Session C3: Machine Learning Privacy

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

Machine Learning Models that Remember Too Much

Congzheng Song Thomas Ristenpart Vitaly Shmatikov
Cornell University Cornell Tech Cornell Tech
cs2296@cornell.edu ristenpart@cornell.edu shmat@cs.cornell.edu
power for the specified tasks, the data holder may not even ask
“what else did the model capture about my training data?”
ABSTRACT Modern ML models, especially artificial neural networks, have

Machine learning (ML) is becoming a commodity. Numerous ML
frameworks and services are available to data holders who are not
ML experts but want to train predictive models on their data. It is
important that ML models trained on sensitive inputs (e.g., personal
images or documents) not leak too much information about the
training data.

We consider a malicious ML provider who supplies model-training
code to the data holder, does not observe the training, but then ob-
tains white- or black-box access to the resulting model. In this
setting, we design and implement practical algorithms, some of
them very similar to standard ML techniques such as regularization
and data augmentation, that “memorize” information about the
training dataset in the model—yet the model is as accurate and
predictive as a conventionally trained model. We then explain how
the adversary can extract memorized information from the model.

We evaluate our techniques on standard ML tasks for image
classification (CIFAR10), face recognition (LFW and FaceScrub),
and text analysis (20 Newsgroups and IMDB). In all cases, we show
how our algorithms create models that have high predictive power
yet allow accurate extraction of subsets of their training data.

CCS CONCEPTS

« Security and privacy — Software and application security;

KEYWORDS

privacy, machine learning

1 INTRODUCTION

Machine learning (ML) has been successfully applied to many data
analysis tasks, from recognizing images to predicting retail pur-
chases. Numerous ML libraries and online services are available
(see Section 2.2) and new ones appear every year.

Data holders who seek to apply ML techniques to their datasets,
many of which include sensitive data, may not be ML experts. They
use third-party ML code “as is,” without understanding what this
code is doing. As long as the resulting models have high predictive

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10...$15.00
https://doi.org/10.1145/3133956.3134077

587

huge capacity for “memorizing” arbitrary information [75]. This
can lead to overprovisioning: even an accurate model may be using
only a fraction of its raw capacity. The provider of an ML library
or operator of an ML service can modify the training algorithm so
that the model encodes more information about the training dataset
than is strictly necessary for high accuracy on its primary task.

Our contributions. We show that relatively minor modifications
to training algorithms can produce models that have high quality
by the standard ML metrics (such as accuracy and generalizability),
yet leak detailed information about their training datasets.

We assume that a malicious ML provider supplies the training al-
gorithm to the data holder but does not observe its execution. After
the model has been created, the provider either obtains the entire
model (white box) or gains input-output access to it (black box). The
provider then aims to extract information about the training dataset
from the model. This scenario can arise when the data holder uses a
malicious ML library and also in algorithm marketplaces [2, 27, 54]
that let data holders pay to use third-party training algorithms in
an environment secured by the marketplace operator.

In the white-box case, we evaluate several techniques: (1) encod-
ing sensitive information about the training dataset directly in the
least significant bits of the model parameters, (2) forcing the param-
eters to be highly correlated with the sensitive information, and (3)
encoding the sensitive information in the signs of the parameters.
The latter two techniques involve adding a malicious “regulariza-
tion” term to the loss function and, from the viewpoint of the data
holder, could appear as yet another regularization technique.

In the black-box case, we use a technique that resembles data
augmentation (extending the training dataset with additional syn-
thetic data) without any modifications to the training algorithm.
The resulting model is thus, in effect, trained on two tasks. The
first, primary task is the main classification task specified by the
data holder. The secondary, malicious task is as follows: given a
particular synthetic input, “predict” one or more secret bits about
the actual training dataset.

Because the labels associated with our synthetic augmented in-
puts encode secrets about the training data, they do not correspond
to any structure in these inputs. Therefore, our secondary task asks
the model to “learn” what is essentially random labeling. Never-
theless, we empirically demonstrate that models become overfitted
to the synthetic inputs—without any significant impact on their
accuracy and generalizability on the primary tasks. This enables
black-box information extraction: the adversary provides a syn-
thetic input, and the model outputs the label, i.e., the secret bits
about the actual training dataset that it memorized during training.



Session C3: Machine Learning Privacy

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

Val — OorL

Figure 1: A typical ML training pipeline. Data D is split into training set Dy;,i, and test set Diesi. Training data may be augmented
using an algorithm A, and then parameters are computed using a training algorithm 7 that uses a regularizer Q. The resulting
parameters are validated using the test set and either accepted or rejected (an error L is output). If the parameters 0 are accepted,
they may be published (white-box model) or deployed in a prediction service to which the adversary has input/output access
(black-box model). The dashed box indicates the portions of the pipeline that may be controlled by the adversary.

We evaluate white- and black-box malicious training techniques
on several benchmark ML datasets and tasks: CIFAR10 (image clas-
sification), Labeled Faces in the Wild (face recognition), FaceScrub
(gender classification and face recognition), 20 Newsgroups (text
classification), and IMDB (binary sentiment classification). In all
cases, accuracy and generalizability of the maliciously trained mod-
els are virtually identical to the conventional models.

We demonstrate how the adversary can extract subsets of the
training data from maliciously trained models and measure how the
choices of different parameters influence the amount and accuracy
of extraction. For example, with a white-box attack that encodes
training data directly in the model parameters, we create a text
classifier that leaks 70% of its 10,000-document training corpus
without any negative impact on the model’s accuracy. With a black-
box attack, we create a binary gender classifier that allows accurate
reconstruction of 17 complete face images from its training dataset,
even though the model leaks only one bit of information per query.

For the black-box attacks, we also evaluate how success of the
attack depends on the adversary’s auxiliary knowledge about the
training dataset. For models trained on images, the adversary needs
no auxiliary information and can simply use random images as
synthetic augmented inputs. For models trained on text, we compare
the accuracy of the attack when the adversary knows the exact
vocabulary of the training texts and when the adversary uses a
vocabulary compiled from a publicly available corpus.

In summary, using third-party code to train ML models on sen-
sitive data is risky even if the code provider does not observe the
training. We demonstrate how the vast memorization capacity of
modern ML models can be abused to leak information even if the
model is only released as a “black box,” without significant impact
on model-quality metrics such as accuracy and generalizability.

2 BACKGROUND

2.1 Machine Learning Pipelines

We focus for simplicity on the supervised learning setting, but our
techniques can potentially be applied to unsupervised learning, too.
A machine learning model is a function fp : X +— Y parameterized
by abit string 0 of parameters. We will sometimes abuse the notation
and use fy and 6 interchangeably. The input, or feature, space is X,
the output space is Y. We focus on classification problems, where
X is a d-dimensional vector space and Y is a discrete set of classes.

588

For our purposes, a machine learning pipeline consists of several
steps shown in Figure 1. The pipeline starts with a set of labeled
data points D = {(xi,y,-)};';l where (xj,y;) €e XxY for1 <i<n'
This set is partitioned into two subsets, training data Dyy,i, of size n
and test data Dyegt.

Data augmentation. A common strategy for improving general-
izability of ML models (i.e., their predictive power on inputs outside
their training datasets) is to use data augmentation as an optional
preprocessing step before training the model. The training data
Dirain is expanded with new data points generated using determin-
istic or randomized transformations. For example, an augmentation
algorithm for images may take each training image and flip it hori-
zontally or inject noises and distortions. The resulting expanded
dataset Dayg is then used for training. Many libraries and machine
learning platforms provide this functionality, including Keras [36],
MXNET [56], DeepDetect [19], and indico [34].

Training and regularization. The (possibly augmented) dataset
Dayg is taken as input by a (usually randomized) training algo-
rithm 7, which also takes as input a configuration string y called
the hyperparameters. The training algorithm 7~ outputs a set of
parameters 6, which defines a model fp : X — Y.

In order to find the optimal set of parameters 6 for f, the training
algorithm 7 tries to minimize a loss function £ which penalizes the
mismatches between true labels y and predicted labels produced
by fp(x). Empirical risk minimization is the general framework for
doing so, and uses the following objective function over Diyin:

mein Q) + % ; L(yi, fo(xi))

where Q(0) is a regularization term that penalizes model complexity
and thus helps prevent models from overfitting.

Popular choices for Q are norm-based regularizers, including
Ip-norm Q(0) = 13; 91‘2 which penalizes the parameters for being
too large, and I;-norm Q(0) = 1 Y; |0;| which adds sparsity to the
parameters. The coefficient A controls how much the regularization
term affects the training objective.

There are many methods to optimize the above objective func-
tion. Stochastic gradient descent (SGD) and its variants are com-
monly used to train artificial neural networks, but our methods
apply to other numerical optimization methods as well. SGD is
an iterative method where at each step the optimizer receives a



Session C3: Machine Learning Privacy

small batch of training data and updates the model parameters 0
according to the direction of the negative gradient of the objective
function with respect to 6. Training is finished when the model
converges to a local minimum where the gradient is close to zero.

Validation. We define accuracy of a model fy relative to some
dataset D using 0-1 loss:

acc(0,D) = Z

(x,y)eD

I(fp(x) = y)
DI

where I is the function that outputs 1 if fy(x) = y and outputs
zero otherwise. A trained model is validated by measuring its test
accuracy acc(d, Dest). If the test accuracy is too low, validation may
reject the model, outputting some error that we represent with a
distinguished symbol L.

A related metric is the train-test gap. It is defined as the difference
in accuracy on the training and test datasets:

acc(8, Dirain) — acc(d, Diest) -
This gap measures how overfitted the model is to its training dataset.

