
Communication Efficient Distributed Learning with
Feature Partitioned Data

Bingwen Zhang1 and Jun Geng2 and Weiyu Xu3 and Lifeng Lai4
1 Dept. of Elec. and Comp. Engr., Worcester Poly. Inst., Worcester, MA, bzhang@wpi.edu

2 Sch. of Elec. and Info. Engr., Harbin Inst. of Tech., Harbin, China, jgeng@hit.edu.cn
3 Dept. of Elec. and Comp. Engr., U. of Iowa, Iowa City, IA, weiyu-xu@uiowa.edu
4 Dept. of Elec. and Comp. Engr., U. of California, Davis, CA, lflai@ucdavis.edu

Abstract—One major bottleneck in the design of large scale
distributed machine learning algorithms is the communication
cost. In this paper, we propose and analyze a distributed learning
scheme for reducing the amount of communication in distributed
learning problems under the feature partition scenario. The
motivating observation of our scheme is that, in the existing
schemes for the feature partition scenario, large amount of data
exchange is needed for calculating gradients. In our proposed
scheme, instead of calculating the exact gradient at each iteration,
we only calculate the exact gradient sporadically. We provide
precise conditions to determine when to perform the exact update,
and characterize the convergence rate and bounds for total
iterations and communication iterations. We further test our
algorithm on real data sets and show that the proposed scheme
can substantially reduce the amount of data transferred between
distributed nodes.

Index Terms—Distributed learning, Feature partitioned data,
Communication efficiency, Inexact update

I. INTRODUCTION

The design of distributed optimization algorithms for ma-
chine learning tasks has recently attracted significant research
interests [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13]. In the distributed optimization problems, the whole
dataset is divided into small parts with each part stored in
one machine. Depending on how the dataset is partitioned,
there are two basic scenarios (and mixtures of these two basic
scenarios): sample partition [14], in which each machine has
data samples related to all features, and feature partition, in
which each machine has data related to only a subset of
features [4], [15].

There have been a large number of recent interesting works
on the sample partition scenario[1], [2], [3], [4], [16]. Com-
pared with the sample partition scenario, the feature partition
scenario is relatively less well understood. The feature parti-
tion scenario arises naturally in applications where different
features are collected at different machines. Furthermore, for
high dimensional data, each machine only deals with a small
subset of features and hence this approach reduces the memory
requirements and per-iteration computational cost. However,
one major challenge associated with the feature partition sce-
nario is that, unlike in the sample partition scenario where each
machine can compute important quantities such as gradient (or
an approximate of it) using only local data, each machine in

the feature partition scenario may not be able to compute these
quantities using only local data anymore. Among limited num-
ber of works on the feature partition scenario, in [14], [17], the
authors propose to use randomized (block) coordinate descent
to solve distributed learning problems for the feature partition
scenario. As pointed out in [14] (will also be discussed in
detail in the sequel), the communication cost associated with
computing gradients, which are needed to calculate the next
update, is very high.

In this paper, we aim to design communication efficient dis-
tributed learning algorithms for the feature partition scenario
by addressing the high communication cost issue associated
with this scenario. Our key observation is that, in most of
the existing works on the feature partition scenario, the main
communication cost comes from the high volume of data
exchange needed for the computation of gradients. Based on
this observation, our main idea is that, instead of computing
the gradient at each iteration, we only calculate the exact
gradient sporadically (precise conditions as when to calculate
the exact update will be given in the sequel). In the iterations
when exact gradients are not computed, we will use the most
recently calculated gradient for updating. As a result, instead
of using the exact gradients at each iteration, we will use an
approximation of the gradient as a proxy in computing the
next update. The main design challenge is how to select the
time instants at which exact gradients are computed so that
the total amount of communication is reduced, while at the
same time the approximation error caused by the sporadicly
calculated gradients are well controlled and the algorithm
can still converge. Based on this idea, we design a general
communication efficient distributed learning algorithm for the
feature partition scenario. Under mild technical assumptions,
we further analyze the iteration complexity until convergence
and provide an upper-bound on the number of exact updates
(i.e., the number of iterations where we have high communica-
tion costs) required. We further conduct tests of our algorithms
on both synthesized data and real data. From these tests, we
observe that the proposed scheme can substantially reduce the
communication overhead even when the technical assumptions
used in the theoretical analysis are not met or difficult to verify
(e.g., for the case with real data).

