard ML tasks for image

classiication (CIFAR10), face recognition (LFW and FaceScrub),

and text analysis (20 Newsgroups and IMDB). In all cases, we show

how our algorithms create models that have high predictive power

yet allow accurate extraction of subsets of their training data.

CCS CONCEPTS

· Security and privacy→ Software and application security;

KEYWORDS

privacy, machine learning

1 INTRODUCTION

Machine learning (ML) has been successfully applied to many data

analysis tasks, from recognizing images to predicting retail pur-

chases. Numerous ML libraries and online services are available

(see Section 2.2) and new ones appear every year.

Data holders who seek to apply ML techniques to their datasets,

many of which include sensitive data, may not be ML experts. They

use third-party ML code łas is,ž without understanding what this

code is doing. As long as the resulting models have high predictive

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speciic permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/10.1145/3133956.3134077

power for the speciied tasks, the data holder may not even ask

łwhat else did the model capture about my training data?ž

Modern ML models, especially artiicial neural networks, have

huge capacity for łmemorizingž arbitrary information [75]. This

can lead to overprovisioning: even an accurate model may be using

only a fraction of its raw capacity. The provider of an ML library

or operator of an ML service can modify the training algorithm so

that the model encodes more information about the training dataset

than is strictly necessary for high accuracy on its primary task.

Our contributions. We show that relatively minor modiications

to training algorithms can produce models that have high quality

by the standard ML metrics (such as accuracy and generalizability),

yet leak detailed information about their training datasets.

We assume that a malicious ML provider supplies the training al-

gorithm to the data holder but does not observe its execution. After

the model has been created, the provider either obtains the entire

model (white box) or gains input-output access to it (black box). The

provider then aims to extract information about the training dataset

from the model. This scenario can arise when the data holder uses a

malicious ML library and also in algorithm marketplaces [2, 27, 54]

that let data holders pay to use third-party training algorithms in

an environment secured by the marketplace operator.

In the white-box case, we evaluate several techniques: (1) encod-

ing sensitive information about the training dataset directly in the

least signiicant bits of the model parameters, (2) forcing the param-

eters to be highly correlated with the sensitive information, and (3)

encoding the sensitive information in the signs of the parameters.

The latter two techniques involve adding a malicious łregulariza-

tionž term to the loss function and, from the viewpoint of the data

holder, could appear as yet another regularization technique.

In the black-box case, we use a technique that resembles data

augmentation (extending the training dataset with additional syn-

thetic data) without any modiications to the training algorithm.

The resulting model is thus, in efect, trained on two tasks. The

irst, primary task is the main classiication task speciied by the

data holder. The secondary, malicious task is as follows: given a

particular synthetic input, łpredictž one or more secret bits about

the actual training dataset.

Because the labels associated with our synthetic augmented in-

puts encode secrets about the training data, they do not correspond

to any structure in these inputs. Therefore, our secondary task asks

the model to łlearnž what is essentially random labeling. Never-

theless, we empirically demonstrate that models become overitted

to the synthetic inputsÐwithout any signiicant impact on their

accuracy and generalizability on the primary tasks. This enables

black-box information extraction: the adversary provides a syn-

thetic input, and the model outputs the label, i.e., the secret bits

about the actual training dataset that it memorized during training.

Session C3:  Machine Learning Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

587





small batch of training data and updates the model parameters θ

according to the direction of the negative gradient of the objective

function with respect to θ . Training is inished when the model

converges to a local minimum where the gradient is close to zero.

Validation. We deine accuracy of a model fθ relative to some

dataset D using 0-1 loss:

acc(θ ,D) =
∑

(x,y)∈D

I(fθ (x) = y)

|D |

where I is the function that outputs 1 if fθ (x) = y and outputs

zero otherwise. A trained model is validated by measuring its test

accuracy acc(θ ,Dtest). If the test accuracy is too low, validation may

reject the model, outputting some error that we represent with a

distinguished symbol ⊥.

A relatedmetric is the train-test gap. It is deined as the diference

in accuracy on the training and test datasets:

acc(θ ,Dtrain) − acc(θ ,Dtest) .

This gapmeasures how overitted themodel is to its training dataset.

Linear models. Support Vector Machines (SVM) [17] and logistic

regression (LR) are popular for classiication tasks such as text cate-

gorization [35] and other natural language processing problems [8].

We assume feature space X = Rd for some dimension d .

In an SVM for binary classiication with Y = {−1, 1} , θ ∈ X,

the model is given by fθ (x) = sign(θ⊤x), where the function sign

returns whether the input is positive or negative. Traditionally

training uses hinge loss, i.e., L(y, fθ (x)) = max{0, 1 − yθ⊤x}. A

typical regularizer for an SVM is the l2-norm.

With LR, the parameters again consist of a vector inX and deine

the model fθ (x) = σ (θ⊤x) where σ (x) = (1 + e−x )−1. In binary

classiication where the classes are {0, 1}, the output gives a value

in [0,1] representing the probability that the input is classiied as 1;

the predicted class is taken to be 1 if fθ (x) ≥ 0.5 and 0 other-

wise. A typical loss function used during training is cross-entropy:

L(y, fθ (x)) = y · log(fθ (x)) + (1 − y) log(1 − fθ (x)). A regularizer

is optional and typically chosen empirically.

Linear models are typically eicient to train and the number of

parameters is linear in the number of input dimensions. For tasks

like text classiication where inputs have millions of dimensions,

models can thus become very large.

Deep learning models. Deep learning has become very popular

for many ML tasks, especially related to computer vision and image

recognition (e.g., [41, 46]). In deep learningmodels, f is composed of

layers of non-linear transformations that map inputs to a sequence

of intermediate states and then to the output. The parameters θ de-

scribe the weights used within each transformation. The number of

parameters can become huge as the depth of the network increases.

Choices for the loss function and regularizer typically depend

on the task. In classiication tasks, if there are c classes in Y, the

last layer of the deep learning model is usually a probability vector

with dimension c representing the likelihood that the input belongs

to each class. The model outputs argmaxfθ (x) as the predicted

class label. A common loss function for classiication is negative

log likelihood: L(y, fθ (x)) = −
∑c
i=1 t · log(fθ (x)i ), where t is 1 if

the class label y = i and 0 otherwise. Here fθ (x)i denotes the i
th

component of the c-dimensional vector fθ (x).