Linear models. Support Vector Machines (SVM) [17] and logistic
regression (LR) are popular for classification tasks such as text cate-
gorization [35] and other natural language processing problems [8].
We assume feature space X = R for some dimension d.

In an SVM for binary classification with i/ = {-1,1}, 0 € X,
the model is given by fy(x) = sign(0 T x), where the function sign
returns whether the input is positive or negative. Traditionally
training uses hinge loss, i.e., L(y, fp(x)) = max{0,1 — y6Tx}. A
typical regularizer for an SVM is the I-norm.

With LR, the parameters again consist of a vector in X and define
the model fy(x) = o(87 x) where o(x) = (1 + e *). In binary
classification where the classes are {0, 1}, the output gives a value
in [0,1] representing the probability that the input is classified as 1;
the predicted class is taken to be 1 if fy(x) > 0.5 and 0 other-
wise. A typical loss function used during training is cross-entropy:
Ly, fo(x) = y - log(fo(x)) + (1 — y) log(1 — fo(x)). A regularizer
is optional and typically chosen empirically.

Linear models are typically efficient to train and the number of
parameters is linear in the number of input dimensions. For tasks
like text classification where inputs have millions of dimensions,
models can thus become very large.

Deep learning models. Deep learning has become very popular
for many ML tasks, especially related to computer vision and image
recognition (e.g., [41, 46]). In deep learning models, f is composed of
layers of non-linear transformations that map inputs to a sequence
of intermediate states and then to the output. The parameters 6 de-
scribe the weights used within each transformation. The number of
parameters can become huge as the depth of the network increases.

Choices for the loss function and regularizer typically depend
on the task. In classification tasks, if there are c classes in V, the
last layer of the deep learning model is usually a probability vector
with dimension c representing the likelihood that the input belongs
to each class. The model outputs argmax fy(x) as the predicted
class label. A common loss function for classification is negative
log likelihood: L(y, fp(x)) = — X7_; t - log(fp(x);), where t is 1 if
the class label y = i and 0 otherwise. Here fy(x); denotes the ith
component of the c-dimensional vector fy(x).

589

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2.2 ML Platforms and Algorithm Providers

The popularity of machine learning (ML) has led to an explosion
in the number of ML libraries, frameworks, and services. A data
holder might use in-house infrastructure with a third-party ML
library, or, increasingly, outsource model creation to a cloud service
such as Google’s Prediction API [27], Amazon ML [3], Microsoft’s
Azure ML [54], or a bevy of startups [10, 30, 55, 58]. These ser-
vices automate much of the modern ML pipeline. Users can upload
datasets, perform training, and make the resulting models available
for use—all without understanding the details of model creation.

An ML algorithm provider (or simply ML provider) is the entity
that provides ML training code to data holders. Many cloud services
are ML providers, but some also operate marketplaces for training
algorithms where clients pay for access to algorithms uploaded
by third-party developers. In the marketplace scenario, the ML
provider is the algorithm developer, not the platform operator.

Algorithmia [2] is a mature example of an ML marketplace. De-
velopers can upload and list arbitrary programs (in particular, pro-
grams for ML training). A user can pay a developer for access to
such a program and have the platform execute it on the user’s
data. Programs need not be open source, allowing the use of propri-
etary algorithms. The platform may restrict marketplace programs
from accessing the Internet, and Algorithmia explicitly warns users
that they should use only Internet-restricted programs if they are
worried about leakage of their sensitive data.

These controls show that existing platform operators already
focus on building trustworthy ML marketplaces. Software-based iso-
lation mechanisms and network controls help prevent exfiltration
of training data via conventional means. Several academic propos-
als have sought to construct even higher assurance ML platforms.
For example, Zhai et al. [74] propose a cloud service with isolated
environments in which one user supplies sensitive data, another
supplies a secret training algorithm, and the cloud ensures that the
algorithm cannot communicate with the outside world except by
outputting a trained model. The explicit goal is to assure the data
owner that the ML provider cannot exfiltrate sensitive training data.
Advances in data analytics frameworks based on trusted hardware
such as SGX [7, 61, 66] and cryptographic protocols based on secure
multi-party computation (see Section 8) may also serve as the basis
for secure ML platforms.

Even if the ML platform is secure (whether operated in-house or
in a cloud), the algorithms supplied by the ML provider may not be
trustworthy. Non-expert users may not audit open-source imple-
mentations or not understand what the code is doing. Audit may
not be feasible for closed-source and proprietary implementations.
Furthermore, libraries can be subverted, e.g., by compromising a
code repository [37, 71] or a VM image [6, 14, 73]. In this paper,
we investigate potential consequences of using untrusted training
algorithms on a trusted platform.

3 THREAT MODEL

As explained in subsection 2.2, data holders often use other peo-
ple’s training algorithms to create models from their data. We thus
focus on the scenario where a data holder (client) applies ML code



Session C3: Machine Learning Privacy

provided by an adversary (ML provider) to the client’s data. We in-
vestigate if an adversarial ML provider can exfiltrate sensitive
training data, even when his code runs on a secure platform?

Client. The client has a dataset D sampled from the feature space X
and wants to train a classification model fy on D, as described in
subsection 2.1. We assume that the client wishes to keep D private,
as would be the case when D is proprietary documents, sensitive
medical images, etc.

The client applies a machine learning pipeline (see Figure 1)
provided by the adversary to Diyain, the training subset of D. This
pipeline outputs a model, defined by its parameters 6. The client
validates the model by measuring its accuracy on the test subset
Diest and the test-train gap, accepts the model if it passes validation,
and then publishes it by releasing 6 or making an API interface
to fp available for prediction queries. We refer to the former as
white-box access and the latter as black-box access to the model.

Adversary. We assume that the ML pipeline shown in Figure 1 is
controlled by the adversary. In general, the adversary controls the
core training algorithm 7, but in this paper we assume that 7 is a
conventional, benign algorithm and focus on smaller modifications
to the pipeline. For example, the adversary may provide a malicious
data augmentation algorithm A, or else a malicious regularizer
Q, while keeping 7 intact. The adversary may also modify the
parameters 0 after they have been computed by 7.

The adversarially controlled pipeline can execute entirely on the
client side—for example, if the client runs the adversary’s ML library
locally on his data. It can also execute on a third-party platform,
such as Algorithmia. We assume that the environment running the
algorithms is secured using software [2, 74] or hardware [61, 66]
isolation or cryptographic techniques. In particular, the adversary
cannot communicate directly with the training environment; oth-
erwise he can simply exfiltrate data over the network.

Adversary’s objectives. The adversary’s main objective is to infer
as much as of the client’s private training dataset D as possible.

Some existing models already reveal parts of the training data.
For example, nearest neighbors classifiers and SVMs explicitly store
some training data points in §. Deep neural networks and classic
logistic regression are not known to leak any specific training
information (see Section 8 for more discussion about privacy of the
existing training algorithms). Even with SVMs, the adversary may
want to exfilitrate more, or different, training data than revealed
by 6 in the default setting. For black-box attacks, in which the
adversary does not have direct access to 0, there is no known
way to extract the sensitive data stored in § by SVMs and nearest
neighbor models.

Other, more limited, objectives may include inferring the pres-
ence of a known input in the dataset D (this problem is known
as membership inference), partial information about D (e.g., the
presence of a particular face in some image in D), or metadata as-
sociated with the elements of D (e.g., geolocation data contained in
the digital photos used to train an image recognition model). While
we do not explore these in the current paper, our techniques can
be used directly to achieve these goals. Furthermore, they require
extracting much less information than is needed to reconstruct
entire training inputs, therefore we expect our techniques will be
even more effective.

590

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

Assumptions about the training environment. The adversary’s
pipeline has unrestricted access to the training data Diain and the
model 6 being trained. As mentioned above, we focus on the sce-
narios where the adversary does not modify the training algorithm
7 but instead (a) modifies the parameters 6 of the resulting model,
or (b) uses A to augment Dyy,in with additional training data, or
(c) applies his own regularizer Q while 7 is executing.

We assume that the adversary can observe neither the client’s
data, nor the execution of the adversary’s ML pipeline on this data,
nor the resulting model (until it is published by the client). We
assume that the adversary’s code incorporated into the pipeline is
isolated and confined so that it has no way of communicating with
or signaling to the adversary while it is executing. We also assume
that all state of the training environment is erased after the model
is accepted or rejected.

Therefore, the only way the pipeline can leak information about
the dataset Dyyqin to the adversary is by (1) forcing the model 0
to somehow “memorize” this information and (2) ensuring that 0
passes validation.

Access to the model. With white-box access, the adversary re-
ceives the model directly. He can directly inspect all parameters
in 6, but not any temporary information used during the training.
This scenario arises, for example, if the client publishes 6.

With black-box access, the adversary has input-output access
to 0: given any input x, he can obtain the model’s output fy(x).
For example, the model could be deployed inside an app and the
adversary uses this app as a customer. Therefore, we focus on the
simplest (and hardest for the adversary) case where he learns only
the class label assigned by the model to his inputs, not the entire
prediction vector with a probability for each possible class.

4 WHITE-BOX ATTACKS

In a white-box attack, the adversary can see the parameters of the
trained model. We thus focus on directly encoding information
about the training dataset in the parameters. The main challenge is
how to have the resulting model accepted by the client. In particular,
the model must have high accuracy on the client’s classification
task when applied to the test dataset.

4.1 LSB Encoding

Many studies have shown that high-precision parameters are not
required to achieve high performance in machine learning mod-
els [29, 48, 64]. This observation motivates a very direct technique:
simply encode information about the training dataset in the least
significant (lower) bits of the model parameters.