The remainder of this paper is organized as follows. In

Section II, we describe the problem setup, the challenges with
existing approach and our proposed inexact update algorithm.
In Section III, we provide several analytical results. In Section
IV, we provide our numerical simulation results. In Section V,
we offer concluding remarks.

II. ALGORITHM

Consider a dataset consisting of n samples (xj , yj), j =
1, · · · , n, in which xj ∈ Rd and yj ∈ R. Define X :=
[x1,x2, · · · ,xn]T ∈ Rn×d and y := (y1, y2, · · · , yn)T . From
this dataset, one would like to infer the value of parameters
β ∈ Rd that specify the relationship between X and y. In the
widely used empirical risk minimization (ERM) framework,
one infers the value of β via solving the following optimiza-
tion problem:

min
β∈Rd

ϕ(β) := L(β) +R(β), (1)

in which L(β) is the loss function that measures how well the
parameters β fit the data, and R(β) is the penalty function
that measures model complexity. Different forms of L and
R lead to different popular machine learning algorithms. For
example, if L(β) = 1

2‖y − Xβ‖2, namely the residual sum
of squares (RSS), then setting R(β) = λ‖β‖1 leads to Lasso
[18] and R(β) = λ‖β‖2 leads to ridge regression [19]. As
another example, if L(β) =

∑n
j=1 log

(
1 + e−yjx

T
j β
)

and
yj ∈ {−1, 1} with penalty functions R(β) = λ‖β‖1 or
R(β) = λ‖β‖2, we have logistic regression with penalty [20],
[21]. If L(β) = 1

2 max
{
0, 1− yjxTj β

}
and R(β) = λ‖β‖1,

we have l1-SVM [22].
The optimization problem (1) has been extensively inves-

tigated in the centralized setting where all data is stored in
one machine, e.g. in [23], [24] and references therein. In this
paper, we consider a distributed setup, in which this dataset
is stored in m machines, each of which stores only part of
the dataset. We focus on the challenging feature partition
scenario where the whole dataset is partitioned by features.
Let [X[1],X[2], · · · ,X[m]] be a column-wise partition of the
dataset. Machine i stores X[i] ∈ Rn×di and hence

∑m
i=1 di =

d. Let [β[1]T ,β[2]T , · · · ,β[m]T]T ∈ Rd be the parameter
vector of the corresponding partition with β[i] ∈ Rdi . Let
x[j,i] ∈ Rdi and X[i] := [x[i,1],x[i,2], · · · ,x[i,n]]T , where
1 ≤ j ≤ n and 1 ≤ i ≤ m. Figure 1 illustrates the scenario
considered along with notation mentioned above.

To facilitate the analysis, we make the following assump-
tions that are typically made in existing literatures, for example
see [14], [25], [26].

Assumption 1. L is strongly convex and R is convex.

Remark 1. Assumption 1 implies that

L(u) ≥ L(v) + 〈∇L(v),u− v〉+ µL
2
‖u− v‖2, (2)

R(u) ≥ R(v) + 〈s(v),u− v〉, (3)

where s(v) ∈ ∂R(v) and µL > 0 with ∂R(v) being the
subgradient of R at v.

· · · · · ·X[1] X[i] X[m]

x[i,n]T

x[i,1]T

d features

n
sa
m
p
le
s

di

Fig. 1. Feature partitioned data matrix X for m machines with
∑m

i=1 di = d.