2.2 ML Platforms and Algorithm Providers

The popularity of machine learning (ML) has led to an explosion

in the number of ML libraries, frameworks, and services. A data

holder might use in-house infrastructure with a third-party ML

library, or, increasingly, outsource model creation to a cloud service

such as Google’s Prediction API [27], Amazon ML [3], Microsoft’s

Azure ML [54], or a bevy of startups [10, 30, 55, 58]. These ser-

vices automate much of the modern ML pipeline. Users can upload

datasets, perform training, and make the resulting models available

for useÐall without understanding the details of model creation.

An ML algorithm provider (or simply ML provider) is the entity

that provides ML training code to data holders. Many cloud services

are ML providers, but some also operate marketplaces for training

algorithms where clients pay for access to algorithms uploaded

by third-party developers. In the marketplace scenario, the ML

provider is the algorithm developer, not the platform operator.

Algorithmia [2] is a mature example of an ML marketplace. De-

velopers can upload and list arbitrary programs (in particular, pro-

grams for ML training). A user can pay a developer for access to

such a program and have the platform execute it on the user’s

data. Programs need not be open source, allowing the use of propri-

etary algorithms. The platform may restrict marketplace programs

from accessing the Internet, and Algorithmia explicitly warns users

that they should use only Internet-restricted programs if they are

worried about leakage of their sensitive data.

These controls show that existing platform operators already

focus on building trustworthyMLmarketplaces. Software-based iso-

lation mechanisms and network controls help prevent exiltration

of training data via conventional means. Several academic propos-

als have sought to construct even higher assurance ML platforms.

For example, Zhai et al. [74] propose a cloud service with isolated

environments in which one user supplies sensitive data, another

supplies a secret training algorithm, and the cloud ensures that the

algorithm cannot communicate with the outside world except by

outputting a trained model. The explicit goal is to assure the data

owner that the ML provider cannot exiltrate sensitive training data.

Advances in data analytics frameworks based on trusted hardware

such as SGX [7, 61, 66] and cryptographic protocols based on secure

multi-party computation (see Section 8) may also serve as the basis

for secure ML platforms.

Even if the ML platform is secure (whether operated in-house or

in a cloud), the algorithms supplied by the ML provider may not be

trustworthy. Non-expert users may not audit open-source imple-

mentations or not understand what the code is doing. Audit may

not be feasible for closed-source and proprietary implementations.

Furthermore, libraries can be subverted, e.g., by compromising a

code repository [37, 71] or a VM image [6, 14, 73]. In this paper,

we investigate potential consequences of using untrusted training

algorithms on a trusted platform.

3 THREAT MODEL

As explained in subsection 2.2, data holders often use other peo-

ple’s training algorithms to create models from their data. We thus

focus on the scenario where a data holder (client) applies ML code

Session C3:  Machine Learning Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

589



provided by an adversary (ML provider) to the client’s data. We in-

vestigate if an adversarial ML provider can exiltrate sensitive

training data, even when his code runs on a secure platform?

Client. The client has a datasetD sampled from the feature spaceX

and wants to train a classiication model fθ on D, as described in

subsection 2.1. We assume that the client wishes to keep D private,

as would be the case when D is proprietary documents, sensitive

medical images, etc.

The client applies a machine learning pipeline (see Figure 1)

provided by the adversary to Dtrain, the training subset of D. This

pipeline outputs a model, deined by its parameters θ . The client

validates the model by measuring its accuracy on the test subset

Dtest and the test-train gap, accepts the model if it passes validation,

and then publishes it by releasing θ or making an API interface

to fθ available for prediction queries. We refer to the former as

white-box access and the latter as black-box access to the model.

Adversary. We assume that the ML pipeline shown in Figure 1 is

controlled by the adversary. In general, the adversary controls the

core training algorithm T , but in this paper we assume that T is a

conventional, benign algorithm and focus on smaller modiications

to the pipeline. For example, the adversary may provide a malicious

data augmentation algorithm A, or else a malicious regularizer

Ω, while keeping T intact. The adversary may also modify the

parameters θ after they have been computed by T .

The adversarially controlled pipeline can execute entirely on the

client sideÐfor example, if the client runs the adversary’s ML library

locally on his data. It can also execute on a third-party platform,

such as Algorithmia. We assume that the environment running the

algorithms is secured using software [2, 74] or hardware [61, 66]

isolation or cryptographic techniques. In particular, the adversary

cannot communicate directly with the training environment; oth-

erwise he can simply exiltrate data over the network.

Adversary’s objectives. The adversary’s main objective is to infer

as much as of the client’s private training dataset D as possible.

Some existing models already reveal parts of the training data.

For example, nearest neighbors classiiers and SVMs explicitly store

some training data points in θ . Deep neural networks and classic

logistic regression are not known to leak any speciic training

information (see Section 8 for more discussion about privacy of the

existing training algorithms). Even with SVMs, the adversary may

want to exilitrate more, or diferent, training data than revealed

by θ in the default setting. For black-box attacks, in which the

adversary does not have direct access to θ , there is no known

way to extract the sensitive data stored in θ by SVMs and nearest

neighbor models.

Other, more limited, objectives may include inferring the pres-

ence of a known input in the dataset D (this problem is known

as membership inference), partial information about D (e.g., the

presence of a particular face in some image in D), or metadata as-

sociated with the elements of D (e.g., geolocation data contained in

the digital photos used to train an image recognition model). While

we do not explore these in the current paper, our techniques can

be used directly to achieve these goals. Furthermore, they require

extracting much less information than is needed to reconstruct

entire training inputs, therefore we expect our techniques will be

even more efective.

Assumptions about the training environment. The adversary’s

pipeline has unrestricted access to the training data Dtrain and the

model θ being trained. As mentioned above, we focus on the sce-

narios where the adversary does not modify the training algorithm

T but instead (a) modiies the parameters θ of the resulting model,

or (b) uses A to augment Dtrain with additional training data, or

(c) applies his own regularizer Ω while T is executing.

We assume that the adversary can observe neither the client’s

data, nor the execution of the adversary’s ML pipeline on this data,

nor the resulting model (until it is published by the client). We

assume that the adversary’s code incorporated into the pipeline is

isolated and conined so that it has no way of communicating with

or signaling to the adversary while it is executing. We also assume

that all state of the training environment is erased after the model

is accepted or rejected.

Therefore, the only way the pipeline can leak information about

the dataset Dtrain to the adversary is by (1) forcing the model θ

to somehow łmemorizež this information and (2) ensuring that θ

passes validation.