Encoding. Algorithm 1 describes the encoding method. First, train
a benign model using a conventional training algorithm 7, then
post-process the model parameters 6 by setting the lower b bits of
each parameter to a bit string s extracted from the training data,
producing modified parameters 6’.

Extraction. The secret string s can be either compressed raw data
from Dipain, or any information about Dyyin that the adversary
wishes to capture. The length of s is limited to £b, where ¢ is the
number of parameters in the model.



Session C3: Machine Learning Privacy

Algorithm 1 LSB encoding attack

1: Input: Training dataset Diyain, @ benign ML training algorithm
7", number of bits b to encode per parameter.

2: Output: ML model parameters 6’ with secrets encoded in the
lower b bits.

: 0 < T(Dtrain)

{ < number of parameters in ¢

s « ExtractSecretBitString(Dyy,in, £b)

: 0" « set the lower b bits in each parameter of 8 to a substring

of s of length b.

U W

Algorithm 2 SGD with correlation value encoding

1. Input: Training dataset Dirain = {(x},y;)}[-,, a benign loss
function £, a model f, number of epochs T, learning rate 7,
attack coefficient A, size of mini-batch g.
: Output: ML model parameters 6 correlated to secrets.
: 0 « Initialize(f)
: { <« number of parameters in 6
s « ExtractSecretValues(D, ¢)
: fort=1to T do
for each mini-batch {(x;,y j)};.]:1 C Dirain do
g« Vo S, Ly, f(),0) + VoC(0,5)
0 «— UpdateParameters(1, 0, g;)

10: end for

11: end for

P I N N S

o

Decoding. Simply read the lower bits of the parameters 0’ and
interpret them as bits of the secret.

4.2 Correlated Value Encoding

Another approach is to gradually encode information while training
model parameters. The adversary can add a malicious term to the
loss function £ (see Section 2.1) that maximizes the correlation
between the parameters and the secret s that he wants to encode.

In our experiments, we use the negative absolute value of the

Pearson correlation coefficient as the extra term in the loss function.

During training, it drives the gradient direction towards a local

minimum where the secret and the parameters are highly correlated.

Algorithm 2 shows the template of the SGD training algorithm with
the malicious regularization term in the loss function.

Encoding. First extract the vector of secret values s € R from the
training data, where ¢ is the number of parameters. Then, add a
malicious correlation term C to the loss function where

24,0 - 06si - 9)
VELL 6 -0 2L (s - 57

In the above expression, A, controls the level of correlation and
0,5 are the mean values of @ and s, respectively. The larger C, the
more correlated 6 and s. During optimization, the gradient of C
with respect to 0 is used for parameter update.

Observe that the C term resembles a conventional regularizer (see
Section 2.1), commonly used in machine learning frameworks. The
difference from the norm-based regularizers discussed previously

C0,s) = —Ae -

591

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

is that we assign a weight to each parameter in C that depends on
the secrets that we want the model to memorize. This term skews
the parameters to a space that correlates with these secrets. The
parameters found with the malicious regularizer will not necessarily
be the same as with a conventional regularizer, but the malicious
regularizer has the same effect of confining the parameter space to
a less complex subspace [72].

Extraction. The method for extracting sensitive data s from the
training data Dyy,jn depends on the nature of the data. If the features
in the raw data are all numerical, then raw data can be directly used
as the secret. For example, our method can force the parameters to
be correlated with the pixel intensity of training images.

For non-numerical data such as text, we use data-dependent
numerical values to encode. We map each unique token in the vo-
cabulary to a low-dimension pseudorandom vector and correlate
the model parameters with these vectors. Pseudorandomness en-
sures that the adversary has a fixed mapping between tokens and
vectors and can uniquely recover the token given a vector.

Decoding. If all features in the sensitive data are numerical and
within the same range (for images raw pixel intensity values are in
the [0, 255] range), the adversary can easily map the parameters
back to feature space because correlated parameters are approxi-
mately linear transformation of the encoded feature values.

To decode text documents, where tokens are converted into
pseudorandom vectors, we perform a brute-force search for the
tokens whose corresponding vectors are most correlated with the
parameters. More sophisticated approaches (e.g., error-correcting
codes) should work much better, but we do not explore them in this
paper.

We provide more details about these decoding procedures for
specific datasets in Section 6.

4.3 Sign Encoding

Another way to encode information in the model parameters is to
interpret their signs as a bit string, e.g., a positive parameter repre-
sents 1 and a negative parameter represents 0. Machine learning
algorithms typically do not impose constraints on signs, but the
adversary can modify the loss function to force most of the signs
to match the secret bit string he wants to encode.

Encoding. Extract a secret binary vector s € {1, 1}¢ from the
training data, where ¢ is the number of parameters in 6, and con-
strain the sign of 6; to match s;. This encoding method is equivalent
to solving the following constrained optimization problem:

mein Q) + % ; L(yi, f(xi,0))

such that 0;s; >0fori=1,2,...,¢

Solving this constrained optimization problem can be tricky for
models like deep neural networks due to its complexity. Instead,
we can relax it to an unconstrained optimization problem using the
penalty function method [60]. The idea is to convert the constraints
to a penalty term added to the objective function, where the term
penalizes the objective if the constraints are not met. In our case,



Session C3: Machine Learning Privacy

we define the penalty term P as follows:

4
P(0,s) = )L?S Z |max(0, —0;s;)| .
i=1

In the above expression, As is a hyperparameter that controls the
magnitude of the penalty. Zero penalty is added when 6; and s;
have the same sign, |0;s;| is the penalty otherwise.

The attack algorithm is mostly identical to Algorithm 2 with
two lines changed. Line 5 becomes s < ExtractSecretSigns(D, (),
where s is a binary vector of length ¢ instead of a vector of real
numbers. In line 9, P replaces the correlation term C. Similar to
the correlation term, P changes the direction of the gradient to
drive the parameters towards the subspace in RY where all sign
constraints are met. In practice, the solution may not converge to a
point where all constraints are met, but our algorithm can get most
of the encoding correct if A is large enough.

Observe that P is very similar to /;-norm regularization. When
all signs of the parameters do not match, the term P is exactly the
l1-norm because —0;s; is always positive. Since it is highly unlikely
in practice that all parameters have “incorrect” signs versus what
they need to encode s, our malicious term penalizes the objective
function less than the /;-norm.

Extraction. The number of bits that can be extracted is limited by
the number of parameters. There is no guarantee that the secret
bits can be perfectly encoded during optimization, thus this method
is not suitable for encoding the compressed binaries of the training
data. Instead, it can be used to encode the bit representation of the
raw data. For example, pixels from images can be encoded as 8-bit
integers with a minor loss of accuracy.

Decoding. Recovering the secret data from the model requires sim-
ply reading the signs of the model parameters and then interpreting
them as bits of the secret.

5 BLACK-BOX ATTACKS

Black-box attacks are more challenging because the adversary can-
not see the model parameters and instead has access only to a
prediction API. We focus on the (harder) setting in which the API,
in response to an adversarially chosen feature vector x, applies
fo(x) and outputs the corresponding classification label (but not
the associated confidence values). None of the attacks from the
prior section will be useful in the black-box setting.

5.1 Abusing Model Capacity

We exploit the fact that modern machine learning models have vast
capacity for memorizing arbitrarily labeled data [75].

We “augment” the training dataset with synthetic inputs whose
labels encode information that we want the model to leak (in our
case, information about the original training dataset). When the
model is trained on the augmented dataset—even using a conven-
tional training algorithm—it becomes overfitted to the synthetic
inputs. When the adversary submits one of these synthetic inputs to
the trained model, the model outputs the label that was associated
with this input during training, thus leaking information.

592

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

Algorithm 3 Capacity-abuse attack

1: Input: Training dataset Dyy,ipn, @ benign ML training algorithm
7", number of inputs m to be synthesized.

2: Output: ML model parameters 6 that memorize the malicious
synthetic inputs and their labels.

3: Dpal < SynthesizeMaliciousData(Dyyqin, m)

4 0 < T(Dirain Y Dal)

Algorithm 3 outlines the attack. First, synthesize a malicious
dataset D, whose labels encode secrets about Dyyain. Then train
the model on the union of Dy,i, and Dypq1-

Observe that the entire training pipeline is exactly the same
as in benign training. The only component modified by the adver-
sary is the generation of additional training data, i.e., the augmen-
tation algorithm A. Data augmentation is a very common practice
for boosting the performance of machine learning models [41, 69].

5.2 Synthesizing Malicious Augmented Data

Ideally, each synthetic data point can encode |log,(c)] bits of in-
formation where c is the number of classes in the output space of
the model. Algorithm 4 outlines our synthesis method. Similar to
the white-box attacks, we first extract a secret bit string s from
Diyain. We then deterministically synthesize one data point for each
substring of length |log,(c)] in's.

Algorithm 4 Synthesizing malicious data

1: Input: A training dataset Dyy,in, number of inputs to be syn-
thesized m, auxiliary knowledge K.

: Output: Synthesized malicious data Dy,

¢ Dipal < 0

: s « ExtractSecretBitString(Diyain, m)

: ¢ « number of classes in Dip,in

: for each [log,(c)] bits s” in s do

Xmal < GenData(K)

Ymal < BitsToLabel(s")

Dmal — Dmal U {(xmala ymal)}
end for

I N

-
e

Different types of data require different synthesis methods.

Synthesizing images. We assume no auxiliary knowledge for
synthesizing images. The adversary can use any suitable GenData
method: for example, generate pseudorandom images using the ad-
versary’s choice of pseudorandom function (PRF) (e.g., HMAC [39])
or else create sparse images where only one pixel is filled with a
(similarly generated) pseudorandom value.