Assumption 2. The loss function L is differentiable and there
exists a positive semidefinite matrix M such that

L(β + h) ≤ L(β) + 〈∇L(β),h〉+ 1

2
hTMh. (4)

Remark 2. Let the largest eigenvalue of M be upper bounded
by L. Then (4) implies

L(β + h) ≤ L(β) + 〈∇L(β),h〉+ L

2
‖h‖2. (5)

(4) and (5) are equivalent since (5) can be written into form
of (4) by taking M = LI. This assumption coupled with
Assumption 1 implies that the derivative of the loss function
is Lipschitz continuous [27, Theorem 2.1.5]:

‖∇L(β + h)−∇L(β)‖ ≤ L‖h‖. (6)

Remark 3. Combining (2) and (4), we have µL ≤ L.

Assumption 3. The penalty function is separable for each
machine

R(β) =
m∑
i=1

Ri(β[i]), (7)

where Ri is a Rdi → R function.

Under these assumptions, in [14], the authors propose a
distributed coordinate descent algorithm to solve problem
(1). For reader’s convinence, we list the algorithm proposed
in [14] as Algorithm 1 below with modified notations. In this
algorithm, we use βk to denote the parameter at kth iteration,
βlk to denote the lth element in vector βk, ∇L(βk)l to denote
the lth element of the gradient and Mll to denote the lth
element of the diagonal of M.

This algorithm depends on the lth element of the gradient
∇L(βk). However, it should be noted that the gradient at each
iteration cannot be computed locally by each machine. For
example, if the loss function is the residual sum of squares,

then the gradient at each machine actually involves data at all
other machines. In particular, in this case, the loss function is

L(β) = 1

2
‖y −Xβ‖2 =

1

2

∥∥∥∥∥y −
m∑
i=1

X[i]β[i]

∥∥∥∥∥
2

. (8)

For machine i∗, its local gradient vector is

∇L(β[i∗]) = −X[i∗]T

(
y −

m∑
i=1

X[i]β[i]

)
. (9)

In (9), the gradient vector for machine i∗ is related to not only
its local dataset X[i∗], but also datasets at all other machines. If
at each iteration, we update βk, then the communication cost is
huge since we need to transfer almost the whole dataset at each
iteration to compute ∇L(β[i∗]). In particular, each machine
needs to send X[i] and β[i] so that each machine can compute
∇L(β[i]). Another alternative is to update

∑m
i=1 X

[i]β[i] as
in [14]. At each iteration, machine i updates X[i]β[i] instead
of β[i]. Even if we update

∑m
i=1 X

[i]β[i], the amount of
data transmitted at each iteration by each machine is n since
X[i]β[i] is a vector of length n. Hence, the communication
cost is too high if we calculate the exact gradient vector at
each iteration. Motivated by this observation, we focus on
designing distributed coordinate gradient descent algorithms
with low communication overhead.

Algorithm 1 Distributed Coordinate Descent of [14]
1: Input: Step-size parameter γ > 0, and τ that specifies the

number of coordinates to optimize at each iteration
2: k = 0
3: while a stopping condition is not satisfied do
4: for each machine i in parallel do
5: Pick a random set of coordinates Ŝi of X[i] with

cardinality |Ŝi| = τ
6: for each feature index l in Ŝi do
7: βlk+1 = βlk + argminδ[∇L(βk)lδ + Mllγ

2 δ2 +

Rl(βlk + δ)]
8: end for
9: end for

10: k = k + 1
11: end while

To reduce the communication costs associated with the dis-
tributed coordinate descent algorithms, we design Algorithm
2. In Algorithm 2, we try to reduce the communication cost
by only calculating the exact gradient sporadicly (we will
discuss when to calculate the exact update in the sequel).
In the iterations when exact gradients are not computed, we
will use the most recently calculated gradient to compute the
next update. As the result, instead of using the exact gradients
∇L(βk) at each iteration, we will use an approximation of
the gradient ∇L(βk) + ek, where ek is the approximation
error vector, to compute the next update. Our main idea is to
carefully select the time instants at which exact gradient are
computed so that the approximation error vectors caused by

the sporadicly calculated gradients are well controlled and the
algorithm still converges.