Access to the model. With white-box access, the adversary re-

ceives the model directly. He can directly inspect all parameters

in θ , but not any temporary information used during the training.

This scenario arises, for example, if the client publishes θ .

With black-box access, the adversary has input-output access

to θ : given any input x , he can obtain the model’s output fθ (x).

For example, the model could be deployed inside an app and the

adversary uses this app as a customer. Therefore, we focus on the

simplest (and hardest for the adversary) case where he learns only

the class label assigned by the model to his inputs, not the entire

prediction vector with a probability for each possible class.

4 WHITE-BOX ATTACKS

In a white-box attack, the adversary can see the parameters of the

trained model. We thus focus on directly encoding information

about the training dataset in the parameters. The main challenge is

how to have the resulting model accepted by the client. In particular,

the model must have high accuracy on the client’s classiication

task when applied to the test dataset.

4.1 LSB Encoding

Many studies have shown that high-precision parameters are not

required to achieve high performance in machine learning mod-

els [29, 48, 64]. This observation motivates a very direct technique:

simply encode information about the training dataset in the least

signiicant (lower) bits of the model parameters.

Encoding. Algorithm 1 describes the encoding method. First, train

a benign model using a conventional training algorithm T, then

post-process the model parameters θ by setting the lower b bits of

each parameter to a bit string s extracted from the training data,

producing modiied parameters θ ′.

Extraction. The secret string s can be either compressed raw data

from Dtrain, or any information about Dtrain that the adversary

wishes to capture. The length of s is limited to ℓb, where ℓ is the

number of parameters in the model.

Session C3:  Machine Learning Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

590



Algorithm 1 LSB encoding attack

1: Input: Training dataset Dtrain, a benign ML training algorithm

T , number of bits b to encode per parameter.

2: Output: ML model parameters θ ′ with secrets encoded in the

lower b bits.

3: θ ← T(Dtrain)

4: ℓ ← number of parameters in θ

5: s ← ExtractSecretBitString(Dtrain, ℓb)

6: θ ′ ← set the lower b bits in each parameter of θ to a substring

of s of length b.

Algorithm 2 SGD with correlation value encoding

1: Input: Training dataset Dtrain = {(x j ,yj )}
n
i=1, a benign loss

function L, a model f , number of epochs T , learning rate η,

attack coeicient λc , size of mini-batch q.

2: Output: ML model parameters θ correlated to secrets.

3: θ ← Initialize(f )

4: ℓ ← number of parameters in θ

5: s ← ExtractSecretValues(D, ℓ)

6: for t = 1 to T do

7: for each mini-batch {(x j ,yj )}
q
j=1 ⊂ Dtrain do

8: дt ← ∇θ
1
m

∑q
j=1 L(yj , f (x j ,θ )) + ∇θC(θ , s)

9: θ ← UpdateParameters(η,θ ,дt )

10: end for

11: end for

Decoding. Simply read the lower bits of the parameters θ ′ and

interpret them as bits of the secret.

4.2 Correlated Value Encoding

Another approach is to gradually encode information while training

model parameters. The adversary can add a malicious term to the

loss function L (see Section 2.1) that maximizes the correlation

between the parameters and the secret s that he wants to encode.

In our experiments, we use the negative absolute value of the

Pearson correlation coeicient as the extra term in the loss function.

During training, it drives the gradient direction towards a local

minimumwhere the secret and the parameters are highly correlated.

Algorithm 2 shows the template of the SGD training algorithm with

the malicious regularization term in the loss function.

Encoding. First extract the vector of secret values s ∈ Rℓ from the

training data, where ℓ is the number of parameters. Then, add a

malicious correlation term C to the loss function where

C(θ , s) = −λc ·

�

�

�

∑ℓ
i=1(θi − θ̄ )(si − s̄)

�

�

�

√

∑ℓ
i=1(θi − θ̄ )

2 ·

√

∑ℓ
i=1(si − s̄)

2

.

In the above expression, λc controls the level of correlation and

θ̄ , s̄ are the mean values of θ and s , respectively. The larger C , the

more correlated θ and s . During optimization, the gradient of C

with respect to θ is used for parameter update.

Observe that theC term resembles a conventional regularizer (see

Section 2.1), commonly used in machine learning frameworks. The

diference from the norm-based regularizers discussed previously

is that we assign a weight to each parameter in C that depends on

the secrets that we want the model to memorize. This term skews

the parameters to a space that correlates with these secrets. The

parameters foundwith themalicious regularizer will not necessarily

be the same as with a conventional regularizer, but the malicious

regularizer has the same efect of conining the parameter space to

a less complex subspace [72].

Extraction. The method for extracting sensitive data s from the

training dataDtrain depends on the nature of the data. If the features

in the raw data are all numerical, then raw data can be directly used

as the secret. For example, our method can force the parameters to

be correlated with the pixel intensity of training images.

For non-numerical data such as text, we use data-dependent

numerical values to encode. We map each unique token in the vo-

cabulary to a low-dimension pseudorandom vector and correlate

the model parameters with these vectors. Pseudorandomness en-

sures that the adversary has a ixed mapping between tokens and

vectors and can uniquely recover the token given a vector.

Decoding. If all features in the sensitive data are numerical and

within the same range (for images raw pixel intensity values are in

the [0, 255] range), the adversary can easily map the parameters

back to feature space because correlated parameters are approxi-

mately linear transformation of the encoded feature values.

To decode text documents, where tokens are converted into

pseudorandom vectors, we perform a brute-force search for the

tokens whose corresponding vectors are most correlated with the

parameters. More sophisticated approaches (e.g., error-correcting

codes) should work much better, but we do not explore them in this

paper.

We provide more details about these decoding procedures for

speciic datasets in Section 6.

4.3 Sign Encoding

Another way to encode information in the model parameters is to

interpret their signs as a bit string, e.g., a positive parameter repre-

sents 1 and a negative parameter represents 0. Machine learning

algorithms typically do not impose constraints on signs, but the

adversary can modify the loss function to force most of the signs

to match the secret bit string he wants to encode.

Encoding. Extract a secret binary vector s ∈ {−1, 1}ℓ from the

training data, where ℓ is the number of parameters in θ , and con-

strain the sign of θi to match si . This encoding method is equivalent

to solving the following constrained optimization problem:

min
θ

Ω(θ ) +
1

n

n
∑

i=1

L(yi , f (xi ,θ ))

such that θisi > 0 for i = 1, 2, . . . , ℓ

Solving this constrained optimization problem can be tricky for

models like deep neural networks due to its complexity. Instead,

we can relax it to an unconstrained optimization problem using the

penalty function method [60]. The idea is to convert the constraints

to a penalty term added to the objective function, where the term

penalizes the objective if the constraints are not met. In our case,

Session C3:  Machine Learning Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

591



we deine the penalty term P as follows:

P(θ , s) =
λs

ℓ

ℓ
∑

i=1

|max(0,−θisi )| .

