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Abstract:	46 
Headwater	stream	networks	expand	and	contract	in	response	to	changes	in	stream	47 
discharge.	The	changes	in	the	extent	of	the	stream	network	are	also	controlled	by	48 
geologic	or	geomorphic	setting	–	some	reaches	go	dry	even	under	relatively	wet	49 
conditions,	other	reaches	remain	flowing	under	relatively	dry	conditions.	While	50 
such	patterns	are	well	recognized,	we	currently	lack	tools	to	predict	the	extent	of	51 
the	stream	network	and	the	times	and	locations	where	the	network	is	dry	within	52 
large	river	networks.	Here,	we	develop	a	perceptual	model	of	the	river	corridor	in	a	53 
headwater	mountainous	catchment,	translate	this	into	a	reduced-complexity	54 
mechanistic	model,	and	implement	the	model	to	examine	connectivity	and	network	55 
extent	over	an	entire	water	year.	Our	model	agreed	reasonably	well	with	our	56 
observations,	showing	that	the	extent	and	connectivity	of	the	river	network	was	57 
most	sensitive	to	hydrologic	forcing	under	the	lowest	discharges	(Qgauge	<	1	L	s-1),	58 
that	at	intermediate	discharges	(1	L	s-1	<	Qgauge	<	1	L	s-1)	the	extent	of	the	network	59 
changed	dramatically	with	changes	in	discharge,	and	that	under	wet	conditions	60 
(Qgauge	>	1	L	s-1)	the	extent	of	the	network	was	relatively	insensitive	to	hydrologic	61 
forcing	and	was	instead	determined	by	the	network	topology.	We	do	not	expect	that	62 
the	specific	thresholds	observed	in	this	study	would	be	transferable	to	other	63 
catchments	with	different	geology,	topology,	or	hydrologic	forcing.	However,	we	64 
expect	that	the	general	pattern	should	be	robust:	the	dominant	controls	will	shift	65 
from	hydrologic	forcing	to	geologic	setting	as	discharge	increases..	Further,	our	66 
method	is	readily	transferable	as	the	model	can	be	applied	with	minimal	data	67 
requirements	(a	single	stream	gauge,	a	digital	terrain	model,	and	estimates	of	68 
hydrogeologic	properties)	to	estimate	flow	duration	or	connectivity	along	the	river	69 
corridor	in	unstudied	catchments.	As	the	available	information	increases,	the	model	70 
could	be	better	calibrated	to	match	site-specific	observations	of	network	extent,	71 
locations	of	dry	reaches,	or	solute	break	through	curves	as	demonstrated	in	this	72 
study.	Based	on	the	low	initial	data	requirements	and	ability	to	later	tune	the	model	73 
to	a	specific	site,	we	suggest	example	applications	of	this	parsimonious	model	that	74 
may	prove	useful	to	both	researchers	and	managers.	75 
	76 
	77 
1.	Introduction	78 
The	emerging	river	corridor	perspective	considers	the	surface	stream,	hyporheic	79 
zone,	riparian	zone,	hillslope,	and	aquifer	as	a	continuum,	exchanging	water,	solutes,	80 
energy,	and	materials	across	a	range	of	spatial	and	temporal	scales	(e.g.,	Harvey	and	81 
Gooseff,	2015).	Empirical	studies	have	addressed	dynamic	connectivity	along	the	82 
river	corridor	at	the	network	scale	(e.g.,	Godsey	and	Kirchner,	2014,	Gregory	and	83 
Walling,	1968;	Costigan	et	al.,	2016),	while	others	have	documented	the	changes	in	84 
ecosystem	services	and	functions	that	result	from	connectivity	in	the	riparian	85 
corridor	(Boulton	et	al.,	1998;	Brunke	and	Gonser,	1997;	Krause	et	al.,	2011;	Merill	86 
and	Tonjes,	2014;	US	EPA,	2015).	However,	despite	empirical	advances,	we	lack	an	87 
accurate	framework	to	predict	the	temporal	dynamics	of	hydrologic	connectivity	88 
along	the	river	corridor.	Thus,	an	overarching	objective	of	this	study	is	to	predict	89 
spatial	and	temporal	patterns	of	hydrologic	connectivity	along	the	river	corridor	at	90 
the	network	scale.	To	achieve	this	objective,	we	synthesize	our	understanding	of	91 
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how	hydrologic	forcing	and	geologic	setting	interact	to	control	dynamic	exchange	92 
processes	in	the	river	corridor,	convert	that	understanding	into	a	numerical	model	93 
simulating	the	dominant	processes	in	the	river	corridor,	and	implement	the	model	94 
at	the	network	scale	using	readily	available	data.	As	a	result,	we	derive	and	calibrate	95 
a	mechanistic	representation	of	dynamic	hydrologic	connectivity	along	the	river	96 
corridor.	97 

Hydrologic	connectivity	between	the	river	corridor	and	its	catchment,	along	98 
the	length	of	the	river	corridor,	results	from	the	geologic	setting	interacting	with	99 
hydrologic	forcing	(Ward	et	al.,	2016,	2014,	2012).	The	geologic	setting	is	static	at	100 
the	time	scales	of	interest	here	and	includes	the	geologic	constraint	of	the	valley	101 
(e.g.,	D’Angelo	et	al.,	1993;	Stanford	and	Ward,	1993;	Ward	et	al.,	2016,	2012;	102 
Wondzell,	2006;	Wright	et	al.,	2005),	channel	and	streambed	morphology	(Kasahara	103 
and	Wondzell,	2003;	see	also	review	by	Boano	et	al.,	2014),	and	multi-scale	104 
heterogeneity	in	hydraulic	conductivity	of	the	valley	floor	sediment	(e.g.,	Packman	105 
and	Salehin,	2003;	Ryan	et	al.,	2004;	Salehin	et	al.,	2004;	Sawyer	and	Cardenas,	106 
2009;	Vaux,	1968;	Ward	et	al.,	2011).	Hydrologic	forcing	includes	the	lateral	inflows	107 
to	the	valley	bottom	from	either	hillslope	sources	or	from	deeper	groundwater	and	108 
stream	discharge	–	all	of	which	vary	with	time	and	can	thus	lead	to	highly	dynamic	109 
changes	in	connectivity.	In	mountain	streams,	the	steep	valley	walls	constrain	the	110 
river	corridor	such	that	the	entire	valley	bottom	(stream,	hyporheic	zone,	riparian	111 
zone)	often	can	be	collectively	considered	the	river	corridor.			112 

Interactions	between	hydrologic	forcing	and	geologic	setting	give	rise	to	113 
river	corridor	exchange	across	a	wide	range	of	spatial	and	temporal	scales,	driven	114 
by	mechanisms	including	(after	Kaser	et	al.,	2009)	turnover	exchange	(e.g.,	Elliott	115 
and	Brooks,	1997a,	1997b;	Packman	et	al.,	2001),	diffusion	of	turbulent	momentum	116 
into	the	streambed	(e.g.,	Malzone	et	al.,	2016;	Packman	and	Bencala,	2000),	117 
hydrostatically-driven	exchange	(e.g.,	Gooseff	et	al.,	2006;	Harvey	and	Bencala,	118 
1993;	Kasahara	and	Wondzell,	2003),	and	hydrodynamic	pumping	into	the	119 
streambed	and	banks	(e.g.,	Elliott	and	Brooks,	1997a,	1997b;	Wörman	et	al.,	2002).	120 

Most	studies	examining	exchange	processes	either	assess	one	or	just	a	small	121 
number	of	potential	controls	and	most	commonly	within	a	short	reach	during	122 
baseflow	conditions.	Rarely	are	multiple	controls	studied	over	larger	spatial	and	123 
temporal	scales.	Consequently,	the	influence	of	individual	factors	are	well	124 
understood	at	small	spatial	scales,	but	substantial	challenges	remain	in	aggregating	125 
the	effects	of	multiple	factors	within	a	very	long	reach	or	an	entire	networks	–	the	126 
critical	scales	at	which	resources	are	managed	and	predictions	are	desired	(Ward,	127 
2015;	Harvey	and	Gooseff,	2015).	128 