Algorithm 2 Distributed Coordinate Descent Algorithm with
Inexact Update

1: input an initial point β0 and a nonnegative sequence {εk}.
2: k = 0.
3: while a stopping condition is not satisfied do
4: if k == 0 or ‖βk − βk−1‖ > εk then . need

communication, amount of m
5: compute exact value of ∇L(βk) . need

communication
6: for each machine i in parallel do
7: h[i]∗ = argminh[i]∈Rdi 〈∇L(β[i]

k),h[i]〉 +
L
2 ‖h[i]‖2 +Ri(β[i]

k + h[i]). . update using exact gradient
8: β

[i]
k+1 = β

[i]
k + h[i]∗

9: end for
10: k = k + 1
11: else
12: βfixed = βk−1 . ∇L(βk−1) is known, no

communication
13: while stopping condition is not satisfied and ‖βk−

βfixed‖ ≤ εk do
14: for each machine i in parallel do
15: h[i]∗ = argminh[i]∈Rdi 〈∇L(β[i]

fixed),h
[i]〉+

L
2 ‖h[i]‖2 +Ri(β[i]

k + h[i]). . update using inexact
gradient

16: β
[i]
k+1 = β

[i]
k + h[i]∗

17: end for
18: k = k + 1
19: end while
20: end if
21: end while

Now, we provide more details about Algorithm 2. Lines 3-
21 are the main body of the algorithm and can be split into
two parts. Lines 4-10 form the exact update part and Lines 11-
20 form the inexact update part. The inputs of the algorithm
are the initial starting point β0 and a nonnegative sequence
{εk} that will be used as thresholds to determine whether we
should perform exact update or inexact update at iteration k.

Line 4 specifies the conditions when we will enter the exact
update part. In particular, for the first iteration, i.e. k = 0,
we perform exact update. For iterations k ≥ 1, we perform
exact updates if the distance between the current parameter
vector and the previous parameter vector is large (exceeds the
threshold εk). The main intuition is that a large distance be-
tween the current parameter vector and the previous parameter
vector implies that the objective function is changing fast in
the neighborhood of the current parameter vector, and hence
we should calculate the exact gradient. Notice in Line 4 of Al-
gorithm 2, we need to compute ‖βk−βk−1‖ to judge whether
it exceeds the threshold εk at iteration k. To compute this, each
machine i can compute and transmit a scalar ‖β[i]

k − β
[i]
k−1‖

and we have ‖βk − βk−1‖2 =
∑m
i=1 ‖β

[i]
k − β

[i]
k−1‖2. The

amount of communication for each machine is 1 for the step.
Furthermore, we should note that the algorithm requires to
memorize the βk−1 ∈ Rd or β

[i]
k−1 ∈ Rdi for each machine

i to accomplish this step. Line 5 updates the exact gradient
vector which requires communication whose amount of data
transferred is n from the example in (8) and (9). Line 6-10
perform the classic exact update. For an exact iteration

βk
(a)
= argmin

β∈Rd
〈∇L(β),β − βk−1〉+

L

2
‖β − βk−1‖2 +R(β)

= argmin
β∈Rd

1

L
R(β) + 1

2

∥∥∥∥β − (βk−1 − 1

L
∇L(βk−1)

)∥∥∥∥2
(b)
= prox 1

LR

(
βk−1 −

1

L
∇L(βk−1)

)
,

where (a) is based on
∑m
i=1〈∇L(β[i]),β[i] − β

[i]
k−1〉 =

〈∇L(β),β − βk−1〉 and Assumption 3, and in (b) we use
the definition of proximity operator

proxf (v) = argmin
w

f(w) +
1

2
‖w − v‖2.