We found the latter technique to be very effective in practice.
GenData enumerates all pixels in an image and, for each pixel,
creates a synthetic image where the corresponding pixel is set to
the pseudorandom value while other pixels are set to zero. The
same technique can be used with multiple pixels in each synthetic
image.

Synthesizing text. We consider two scenarios for synthesizing
text documents.

If the adversary knows the exact vocabulary of the training
dataset, he can use this vocabulary as the auxiliary knowledge



Session C3: Machine Learning Privacy

in GenData. A simple deterministic implementation of GenData
enumerates the tokens in the auxiliary vocabulary in a certain
order. For example, GenData can enumerate all singleton tokens
in lexicographic order, then all pairs of tokens in lexicographic
order, and so on until the list is as long as the number of synthetic
documents needed. Each list entry is then set to be a text in the
augmented training dataset.

If the adversary does not know the exact vocabulary, he can
collect frequently used words from some public corpus as the auxil-
iary vocabulary for generating synthetic documents. In this case, a
deterministic implementation of GenData pseudorandomly (with
a seed known to the adversary) samples words from the vocabulary
until generating the desired number of documents.

To generate a document in this case, our simple synthesis algo-
rithm samples a constant number of words (50, in our experiments)
from the public vocabulary and joins them as a single document.
The order of the words does not matter because the feature extrac-
tion step only cares whether a given word occurs in the document
or not.

This synthesis algorithm may occasionally generate documents
consisting only of words that do not occur in the model’s actual
vocabulary. Such words will typically be ignored in the feature
extraction phase, thus the resulting documents will have empty
features. If the attacker does not know the model’s vocabulary, he
cannot know if a particular synthetic document consists only of
out-of-vocabulary words. This can potentially degrade both the test
accuracy and decoding accuracy of the model.

In Section 6.7, we empirically measure the accuracy of the capacity-
abuse attack with a public vocabulary.

Decoding memorized information. Because our synthesis meth-
ods for augmented data are deterministic, the adversary can repli-
cate the synthesis process and query the trained model with the
same synthetic inputs as were used during training. If the model
is overfitted to these inputs, the labels returned by the model will
be exactly the same labels that were associated with these inputs
during training, i.e., the encoded secret bits.

If a model has sufficient capacity to achieve good accuracy and
generalizability on its original training data and to memorize mali-
cious training data, then acc(6, Dy,,1) will be near perfect, leading
to low error when extracting the sensitive data.

5.3 Why Capacity Abuse Works

Deep learning models have such a vast memorization capacity that
they can essentially express any function to fit the data [75]. In our
case, the model is fitted not just to the original training dataset but
also to the synthetic data which is (in essence) randomly labeled. If
the test accuracy on the original data is high, the model is accepted.
If the training accuracy on the synthetic data is high, the adversary
can extract information from the labels assigned to these inputs.

Critically, these two goals are not in conflict. Training on mali-
ciously augmented datasets thus produces models that have high
quality on their original training inputs yet leak information on
the augmented inputs.

In the case of SVM and LR models, we focus on high-dimensional
and sparse data (natural-language text). Our synthesis method also

593

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

Dataset Data size f Num | Test
n [ d [ bits params acc
CIFAR10 50K | 3072 | 1228M | RES 460K | 92.89
LFW 10K | 8742 692M | CNN 880K | 87.83
FaceScrub (G) 460K | 97.44
FaceScrub (F) S7K | 7500 | 3444M | RES 500K | 90.08
SVM 80.58

News 11K | 130K 176M IR 2.6M 8051
SVM 90.13

IMDB 25K | 300K 265M IR 300K 9043

Table 1: Summary of datasets and models. n is the size of the
training dataset, d is the number of input dimensions. RES
stands for Residual Network, CNN for Convolutional Neu-
ral Network. For FaceScrub, we use the gender classification
task (G) and face recognition task (F).

produces very sparse inputs. Empirically, the likelihood that a syn-
thetic input lies on the wrong side of the hyperplane (classifier)
becomes very small in this high-dimensional space.

6 EXPERIMENTS

We evaluate our attack methods on benchmark image and text
datasets, using, respectively, gray-scale training images and ordered
tokens as the secret to be memorized in the model.

For each dataset and task, we first train a benign model using a
conventional training algorithm. We then train and evaluate a mali-
cious model for each attack method. We assume that the malicious
training algorithm has a hard-coded secret that can be used as the
key for a pseudorandom function or encryption.

All ML models and attacks were implemented in Python 2.7 with
Theano [70] and Lasagne [20]. The experiments were conducted
on a machine with two 8-core Intel 17-5960X CPUs, 64 GB RAM,
and three Nvidia TITAN X (Pascal) GPUs with 12 GB VRAM each.

6.1 Datasets and Tasks

Table 1 summarizes the datasets, models, and classification tasks
we used in our experiments. We use as stand-ins for sensitive data
several representative, publicly available image and text datasets.

CIFAR10 is an object classification dataset with 50,000 training
images (10 categories, 5,000 images per category) and 10,000 test
images [40]. Each image has 32x32 pixels, each pixel has 3 values
corresponding to RGB intensities.

Labeled Faces in the Wild (LFW) contains 13,233 images for
5,749 individuals [33, 45]. We use 75% for training, 25% for test-
ing. For the gender classification task, we use additional attribute
labels [42]. Each image is rescaled to 67x42 RGB pixels from its
original size, so that all images have the same size.

FaceScrub is a dataset of URLs for 100K images [59]. The tasks are
face recognition and gender classification. Some URLs have expired,
but we were able to download 76,541 images for 530 individuals.
We use 75% for training, 25% for testing. Each image is rescaled to
50x50 RGB pixels from its original size.



Session C3: Machine Learning Privacy

20 Newsgroups is a corpus of 20,000 documents classified into 20
categories [44]. We use 75% for training, 25% for testing.

IMDB Movie Reviews is a dataset of 50,000 reviews labeled with
positive or negative sentiment [52]. The task is (binary) sentiment
analysis. We use 50% for training, 50% for testing.

6.2 ML Models

Convolutional Neural Networks. Convolutional Neural Networks
(CNN) [47] are composed of a series of convolution operations as
building blocks which can extract spatial-invariant features. The
filters in these convolution operations are the parameters to be
learned. We use a 5-layer CNN for gender classification on the LFW
dataset. The first three layers are convolution layers (32 filters in
the first layer, 64 in the second, 128 in the third) followed by a max-
pooling operation which reduces the size of convolved features by
half. Each filter in the convolution layer is 3x3. The convolution
output is connected to a fully-connected layer with 256 units. The
latter layer connects to the output layer which predicts gender.
For the hyperparameters, we set the mini-batch size to be 128,
learning rate to be 0.1, and use SGD with Nesterov Momentum
for optimizing the loss function. We also use the [;-norm as the
regularizer with A set to 107>, We set the number of epochs for
training to 100. In epochs 40 and 60, we decrease the learning rate
by a factor of 0.1 for better convergence. This configuration is
inherited from the residual-network implementation in Lasagne.!

Residual Networks. Residual networks (RES) [31] overcome the
gradient vanishing problem when optimizing very deep CNNs by
adding identity mappings from lower layers to high layers. These
networks achieved state-of-the-art performance on many bench-
mark vision datasets in 2016.

We use a 34-layer residual network for CIFAR10 and FaceScrub.
Although the network has fewer parameters than CNN, it is much
deeper and can learn better representations of the input data. The
hyperparameters are the same as for the CNN.

Bag-of-Words and Linear Models. For text datasets, we use a
popular pipeline that extracts features using Bag-of-Words (BOW)
and trains linear models.

BOW maps each text document into a vector in RIVI where V is
the vocabulary of tokens that appear in the corpus. Each dimension
represents the count of that token in the document. The vectors
are extremely sparse because only a few tokens from V appear in
any given document.

We then feed the BOW vectors into an SVM or LR model. For 20
Newsgroups, there are 20 categories and we apply the One-vs-All
method to train 20 binary classifiers to predict whether a data point
belongs to the corresponding class or not. We train linear models
using AdaGrad [23], a variant of SGD with adaptive adjustment to
the learning rate of each parameter. We set the mini-batch size to
128, learning rate to 0.1, and the number of epochs for training to
50 as AdaGrad converges very fast on these linear models.

6.3 Evaluation Metrics

Because we aim to encode secrets in a model while preserving its
quality, we measure both the attacker’s decoding accuracy and the

Uhttps://github.com/Lasagne/Recipes/blob/master/modelzoo/resnet50.py

594

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

Dataset | f | b | Encoded bits | Test acc +6
CIFAR10 RES 18 8.3M | 92.75 —0.14
LFW CNN | 22 17.6M | 87.69 —0.14
FaceScrub (G) | pro | 20 9.2M | 97.33 —0.11
FaceScrub (F) 18 83M | 89.95—0.13

SVM 80.60 +0.02
News IR 22 57.2M 80.40 —0.11

SVM 90.12 —0.01
IMDB LR 22 6.6M 90.31 —0.17

Table 2: Results of the LSB encoding attack. Here f is the
model used, b is the maximum number of lower bits used be-
yond which accuracy drops significantly, § is the difference
with the baseline test accuracy.

100

80 | N

Accuracy

aof ‘ . ; \

20 e—e Isb test acc \

— baseline test acc
n n

17

n 1
19 20 21
Number of Lower Bits

0 1
16 18

Figure 2: Test accuracy of the CIFAR10 model with different
amounts of lower bits used for the LSB attack.

model’s classification accuracy on the test data for its primary task
(accuracy on the training data is over 98% in all cases). Our attacks
introduce minor stochasticity into training, thus accuracy of mali-
ciously trained models occasionally exceeds that of conventionally
trained models.