The	most	widely	applied	strategy	to	translate	process	understanding	in	the	129 
river	corridor	to	the	reach	or	network	scale	uses	reduced-complexity	modeling.	130 
Bencala	and	Walters	(1983)	first	developed	their	transient	storage	model,	which	131 
was	fit	to	solute	breakthrough	curves,	to	estimate	advection,	dispersion,	and	132 
transient	storage	at	the	reach	scale.	This	reduced-complexity	modeling	strategy	133 
eschewed	the	extensive	parameterization	required	for	distributed	hydrologic	134 
models,	but	provided	a	mechanistic	interpretation	of	processes	that	was	absent	135 
from	fully	empirical	models.	While	the	transient	storage	model	has	been	applied	as	a	136 
basis	for	understanding	both	short	reaches	and	whole	networks	(Fernald	et	al.,	137 
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2001;	Schmadel	et	al.,	2014;	Stewart	et	al.,	2011),	the	model	formulation	is	not	able	138 
to	simulate	the	dominant	processes	of	mountain	systems,	where	down-valley	139 
subsurface	flow	is	important	(Castro	and	Hornberger,	1991;	Kennedy	et	al.,	1984;	140 
Ward	et	al.,	2016).	Additionally,	the	transient	storage	model	was	never	intended	to	141 
represent	dynamic	network	expansion	and	contraction,	nor	to	accommodate	142 
spatially	intermittent	flows.		143 

A	second	approach	to	upscaling	river	corridor	exchange	uses	empirical	144 
relationships	between	catchment	topology	and	river	corridor	processes	based	on	145 
field	experiments	(Covino	et	al.,	2011;	Mallard	et	al.,	2014)	or	model	experiments	146 
(Gomez-Velez	et	al.,	2015;	Gomez-Velez	and	Harvey,	2014;	Kiel	and	Cardenas,	147 
2014).	These	empirical	approaches	are	readily	implemented	based	on	observable	148 
metrics	(e.g.,	drainage	area,	stream	discharge,	sinuosity,	streambed	grain	size).	149 
However,	empirical	approaches	are	site-specific	in	nature,	with	limited	150 
transferability	across	geologic	settings	and	even	to	differing	flow	conditions.	Studies	151 
based	on	model	experiments	assume	the	model	processes	simulated	at	one	scale	are	152 
the	dominant	processes	across	the	continuum	of	nested	scales	of	exchange	in	the	153 
river	corridor.	154 

Thirdly,	distributed	(or	“top-down”)	hydrologic	models	build	upon	155 
generalized	knowledge,	representing	river	corridor	processes	spanning	spatial	and	156 
temporal	scales	(Frei	et	al.,	2009;	Yu	et	al.,	2016).	A	key	strength	of	distributed	157 
models	is	their	ability	to	represent	heterogeneity,	which	may	be	important	to	158 
determining	intermittent	connections	between	streams	and	their	aquifers	159 
(Fleckenstein	et	al.,	2007).	However,	distributed	models	require	extensive	160 
parameterization	and	calibration,	limiting	their	ability	to	be	rapidly	applied	on	the	161 
landscape.	162 

While	each	of	the	existing	approaches	have	been	successful	in	advancing	our	163 
understanding	of	specific	mechanisms	at	a	given	spatial	or	temporal	scale,	these	164 
approaches	all	have	limited	ability	to	represent	river	corridor	exchange	in	a	way	165 
that	is	mechanistic,	fully	dynamic,	and	representative	of	the	dominant	processes	166 
within	the	network.	Therefore,	we	suggest	that	a	new	predictive	framework	is	167 
needed	–	one	that	provides	a	mechanistic	understanding	of	hydrologic	connectivity	168 
along	the	river	corridor,	reflects	the	hydrologic	dynamics	that	lead	to	time-variable	169 
connectivity,	and	would	be	readily	transferable	and	scalable	with	modest	data	170 
requirements.	We	propose	a	dominant	process	approach	similar	to	Grayson	and	171 
Blöschl	(2000).	This	approach	recognizes	that	reduced-complexity	models	will	172 
necessarily	omit	some	processes	in	favor	of	representing	those	which	are	173 
considered	most	important	in	a	catchment	(Smith	et	al.,	2013).	As	such,	we	limit	the	174 
over-parameterization	of	distributed	models	and	avoid	their	problems	with	non-175 
unique	solutions	(e.g.,	Beven,	2006,	Bredehoeft and Konikow,	1993;	Cardenas	and	176 
Zlotnik,	2003;	Oreskes	et	al.,	1994;	Poeter,	2007;	Wondzell	et	al.,	2009a).	Here,	we	177 
closely	follow	the	approach	of	Smith	et	al.	(2013)	in	identifying	dominant	processes	178 
based	on	our	experience	in	the	field,	developing	a	perceptual	model	to	explain	our	179 
observations,	and	then	implementing	this	perceptual	model	as	a	reduced-180 
complexity	model	that	simulates	hydrologic	processes	at	the	scale	of	the	river	181 
network.	182 
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Our	primary	objective	is	to	predict	spatial	patterns	and	temporal	dynamics	of	183 
hydrologic	connectivity	along	the	river	corridor	at	reach-to-network	scales	(i.e.,	184 
100s	of	meters	and	longer).	A	secondary	objective	is	to	develop	an	approach	that	is	185 
transferable,	scalable,	easily	applied	based	on	limited	data	requirements,	and	is	186 
flexible	enough	that	increased	data	collection	could	be	used	to	improve	and	refine	187 
the	model	at	sites	of	interest.	While	Costigan	et	al.	(2016)	proposed	a	model	of	188 
general	meteorologic,	geologic,	and	land	cover	trends	that	would	be	related	to	189 
frequency	of	intermittency,	their	conceptual	model	does	not	address	the	dynamic	190 
transitions	that	occur	between	flow	states,	instead	focusing	on	long-term	trends.	191 
Specifically,	we	seek	to	answer	the	question:	How	do	geologic	setting	and	hydrologic	192 
forcing	combine	to	result	in	dynamic	connectivity	along	the	river	corridor?	We	193 
hypothesize	that	geologic	setting	will	be	dominant	during	all	baseflow	conditions	194 
regardless	of	the	actual	discharge	magnitude	(i.e.,	during	steady	high,	moderate,	and	195 
low	discharge	conditions	void	of	precipitation).	Conversely,	we	hypothesize	that	196 
network	expansion	and	contraction	will	be	dominated	by	hydrological	inputs	to	the	197 
system	during	highly	dynamic	periods—such	as	storm	event	responses—that	will	198 
cause	rapid	expansion	and	contraction	of	the	network	independently	of	the	199 
structure	of	the	valley	bottom.	To	test	these	hypotheses,	we	develop	a	reduced-200 
complexity	model	in	the	spirit	of	the	dominant-process	approach.	The	model	is	201 
calibrated	at	scales	of	100s	of	meters	to	a	well-documented	solute	tracer	study	and	202 
observed	dry	streambed	locations,	and	validated	based	on	stream	stage	203 
observations	at	the	field	site.	Using	these	results,	we	assess	the	dynamic	interactions	204 
of	hydrologic	forcing	and	geologic	setting,	noting	the	places	and	times	where	each	205 
control	is	dominant.	206 
	207 