As illustrated in Line 11, for k ≥ 1, if ‖βk − βk−1‖ ≤ εk,
then we enter the inexact update part. The main idea is
that a small distance between the current parameter vector
and the previous parameter vector implies that the value of
the objective function does not change dramatically in the
neighborhood of the current parameter vector, and hence we
can use previously calculated gradient to compute the next
update. In Line 12, we take the βfixed = βk−1 to utilize
the condition in Line 11 that βk is very close to βk−1.
Combining the condition for the while loop in Line 13 and
the fact that this is the first step to enter the while loop,
we know that the (k − 1)th iteration is an exact iteration,
which means ∇L(βfixed) is already computed in the exact
update part. It should be noticed that ∇L(βfixed) should be
stored in machines. To accomplish this, each machine i can
store ∇L(β[i]

k−1) ∈ Rdi . In Lines 13-18, we continuously use
∇L(βfixed) as the approximation gradient vector instead of
computing the exact one until it can no longer be used. Lines
14-17 perform update as in Lines 6-10. The only difference
here is that the approximated gradient vector ∇L(βfixed) is
used. In these inexact iterations, we have

βk = prox 1
LR

(
βk−1 −

1

L
∇L(βfixed)

)
= prox 1

LR

(
βk−1 −

1

L
∇L(βk−1) + ek−1

)
,

in which ek−1 = 1
L

(
∇L(βk−1)−∇L(βfixed)

)
. So we

actually perform a proximal gradient method at each step, the
only difference is that we introduce error in inexact iterations.

We will discuss in detail how to select the sequence {εk}
in Section III. Informally, to guarantee the convergence of the
algorithm, we choose {εk} to be summable. Furthermore, we
should select the sequence {‖εk‖} to be diminishing as well.

This selection ensures that, as we get closer to the optimal
solution, the error introduced by the inexact update also gets
smaller. Thus, this selection will prevent injecting a large error
into the gradient vector when we get to the close neighborhood
of the optimal solution, as a large gradient error will lead to
a large deviation in the result that would make it difficult for
the algorithm to converge.

III. PERFORMANCE ANALYSIS

In this section, we analyze the convergence rate and the
communication cost of Algorithm 2. First, we give an explicit
value sequence of {εk} and provide two propositions about
the convergence rate and an upper bound on the number of
iterations at which exact update is carried out. In the following,
we analyze the basic version of our algorithm, namely at each
step we do not additionally use conditions in Proposition 1 to
check whether the current inexact update is good enough or
not.

Proposition 1. Let D be an upper bound of ‖β0−β∗‖. If we
set εk = µ0

L

(
1− µL−µ0

L

)k
D, where 0 < µ0 < µL, then for

Algorithm 2 we have

‖βk − β∗‖ ≤
(
1− µL − µ0

L

)k
D. (10)

Proposition 1 provides a sequence of explicit values for
{εk} that can achieve an exponential convergence rate even
with inexact gradient updates, although the convergence speed
is slower than that of the algorithm with exact updates. The
convergence rate also depends on the estimated upper bound
D and we want D to be as close to ‖β0 − β∗‖ as possible.

Proposition 2. Let N be the number of iterations until conver-
gence for Algorithm 2. The number of exact update iterations
(i.e., the iterations when large communication overhead is
needed) is at most

N
log
(
1− µL−µ0

L

)
log
(
1− µL

L

) .

Proposition 2 provides an upperbound on the number of
iterations where exact updates are carried out. If inexact
updates are not introduced, the total number of iterations k
to achieve ‖βk − β∗‖ ≤ ε is log ε−log ‖β0−β

∗‖
log(1−µLL)

. If inexact
updates are introduced, the corresponding number of itera-
tions is log ε−logD

log(1−µL−µ0L)
. Notice that if D is a tight bound,

then Proposition 2 indicates that the communication iterations
are approximately equal. However, Proposition 3 analyzes
the worst case performance of the proposed algorithm. In
practice, we find that by introducing inexact updates is more
communication efficient on average, which is illustrated in the
next section.

It is worth to discuss how to select D in practice when
the upper bound of ‖β0 − β∗‖ is unknown. We notice that
‖βk − β∗‖ converges to 0 as k → ∞ without inexactness.
If we cannot find a upper bound D, then a lower bound of
‖β0 − β∗‖ is also fine with this method. Since we can use

exactiterationsforfirstiroundstomakeβi−β
∗ ≤D,we

cantreatβiastheinitialpointinAlgorithm2.