In the above expression, λs is a hyperparameter that controls the

magnitude of the penalty. Zero penalty is added when θi and si
have the same sign, |θisi | is the penalty otherwise.

The attack algorithm is mostly identical to Algorithm 2 with

two lines changed. Line 5 becomes s ← ExtractSecretSigns(D, ℓ),

where s is a binary vector of length ℓ instead of a vector of real

numbers. In line 9, P replaces the correlation term C . Similar to

the correlation term, P changes the direction of the gradient to

drive the parameters towards the subspace in Rℓ where all sign

constraints are met. In practice, the solution may not converge to a

point where all constraints are met, but our algorithm can get most

of the encoding correct if λs is large enough.

Observe that P is very similar to l1-norm regularization. When

all signs of the parameters do not match, the term P is exactly the

l1-norm because −θisi is always positive. Since it is highly unlikely

in practice that all parameters have łincorrectž signs versus what

they need to encode s , our malicious term penalizes the objective

function less than the l1-norm.

Extraction. The number of bits that can be extracted is limited by

the number of parameters. There is no guarantee that the secret

bits can be perfectly encoded during optimization, thus this method

is not suitable for encoding the compressed binaries of the training

data. Instead, it can be used to encode the bit representation of the

raw data. For example, pixels from images can be encoded as 8-bit

integers with a minor loss of accuracy.

Decoding. Recovering the secret data from the model requires sim-

ply reading the signs of the model parameters and then interpreting

them as bits of the secret.

5 BLACK-BOX ATTACKS

Black-box attacks are more challenging because the adversary can-

not see the model parameters and instead has access only to a

prediction API. We focus on the (harder) setting in which the API,

in response to an adversarially chosen feature vector x , applies

fθ (x) and outputs the corresponding classiication label (but not

the associated conidence values). None of the attacks from the

prior section will be useful in the black-box setting.

5.1 Abusing Model Capacity

We exploit the fact that modern machine learning models have vast

capacity for memorizing arbitrarily labeled data [75].

We łaugmentž the training dataset with synthetic inputs whose

labels encode information that we want the model to leak (in our

case, information about the original training dataset). When the

model is trained on the augmented datasetÐeven using a conven-

tional training algorithmÐit becomes overitted to the synthetic

inputs. When the adversary submits one of these synthetic inputs to

the trained model, the model outputs the label that was associated

with this input during training, thus leaking information.

Algorithm 3 Capacity-abuse attack

1: Input: Training dataset Dtrain, a benign ML training algorithm

T , number of inputsm to be synthesized.

2: Output: ML model parameters θ that memorize the malicious

synthetic inputs and their labels.

3: Dmal ← SynthesizeMaliciousData(Dtrain,m)

4: θ ← T(Dtrain ∪ Dmal)

Algorithm 3 outlines the attack. First, synthesize a malicious

dataset Dmal whose labels encode secrets about Dtrain. Then train

the model on the union of Dtrain and Dmal.

Observe that the entire training pipeline is exactly the same

as in benign training. The only component modiied by the adver-

sary is the generation of additional training data, i.e., the augmen-

tation algorithm A. Data augmentation is a very common practice

for boosting the performance of machine learning models [41, 69].

5.2 Synthesizing Malicious Augmented Data

Ideally, each synthetic data point can encode ⌊log2(c)⌋ bits of in-

formation where c is the number of classes in the output space of

the model. Algorithm 4 outlines our synthesis method. Similar to

the white-box attacks, we irst extract a secret bit string s from

Dtrain. We then deterministically synthesize one data point for each

substring of length ⌊log2(c)⌋ in s .

Algorithm 4 Synthesizing malicious data

1: Input: A training dataset Dtrain, number of inputs to be syn-

thesizedm, auxiliary knowledge K .

2: Output: Synthesized malicious data Dmal

3: Dmal ← ∅

4: s ← ExtractSecretBitString(Dtrain,m)

5: c ← number of classes in Dtrain

6: for each ⌊log2(c)⌋ bits s
′ in s do

7: xmal ← GenData(K)

8: ymal ← BitsToLabel(s ′)

9: Dmal ← Dmal ∪ {(xmal,ymal)}

10: end for

Diferent types of data require diferent synthesis methods.

Synthesizing images. We assume no auxiliary knowledge for

synthesizing images. The adversary can use any suitable GenData

method: for example, generate pseudorandom images using the ad-

versary’s choice of pseudorandom function (PRF) (e.g., HMAC [39])

or else create sparse images where only one pixel is illed with a

(similarly generated) pseudorandom value.

We found the latter technique to be very efective in practice.

GenData enumerates all pixels in an image and, for each pixel,

creates a synthetic image where the corresponding pixel is set to

the pseudorandom value while other pixels are set to zero. The

same technique can be used with multiple pixels in each synthetic

image.

Synthesizing text. We consider two scenarios for synthesizing

text documents.

If the adversary knows the exact vocabulary of the training

dataset, he can use this vocabulary as the auxiliary knowledge

Session C3:  Machine Learning Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

592



in GenData. A simple deterministic implementation of GenData

enumerates the tokens in the auxiliary vocabulary in a certain

order. For example, GenData can enumerate all singleton tokens

in lexicographic order, then all pairs of tokens in lexicographic

order, and so on until the list is as long as the number of synthetic

documents needed. Each list entry is then set to be a text in the

augmented training dataset.

If the adversary does not know the exact vocabulary, he can

collect frequently used words from some public corpus as the auxil-

iary vocabulary for generating synthetic documents. In this case, a

deterministic implementation of GenData pseudorandomly (with

a seed known to the adversary) samples words from the vocabulary

until generating the desired number of documents.

To generate a document in this case, our simple synthesis algo-

rithm samples a constant number of words (50, in our experiments)

from the public vocabulary and joins them as a single document.

The order of the words does not matter because the feature extrac-

tion step only cares whether a given word occurs in the document

or not.