	
Figure	1.	Watershed	1	(WS01)	at	the	H.J.	Andrews	Experimental	Forest	in	the	
western	Cascades,	Oregon,	U.S.A.	Upslope	accumulated	area	(UAA)	derived	from	a	1-
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m	LiDAR	digital	terrain	model	is	shaded	in	greyscale.	Valley	segments	draining	more	
than	3	ha,	defining	the	river	corridor	simulated	in	our	model,	are	shown	in	color.		
	208 
2.	Background	&	Model	Development	209 
2.1	Site	Description	210 
The	perceptual	model	presented	here	is	based	on	extensive	study	of	headwater	211 
mountain	catchments	in	the	western	Cascades,	Oregon,	U.S.A.,	specifically	the	H.J.	212 
Andrews	Experimental	Forest.	This	site	was	selected	based	on	the	body	of	research	213 
documenting	process	dynamics	in	the	river	corridor	of	a	mountain	stream.	214 
Furthermore,	this	site	fits	the	geological	factors	that	Costigan	et	al.	(2016)	associate	215 
with	increased	intermittency	including	relatively	large	grain	sizes,	steep	riffle	216 
morphology,	impermeable	lithology,	and	small	drainage	areas	in	a	highly	dissected	217 
catchment.	This	steep,	geologically	confined	mountain	stream	network	is	also	218 
complimentary	to	recent	efforts	to	model	connectivity	in	low-gradient	alluvial	219 
systems	(Gomez-Velez	et	al.,	2015;	Gomez-Velez	and	Harvey,	2014;	Kiel	and	220 
Cardenas,	2014).	Due	to	the	high	confinement	of	the	valley	bottom,	the	river	221 
corridor	in	this	system	is	functionally	equivalent	to	the	valley	bottom,	which	222 
includes	the	stream,	hyporheic	zone,	and	riparian	zone.	223 

Within	the	H.J.	Andrews	Experimental	Forest	we	selected	the	highly-studied	224 
Watershed	1	(WS01)	as	a	study	location	because	the	dynamics	of	river	corridor	225 
exchange	have	been	studied	in	greater	detail	than	other	sites	(Fig.	1).	Briefly,	this	226 
headwater	catchment	drains	about	96	ha	at	the	outlet	stream	gauge.	Basin	227 
elevations	range	from	432	to	1010	m	a.m.s.l.	The	catchment	is	highly	dissected,	with	228 
steep	valley	walls	and	hillslopes	forming	v-shaped	valleys	that	are	rapidly	229 
downcutting	through	Oligocene and lower Miocene aged volcanic	bedrock.	The	230 
longitudinal	slope	of	the	valley	floor	averages	11.9%	(Voltz	et	al.,	2013).	In	places	231 
the	stream	flows	on	exposed	bedrock,	but	along	most	of	its	length,	the	valley	bottom	232 
is	covered	in	poorly-sorted	colluvium,	much	of	which	was	emplaced	as	landslide	and	233 
debris-flow	deposits.	The	depth	of	the	colluvium	ranges	from	0	to	at	least	1.74	m,	234 
the	deepest	penetration	achieved	during	installation	of	riparian	monitoring	wells	235 
(Wondzell,	2006).		Precipitation	data	were	collected	at	the	nearby	H.J.	Andrews	236 
Primary	Meteorological	Station	(about	0.5	km	N	of	the	gauge;	elevation	430	m	237 
a.m.s.l.).	Further	physical	description	of	the	H.J.	Andrews	Experimental	Forest	and	238 
WS01	are	available	in	a	host	of	related	publications	(Dyrness,	1969;	Swanson	and	239 
James,	1975;	Swanson	and	Jones,	2002;	Voltz	et	al.,	2013;	Ward	et	al.,	2016;	240 
Wondzell,	2006;	Wondzell	et	al.,	2009b).		241 