IV.NUMERICALEXAMPLES

Inthissection,weprovidenumericalexamplestoillustrate
ourresultsusingsynthesizeddataandrealdataforLasso,
whereL(β)=12 y−Xβ

2andR(β)=λβ1withy∈R
n,

X∈Rn×dandβ∈Rd.
Wecompareouralgorithmwiththecaseinwhichtheexact

updateiscalculatedateveryiteration,whichisequivalentto
setk=0forallkinAlgorithm2.
Forsynthesizeddatasimulation,weusetheerrorsequence

{k}statedinProposition1.ThedatamatrixXisgenerated
randomlywithfixedknownmaximalandminimaleigenvalues
ofXTX.Thevectoryisgeneratedbylinearregression.For
Lasso,(4)holdsfortheirlossfunctionswithM =XTX,
soL =2λmax(X

TX)andµL =2λmin(X
TX). Weset

L=20000andµL=2,andwegenerateXwithcorrespond-
ingfixedλmax(X

TX)andλmin(X
TX).Forsynthesizeddata,

wesetthenumberofsamplesn=2000andthenumberof
featuresdfrom10to400withincrementsbeing10.
Forsimulationswithrealdatasets,sincetheeigenvaluesof
XTXareunknownandhardtocomputeforrealdatasets,the
errorsequenceinProposition1cannolongerbeused.For
practicalconcerns,wesimplyset k=(1−α)

τD,whereτ
isthenumberofinexactiterationssofar.HerewesetLto
beaneasilycomputablevalueL2 = X 2

F ≥ XTX F ≥
λmax(X

TX),where ·F denotestheFrobeniusnormofa
matrix. Werunsimulationsfordifferentvaluesofαtoshow
theperformanceofthiserrorsequenceinpractice.
Werunsimulationsinpseudo-distributedenvironment.In

oursimulations,wecareabouttheinexactcommunication
iterations,whichdonotdependonthenumberofmachines
andthewaystopartitionthefeaturesofthedataset.Noticing
thatnomatterhowmanymachineswehave,theinexactcom-
municationiterationsarethesame;thereforewerunAlgorithm
2inonemachinetosimulatethecaseinadistributedcluster
ofmachines.

0

2000

4000

6000

0 100 200 300 400
d

N
u
m
b
er

of

Ex
ac
t
It
er
at
i
o
ns
 t
o
C
o
nv
er
g
e

Algorithm

All Exact Updates

With Inexact Updates

Synthesized Data n = 2000

A.Synthesizeddata

0

200

400

600

0 1000 2000 3000
Number of Iterations

Va
l
u
e
of

o
bj
e
ct
i
v
e
f
u
n
ct
i
o
n

Algorithm

All Exact Updates

With Inexact Updates

Synthesized Data n = 2000

Fig.2. NumberofexactcommunicationiterationsforLasso.

Fig.3. Valuesoftheobjectivefunctionversusthenumberofiterationsfor
Lassod=400.

Inoursimulation,wecompareAlgorithm2withthatof
Algorithm2withoutinexactness(Algorithm2withoutLines
11-18).ComparingFigure2andFigure3,wefindthat
thevaluesoftheobjectivefunctionafter minimizationby
twomethodsareveryclose.However,theproposedscheme
reducesnearlyhalfofthetotalcommunications.

B.Realdata

Next,wetestouralgorithmonrealdataset:Communities
andCrimeUnnormalizedDataSet[28].Thedatasetcontains
statisticsrelatedtocrimeandsocialeconomicsfrom1990US
Census,1990USLEMASsurveyand1995FBIUCR.The
featurescontainstatisticssuchascommunitypopulation,per
capitaincome,policeoperatingbudgetandviolentcrimerate
etc.
Inthisexample,westudythemurderrate(per100Kpeople)
andtrytobuildasparselinearregressionmodelbetweenthe
murderrateandallothernumericvariableinthedataset.Here
wehaven=2215andd=103(weomitthedatafeatures
withmissingdata).
Letf(̂β)denotethevalueofobjectivefunctionatter-
mination.Theresultscomputedbythealgorithm without
inexactness(with{k=0})islistedinTableI.Theresults
withinexactnessaresummarizedinTableII.