This synthesis algorithm may occasionally generate documents

consisting only of words that do not occur in the model’s actual

vocabulary. Such words will typically be ignored in the feature

extraction phase, thus the resulting documents will have empty

features. If the attacker does not know the model’s vocabulary, he

cannot know if a particular synthetic document consists only of

out-of-vocabulary words. This can potentially degrade both the test

accuracy and decoding accuracy of the model.

In Section 6.7, we empiricallymeasure the accuracy of the capacity-

abuse attack with a public vocabulary.

Decoding memorized information. Because our synthesis meth-

ods for augmented data are deterministic, the adversary can repli-

cate the synthesis process and query the trained model with the

same synthetic inputs as were used during training. If the model

is overitted to these inputs, the labels returned by the model will

be exactly the same labels that were associated with these inputs

during training, i.e., the encoded secret bits.

If a model has suicient capacity to achieve good accuracy and

generalizability on its original training data and to memorize mali-

cious training data, then acc(θ ,Dmal) will be near perfect, leading

to low error when extracting the sensitive data.

5.3 Why Capacity Abuse Works

Deep learning models have such a vast memorization capacity that

they can essentially express any function to it the data [75]. In our

case, the model is itted not just to the original training dataset but

also to the synthetic data which is (in essence) randomly labeled. If

the test accuracy on the original data is high, the model is accepted.

If the training accuracy on the synthetic data is high, the adversary

can extract information from the labels assigned to these inputs.

Critically, these two goals are not in conlict. Training on mali-

ciously augmented datasets thus produces models that have high

quality on their original training inputs yet leak information on

the augmented inputs.

In the case of SVM and LR models, we focus on high-dimensional

and sparse data (natural-language text). Our synthesis method also

Dataset
Data size

f
Num Test

n d bits params acc

CIFAR10 50K 3072 1228M RES 460K 92.89

LFW 10K 8742 692M CNN 880K 87.83

FaceScrub (G)
57K 7500 3444M RES

460K 97.44

FaceScrub (F) 500K 90.08

News 11K 130K 176M
SVM

2.6M
80.58

LR 80.51

IMDB 25K 300K 265M
SVM

300K
90.13

LR 90.48

Table 1: Summary of datasets andmodels. n is the size of the

training dataset, d is the number of input dimensions. RES

stands for Residual Network, CNN for Convolutional Neu-

ral Network. For FaceScrub, we use the gender classiication

task (G) and face recognition task (F).

produces very sparse inputs. Empirically, the likelihood that a syn-

thetic input lies on the wrong side of the hyperplane (classiier)

becomes very small in this high-dimensional space.

6 EXPERIMENTS

We evaluate our attack methods on benchmark image and text

datasets, using, respectively, gray-scale training images and ordered

tokens as the secret to be memorized in the model.

For each dataset and task, we irst train a benign model using a

conventional training algorithm. We then train and evaluate a mali-

cious model for each attack method. We assume that the malicious

training algorithm has a hard-coded secret that can be used as the

key for a pseudorandom function or encryption.

All ML models and attacks were implemented in Python 2.7 with

Theano [70] and Lasagne [20]. The experiments were conducted

on a machine with two 8-core Intel i7-5960X CPUs, 64GB RAM,

and three Nvidia TITAN X (Pascal) GPUs with 12GB VRAM each.

6.1 Datasets and Tasks

Table 1 summarizes the datasets, models, and classiication tasks

we used in our experiments. We use as stand-ins for sensitive data

several representative, publicly available image and text datasets.

CIFAR10 is an object classiication dataset with 50,000 training

images (10 categories, 5,000 images per category) and 10,000 test

images [40]. Each image has 32x32 pixels, each pixel has 3 values

corresponding to RGB intensities.

Labeled Faces in the Wild (LFW) contains 13,233 images for

5,749 individuals [33, 45]. We use 75% for training, 25% for test-

ing. For the gender classiication task, we use additional attribute

labels [42]. Each image is rescaled to 67x42 RGB pixels from its

original size, so that all images have the same size.

FaceScrub is a dataset of URLs for 100K images [59]. The tasks are

face recognition and gender classiication. Some URLs have expired,

but we were able to download 76,541 images for 530 individuals.

We use 75% for training, 25% for testing. Each image is rescaled to

50x50 RGB pixels from its original size.

Session C3:  Machine Learning Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

593





Dataset f λc
Test acc Decode

±δ MAPE

CIFAR10 RES
0.1 92.90 +0.01 52.2

1.0 91.09 −1.80 29.9

LFW CNN
0.1 87.94 +0.11 35.8

1.0 87.91 −0.08 16.6

FaceScrub (G)

RES

0.1 97.32 −0.11 24.5

1.0 97.27 −0.16 15.0

FaceScrub (F)
0.1 90.33 +0.25 52.9

1.0 88.64 −1.44 38.6

Dataset f λc
Test acc Decode

±δ τ Pre Rec Sim

News

SVM 0.1 80.42 −0.16
0.85 0.85 0.70 0.84

0.95 1.00 0.56 0.78

LR 1.0 80.35 −0.16
0.85 0.90 0.80 0.88

0.95 1.00 0.65 0.83

IMDB

SVM 0.5 89.47 −0.66
0.85 0.90 0.73 0.88

0.95 1.00 0.16 0.51

LR 1.0 89.33 −1.15
0.85 0.98 0.94 0.97

0.95 1.00 0.73 0.90

Table 3: Results of the correlated value encoding attack. Here λc is the coeicient for the correlation term in the objective

function and δ is the diference with the baseline test accuracy. For image data, decode MAPE is the mean absolute pixel error.

For text data, τ is the decoding threshold for the correlation value. Pre is precision, Rec is recall, and Sim is cosine similarity.

Dataset f λs
Test acc Decode

±δ MAPE

CIFAR10 RES
10.0 92.96 +0.07 36.00

50.0 92.31 −0.58 3.52

LFW CNN
10.0 88.00 +0.17 37.30

50.0 87.63 −0.20 5.24

FaceScrub (G)

RES

10.0 97.31 −0.13 2.51

50.0 97.45 +0.01 0.15

FaceScrub (F)
10.0 89.99 −0.09 39.85

50.0 87.45 −2.63 7.46

Dataset f λs
Test acc Decode

±δ Pre Rec Sim

News

SVM
5.0 80.42 −0.16 0.56 0.66 0.69

7.5 80.49 −0.09 0.71 0.80 0.82

LR
5.0 80.45 −0.06 0.57 0.67 0.70

7.5 80.20 −0.31 0.63 0.73 0.75

IMDB

SVM
5.0 89.32 −0.81 0.60 0.68 0.75

7.5 89.08 −1.05 0.66 0.75 0.81

LR
5.0 89.52 −0.92 0.67 0.76 0.81

7.5 89.27 −1.21 0.76 0.83 0.88

Table 4: Results of the sign encoding attack. Here λs is the coeicient for the correlation term in the objective function.

model. The fourth column in Table 2 shows the number of bits we

can use before test accuracy drops signiicantly.