Metrics for decoding images. For images, we use mean absolute
pixel error (MAPE). Given a decoded image x” and the original
image x with k pixels, MAPE is % Zi.‘:l |xi = x;|. Its range is [0,
255], where 0 means the two images are identical and 255 means
every pair of corresponding pixels has maximum mismatch.

Metrics for decoding text. For text, we use precision (percentage
of tokens from the decoded document that appear in the original
document) and recall (percentage of tokens from the original docu-
ment that appear in the decoded document). To evaluate similarity
between the decoded and original documents, we also measure
their cosine similarity based on their feature vectors constructed
from the BOW model with the training vocabulary.

6.4 LSB Encoding Attack
Table 2 summarizes the results for the LSB encoding attack.

Encoding. For each task, we compressed a subset of the training
data, encrypted it with AES in CBC mode, and wrote the ciphertext
bits into the lower bits of the parameters of a benignly trained



Session C3: Machine Learning Privacy

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

Test acc | Decode Test acc Decode

D
ataset f Ac +6 | MAPE Dataset f Ac +6 T [ Pre [ Rec [ Sim
0.1 | 92.90 +0.01 52.2 0.85 | 0.85 | 0.70 | 0.84
CIFAR10 RES 1.0 | 91.09 —1.80 29.9 News SVM | 0.1 | 80.42 -0.16 0.95 | 1.00 | 0.56 | 0.78
0.1 | 87.94 +0.11 35.8 0.85 | 0.90 | 0.80 | 0.88

L 1. .35 -0.1
LEW CNN 1.0 | 87.91 —0.08 16.6 R 0 | 80.35-0.16 0.95 | 1.00 | 0.65 | 0.83
0.1 | 97.32 —0.11 24.5 0.85 | 0.90 | 0.73 | 0.88
M . 9.47 —0.

FaceScrub (G) REs |10 | 97:27 ~0.16 15.0 IMDE SVM | 0.5 | 8947 =066 | o5 | 1 00 | 0.16 | 0.51
FaceScrub (F) 0.1 | 90.33 +0.25 52.9 & | 10 | 5033 115 | 05 | 098 | 0.94 [ 0.97
1.0 | 88.64 —1.44 38.6 ’ ’ ’ 0.95 | 1.00 | 0.73 | 0.90

Table 3: Results of the correlated value encoding attack. Here A, is the coefficient for the correlation term in the objective
function and § is the difference with the baseline test accuracy. For image data, decode MAPE is the mean absolute pixel error.
For text data, 7 is the decoding threshold for the correlation value. Pre is precision, Rec is recall, and Sim is cosine similarity.

Test acc | Decode Test acc Decode
Dataset A
atase U : +5 | MAPE Dataset | f | As +5 [ Pre | Rec | Sim
10.0 | 92.96 +0.07 36.00 5.0 | 80.42 —0.16 | 0.56 | 0.66 | 0.69
CIFAR10 RES
50.0 | 92.31 —-0.58 3.52 News SVM 7.5 | 80.49 —0.09 | 0.71 | 0.80 | 0.82
LEW CNN 10.0 | 88.00 +0.17 37.30 IR 5.0 | 80.45—-0.06 | 0.57 | 0.67 | 0.70
50.0 | 87.63 —0.20 5.24 7.5 | 80.20 —0.31 | 0.63 | 0.73 | 0.75
10.0 | 97.31 —0.13 2.51 5.0 | 89.32 -0.81 | 0.60 | 0.68 | 0.75
FaceScrub (G) SVM
RES 50.0 | 97.45 +0.01 0.15 IMDB 7.5 | 89.08 —1.05 | 0.66 | 0.75 | 0.81
FaceScrub (F) 10.0 | 89.99 —0.09 39.85 LR 5.0 | 89.52 -0.92 | 0.67 | 0.76 | 0.81
50.0 | 87.45 —2.63 7.46 7.5 | 89.27 -1.21 | 0.76 | 0.83 | 0.88

Table 4: Results of the sign encoding attack. Here A; is the coefficient for the correlation term in the objective function.

model. The fourth column in Table 2 shows the number of bits we
can use before test accuracy drops significantly.

Decoding. Decoding is always perfect because we use lossless
compression and no errors are introduced during encoding. For the
20 Newsgroup model, the adversary can successfully extract about
57 Mb of compressed data, equivalent to 70% of the training dataset.

Test accuracy. In our implementation, each model parameter is
a 32-bit floating-point number. Empirically, b under 20 does not
decrease test accuracy on the primary task for most datasets. Bi-
nary classification on images (LFW, FaceScrub Gender) can endure
more loss of precision. For multi-class tasks, test accuracy drops
significantly when b exceeds 20 as shown for CIFAR10 in Figure 2.

6.5 Correlated Value Encoding Attack
Table 3 summarizes the results for this attack.

Image encoding and decoding. We correlate model parameters
with the pixel intensity of gray-scale training images. The number
of parameters limits the number of images that can be encoded in
this way: 455 for CIFAR10, 200 for FaceScrub, 300 for LFW.

We decode images by mapping the correlated parameters back to
pixel space (if correlation is perfect, the parameters are simply lin-
early transformed images). To do so given a sequence of parameters,
we map the minimum parameter to 0, maximum to 255, and other
parameters to the corresponding pixel value using min-max scaling.
We obtain an approximate original image after transformation if

595

the correlation is positive and an approximate inverted original
image if the correlation is negative.

After the transformation, we measure the mean absolute pixel
error (MAPE) for different choices of A, which controls the level of
correlation. We find that to recover reasonable images, A, needs to
be over 1.0 for all tasks. For a fixed A, errors are smaller for binary
classification than for multi-class tasks. Examples of reconstructed
images are shown in Figure 3 for the FaceScrub dataset.

Text encoding and decoding. To encode, we generate a pseudo-
random, d’-dimensional vector of 32-bit floating point numbers for
each token in the vocabulary of the training corpus. Then, given
a training document, we use the pseudorandom vectors for the
first 100 tokens in that document as the secret to correlate with the
model parameters. We set d” to 20. Encoding one document thus
requires up to 2000 parameters, allowing us to encode around 1300
documents for 20 Newsgroups and 150 for IMDB.

To decode, we first reproduce the pseudorandom vectors for
each token used during training. For each consecutive part of the
parameters that should match a token, we decode by searching for
a token whose corresponding vector is best correlated with the
parameters. We set a threshold value 7 and if the correlation value
is above 7, we accept this token and reject otherwise.

Table 3 shows the decoding results for different 7. As expected,
larger 7 increases precision and reduces recall. Empirically, 7 = 0.85
yields high-quality decoded documents (see examples in Table 5).



Session C3: Machine Learning Privacy

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

Figure 3: Decoded examples from all attacks applied to models trained on the FaceScrub gender classification task. First row
is the ground truth. Second row is the correlated value encoding attack (1,=1.0, MAPE=15.0). Third row is the sign encoding
attack (1;=10.0, MAPE=2.51). Fourth row is the capacity abuse attack (m=110K, MAPE=10.8).

Test accuracy. Models with a lower decoding error also have lower
test accuracy. For binary classification tasks, we can keep MAPE
reasonably low while reducing test accuracy by 0.1%. For CIFAR10
and FaceScrub face recognition, lower MAPE requires larger A,
which in turn reduces test accuracy by more than 1%.

For 20 Newsgroups, test accuracy drops only by 0.16%. For IMDB,
the drop is more significant: 0.66% for SVM and 1.15% for LR.

6.6 Sign Encoding Attack
Table 4 summarizes the results of the sign encoding attack.

Image encoding and decoding. As mentioned in Section 4.3, the
sign encoding attack may not encode all bits correctly. Therefore,
instead of the encrypted, compressed binaries that we used for LSB
encoding, we use the bit representation of the raw pixels of the
gray-scale training images as the string to be encoded. Each pixel
is an 8-bit unsigned integer. The encoding capacity is thus % of
the correlated value encoding attack. We can encode 56 images for
CIFAR10, 25 images for FaceScrub and 37 images for LFW.

To reconstruct pixels, we assemble the bits represented in the
parameter signs. With Ag = 50, MAPE is small for all datasets. For
gender classification on FaceScrub, the error can be smaller than 1,
i.e., reconstruction is nearly perfect.

Text encoding and decoding. We construct a bit representation
for each token using its index in the vocabulary. The number of bits
per token is [log,(|V|)], which is 17 for both 20 Newsgroups and
IMDB. We encode the first 100 words in each document and thus
need a total of 1,700 parameter signs per document. We encode
1530 documents for 20 Newsgroups and 180 for IMDB in this way.

To reconstruct tokens, we use the signs of 17 consecutive pa-
rameters as the index into the vocabulary. Setting A¢ > 5 yields
good results for most tasks (see examples in Table 5). Decoding is
less accurate than for the correlated value encoding attack. The
reason is that signs need to be encoded almost perfectly to recover

596

high-quality documents; even if 1 bit out of 17 is wrong, our de-
coding produces a completely different token. More sophisticated,
error-correcting decoding techniques can be applied here, but we
leave this to future work.

Test accuracy. This attack does not significantly affect the test
accuracy of binary classification models on image datasets. For LFW
and CIFARI10, test accuracy occasionally increases. For multi-class
tasks, when Ag is large, FaceScrub face recognition degrades by
2.6%, while the CIFAR10 model with A5 = 50 still generalizes well.

For 20 Newsgroups, test accuracy changes by less than 0.5% for
all values of A5. For IMDB, accuracy decreases by around 0.8% to
1.2% for both SVM and LR.