	242 
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Figure	2.	A)	Perceptual	model	illustrating	the	dominant	processes	associated	with	
river	corridor	exchange	in	headwater	mountain	streams.	Key	processes	include	
down-valley	flow	in	both	the	surface	stream	and	subsurface	porous	media,	smaller-
scale	exchanges	in	the	vertical	and	lateral	dimensions,	confinement	in	the	vertical	
(bedrock)	and	lateral	(valley	wall)	dimensions,	and	lateral	inflows	proportional	to	
upslope	accumulated	area	from	the	hillslopes.	B)	Representation	of	dominant	
processes	in	the	river	corridor	as	a	reduced-complexity	model.	The	notation	x	refers	
to	the	along-valley	coordinate	(e.g.,	∆x	represents	one	spatial	discretization	of	the	
model).	
	243 
2.2	Perceptual	Model	of	the	River	Corridor	in	Mountain	Streams	244 
We	developed	a	perceptual	model	that	explains	dynamic	expansion	and	contraction	245 
of	the	active	channel	network.	A	perceptual	model	is	a	qualitative	representation	of	246 
the	dominant	hydrologic	processes	operating	at	a	given	field	site,	integrating	the	247 
processes	that	are	known	to	be	important	based	on	field	observations,	numerical	248 
simulations,	and	a	field-based	understanding	of	the	system	(McGlynn	et	al.,	2002,	249 
1999;	Sivapalan,	2003;	Wagener	et	al.,	2007).	Thus,	the	model	presented	below	is	250 
qualitative	in	nature,	but	synthesizes	the	observations	of	the	site	in	a	cohesive	251 
framework.	This	model	is	akin	to	a	hypothesis	explaining	the	interactions	between	252 
geologic	and	hydrologic	controls	in	the	river	corridor	and	is	based	on	our	current	253 
understanding	developed	over	several	decades	of	field	studies	at	the	site	(Burt	and	254 
McDonnell,	2015;	Fig.	2A).	255 
	 The	perceptual	model	posits	that	the	river	corridor	can	be	described	as	two	256 
parallel,	interacting	domains	that	transport	water	and	solutes	in	the	down-valley	257 
direction—via	surface	flows	through	the	stream	channel	and	via	subsurface	flows	258 
through	the	valley	bottom	(Ward	et	al.,	2016).	This	builds	directly	from	Bencala	et	259 
al.’s	(2011)	notion	that	streams	are	dynamic	expressions	of	the	local	groundwater	260 
system,	and	is	well-aligned	with	the	perceptual	models	of	Godsey	and	Kirchner	261 
(2014)	and	Whiting	and	Godsey	(2016).	Subsurface	transport	in	the	down-valley	262 
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direction	is	known	to	be	an	important	mechanism	in	higher-gradient	stream	263 
networks	(Castro	and	Hornberger,	1991;	Jackman	et	al.,	1984;	Kennedy	et	al.,	1984).	264 
Several	studies	have	found	relatively	constant	transport	in	the	subsurface,	265 
attributing	this	primarily	to	an	unchanging	geologic	setting	(e.g.,	hydraulic	266 
conductivity	field,	major	roughness	elements,	bedrock	constraints,	and	valley	width)	267 
and	a	down-valley	hydraulic	gradient	set	by	topography	(Voltz	et	al.,	2013;	Ward	et	268 
al.,	2016,	2014,	2012;	Wondzell,	2006;	Wondzell	and	Swanson,	1996).	The	primary	269 
mechanism	of	river	corridor	exchange	in	mountain	streams	is	expected	to	be	driven	270 
by	hydrostatic	pressure	gradients	(Wondzell	and	Gooseff,	2014;	Schmadel	et	al.,	271 
2017).	The	down-valley	subsurface	discharge	is	functionally	controlled	by	down-272 
valley	capacity,	or	the	ability	of	the	subsurface	to	transmit	water	through	saturated	273 
porous	media.	In	parallel,	the	surface	stream	flow	represents	only	the	excess	of	274 
down-valley	discharge	that	cannot	be	accommodated	by	the	down-valley	capacity.	275 
Thus,	in-stream	discharge	and	transport	can	be	highly	dynamic	in	response	to	the	276 
stream	while	transport	in	the	saturated	subsurface	remains	relatively	constant.	277 
While	subsurface	down-valley	discharge	is	relatively	constant	in	time,	it	is	spatially	278 
variable	due	to	changes	in	the	down-valley	capacity	of	the	subsurface,	caused	by	279 
changes	in	valley	width,	colluvium	depth,	slope,	or	heterogeneity	in	hydraulic	280 
conductivity.	281 
	 The	concept	of	spatially	contiguous	down-valley	discharge	is	supported	by	282 
the	observed	“long-term	storage”	of	Ward	et	al.	(2013a)	in	WS01.	Their	study	found	283 
significant	mass	losses	from	stream	solute	tracer	studies,	concluding	that	the	mass	284 
entered	flowpaths	that	traveled	down-valley	but	remained	in	the	subsurface.	285 
Additionally,	these	flowpaths	could	not	have	been	losses	to	a	deeper	groundwater	286 
aquifer	because	the	river	corridor	is	ultimately	confined	by	intact	bedrock.		287 
	 Inputs	of	hillslope	water	to	the	valley	bottom	can	affect	the	extent	of	long-288 
term	storage	and	these	inputs	vary	in	both	space	and	time.	Spatially,	inputs	from	the	289 
hillslopes	to	the	river	corridor	are	assumed	to	vary	in	proportion	with	the	290 
contributing	upslope	accumulated	area	(UAA)	after	Jencso	et	al.	(2009)	and	Corson-291 
Rikert	et	al.	(2016).	Past	studies	in	nearby	catchments	concluded	that	topography	292 
controls	the	transport	of	water	from	hillslopes	to	valley	bottoms	(e.g.,	McGuire	et	al.,	293 
2005).	Discharge	in	the	valley	varies	in	time	and	impacts	river	corridor	exchange	294 
during	storm	events	(Ward	et	al.,	2013a),	seasonal	baseflow	recession	(Ward	et	al.,	295 
2016,	2014,	2012),	and	diurnal	fluctuations	driven	by	evapotranspiration	from	296 
riparian	zones	and	perhaps	the	lower	hillslopes	(Schmadel	et	al.,	2016;	2017;	Voltz	297 
et	al.,	2013;	Wondzell	et	al.,	2010,	2007).		298 
	 The	upper	reaches	of	the	Main	Stem	and	South	Branch	have	surface	flow	299 
during	the	winter	and	spring,	but	portions	of	them	are	frequently	dry	during	the	300 
summer	months	(Fig.	1).	We	generally	have	not	observed	surface	flow	from	301 
convergent	areas	lateral	to	the	main	stem	or	south	branch	(i.e.,	those	areas	302 
identified	as	“minor	tributaries”	in	Fig.	1;	Amatya	et	al.,	2016).	The	colluvium	303 
accumulated	within	these	areas	is	generally	too	deep	and	porous	for	the	relatively	304 
small	drainage	areas	to	support	surface	flow.	However,	there	are	weakly	developed	305 
channels,	10	to	30	cm	wide,	that	suggest	surface	flow	does	occur	during	major	306 
storms	in	two	specific	conditions:	(1)	below	bedrock	outcrops	where	soils	are	quite	307 
shallow,	forcing	flow	to	the	surface,	and	(2)	high	in	the	north-east	corner	of	the	308 
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watershed	where	deep	seated	earthflows	have	created	a	drainage	network	around	309 
multiple	small	slumps	where	water	may	flow	at	the	surface	for	much	of	the	year.	310 
These	areas	are	notable	in	that	surface	flow	may	occur	with	very	small	UAA,	but	311 
they	are	always	discontinuous	to	the	channel	network	from	which	they	are	far	312 
removed	(>50	m	from	the	simulated	channel	network).	Because	of	that,	we	do	not	313 
consider	them	further	in	this	study.		Finally,	both	evapotranspiration	from,	and	314 
direct	precipitation	to,	the	valley	bottom	and	stream	are	omitted	given	the	small	315 
plan-view	area	of	these	landscape	elements	relative	to	the	hillslopes.	316 
	317 
	318 
2.3.	Development	of	a	Mathematical	Model	319 
The	dominant	processes	in	the	perceptual	model	were	translated	into	a	numerical	320 
model	(Fig.	2B).	Subsequent	sections	describe	the	development	of	the	surface	and	321 
subsurface	hydraulics,	and	the	solute	transport	components	of	the	model	which	are	322 
formulated	for	one-dimensional	(1-D)	segments	of	the	valley	bottom,	with	boundary	323 
conditions	at	the	upstream	end	of	each	simulated	segment.		324 
	325 
2.3.1	Hydraulic	Model	326 
Open	channel	flow	was	simulated	using	the	continuity	equation	and	kinematic	wave	327 
routing:	328 
	329 
!"
!"
+ !!!"#

!"
+ !!"

!"
− !!"#$

!"
= 0			 	 (1)	330 

	331 
where	t	is	time	(s),	x	is	the	spatial	coordinate	along	the	valley	bottom	(m),	A	is	the	332 
stream	cross-sectional	area	(m2),	Qstr	is	the	stream	discharge	(m3	s-1),	and	Qup	and	333 
Qdown	represent	gross	up-	and	downwelling	flux	(m3	s-1),	respectively.	Net	up-	or	334 
downwelling	flux	(Qnet;	m3	s-1)	is	Qnet	=	Qup	-	Qdown.	We	formulated	the	model	using	335 
the	gross	exchanges	to	more	accurately	reflect	the	associated	fluxes	of	solute	(after	336 
Payn	et	al.,	2008).	Lateral	inflows	enter	the	model	in	the	subsurface	domain	and	337 
represent	either	upwelling	of	valley	bottom	groundwater	(unlikely	in	our	case	of	338 
bedrock	constraint,	but	the	term	could	be	used	for	this	flux	in	other	settings)	or	339 
lateral	inputs	of	hillslope	water,	and	influence	the	stream	via	the	Qup	and	Qdown	340 
terms.	Thus,	a	term	describing	lateral	inflows	occurs	only	in	the	continuity	equation	341 
applied	to	the	subsurface	domain	(Equation	3).	This	formulation	requires	that	342 
lateral	inflows	to	the	simulated	network	do	not	consist	of	channelized	overland	343 
flow.	If	that	were	the	case,	the	simulated	network	should	be	expanded	to	include	344 
explicit	simulation	of	any	channelized	flow	at	the	surface.		We	relate	discharge	and	345 
channel	geometry	using	Manning’s	equation:	346 
	347 

𝑄!"# =
!
!
!
!
!

!
!
!
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!
!		 	 	 	 (2)	348 

	349 
where	n	is	Manning’s	roughness	coefficient	(unitless),	Sstream	is	the	down-valley	350 
slope	along	the	stream	channel	(m	m-1),	the	constant	value	of	1	in	the	numerator	has	351 
associated	units	of	m1/3	s-1,	and	P	is	the	wetted	perimeter	(m).	We	approximate	the	352 



10	
	

stream	geometry	as	a	rectangular	channel.	Thus,	A	=	by	and	P	=	b	+2y,	where	b	is	the	353 
channel	width	(m)	and	y	is	the	depth	of	flow	in	the	surface	channel	(m).	354 
	 In	the	subsurface,	we	solve	the	continuity	equation	for	water	as	355 
	356 
!!!
!"
+ !!!"#

!"
− !!"

!"
+ !!"#$

!"
+ !!"#

!"
= 0		 (3)	357 

	358 
where	As	is	the	cross-sectional	area	of	the	saturated	portion	of	the	subsurface	(m2),	359 
Qsub	is	the	down-valley	subsurface	discharge	(m3	s-1),	and	Qlat	represents	lateral	360 
inflows	from	the	hillslopes	into	the	valley	bottom	(m3	s-1),	defined	as	the	unit	inflow	361 
per	drainage	area	(qlat)	multiplied	by	the	difference	between	UAA	at	the	up-	and	362 
downstream	ends	of	the	segment.	All	lateral	inflows	to	the	simulated	network	are	363 
assumed	to	occur	in	the	subsurface;	surface	streams	can	initiate	and	combine	at	364 
junctions	if	the	down-valley	discharge	in	a	tributary	exceeds	down-valley	capacity	365 
(Qsub,cap;	m3	s-1).	Darcy’s	law	is	used	to	calculate	Qsub	as	a	function	of	valley	width	366 
(bvalley;	m),	depth	of	subsurface	flow	(ysub;	m),	hydraulic	conductivity	(K;	m	s-1),	367 
porosity	(θ,	unitless),	and	valley	slope	(Svalley;	m	m-1):	368 
	369 
𝑄!"# =

!!"##$%!!"#!
!