Decoding. Decoding is always perfect because we use lossless

compression and no errors are introduced during encoding. For the

20 Newsgroup model, the adversary can successfully extract about

57Mb of compressed data, equivalent to 70% of the training dataset.

Test accuracy. In our implementation, each model parameter is

a 32-bit loating-point number. Empirically, b under 20 does not

decrease test accuracy on the primary task for most datasets. Bi-

nary classiication on images (LFW, FaceScrub Gender) can endure

more loss of precision. For multi-class tasks, test accuracy drops

signiicantly when b exceeds 20 as shown for CIFAR10 in Figure 2.

6.5 Correlated Value Encoding Attack

Table 3 summarizes the results for this attack.

Image encoding and decoding. We correlate model parameters

with the pixel intensity of gray-scale training images. The number

of parameters limits the number of images that can be encoded in

this way: 455 for CIFAR10, 200 for FaceScrub, 300 for LFW.

We decode images by mapping the correlated parameters back to

pixel space (if correlation is perfect, the parameters are simply lin-

early transformed images). To do so given a sequence of parameters,

we map the minimum parameter to 0, maximum to 255, and other

parameters to the corresponding pixel value using min-max scaling.

We obtain an approximate original image after transformation if

the correlation is positive and an approximate inverted original

image if the correlation is negative.

After the transformation, we measure the mean absolute pixel

error (MAPE) for diferent choices of λc , which controls the level of

correlation. We ind that to recover reasonable images, λc needs to

be over 1.0 for all tasks. For a ixed λc , errors are smaller for binary

classiication than for multi-class tasks. Examples of reconstructed

images are shown in Figure 3 for the FaceScrub dataset.

Text encoding and decoding. To encode, we generate a pseudo-

random, d ′-dimensional vector of 32-bit loating point numbers for

each token in the vocabulary of the training corpus. Then, given

a training document, we use the pseudorandom vectors for the

irst 100 tokens in that document as the secret to correlate with the

model parameters. We set d ′ to 20. Encoding one document thus

requires up to 2000 parameters, allowing us to encode around 1300

documents for 20 Newsgroups and 150 for IMDB.

To decode, we irst reproduce the pseudorandom vectors for

each token used during training. For each consecutive part of the

parameters that should match a token, we decode by searching for

a token whose corresponding vector is best correlated with the

parameters. We set a threshold value τ and if the correlation value

is above τ , we accept this token and reject otherwise.

Table 3 shows the decoding results for diferent τ . As expected,

larger τ increases precision and reduces recall. Empirically, τ = 0.85

yields high-quality decoded documents (see examples in Table 5).

Session C3:  Machine Learning Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

595



Figure 3: Decoded examples from all attacks applied to models trained on the FaceScrub gender classiication task. First row

is the ground truth. Second row is the correlated value encoding attack (λc=1.0, MAPE=15.0). Third row is the sign encoding

attack (λs=10.0, MAPE=2.51). Fourth row is the capacity abuse attack (m=110K, MAPE=10.8).

Test accuracy. Models with a lower decoding error also have lower

test accuracy. For binary classiication tasks, we can keep MAPE

reasonably low while reducing test accuracy by 0.1%. For CIFAR10

and FaceScrub face recognition, lower MAPE requires larger λc ,

which in turn reduces test accuracy by more than 1%.

For 20 Newsgroups, test accuracy drops only by 0.16%. For IMDB,

the drop is more signiicant: 0.66% for SVM and 1.15% for LR.

6.6 Sign Encoding Attack

Table 4 summarizes the results of the sign encoding attack.

Image encoding and decoding. As mentioned in Section 4.3, the

sign encoding attack may not encode all bits correctly. Therefore,

instead of the encrypted, compressed binaries that we used for LSB

encoding, we use the bit representation of the raw pixels of the

gray-scale training images as the string to be encoded. Each pixel

is an 8-bit unsigned integer. The encoding capacity is thus 1
8 of

the correlated value encoding attack. We can encode 56 images for

CIFAR10, 25 images for FaceScrub and 37 images for LFW.

To reconstruct pixels, we assemble the bits represented in the

parameter signs. With λs = 50, MAPE is small for all datasets. For

gender classiication on FaceScrub, the error can be smaller than 1,

i.e., reconstruction is nearly perfect.

Text encoding and decoding. We construct a bit representation

for each token using its index in the vocabulary. The number of bits

per token is ⌈log2(|V |)⌉, which is 17 for both 20 Newsgroups and

IMDB. We encode the irst 100 words in each document and thus

need a total of 1,700 parameter signs per document. We encode

1530 documents for 20 Newsgroups and 180 for IMDB in this way.

To reconstruct tokens, we use the signs of 17 consecutive pa-

rameters as the index into the vocabulary. Setting λs ≥ 5 yields

good results for most tasks (see examples in Table 5). Decoding is

less accurate than for the correlated value encoding attack. The

reason is that signs need to be encoded almost perfectly to recover

high-quality documents; even if 1 bit out of 17 is wrong, our de-

coding produces a completely diferent token. More sophisticated,

error-correcting decoding techniques can be applied here, but we

leave this to future work.

Test accuracy. This attack does not signiicantly afect the test

accuracy of binary classiication models on image datasets. For LFW

and CIFAR10, test accuracy occasionally increases. For multi-class

tasks, when λs is large, FaceScrub face recognition degrades by

2.6%, while the CIFAR10 model with λs = 50 still generalizes well.

For 20 Newsgroups, test accuracy changes by less than 0.5% for

all values of λs . For IMDB, accuracy decreases by around 0.8% to

1.2% for both SVM and LR.

6.7 Capacity Abuse Attack

Table 6 summarizes the results.

Image encoding and decoding. We could use the same technique

as in the sign encoding attack, but for a binary classiier this requires

8 synthetic inputs per each pixel. Instead, we encode an approximate

pixel value in 4 bits. We map a pixel value p ∈ {0, . . . , 255} to

p′ ∈ {0, . . . , 15} (e.g., map 0-15 in p to 0 in p′) and use 4 synthetic

data points to encode p′. Another possibility (not evaluated in this

paper) would be to encode every other pixel and recover the image

by interpolating the missing pixels.