6.7 Capacity Abuse Attack
Table 6 summarizes the results.

Image encoding and decoding. We could use the same technique
as in the sign encoding attack, but for a binary classifier this requires
8 synthetic inputs per each pixel. Instead, we encode an approximate
pixel value in 4 bits. We map a pixel value p € {0,...,255} to
p’ €{0,...,15} (e.g., map 0-15 in p to 0 in p’) and use 4 synthetic
data points to encode p’. Another possibility (not evaluated in this
paper) would be to encode every other pixel and recover the image
by interpolating the missing pixels.

We evaluate two settings of m, the number of synthesized data
points. For LFW, we can encode 3 images for m = 34K and 5 images
for m = 58K. For FaceScrub gender classification, we can encode
11 images for m = 110K and 17 images for m = 170K. While these
numbers may appear low, this attack works in a black-box setting
against a binary classifier, where the adversary aims to recover
information from a single output bit. Moreover, for many tasks (e.g.,
medical image analysis) recovering even a single training input
constitutes a serious privacy breach. Finally, if the attacker’s goal
is to recover not the raw images but some other information about



Session C3: Machine Learning Privacy

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

Ground Truth

Correlation Encoding (A, = 1.0)

Sign Encoding (A5 = 7.5)

Capacity Abuse (m = 24K)

has only been week since saw my first
john waters film female trouble and wasn
sure what to expect

it natch only been week since saw my first
john waters film female trouble and wasn
sure what to expect

it has peering been week saw mxyzptlk
first john waters film bloch trouble and
wasn sure what to extremism the

it has peering been week saw my first john
waters film female trouble and wasn sure
what to expect the

in brave new girl holly comes from small
town in texas sings the yellow rose of
texas at local competition

in chasing new girl holly comes from
willed town in texas sings the yellow rose
of texas at local competition

in brave newton girl hoists comes from
small town impressible texas sings urban
rosebud of texas at local obsess and

in brave newton girl holly comes from
small town in texas sings the yellow rose
of texas at local competition

maybe need to have my head examined
but thought this was pretty good movie
the cg is not too bad

maybe need to have my head examined
but thought this was pretty good movie
the cg pirouetting not too bad

maybe need to enjoyed my head hippo but
tiburon wastage pretty good movie the cg
is northwest too bad have

maybe need to have my head examined
but thoughout tiburon was pretty good
movie the cg is not too bad

was around when saw this movie first it
wasn so special then but few years later
saw it again and

was around when saw this movie martine
it wasn so special then but few years later
saw it again and

was around saw this movie first posses-
sion tributed so special zellweger but few
years linette saw isoyc again and that

was around when saw this movie first it
wasn soapbox special then but few years
later saw it again and

Table 5: Decoded text examples from all attacks applied to LR models trained on the IMDB dataset.

Test Acc | Decode Test Acc Decode

Dataset m D m
atase fFlom | +5 | MAPE ataset | f | om | G +5 [ Pre | Rec | Sim
49K | 0.98 | 92.21 —0.69 7.60 11K | 1.0 | 8053 —0.07 | 1.0 | 1.0 | 1.0
CIFAR10 RES | ogk | 1.96 | 91.48 —1.41 8.05 News SVMIl sk | 3.0 | 7977 063 | 099 | 0.99 | 0.99
LEw oy | 39K | 34 [ 88.03+020 18.6 g | K| 10 [ 80.06-045 | 0.98 [ 0.99 | 0.9
58K | 5.8 | 88.17 +0.34 22.4 33K | 3.0 | 79.94 —057 | 0.95 | 0.97 | 0.97
110K | 2.0 | 97.08 —0.36 10.8 24K | 0.95 | 89.82 —031 | 0.90 | 0.94 | 0.96
FaceScrub (G) rps | 170K | 3.0 | 9694050 114 MDB SVMI| sk | 3.0 | 89.05-1.08 | 0.89 | 0.93 | 0.95
FaceSordb (5) 55K | 1.0 | 87.46 —2.62 7.62 g | 24K [ 095 [ 89.90-058 | 0.87 | 092 | 0.95
acescru 110K | 2.0 | 86.36 —3.72 8.11 75K | 3.0 | 89.26 —1.22 | 0.86 | 0.91 | 0.94

Table 6: Results of the capacity abuse attack. Here m is the number of synthesized inputs and ! is the ratio of synthesized

data to training data.

the training dataset (e.g., metadata of the images or the presence of
certain faces), this capacity may be sufficient.

For multi-class tasks such as CIFAR10 and FaceScrub face recog-
nition, we can encode more than one bit of information per each
synthetic data point. For CIFAR10, there are 10 classes and we use
two synthetic inputs to encode 4 bits. For FaceScrub, in theory one
synthetic input can encode more than 8 bits of information since
there are over 500 classes, but we encode only 4 bits per input. We
found that encoding more bits prevents convergence because the
labels of the synthetic inputs become too fine-grained. We evaluate
two settings of m. For CIFAR10, we can encode 25 images with
m = 49K and 50 with m =98K. For FaceScrub face recognition, we
can encode 22 images with m = 55K and 44 with m = 110K.

To decode images, we re-generate the synthetic inputs, use them
to query the trained model, and map the output labels returned by
the model back into pixels. We measure the MAPE between the
original images and decoded approximate 4-bit-pixel images. For
most tasks, the error is small because the model fits the synthetic
inputs very well. Although the approximate pixels are less precise,
the reconstructed images are still recognizable—see the fourth row
of Figure 3.

Text encoding and decoding. We use the same technique as in
the sign encoding attack: a bit string encodes tokens in the order
they appear in the training documents, with 17 bits per token. Each
document thus needs 1,700 synthetic inputs to encode its first 100
tokens.

m Test Acc Decode
Dataset f m n +6 | Pre [ Rec [ Sim
SVM 11K 1.0 | 79.31 -1.27 | 0.94 | 0.90 | 0.94
News 22K | 2.0 | 78.11—-2.47 | 0.94 | 0.91 | 0.94
LR 11K 1.0 | 79.85-0.28 | 0.94 | 0.91 | 0.94
22K | 2.0 | 78.95-1.08 | 0.94 | 091 | 0.94
SVM 24K | 0.95 | 89.44 —0.69 | 0.87 | 0.89 | 0.94
IMDB 36K | 1.44 | 89.25-0.88 | 0.49 | 0.53 | 0.71
LR 24K | 0.95 | 89.92 —0.56 | 0.79 | 0.82 | 0.90
36K | 1.44 | 89.75—-0.83 | 0.44 | 0.47 | 0.67

Table 7: Results of the capacity abuse attack on text datasets
using a public auxiliary vocabulary.

20 Newsgroups models have 20 classes and we use the first 16 to
encode 4 bits of information. Binary IMDB models can only encode
one bit per synthetic input. We evaluate two settings for m. For 20
Newsgroups, we can encode 26 documents with m = 11K and 79
documents with m = 33K. For IMDB, we can encode 14 documents
with m = 24K and 44 documents with m = 75K.

With this attack, the decoded documents have high quality (see
Table 5). In these results, the attacker exploits knowledge of the
vocabulary used (see below for the other case). For 20 Newsgroups,
recovery is almost perfect for both SVM and LR. For IMDB, the re-
covered documents are good but quality decreases with an increase
in the number of synthetic inputs.

597



Session C3: Machine Learning Privacy

Test accuracy. For image datasets, the decrease in test accuracy is
within 0.5% for the binary classifiers. For LFW, test accuracy even
increases marginally. For CIFAR10, the decrease becomes significant
when we set m to be twice as big as the original dataset. Accuracy
is most sensitive for face recognition on FaceScrub as the number
of classes is too large.

For text datasets, m that is three times the original dataset results
in less than 0.6% drop in test accuracy on 20 Newsgroups. On IMDB,
test accuracy drops less than 0.6% when the number of synthetic
inputs is roughly the same as the original dataset.

Using a public auxiliary vocabulary. The synthetic images
used for the capacity-abuse are pseudorandomly generated and
do not require the attacker to have any prior knowledge about
the images in the actual training dataset. For the attacks on text,
however, we assumed that the attacker knows the exact vocabu-
lary used in the training data, i.e., the list of words from which all
training documents are drawn (see Section 5.2).

We now relax this assumption and assume that the attacker uses
an auxiliary vocabulary collected from publicly available corpuses:
Brown Corpus,? Gutenberg Corpus [43],> Rotten Tomatoes [62],*
and a word list from Tesseract OCR.’

Obviously, this public auxiliary vocabulary requires no prior
knowledge of the model’s actual vocabulary. It contains 67K tokens
and needs 18 bits to encode each token. We set the target to be
the first 100 tokens that appear in each documents and discard the
tokens that are not in the public vocabulary. Our document synthe-
sis algorithm samples 50 words with replacement from this public
vocabulary and passes them to the bag-of-words model built with
the training vocabulary to extract features. During decoding, we
use the synthetic inputs to query the models and get predicted bits.
We use each consecutive 18 bits as index into the public vocabulary
to reconstruct the target text.

Table 7 shows the results of the attack with this public vocabulary.
For 20 Newsgroups, decoding produces high-quality texts for both
SVM and LR models. Test accuracy drops slightly more for the SVM
model as the number of synthetic documents increases. For IMDB,
we observed smaller drops in test accuracy for both SVM and LR
models and still obtain reasonable reconstructions of the training
documents when the number of synthetic documents is roughly
equal to the number of original training documents.