𝑆!"##$%		 	 	 (4)	370 
	371 
We	assume	the	slope	of	the	valley	bottom	is	a	good	approximation	of	the	down-372 
valley	hydraulic	gradient	(Ward	et	al.,	2016,	2013b;	Wondzell,	2011).	The	maximum	373 
capacity	of	the	subsurface	to	transport	water	in	the	down-valley	direction	(down-374 
valley	capacity;	Qsub,cap)	occurs	when	ysub	=	T,	where	T	is	the	thickness	of	the	valley	375 
bottom	colluvium	(m).	Colluvium	dimensions	are	related	to	geometry	as	As	=	376 
bvalleyysub.	Total	down-valley	discharge	(Qdv;	m3	s-1)	is	the	sum	of	surface	and	377 
subsurface	discharges:	378 
	379 
Qdv	=	Qstr	+	Qsub		 	 	 	 (5)	380 
	381 
2.3.2	Solute	Transport	Model	382 
We	solve	for	conservative	solute	mass	in	the	surface	using	a	volumetrically	383 
averaged	mass	balance	for	the	stream:	384 
	385 
!(!")
!"

= 𝑄!"𝐶!" − 𝑄!"#𝐶 + 𝑄!"𝐶! − 𝑄!"#$𝐶		(6)	386 
	387 
where	Qin	is	the	stream	discharge	from	the	upstream	valley	segment	(m3	s-1),	Cin	is	388 
the	stream	solute	concentration	from	the	upstream	valley	segment	(g	m-3),	C	is	the	389 
stream	solute	concentration	(g	m-3),	and	CS	is	solute	concentration	in	the	subsurface	390 
(g	m-3).	The	volume	of	water	in	the	surface	domain,	(V;	m3),	is	calculated	as:	391 
	392 
𝑉 = 𝑆𝑖𝑛𝑢𝑜𝑠𝑖𝑡𝑦 ∗ 𝑑𝑥 ∗ 𝑏 ∗ 𝑦		 	 	 (7)	393 
	394 
where	Sinuosity	is	the	sinuosity	of	the	stream,	calculated	as	the	along-stream	395 
distance	in	each	segment	divided	by	the	length	of	the	segment	(m	m-1).		396 
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	397 
For	solute	transport	in	the	subsurface,	we	use	a	similar	formulation:	398 
	399 
!(!!!!)

!"
= 𝑄!"#,!"𝐶!,!" − 𝑄!"#𝐶! − 𝑄!"𝐶! + 𝑄!"#$𝐶 + 𝑄!"#𝐶!"#			 	 (8)	400 

	401 
where	Qsub,in	is	the	subsurface	discharge	from	the	upstream	valley	segment	(m3	s-1),	402 
CS,in	is	the	subsurface	solute	concentration	from	the	upstream	valley	segment	(g	m-403 
3),	Clat	is	the	concentration	of	lateral	inflows	from	the	hillslopes	to	the	river	corridor	404 
(g	m-3),	and	Vs	is	the	volume	of	water	in	the	subsurface	domain	(m3),	calculated	as	405 
the	volume	of	void	space	filled	with	water:	406 
	407 
𝑉! = 𝐴!𝜃𝑑𝑥		 	 	 	 	 (9)	408 
	409 
For	this	formulation	we	assume	that	all	pore	space	is	connected	for	transport	of	410 
water	and	solutes,	and	that	the	subsurface	domain	is	well-mixed	within	each	spatial	411 
discretization.		412 
	413 
2.4	Model	Implementation	414 
2.4.1	Model	Solution	for	Interior	and	Downstream	Segments	415 
The	model	equations	presented	above	allow	for	spatially	variable,	dynamic	416 
activation	of	surface	flow	and	continuity	in	space	given	the	total	down-valley	flow	417 
and	the	amount	that	can	be	accommodated	via	the	subsurface.	We	simulated	418 
transport	through	the	river	corridor	at	the	network	scale	for	water	year	2016	(1-419 
Oct-2015	through	30-Sept-2016).	The	model	equations	are	implemented	as	a	finite	420 
difference	numerical	solution	along	the	river	corridor,	discretized	using	a	5-m	421 
segment	length.	Up-	and	downwelling	fluxes	(Qup	and	Qdown)	are	calculated	at	each	422 
model	segment	on	the	basis	of	two	logical	operators,	which	operate	to	first	assign	all	423 
flow	to	the	subsurface	domain	and	then	assign	any	flow	exceeding	Qsub,cap	into	the	424 
surface	domain.		425 

Channel	water	balance	studies	in	mountain	streams	note	that	gross	exchange	426 
of	water	between	streams	and	their	subsurface	often	exceeds	net	exchange	(Covino	427 
et	al.,	2011;	Payn	et	al.,	2009;	Ward	et	al.,	2013b).	To	represent	the	gross	up-	and	428 
downward	exchanges	in	the	water	balance,	we	define	the	parameter	Qsubgrid	(m3	s-1)	429 
to	increase	exchanges	of	water	between	surface	and	subsurface	domains	within	430 
each	model	segment.		431 

For	net	up-	or	downwelling	between	the	surface	and	subsurface	domains,	432 
three	possible	behaviors	exist.	First,	for	cases	when	the	flow	entering	a	model	433 
segment	is	greater	than	the	down-valley	capacity	(i.e.,	Qsub,in	+	Qlat	≥	Qsub,cap),	net	434 
upwelling	of	the	excess	subsurface	discharge	is	implemented:	435 
	436 
Qdown	=	Qsubgrid		 	 	 	 (10)	437 

	438 
Qup	=	(Qsub,in	+	Qlat	-	Qsub,cap)+	Qsubgrid			 (11)	439 
	440 
Second,	for	cases	where	the	down-valley	capacity	is	larger	than	the	inflows	to	the	441 
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subsurface	domain,	net	downwelling	is	required	to	ensure	the	full	down-valley	442 
capacity	is	met	before	surface	flow	activates.	Net	downwelling	is	predicted	for	cases	443 
when	Qsub,in	+	Qlat	<	Qsub,cap.	If	the	subsurface	can	accommodate	the	total	down-valley	444 
discharge	(i.e.,	Qin+	Qsub,in	+	Qlat		≤	Qsub,cap),	all	of	the	down-valley	discharge	is	assigned	445 
to	the	subsurface,	resulting	in	a	dry	streambed.	Exchange	discharges	are,	then:		446 

	447 
Qdown	=	Qin+	Qsubgrid			 	 	 	 (12)	448 
	449 
Qup	=	Qsubgrid		 	 	 	 	 (13)	450 
	451 
Finally,	for	cases	of	net	downwelling	(i.e.,	Qsub,in	+	Qlat	<	Qsub,cap)	where	the	subsurface	452 
cannot	accommodate	all	of	the	down-valley	discharge	(i.e.,	Qin	+	Qsub,in	+	Qlat	>	453 
Qsub,cap),	stream	discharge	will	occur.	Vertical	exchanges	are,	then:	454 
	455 
Qdown	=	(Qsub,cap	-	Qsub,in	-	Qlat)	+	Qsubgrid		 (14)	456 
	457 
Qup	=	Qsubgrid		 	 	 	 	 (15)	458 
	459 
In	this	implementation,	the	down-valley	capacity	of	the	subsurface	is	always	filled	460 
before	the	stream	channel	activates.	461 
	462 
2.4.2	Boundary	Conditions	and	Initial	Conditions	463 
For	all	model	segments,	initial	conditions	of	Qdv(x,t=0),	C(x,t=0),	and	Cs(x,t=0)	are	464 
specified.	The	logical	tests	described	above	are	used	to	partition	Qdv(x,t=0)	into	Qstr	465 
and	Qsub	fractions	at	t=0.		466 