We evaluate two settings ofm, the number of synthesized data

points. For LFW, we can encode 3 images form = 34K and 5 images

form = 58K. For FaceScrub gender classiication, we can encode

11 images form = 110K and 17 images form = 170K. While these

numbers may appear low, this attack works in a black-box setting

against a binary classiier, where the adversary aims to recover

information from a single output bit. Moreover, for many tasks (e.g.,

medical image analysis) recovering even a single training input

constitutes a serious privacy breach. Finally, if the attacker’s goal

is to recover not the raw images but some other information about

Session C3:  Machine Learning Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

596



Ground Truth Correlation Encoding (λc = 1.0) Sign Encoding (λs = 7.5) Capacity Abuse (m = 24K)

has only been week since saw my irst
john waters ilm female trouble and wasn
sure what to expect

it natch only been week since sawmy irst
john waters ilm female trouble and wasn
sure what to expect

it has peering been week saw mxyzptlk
irst john waters ilm bloch trouble and
wasn sure what to extremism the

it has peering beenweek sawmy irst john
waters ilm female trouble and wasn sure
what to expect the

in brave new girl holly comes from small
town in texas sings the yellow rose of
texas at local competition

in chasing new girl holly comes from
willed town in texas sings the yellow rose
of texas at local competition

in brave newton girl hoists comes from
small town impressible texas sings urban
rosebud of texas at local obsess and

in brave newton girl holly comes from
small town in texas sings the yellow rose
of texas at local competition

maybe need to have my head examined
but thought this was pretty good movie
the cg is not too bad

maybe need to have my head examined
but thought this was pretty good movie
the cg pirouetting not too bad

maybe need to enjoyedmy head hippo but
tiburon wastage pretty good movie the cg
is northwest too bad have

maybe need to have my head examined
but thoughout tiburon was pretty good
movie the cg is not too bad

was around when saw this movie irst it
wasn so special then but few years later
saw it again and

was around when saw this movie martine
it wasn so special then but few years later
saw it again and

was around saw this movie irst posses-
sion tributed so special zellweger but few
years linette saw isoyc again and that

was around when saw this movie irst it
wasn soapbox special then but few years
later saw it again and

Table 5: Decoded text examples from all attacks applied to LR models trained on the IMDB dataset.

Dataset f m m
n

Test Acc Decode

±δ MAPE

CIFAR10 RES
49K 0.98 92.21 −0.69 7.60

98K 1.96 91.48 −1.41 8.05

LFW CNN
34K 3.4 88.03 +0.20 18.6

58K 5.8 88.17 +0.34 22.4

FaceScrub (G)

RES

110K 2.0 97.08 −0.36 10.8

170K 3.0 96.94 −0.50 11.4

FaceScrub (F)
55K 1.0 87.46 −2.62 7.62

110K 2.0 86.36 −3.72 8.11

Dataset f m m
n

Test Acc Decode

±δ Pre Rec Sim

News

SVM
11K 1.0 80.53 −0.07 1.0 1.0 1.0

33K 3.0 79.77 −0.63 0.99 0.99 0.99

LR
11K 1.0 80.06 −0.45 0.98 0.99 0.99

33K 3.0 79.94 −0.57 0.95 0.97 0.97

IMDB

SVM
24K 0.95 89.82 −0.31 0.90 0.94 0.96

75K 3.0 89.05 −1.08 0.89 0.93 0.95

LR
24K 0.95 89.90 −0.58 0.87 0.92 0.95

75K 3.0 89.26 −1.22 0.86 0.91 0.94

Table 6: Results of the capacity abuse attack. Here m is the number of synthesized inputs and m
n is the ratio of synthesized

data to training data.

the training dataset (e.g., metadata of the images or the presence of

certain faces), this capacity may be suicient.

For multi-class tasks such as CIFAR10 and FaceScrub face recog-

nition, we can encode more than one bit of information per each

synthetic data point. For CIFAR10, there are 10 classes and we use

two synthetic inputs to encode 4 bits. For FaceScrub, in theory one

synthetic input can encode more than 8 bits of information since

there are over 500 classes, but we encode only 4 bits per input. We

found that encoding more bits prevents convergence because the

labels of the synthetic inputs become too ine-grained. We evaluate

two settings of m. For CIFAR10, we can encode 25 images with

m = 49K and 50 withm =98K. For FaceScrub face recognition, we

can encode 22 images withm = 55K and 44 withm = 110K.

To decode images, we re-generate the synthetic inputs, use them

to query the trained model, and map the output labels returned by

the model back into pixels. We measure the MAPE between the

original images and decoded approximate 4-bit-pixel images. For

most tasks, the error is small because the model its the synthetic

inputs very well. Although the approximate pixels are less precise,

the reconstructed images are still recognizableÐsee the fourth row

of Figure 3.

Text encoding and decoding. We use the same technique as in

the sign encoding attack: a bit string encodes tokens in the order

they appear in the training documents, with 17 bits per token. Each

document thus needs 1,700 synthetic inputs to encode its irst 100

tokens.

Dataset f m m
n

Test Acc Decode

±δ Pre Rec Sim

News

SVM
11K 1.0 79.31 −1.27 0.94 0.90 0.94

22K 2.0 78.11 −2.47 0.94 0.91 0.94

LR
11K 1.0 79.85 −0.28 0.94 0.91 0.94

22K 2.0 78.95 −1.08 0.94 0.91 0.94

IMDB

SVM
24K 0.95 89.44 −0.69 0.87 0.89 0.94

36K 1.44 89.25 −0.88 0.49 0.53 0.71

LR
24K 0.95 89.92 −0.56 0.79 0.82 0.90

36K 1.44 89.75 −0.83 0.44 0.47 0.67

Table 7: Results of the capacity abuse attack on text datasets

using a public auxiliary vocabulary.

20 Newsgroups models have 20 classes and we use the irst 16 to

encode 4 bits of information. Binary IMDB models can only encode

one bit per synthetic input. We evaluate two settings form. For 20

Newsgroups, we can encode 26 documents withm = 11K and 79

documents withm = 33K. For IMDB, we can encode 14 documents

withm = 24K and 44 documents withm = 75K.

With this attack, the decoded documents have high quality (see

Table 5). In these results, the attacker exploits knowledge of the

vocabulary used (see below for the other case). For 20 Newsgroups,

recovery is almost perfect for both SVM and LR. For IMDB, the re-

covered documents are good but quality decreases with an increase

in the number of synthetic inputs.