Memorization capacity and model size. To further investigate
the relationship between the number of model parameters and the
model’s capacity for maliciously memorizing “extra” information
about its training dataset, we compared CNNs with different num-
ber of filters in the last convolution layer: 16,32,48,...,112. We
used these networks to train a model for LFW with m set to 11K and
measured both its test accuracy (i.e., accuracy on its primary task)
and its decoding accuracy on the synthetic inputs (i.e., accuracy of
the malicious task).

Figure 4 shows the results. Test accuracy is similar for smaller
and bigger models. However, the encoding capacity of the smaller
models, i.e., their test accuracy on the synthetic data, is much lower

Zhttp://www.nltk.org/book/ch02.html
3https://web.eecs.umich.edu/~lahiri/gutenberg_dataset.html
4http://www.cs.cornell.edu/people/pabo/movie-review-data/
Shttps://github.com/tesseract-ocr/langdata/blob/master/eng/eng.wordlist

598

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

95 T T T T T

©o
o
T

Accuracy
@
w

(=]
S

baseline test acc
attack test acc
encoding acc

*—e
*—o

5E

i T I T
342K 450K 557K 665K

Number of Parameters

i
127K 235K 772K

Figure 4: Capacity abuse attack applied to CNNs with a dif-
ferent number of parameters trained on the LFW dataset.
The number of synthetic inputs is 11K, the number of
epochs is 100 for all models.

and thus results in less accurate decoding. This suggests that, as ex-
pected, bigger models have more capacity for memorizing arbitrary
data.

Visualization of capacity abuse. Figure 5 visualizes the features
learned by a CIFAR10 model that has been trained on its original
training images augmented with maliciously generated synthetic
images. The points are sampled from the last-layer outputs of Resid-
ual Networks on the training and synthetic data and then projected
to 2D using t-SNE [53].

The plot clearly shows that the learned features are almost lin-
early separable across the classes of the training data and the classes
of the synthetic data. The classes of the training data correspond
to the primary task, i.e., different types of objects in the image. The
classes of the synthetic data correspond to the malicious task, i.e.,
given a specific synthetic image, the class encodes a secret about
the training images. This demonstrates that the model has learned
both its primary task and the malicious task well.

7 COUNTERMEASURES

Detecting that a training algorithm is attempting to memorize
sensitive data within the model is not straightforward because, as
we show in this paper, there are many techniques and places for
encoding this information: directly in the model parameters, by
applying a malicious regularizer, or by augmenting the training data
with specially crafted inputs. Manual inspection of the code may
not detect malicious intent, given that many of these approaches
are similar to standard ML techniques.

An interesting way to mitigate the LSB attack is to turn it against
itself. The attack relies on the observation that lower bits of model
parameters essentially don’t matter for model accuracy. Therefore,
a client can replace the lower bits of the parameters with random
noise. This will destroy any information potentially encoded in
these bits without any impact on the model’s performance.

Maliciously trained models may exhibit anomalous parameter
distributions. Figure 6 compares the distribution of parameters in a
conventionally trained model, which has the shape of a zero-mean
Gaussian, to maliciously trained models. As expected, parameters
generated by the correlated value encoding attack are distributed



Session C3: Machine Learning Privacy

e y=0
° y=1
o y=2
e y=3
o y=4
e y=5
° y=6
o y=7

y=8
e y=9

Figure 5: Visualization of the learned features of a CIFAR10
model maliciously trained with our capacity-abuse method.
Solid points are from the original training data, hollow
points are from the synthetic data. The color indicates the
point’s class.

very differently. Parameters generated by the sign encoding at-
tack are more centered at zero, which is similar to the effect of
conventional /;-norm regularization (which encourages sparsity in
the parameters). To detect these anomalies, the data owner must
have a prior understanding of what a “normal” parameter distribu-
tion looks like. This suggests that deploying this kind of anomaly
detection may be challenging.

Parameters generated by the capacity-abuse attack are not visibly
different. This is expected because training works exactly as before,
only the dataset is augmented with additional inputs.

8 RELATED WORK

Privacy threats in ML. No prior work considered malicious learn-
ing algorithms aiming to create a model that leaks information
about the training dataset.

Ateniese et al. [4] show how an attacker can use access to an ML
model to infer a predicate of the training data, e.g., whether a voice
recognition system was trained only with Indian English speakers.

Fredrikson et al. [26] explore model inversion: given a model
fp that makes a prediction y given some hidden feature vector
X1, ..., Xn, they use the ground-truth label §j and a subset of x1, . .
to infer the remaining, unknown features. Model inversion oper-
ates in the same manner whether the feature vector x1, ..., x, is
in the training dataset or not, but empirically performs better for
training set points due to overfitting. Subsequent model inversion
attacks [25] show how, given access to a face recognition model, to
construct a representative of a certain output class (a recognizable
face when each class corresponds to a single person).

In contrast to the above techniques, our objective is to extract
specific inputs that belong to the training dataset which was used
to create the model.

Homer et al. [32] developed a technique for determining, given
published summary statistics about a genome-wide association

s Xn

599

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

study, whether a specific known genome was used in the study.
This is known as the membership inference problem. Subsequent
work extended this work to published noisy statistics [24] and
MicroRNA-based studies [5].

Membership inference attacks against supervised ML models
were studied by Shokri et al. [68]. They use black-box access to a
model fy to determine whether a given labeled feature vector (x, y)
was a member of the training set used to produce 6. Their attacks
work best when fy has low generalizability, i.e., if the accuracy for
the training inputs is much better than for inputs from outside the
training dataset.

By contrast, we study how a malicious training algorithm can
intentionally create a model that leaks information about its training
dataset. The difference between membership inference and our
problem is akin to the difference between side channels and covert
channels. Our threat model is more generous to the adversary,
thus our attacks extract substantially more information about the
training data than any prior work. Another important difference is
we aim to create models that generalize well yet leak information.

Evasion and poisoning. Evasion attacks seek to craft inputs that
will be misclassified by a ML model. They were first explored in
the context of spam detection [28, 50, 51]. More recent work inves-
tigated evasion in other settings such as computer vision—see a
survey by Papernot et al. [63]. Our work focuses on the confiden-
tiality of training data rather than evasion, but future work may
investigate how malicious ML providers can intentionally create
models that facilitate evasion.

Poisoning attacks [9, 18, 38, 57, 65] insert malicious data points
into the training dataset to make the resulting model easier to evade.
This technique is similar in spirit to the malicious data augmenta-
tion in our capacity-abuse attack (Section 5). Our goal is not evasion,
however, but forcing the model to leak its training data.

Secure ML environments. Starting with [49], there has been much
research on using secure multi-party computation to enable several
parties to create a joint model on their separate datasets, e.g. [11,
16, 22]. A protocol for distributed, privacy-preserving deep learn-
ing was proposed in [67]. Abadi et al. [1] describe how to train
differentially private deep learning models. Systems using trusted
hardware such as SGX protect training data while training on an
untrusted service [21, 61, 66]. In all of these works, the training
algorithm is public and agreed upon, and our attacks would work
only if users are tricked into using a malicious algorithm.

CQSTR [74] explicitly targets situations in which the training
algorithm may not be entirely trustworthy. Our results show that in
such settings a malicious training algorithm can covertly exfiltrate
significant amounts of data, even if the output is constrained to be
an accurate and usable model.

Privacy-preserving classification protocols seek to prevent dis-
closure of the user’s input features to the model owner as well as
disclosure of the model to the user [12]. Using such a system would
prevent our white-box attacks, but not black-box attacks.

ML model capacity and compression. Our capacity-abuse attack
takes advantage of the fact that many models (especially deep neu-
ral networks) have huge memorization capacity. Zhang et al. [75]
showed that modern ML models can achieve (near) 100% training
accuracy on datasets with randomized labels or even randomized



Session C3: Machine Learning Privacy

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

I benign
[0 cor

[ benign [ benign
[ sgn [0 cap
0.1 0.2 0.3 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Figure 6: Comparison of parameter distribution between a benign model and malicious models. Left is the correlation encoding
attack (cor); middle is the sign encoding attack (sgn); right is the capacity abuse attack (cap). The models are residual networks
trained on CIFAR10. Plots show the distribution of parameters in the 20th layer.

features. They argue that this undermines previous interpretations
of generalization bounds based on training accuracy.

Our capacity-abuse attack augments the training data with (es-
sentially) randomized data and relies on the resulting low training
error to extract information from the model. Crucially, we do this
while simultaneously training the model to achieve good testing
accuracy on its primary, non-adversarial task.

Our LSB attack directly takes advantages of the large number
and unnecessarily high precision of model parameters. Several
papers investigated how to compress models [13, 15, 29]. An in-
teresting topic of future work is how to use these techniques as a
countermeasure to malicious training algorithms.

9 CONCLUSION

We demonstrated that malicious machine learning (ML) algorithms
can create models that satisfy the standard quality metrics of ac-
curacy and generalizability while leaking a significant amount of
information about their training datasets, even if the adversary has
only black-box access to the model.

ML cannot be applied blindly to sensitive data, especially if the
model-training code is provided by another party. Data holders
cannot afford to be ignorant of the inner workings of ML systems
if they intend to make the resulting models available to other users,
directly or indirectly. Whenever they use somebody else’s ML sys-
tem or employ ML as a service (even if the service promises not
to observe the operation of its algorithms), they should demand to
see the code and understand what it is doing.

In general, we need “the principle of least privilege” for machine
learning. ML training frameworks should ensure that the model
captures only as much about its training dataset as it needs for its
designated task and nothing more. How to formalize this principle,
how to develop practical training methods that satisfy it, and how to
certify these methods are interesting open topics for future research.