At	the	head	of	each	channel	(Fig.	1;	Main	Stem,	South	Branch,	and	all	minor	467 
tributaries),	specified	boundary	conditions	of	Qdv(x=xn,t),	C(x=xn,t),	and	Cs(x=xn,t)	are	468 
required,	where	xn	is	the	upstream-most,	or	nth,	segment.	We	specify	C(x=xn,t)=	469 
Cs(x=xn,t)=0	and	Qdv(x=xn,t)	based	on	area-proportional	discharge	assigned	from	the	470 
gauge.	This	specification	means	that	lateral	inflows	from	the	hillslope	to	the	valley	471 
bottom	are	all	synchronized	in	time	to	the	stream	gauge	and	does	not	allow	for	472 
heterogeneity	in	hillslope	responses	to	precipitation	input.	These	simplifications	are	473 
necessary	to	balance	the	desire	for	reduced-complexity	with	the	representation	of	474 
processes	occurring	in	the	landscape.	For	segments	whose	upstream	end	is	the	475 
confluence	of	two	tributaries,	the	discharge	is	defined	as	the	sum	of	the	outflows	476 
from	the	two	upstream	segments;	the	concentration	is	defined	by	conservative	477 
mixing	of	the	two	upstream	tributaries.		478 

With	the	time-variable	boundary	conditions	established,	the	model	equations	479 
are	solved	using	a	forward-in-time,	backward-in-space	solution	scheme,	which	is	480 
computationally	efficient	and	allows	for	an	explicit	solution	of	the	model	equations.	481 
We	implement	adaptive	time	stepping,	allowing	timesteps	to	grow	or	shrink	by	a	482 
factor	of	4	depending	on	hydrologic	and	solute	dynamics.	Timesteps	are	limited	in	483 
growth	to	constrain	changes	in	discharge	or	concentration	to	less	than	1%	in	a	given	484 
timestep,	with	minimum	and	maximum	timesteps	of	1	and	3600	s,	respectively.	485 
	486 
2.5	Model	Limitations	487 
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Implementation	of	the	perceptual	model	as	a	reduced	complexity	model	necessarily	488 
simplifies	the	processes	in	the	river	corridor	to	represent	dynamics	at	reach-to-489 
network	scales.	First,	this	simplification	does	not	capture	the	smaller-scale	490 
flowpaths	that	are	associated	with	individual	channel-unit	features	smaller	than	5	m	491 
in	length.	Instead,	the	1-D	representation	of	the	valley	bottom	focuses	on	larger-492 
scale,	down-valley	flow,	and	in	our	model,	varies	only	in	response	to	changes	in	493 
valley	width	and	longitudinal	gradient.	As	a	result,	the	spatial	distributions	of	494 
exchange	fluxes	or	flowing	status	are	not	expected	to	have	a	high	fidelity	at	495 
representing	individual	features,	but	are	expected	to	be	representative	at	reach	and	496 
longer	scales	(see	Section	3.4	for	reach-scale	metrics).	Therefore,	we	consider	it	497 
inappropriate	to	expect	performance	to	match	small-scale	patterns	of	intermittent	498 
flow	that	may	develop	because	of	individual	features	that	are	smaller	than	the	499 
spatial	resolution	of	the	model.	500 
	 Second,	the	solute	transport	routine	represents	only	advective	processes	501 
along	the	stream,	with	numerical	solutions	introducing	a	small	amount	of	numerical	502 
dispersion.	The	addition	of	longitudinal	dispersion,	transient	storage,	or	sorption-503 
desorption	dynamics	(e.g.,	after	Bencala	and	Walters,	1983;	Runkel,	1998)	would	504 
likely	improve	the	representation	of	solute	transport.	It	is	important	to	note,	505 
however,	that	we	do	simulate	advective	exchange	between	the	surface	and	506 
subsurface,	but	at	spatial	scales	larger	than	5	m.	We	also	allow	specification	of	507 
surface-subsurface	exchange	occurring	at	scales	smaller	than	5	m,	using	the	term	508 
Qsubgrid,	but	this	term	is	treated	as	a	constant	across	the	entire	network	and	thus	509 
cannot	represent	spatial	variation	in	exchange	processes	driven	by	channel-unit	510 
features	smaller	than	the	resolution	of	the	model.	Collectively,	surface-subsurface	511 
exchange	is	commonly	considered	to	be	an	important	component	of	transient	512 
storage.	By	contrast,	fine-scale	transient	storage	in	the	surface	channel	(i.e.,	in	pools	513 
and	eddies)	is	not	simulated	in	our	model	because	we	expect	surface-subsurface	514 
exchange	to	dominate	at	the	scales	we	are	simulating.	Representing	in-channel	515 
transient	storage,	longitudinal	dispersion,	and	sorption-desorption	would	come	at	a	516 
computational	cost.	Further,	several	of	these	processes	are	likely	sensitive	to	517 
channel-unit	scale	features	that	cannot	be	extracted	from	typical	airborne	LiDAR	518 
data	so	including	these	processes	in	the	model	would	likely	require	much	more	519 
detailed	data	on	stream	topography.	520 
	 Third,	the	assumption	that	all	pore	water	is	well	mixed	and	equally	521 
connected	is	limiting.	We	acknowledge	that	the	subsurface	domain	is	likely	not	522 
completely	mixed	over	short	timescales	(e.g.,	Ward	et	al.,	2012).	Pores	are	523 
recognized	to	range	from	fully	connected	to	functionally	disconnected	from	524 
advective	transport	(e.g.,	dual-domain	representations	of	porous	media).	This	525 
simplification	also	omits	heterogeneity	in	the	hydraulic	conductivity,	which	has	526 
been	shown	to	be	an	additional	control	on	interactions	between	streams	and	their	527 
aquifers	(e.g.,	Fleckenstein	et	al.,	2007).	In	cases	where	the	subsurface	domain	is	not	528 
well-mixed,	this	assumption	causes	the	exchanged	mass	to	mix	with	a	larger	volume	529 
of	water.	The	result	is	a	slower	equilibration	between	the	stream	and	subsurface	530 
(i.e.,	concentrations	in	the	subsurface	rise	and	flush	more	slowly	than	would	occur	531 
in	a	system	that	was	not	well-mixed).	We	do	not	consider	these	processes	to	be	532 
sufficiently	important	to	be	included	in	the	perceptual	model	outlined	above	and	are	533 
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thus	not	represented	in	the	numerical	model,	but	acknowledge	these	processes	may	534 
be	important	at	other	sites.	535 
	 Finally,	the	numerical	model	simplifies	all	hillslope	hydrology	as	(1)	536 
instantaneously	synchronized	with	discharge	observed	at	the	gauge	and	(2)	537 
discharge	is	proportionally	distributed	on	the	basis	of	upslope	accumulated	areas.	538 
Both	are	oversimplifications	of	catchment	hydrology	and	hydraulics	and	are	areas	539 
for	potential	future	improvement.	540 
	541 
3.	Methods	542 
The	model	derived	above	can	be	implemented	using	only	a	digital	terrain	model,	a	543 
single	stream	gauge	at	the	outlet	of	the	catchment,	and	estimates	of	hydrogeologic	544 
properties.	The	highest	uncertainty	will	likely	come	in	the	estimation	of	a	545 
representative	hydraulic	conductivity	because	this	parameter	is	expected	to	span	546 
orders	of	magnitude.	We	suggest	initial	estimates	based	on	any	available	data,	grain	547 
size	distributions,	or	modest	field	campaigns	(e.g.,	falling-head	tests	in	temporary	548 
piezometers	or	shallow	wells)	could	be	used	to	better	constrain	this	model	549 
parameter.	These	modest	data	requirements	are	a	key	contribution	of	this	relatively	550 
simple	model.	Again,	we	emphasize	that	reduced-complexity	models	are	551 
constructed	to	represent	dominant	mechanisms	and	interactions	in	a	system	of	552 
interest,	acknowledging	that	this	comes	at	the	expense	of	representing	complexity	553 
and	heterogeneity	of	some	processes	in	the	system.	In	the	following	sections	we	554 
detail	how	the	model	is	parameterized	using	available	data	from	our	field	site.		555 
	556 
3.1	Model	Parameters	Specified	for	the	Study	Site	557 
	 Implementing	the	model	derived	above	requires	analysis	of	stream,	valley,	558 
and	catchment	topography	to	identify	the	drainage	network,	the	valley	floors,	and	559 
the	hillslope	area	contributing	to	each	model	segment.	We	used	a	modified	version	560 
of	the	TopoToolbox	(Schwanghart	and	Kuhn,	2010;	Schwanghart	and	Scherler,	561 
2014)	to	analyze	the	1-m	LiDAR	digital	terrain	model	available	for	WS01.	We	562 
selected	a	spatial	discretization	of	5-m	segments	along	the	river	corridor.	Briefly,	we	563 
applied	the	multidirectional	flow	routing	algorithm	(Seibert	and	McGlynn,	2007).	564 
Based	on	visual	observations	at	the	field	site	under	high	discharge	conditions,	we	565 
defined	a	threshold	of	3	ha	for	channel	initiation	(i.e.,	all	points	where	drainage	area	566 
≥	3	ha	are	simulated	as	part	of	the	river	corridor).	We	selected	the	threshold	of	3	ha	567 
because	we	seldom	observe	channelized	flow	in	locations	draining	this	small	of	an	568 
area.	As	a	result,	the	upper	extent	of	each	simulated	tributary	should	have	no	569 
overland	flow	and	the	model	equations	are	used	to	predict	the	flow	initiation	point	570 
along	each	headwater.	571 