Session C3:  Machine Learning Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

597









[32] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe, J. Muehling, J. V.
Pearson, D. A. Stephan, S. F. Nelson, and D. W. Craig. Resolving individuals
contributing trace amounts of DNA to highly complex mixtures using high-
density SNP genotyping microarrays. PLOS Genetics, 2008.

[33] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the
wild: A database for studying face recognition in unconstrained environments.
Technical Report 07-49, University of Massachusetts, Amherst, October 2007.

[34] indico. https://indico.io, 2016.
[35] T. Joachims. Text categorization with support vector machines: Learning with

many relevant features. In ECML, 1998.
[36] Keras. https://keras.io, 2015.
[37] Kernel.org Linux repository rooted in hack attack. https://www.theregister.co.

uk/2011/08/31/linux_kernel_security_breach/, 2011.
[38] M. Kloft and P. Laskov. Online anomaly detection under adversarial impact. In

AISTATS, 2010.
[39] H. Krawczyk, R. Canetti, and M. Bellare. HMAC: Keyed-hashing for message

authentication. https://tools.ietf.org/html/rfc2104, 1997.
[40] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny

images. Technical report, University of Toronto, 2009.
[41] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classiication with deep

convolutional neural networks. In NIPS, 2012.
[42] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Attribute and simile

classiiers for face veriication. In ICCV, 2009.
[43] S. Lahiri. Complexity of word collocation networks: A preliminary structural

analysis. In Proc. Student ResearchWorkshop at the 14th Conference of the European
Chapter of the Association for Computational Linguistics, 2014.

[44] K. Lang. NewsWeeder: Learning to ilter netnews. In ICML, 1995.
[45] G. B. H. E. Learned-Miller. Labeled faces in the wild: Updates and new reporting

procedures. Technical Report UM-CS-2014-003, University of Massachusetts,
Amherst, May 2014.

[46] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436ś444,
2015.

[47] Y. LeCun, L. Bottou, Y. Bengio, and P. Hafner. Gradient-based learning applied
to document recognition. Proc. IEEE, 86(11):2278ś2324, 1998.

[48] Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio. Neural networks with few
multiplications. In ICLR, 2016.

[49] Y. Lindell and B. Pinkas. Privacy preserving data mining. Journal of Cryptology,
15(3), 2002.

[50] D. Lowd. Good word attacks on statistical spam ilters. In CEAS, 2005.
[51] D. Lowd and C. Meek. Adversarial learning. In KDD, 2005.
[52] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning

word vectors for sentiment analysis. In Proc. 49th Annual Meeting of the ACL:
Human Language Technologies, 2011.

[53] L. v. d. Maaten and G. Hinton. Visualizing data using t-SNE. JMLR, 9(Nov):2579ś
2605, 2008.

[54] Microsoft Azure Machine Learning. https://azure.microsoft.com/en-us/services/
machine-learning, 2017.

[55] MLJAR. https://mljar.com, 2016ś2017.
[56] MXNET. http://mxnet.io, 2015ś2017.
[57] J. Newsome, B. Karp, and D. Song. Paragraph: Thwarting signature learning by

training maliciously. In RAID, 2006.
[58] Nexosis. http://www.nexosis.com, 2017.
[59] H.-W. Ng and S. Winkler. A data-driven approach to cleaning large face datasets.

In ICIP, 2014.
[60] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, 2nd

edition, 2006.
[61] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin, K. Vaswani, and

M. Costa. Oblivious multi-party machine learning on trusted processors. In
USENIX Security, 2016.

[62] B. Pang and L. Lee. Seeing stars: Exploiting class relationships for sentiment
categorization with respect to rating scales. In Proc. ACL, 2005.

[63] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman. Towards the science of
security and privacy in machine learning. https://arxiv.org/abs/1611.03814, 2016.

[64] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-Net: ImageNet
classiication using binary convolutional neural networks. In ECCV, 2016.

[65] B. I. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S.-h. Lau, S. Rao, N. Taft, and
J. Tygar. Antidote: Understanding and defending against poisoning of anomaly
detectors. In IMC, 2009.

[66] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz, and
M. Russinovich. VC3: Trustworthy data analytics in the cloud using SGX. In
S&P, 2015.

[67] R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In CCS, 2015.
[68] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks

against machine learning models. In S&P, 2017.
[69] P. Y. Simard, D. Steinkraus, and J. C. Platt. Best practices for convolutional neural

networks applied to visual document analysis. In ICDAR, 2003.
[70] Theano Development Team. Theano: A Python framework for fast computation

of mathematical expressions. https://arxiv.org/abs/1605.02688, 2016.
[71] S. Torres-Arias, A. K. Ammula, R. Curtmola, and J. Cappos. On omitting com-

mits and committing omissions: Preventing git metadata tampering that (re)-
introduces software vulnerabilities. In USENIX Security, 2016.

[72] V. Vapnik. The Nature of Statistical Learning Theory. Springer Science & Business
Media, 2013.

[73] J. Wei, X. Zhang, G. Ammons, V. Bala, and P. Ning. Managing security of virtual
machine images in a cloud environment. In CCSW, 2009.

[74] Y. Zhai, L. Yin, J. Chase, T. Ristenpart, andM. Swift. CQSTR: Securing cross-tenant
applications with cloud containers. In SoCC, 2016.

[75] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep
learning requires rethinking generalization. In ICLR, 2017.

Session C3:  Machine Learning Privacy CCS’17, October 30-November 3, 2017, Dallas, TX, USA

601


	Abstract
	1 Introduction
	2 Background
	2.1 Machine Learning Pipelines
	2.2 ML Platforms and Algorithm Providers

	3 Threat Model
	4 White-box Attacks
	4.1 LSB Encoding
	4.2 Correlated Value Encoding
	4.3 Sign Encoding

	5 Black-box Attacks
	5.1 Abusing Model Capacity
	5.2 Synthesizing Malicious Augmented Data
	5.3 Why Capacity Abuse Works

	6 Experiments
	6.1 Datasets and Tasks
	6.2 ML Models
	6.3 Evaluation Metrics
	6.4 LSB Encoding Attack
	6.5 Correlated Value Encoding Attack
	6.6 Sign Encoding Attack
	6.7 Capacity Abuse Attack

	7 Countermeasures
	8 Related Work
	9 Conclusion
	References