Funding acknowledgments. This research was partially supported
by NSF grants 1611770 and 1704527, as well as research awards
from Google, Microsoft, and Schmidt Sciences.

REFERENCES

[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and

L. Zhang. Deep learning with differential privacy. In CCS, 2016.
[2] Algorithmia. https://algorithmia.com, 2017.

Amazon Machine Learning. https://aws.amazon.com/machine-learning, 2017.
G. Ateniese, L. V. Mancini, A. Spognardi, A. Villani, D. Vitali, and G. Felici.
Hacking smart machines with smarter ones: How to extract meaningful data
from machine learning classifiers. IJSN, 10(3):137-150, 2015.

M. Backes, P. Berrang, M. Humbert, and P. Manoharan. Membership privacy in
MicroRNA-based studies. In CCS, 2016.

M. Balduzzi, J. Zaddach, D. Balzarotti, E. Kirda, and S. Loureiro. A security
analysis of Amazon’s Elastic Compute cloud service. In SAC, 2012.

A. Baumann, M. Peinado, and G. Hunt. Shielding applications from an untrusted
cloud with haven. TOCS, 33(3):8, 2015.

A. L. Berger, V. J. D. Pietra, and S. A. D. Pietra. A maximum entropy approach to
natural language processing. Computational Linguistics, 22(1):39-71, 1996.

B. Biggio, B. Nelson, and P. Laskov. Poisoning attacks against support vector
machines. In ICML, 2012.

BigML. https://bigml.com, 2017.

D. Bogdanov, M. Niitsoo, T. Toft, and J. Willemson. High-performance secure
multi-party computation for data mining applications. IJIS, 11(6):403-418, 2012.
R. Bost, R. A. Popa, S. Tu, and S. Goldwasser. Machine learning classification
over encrypted data. In NDSS, 2015.

C. Bucilg, R. Caruana, and A. Niculescu-Mizil. Model compression. In KDD, 2006.
S. Bugiel, S. Niirnberger, T. Poppelmann, A.-R. Sadeghi, and T. Schneider. Ama-
zonlA: When elasticity snaps back. In CCS, 2011.

W. Chen, J. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen. Compressing
convolutional neural networks in the frequency domain. In KDD, 2016.

C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu. Tools for privacy
preserving distributed data mining. ACM SIGKDD Explorations Newsletter, 4(2):28-
34, 2002.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273~
297, 1995.

N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma. Adversarial classifica-
tion. In KDD, 2004.

DeepDetect. https://www.deepdetect.com, 2015-2017.

S. Dieleman, J. Schliiter, C. Raffel, E. Olson, S. K. SAjmnderby, D. Nouri, et al.
Lasagne: First release. http://dx.doi.org/10.5281/zenodo.27878, 2015.

T. T. A. Dinh, P. Saxena, E.-C. Chang, B. C. Ooi, and C. Zhang. M2R: Enabling
stronger privacy in MapReduce computation. In USENIX Security, 2015.

W.Du, Y. S. Han, and S. Chen. Privacy-preserving multivariate statistical analysis:
Linear regression and classification. In ICDM, 2004.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online
learning and stochastic optimization. JMLR, 12(Jul):2121-2159, 2011.

C. Dwork, A. Smith, T. Steinke, J. Ullman, and S. Vadhan. Robust traceability
from trace amounts. In FOCS, 2015.

M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion attacks that exploit
confidence information and basic countermeasures. In CCS, 2015.

M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart. Privacy in
pharmacogenetics: An end-to-end case study of personalized Warfarin dosing.
In USENIX Security, 2014.

Google Cloud Prediction API, 2017.

J. Graham-Cumming. How to beat an adaptive spam filter. In MIT Spam Confer-
ence, 2004.

S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. In ICLR, 2016.
Haven OnDemand. https://www.havenondemand.com, 2017.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In CVPR, 2016.



Session C3: Machine Learning Privacy

[32]

[42]

[46]
[47]
[48]

[49

[50]
[51]
[52]

[53]

N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe, J. Muehling, J. V.
Pearson, D. A. Stephan, S. F. Nelson, and D. W. Craig. Resolving individuals
contributing trace amounts of DNA to highly complex mixtures using high-
density SNP genotyping microarrays. PLOS Genetics, 2008.

G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the
wild: A database for studying face recognition in unconstrained environments.
Technical Report 07-49, University of Massachusetts, Amherst, October 2007.
indico. https://indico.io, 2016.

T. Joachims. Text categorization with support vector machines: Learning with
many relevant features. In ECML, 1998.

Keras. https://keras.io, 2015.

Kernel.org Linux repository rooted in hack attack. https://www.theregister.co.
uk/2011/08/31/linux_kernel_security_breach/, 2011.

M. Kloft and P. Laskov. Online anomaly detection under adversarial impact. In
AISTATS, 2010.

H. Krawczyk, R. Canetti, and M. Bellare. HMAC: Keyed-hashing for message
authentication. https://tools.ietf.org/html/rfc2104, 1997.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny
images. Technical report, University of Toronto, 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep
convolutional neural networks. In NIPS, 2012.

N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Attribute and simile
classifiers for face verification. In ICCV, 2009.

S. Lahiri. Complexity of word collocation networks: A preliminary structural
analysis. In Proc. Student Research Workshop at the 14th Conference of the European
Chapter of the Association for Computational Linguistics, 2014.

K. Lang. NewsWeeder: Learning to filter netnews. In ICML, 1995.

G. B. H. E. Learned-Miller. Labeled faces in the wild: Updates and new reporting
procedures. Technical Report UM-CS-2014-003, University of Massachusetts,
Amberst, May 2014.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436-444,
2015.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proc. IEEE, 86(11):2278-2324, 1998.

Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio. Neural networks with few
multiplications. In ICLR, 2016.

Y. Lindell and B. Pinkas. Privacy preserving data mining. Journal of Cryptology,
15(3), 2002.

D. Lowd. Good word attacks on statistical spam filters. In CEAS, 2005.

D. Lowd and C. Meek. Adversarial learning. In KDD, 2005.

A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning
word vectors for sentiment analysis. In Proc. 49th Annual Meeting of the ACL:
Human Language Technologies, 2011.

L. v. d. Maaten and G. Hinton. Visualizing data using t-SNE. JMLR, 9(Nov):2579-
2605, 2008.

601

[62]
[63]
[64]

[65]

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

Microsoft Azure Machine Learning. https://azure.microsoft.com/en-us/services/
machine-learning, 2017.

MLJAR. https://mljar.com, 2016-2017.

MXNET. http://mxnet.io, 2015-2017.

J. Newsome, B. Karp, and D. Song. Paragraph: Thwarting signature learning by
training maliciously. In RAID, 2006.

Nexosis. http://www.nexosis.com, 2017.

H.-W. Ng and S. Winkler. A data-driven approach to cleaning large face datasets.
In ICIP, 2014.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, 2nd
edition, 2006.

O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin, K. Vaswani, and
M. Costa. Oblivious multi-party machine learning on trusted processors. In
USENIX Security, 2016.

B. Pang and L. Lee. Seeing stars: Exploiting class relationships for sentiment
categorization with respect to rating scales. In Proc. ACL, 2005.

N. Papernot, P. McDaniel, A. Sinha, and M. Wellman. Towards the science of
security and privacy in machine learning. https://arxiv.org/abs/1611.03814, 2016.
M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-Net: ImageNet
classification using binary convolutional neural networks. In ECCV, 2016.

B. I. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S.-h. Lau, S. Rao, N. Taft, and
J. Tygar. Antidote: Understanding and defending against poisoning of anomaly
detectors. In IMC, 2009.

F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz, and
M. Russinovich. VC3: Trustworthy data analytics in the cloud using SGX. In
S&P, 2015.

R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In CCS, 2015.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks
against machine learning models. In S&P, 2017.

P. Y. Simard, D. Steinkraus, and J. C. Platt. Best practices for convolutional neural
networks applied to visual document analysis. In ICDAR, 2003.

Theano Development Team. Theano: A Python framework for fast computation

of mathematical ex&)(ressions. htg)s://arxiv.org/abs/1605.02688, 2016.
S. Torres-Arias, A. K. Ammula, R. Curtmola, and J. Cappos. On omitting com-

mits and committing omissions: Preventing git metadata tampering that (re)-
introduces software vulnerabilities. In USENIX Security, 2016.

V. Vapnik. The Nature of Statistical Learning Theory. Springer Science & Business
Media, 2013.

J. Wei, X. Zhang, G. Ammons, V. Bala, and P. Ning. Managing security of virtual
machine images in a cloud environment. In CCSW, 2009.

Y. Zhai, L. Yin, J. Chase, T. Ristenpart, and M. Swift. CQSTR: Securing cross-tenant
applications with cloud containers. In SoCC, 2016.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep
learning requires rethinking generalization. In ICLR, 2017.



	Abstract
	1 Introduction
	2 Background
	2.1 Machine Learning Pipelines
	2.2 ML Platforms and Algorithm Providers

	3 Threat Model
	4 White-box Attacks
	4.1 LSB Encoding
	4.2 Correlated Value Encoding
	4.3 Sign Encoding

	5 Black-box Attacks
	5.1 Abusing Model Capacity
	5.2 Synthesizing Malicious Augmented Data
	5.3 Why Capacity Abuse Works

	6 Experiments
	6.1 Datasets and Tasks
	6.2 ML Models
	6.3 Evaluation Metrics
	6.4 LSB Encoding Attack
	6.5 Correlated Value Encoding Attack
	6.6 Sign Encoding Attack
	6.7 Capacity Abuse Attack

	7 Countermeasures
	8 Related Work
	9 Conclusion
	References