We	measured	the	valley	width	at	30	locations,	measuring	from	the	stream	572 
centerline	to	the	valley	wall	along	a	line	perpendicular	to	the	longitudinal	axis	of	the	573 
valley	(break-point	visually	identified	in	the	field	after	Jencso	et	al.,	2009).	Our	574 
topographic	analysis	showed	that	the	floodplain	margin	between	hillslope	and	575 
valley	bottom	was	best	approximated	using	an	elevation	1.5	m	above	the	streambed	576 
provided	the	best	fit	between	widths	extracted	from	the	DEM	and	our	field	577 
observations.	Using	that	threshold,	we	discretized	the	stream	network	into	5-m	578 
segments	and	for	each	segment	we	extracted	valley	widths	(left	and	right	sides),	579 
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valley	slope,	stream	channel	slope,	and	stream	channel	sinuosity.	We	also	calculated	580 
the	lateral	UAA	along	each	side	of	the	valley	using	TopoToolbox	(Schwanghart	and	581 
Kuhn,	2010;	Schwanghart	and	Scherler,	2014).		582 
	 Inflows	to	the	valley	bottom	(Qlat;	m3	s-1)	were	calculated	using	an	area-583 
weighted	flow	based	on	the	WS01	gauge	station.	For	each	segment,	the	total	lateral	584 
inflows	were	calculated	as	585 
	586 
Qlat	=	ΔUAA*Qgauge/UAAgauge		 	 	 (16)	587 
	588 
where	ΔUAA	is	the	change	in	UAA	along	the	stream	centerline	in	each	model	589 
segment	(ha),	Qgauge	is	the	discharge	at	the	WS01	stream	gauge	(m3	s-1),	and	UAAgauge	590 
is	the	UAA	at	the	stream	gauge	(about	96	ha).	The	topographic	analysis	and	area-591 
weighted	assignment	of	lateral	inflows	are	identical	to	recent	work	in	the	catchment	592 
(Corson-Rikert	et	al.,	2016).	The	gauge	discharge	data	are	used	as	published	by	the	593 
H.J.	Andrews	Experimental	Forest.	A	summary	of	the	specified	or	calibrated	594 
parameters	are	provided	in	Table	1.	595 
	596 
Table	1:	Sources	and	values	for	the	model	parameters.		597 

Parameter	 Value	or	
range	 Units	 Methods	and/or	source		

Channel	width	(b)	 0.44	–	1.88	 m	 Regression	with	drainage	area	
(Castro	and	Jackson,	2001)	

Lateral	inflow	(qlat)	 2.0×10-6	-	
1.1×10-2	

m3	s-1		
per	ha	

Proportional	to	drainage	area	along	
stream	centerline	

Concentration	of	
lateral	inflow	(Clat)	

0	 g	m-3	 By	definition	for	a	tracer	injected	
into	the	stream	channel	only	

Manning’s	
Roughness	(n)	 0.05	 (unitless)	 Visual	inspection		

Valley	slope	(Svalley)	 0.01	–	1.04	 m	m-1	 TopoToolbox	analysis1	
Channel	slope	
(Sstream)	 0.01	–	2.42	 m	m-1	 TopoToolbox	analysis1	

Channel	sinuosity	
(Sinuosity)	 1.04	–	1.18	 m	m-1	 TopoToolbox	analysis1	

Valley	width	(bvalley)	 5.0	–	36.9	 m	 TopoToolbox	analysis1	
Drainage	area	(UAA)	 3	–	95.5	 ha	 TopoToolbox	analysis1	

Porosity	(θ)	 						0.3	 (unitless)	

Midpoint	of	previously	reported	
range	of	values	for	the	site	
(Dyrness,	1969;	Kasahara	and	
Wondzell,	2003;	Ward	et	al.,	2016;	
Wondzell	et	al.,	2009a)		

Sub-grid	exchange	
(Qsubgrid)	 4.18×10-5	 m3	s-1	 Calibrated.	Parameter	range	1×10-6		

to	1×10-2	(Ward	et	al.,	2013b)	

Thickness	of	
colluvium	(T)	 0.75	 m	

Calibrated.	Parameter	range	0	to	4	
considered	(Gooseff	et	al.,	2006;	
Wondzell	et	al.,	2009a)	
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Hydraulic	
conductivity	(K)	 5.62×10-6	 m	s-1	

Calibrated.	Parameter	range	4.3×10-

6	to	6.1×10-4	(Kasahara	and	
Wondzell,	2003)	

Limit	to	define	
surface	discharge	
(Qlim)	

2.21×10-4	 m3	s-1	 Calibrated.	Parameter	range	0.18-
0.32	(see	section	4.1)	

1	-	TopoToolbox	analysis	refers	to	the	analysis	of	the	digital	terrain	model	described	in	section	3.1	598 
using	tools	developed	by	Schwanghart	and	Kuhn	(2010)	and	Schwanghart	and	Scherler	(2014).	599 
	600 
3.2	Model	Calibration	601 
Recognizing	the	model	limitations,	we	define	two	calibration	targets	that	represent	602 
reach-scale	behaviors	to	demonstrate	reasonable	representation	of	system	603 
processes:	(1)	reach-scale	solute	transport	and	(2)	reach-scale	fraction	of	dry	604 
streambed.	These	calibration	targets	will	generate	reach-averaged	best-fit	model	605 
parameters	rather	than	spatially	variable	distributions,	closely	following	the	606 
approach	of	other	reduced-complexity	models	of	headwater	streams	(e.g.,	Bencala	607 
and	Walters,	1983).		608 