TABLEI
BASICALGORITHMFORCRIMEDATA

Iterations f(̂β)
15300 681.4654

TABLEII
ALGORITHM WITHINEXACTITERATIONSFORCRIMEDATA

D α Totaliterations Inexactiterations f(̂β)
1 10 1 15299 95 681.4653
1 10 2 15287 992 681.4674
1 10 3 13735 9965 681.6371

TableIIshowsthatourschemedoesnotworkwellfor
α=10−1andworkswellforα=10−3.Althoughthispaper

does not provide theoretical results for the cases where µL is
unknown or µL = 0, Table II shows that our scheme works
for these case in practice. It would be interesting to extend to
these two cases in the theoretical analysis.

V. CONCLUSION

In this paper, we have proposed a general communication
efficient scheme for the distributed learning problem of feature
partitioned data. We have proposed an explicit algorithm using
inexact updates. We have shown analytical results of the
proposed algorithm which reveal its desirable properties under
mild assumptions. We have also shown that the worst case
performance of the proposed algorithm is comparable to that
of the existing algorithm with exact updates. We have verified
the efficiency of our algorithm using both synthesized data and
real datasets.

VI. ACKNOWLEDGMENT

The work of J. Geng was supported by the National Natural
Science Foundation of China under grant 61601144 and by
the Fundamental Research Funds for the Central Universi-
ties under grant AUGA5710013915. The work of W. Xu
was suported by National Institute of Health under grant
1R01EB020665 and by National Science Foundation under
grant DMS-1418737. The work of L. Lai was supported by
National Science Foundation under grants CNS-1660128 and
CCF-1717943.

REFERENCES

[1] Martin Jaggi, Virginia Smith, Martin Takác̆, Jonathan Terhorst, Sanjay
Krishnan, Thomas Hofmann, and Michael I. Jordan, “Communication-
efficient distributed dual coordinate ascent,” in NIPS’14 Proceedings
of the 27th International Conference on Neural Information Processing
Systems, Montreal, Canada, Dec. 2014, pp. 3068–3076.

[2] Chenxin Ma, Virginia Smith, , Martin Jaggi, Michael I. Jordan, Peter
Richtárik, and Martin Takác̆, “Adding vs. averaging in distributed
primal-dual optimization,” in Proceedings of the 32th International
Conference on Machine Learning, Lille, France, Dec. 2015, vol. 37,
pp. 3068–3076.

[3] Ohad Shamir, Nathan Srebro, and Tong Zhang, “Communication-
efficient distributed optimization using an approximate newton-type
method,” in Proceedings of the 31 st International Conference on
Machine Learning, Beijing, China, July 2014.

[4] Yuchen Zhang and Lin Xiao, “Communication-efficient distributed
optimization of self-concordant empirical loss,” arXiv:1510.00263v1,
Jan. 2015.

[5] Rie Johnson and Tong Zhang, “Accelerating stochastic gradient descent
using predictive variance reduction,” in NIPS’13 Proceedings of the 26th
International Conference on Neural Information Processing Systems,
Stateline, NV, Dec. 2013.

[6] Keqin Liu and Qing Zhao, “Distributed learning in multi-armed bandit
with multiple players,” IEEE Trans. Signal Processing, vol. 58, pp. 5667
– 5681, Dec. 2010.

[7] Symeon Chouvardas, Konstantinos Slavakis, and Sergios Theodoridis,
“Adaptive robust distributed learning in diffusion sensor networks,”
IEEE Trans. Signal Processing, vol. 59, pp. 4692 – 4707, July 2011.

[8] Paolo Di Lorenzo and Ali H. Sayed, “Sparse distributed learning based
on diffusion adaptation,” IEEE Trans. Signal Processing, vol. 61, pp.
1419–1433, Mar. 2013.

[9] Symeon Chouvardas, Konstantinos Slavakis, Yannis Kopsinis, and Ser-
gios Theodoridis, “A sparsity promoting adaptive algorithm for dis-
tributed learning,” IEEE Trans. Signal Processing, vol. 60, pp. 5412–
5425, Oct. 2012.

[10] Jianshu Chen and Ali H. Sayed, “Diffusion adaptation strategies for
distributed optimization and learning over networks,” IEEE Trans. Signal
Processing, vol. 60, pp. 4289–4305, Aug. 2012.

[11] Haipeng Zheng, Sanjeev R. Kulkarni, and H. Vincent Poor, “Attribute-
distributed learning: Models, limits, and algorithmss,” IEEE Trans.
Signal Processing, vol. 59, pp. 386–398, Oct. 2011.

[12] Javier Matamoros, Sophie M. Fosson, Enrico Magli, and Carles Antón-
Haro, “Distributed admm for in-network reconstruction of sparse signals
with innovations,” IEEE Trans. on Signal and Information Processing
over Networks, vol. 1, pp. 225 – 234, Dec. 2015.

[13] Luca Canzian, Yu Zhang, and Mihaela van der Schaar, “Ensemble of
distributed learners for online classification of dynamic data streams,”
IEEE Trans. on Signal and Information Processing over Networks, vol.
1, pp. 180 – 194, Sept. 2015.

[14] Peter Richtárik and Martin Takác̆, “Distributed coordinate descent
method for learning with big data,” Journal of Machine Learning
Research, Feb. 2016.

[15] Chenxin Ma and Martin Takác̆, “Partitioning data on features
or samples in communication-efficient distributed optimization?,”
arXiv:1510.06688v1, Oct. 2015.

[16] Feng Niu, Benjamin Recht, Christopher Ré, and Stephen J. Wright,
“Hogwild!: A lock-free approach to parallelizing stochastic gradient
descent,” in NIPS’11 Proceedings of the 24th International Conference
on Neural Information Processing Systems, Granada, Spain, Dec. 2011.

[17] Peter Richtárik and Martin Takác̆, “Parallel coordinate descent methods
for big data optimization,” Mathematical Programming, vol. 156, pp.
433484, Dec. 2016.

[18] Robert Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society, vol. 7, no. 1, pp. 267–288, 1996.

[19] Arthur E. Hoerl and Robert W. Kennard, “Ridge regression: Biased
estimation for nonorthogonal problems,” Technometrics, vol. 12, no. 1,
pp. 55–67, Feb. 1970.

[20] D. R. Cox, “The regression analysis of binary sequences,” Journal of
the Royal Statistical Society, vol. 20, no. 2, pp. 215–242, 1958.

[21] Su-In Lee, Honglak Lee, Pieter Abbeel, and Andrew Y. Ng, “Efficient l1
regularized logistic regression,” in The Twenty-First National Conference
on Artificial Intelligence and the Eighteenth Innovative Applications of
Artificial Intelligence Conference, Boston, MA, Jan. 2006.

[22] Ji Zhu, Saharon Rosset, Trevor Hastie, and Rob Tibshirani, “1-
norm support vector machines,” in NIPS’03 Proceedings of the 16th
International Conference on Neural Information Processing Systems,
2003.

[23] Sahand N. Negahban, Pradeep Ravikumar, Martin J. Wainwright, and
Bin Yu, “A unified framework for high-dimensional analysis of M-
estimators with decomposable regularizers,” Statistical Science, vol. 27,
no. 4, pp. 538–557, Nov. 2012.

[24] Yurii Nesterov, “Gradient methods for minimizing composite objective
function,” Center for Operations Research and Econometrics Discussion
Paper, Sep. 2007.

[25] Zhaosong Lu and Lin Xiao, “On the complexity analysis of randomized
block-coordinate descent methods,” arXiv:1305.4723v1, 2013.

[26] Peter Richtárik and Martin Takáč, “Iteration complexity of randomized
block-coordinate descent methods for minimizing a composite function,”
Mathematical Programming, Dec. 2012.

[27] Yurii Nesterov, Introductory lectures on convex optimization: a basic
course, Springer Science+Business Media, LLC, New York, 2004.

[28] “Communities and crime data set,” https://archive.ics.uci.edu/ml/
datasets/Communities+and+Crime+Unnormalized.