First,	we	calibrated	the	model	parameters	T,	K,	and	Qsubgrid	using	a	break-609 
through	curve	from	a	solute	tracer	injection	from	2-Aug-2010	(see	Voltz	et	al.,	2013;	610 
Ward	et	al.,	2016	for	details).	We	simulated	the	tracer	injection	and	compared	611 
observed	versus	simulated	concentrations	of	tracer	at	two	locations:	immediately	612 
downstream	of	the	injection	where	complete	mixing	was	assumed	(166-m	upstream	613 
of	the	WS01	gauge)	and	at	the	WS01	gauge	station	itself.		We	varied	T	from	zero	614 
(observed	at	bedrock	outcrops)	to	a	maximum	depth	of	4	m.	This	greatly	exceeds	615 
the	maximum	penetration	depth	of	1.74	m	observed	when	installing	wells,	and	thus	616 
allows	for	uncertainty	between	the	refusal	depth	and	impermeable	bedrock.	This	617 
difference	may	represent,	for	example,	a	zone	of	weathered	bedrock	below	the	618 
colluvium	but	still	bounded	by	impermeable,	unweathered	bedrock	below.	We	619 
varied	K	across	the	range	of	values	observed	by	Kasahara	and	Wondzell	(2003)	in	620 
WS01	and	a	nearby	headwater	catchment,	spanning	4.3×10-6		to	6.1×10-4		m	s-1.	621 
Finally,	Qsubgrid	was	varied	from	1×10-6	to	1×10-2	m3	s-1	based	on	observations	at	the	622 
field	site.	For	comparison,	Ward	et	al.	(2013a)	found	average	gross	stream-to-623 
subsurface	exchanges	of	about	3.5×10-3	m3	s-1	per	5	m	of	valley	distance	(range	0	–	624 
1.6×10-2	m3	s-1,	median	2.7×10-3	m3	s-1)	during	a	storm	event	using	reach-scale	625 
solute	tracer	studies.	Thus,	the	range	spans	nearly	the	complete	observation	set	626 
(with	a	lower	bound	of	10-6	m3	s-1	rather	than	zero).	This	first	model	calibration	step	627 
was	performed	by	uniformly	sampling	the	distributions	of	K,	T,	and	Qsubgrid	and	628 
varying	the	parameters	jointly,	increasing	resolution	around	the	best-fit	parameters.	629 
More	than	1,100	simulations	were	performed.	Overall	model	fit	was	evaluated	630 
based	on	minimizing	root	mean	square	error	(RMSE)	between	the	observed	tracer	631 
breakthrough	curve	and	simulations.	We	selected	minimizing	RMSE	because	this	is	632 
analogous	to	the	residual	sum	of	squared	errors	used	to	evaluate	model	fits	in	633 
inverse	modeling	of	stream	solute	tracers	(e.g.,	Runkel,	1998;	Ward	et	al.,	2017).		634 

Next,	we	calibrated	the	model	by	comparing	the	observed	versus	simulated	635 
total	length	of	dry	streambed	in	the	reach	of	stream	between	the	gauge	and	the	636 
confluence	of	the	Main	Stem	and	South	Branch	(Fig.	1).	The	model	formulation	637 
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allows	for	computation	of	extremely	small	surface	flows	that	would	not	be	visually	638 
differentiated	from	a	“damp	streambed”	or	flow	fully	through	the	armored	cobble	639 
layer	on	the	bed	in	the	field	(e.g.,	values	of	Qstr	=	1×10-4	m3	s-1).	These	simulated	640 
discharges	are	numerically	non-zero,	but	functionally	non-observable	in	the	field.	641 
Thus,	we	require	a	threshold	to	differentiate	observably	flowing	from	dry	segments	642 
in	the	model	output	(Qlim).	We	select	the	target	of	total	reach-scale	dry	streambed	in	643 
acknowledgement	that	the	reduced	complexity	model	is	not	intended	to	represent	644 
small-scale	features	nor	their	spatial	distributions	that	would	be	observed	in	the	645 
field,	but	instead	to	capture	representative	behavior	for	reaches	100s	of	meters	and	646 
longer.	This	target	is	also	comparable	to	reasonably	available	field	data	for	a	site	647 
with	limited	characterization,	where	available	information	may	be	based	on	visual	648 
inspection	or	personal	knowledge	that	will	typify	applications	lacking	detailed	site	649 
investigations	(e.g.,	anecdotal	“about	20%	of	the	streambed	is	dry	in	late	August”).	650 
On	25-May-2016,	21-June-2016,	04-July-2016,	and	13-Aug-2016	we	walked	from	651 
the	gauging	station	to	the	main	confluence,	recording	the	locations	of	dry	streambed	652 
at	sub-meter	resolution.	Using	the	specified	parameters	(Table	1)	and	those	653 
calibrated	for	the	solute	tracer	(K,	T,	Qsubgrid),	we	assessed	the	accuracy	of	dry	654 
streambed	predictions	to	select	an	appropriate	value	of	the	discharge	threshold	to	655 
define	surface	flow	(Qlim)	to	maximize	accuracy	of	predicting	the	total	dry	length	656 
observed	in	the	study	reach.This	calibration	step	tested	more	than	10,000	values	for	657 
Qlim,	and	selected	the	value	that	minimize	the	error	in	predicted	dry	streambed	658 
length	along	the	observed	reach.		659 
	660 
3.3	Model	Validation	661 
To	validate	the	model,	we	compared	the	flowing	status	predicted	by	the	reduced	662 
complexity	model	with	a	similar	dataset	generated	by	combining	a	detailed	survey	663 
with	measured	changes	in	stream	stage.	In	the	reach	spanning	95	to	626	m	664 
upstream	of	the	gauging	station,	we	surveyed	the	elevation	of	the	streambed	and	665 
stream	water	surface	at	<1.0	m	horizontal	resolution	and	<0.01	vertical	resolution	666 
during	conditions	with	Qgauge	ranging	from	5.8	to	6.7	L	s-1.	Fifteen	pressure	667 
transducers	were	installed	along	the	surveyed	reach,	recording	data	every	15	668 
minutes	from	1-Oct-2015	to	2-Sept-2016.	All	loggers	were	installed	in	shallow	wells	669 
to	ensure	they	remained	submerged	all	season	even	if	water	levels	dropped	below	670 
the	streambed.		671 

We	constructed	a	spatially	continuous	water	surface	by	calculating	changes	672 
in	the	water	surface	elevation	at	each	of	the	15	sensors	and	then	interpolating	these	673 
changes	to	every	model	segment	for	each	timestep.	This	exactly	follows	the	674 
procedures	described	by	Schmadel	et	al.	(2017).	We	then	extracted	the	stream	stage	675 
relative	to	the	streambed	for	each	5-m	segment	within	the	surveyed	reach	and	676 
assigned	a	status	of	not	flowing	(for	segments	containing	no	surface	flow),	partially	677 
flowing	(for	segments	with	both	surface	flow	and	dry	streambed),	and	fully	flowing	678 
(for	segments	with	active	surface	flow	along	the	entire	length	of	the	segment).	We	679 
assess	reduced-complexity	model	performance	by	tabulating	the	frequency	of	680 
correct	predictions	of	flowing	(times	and	locations	where	constructed	profiles	and	681 
model	results	both	indicate	fully	flowing	status)	and	correct	predictions	of	not	682 
flowing	(times	and	locations	where	constructed	profiles	indicate	either	partially	or	683 
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not	flowing	status	and	the	model	predicts	no	flow).	We	elect	to	include	“partially	684 
flowing”	status	from	the	profiles	as	equal	to	“not	flowing”	status	in	the	reduced-685 
complexity	model	because	we	expect	the	low	discharges	in	a	partially	flowing	686 
segment	would	be	below	the	calibrated	Qlim	value.	687 
	688 
3.4	Evaluation	of	Model	Results:	Spatial	and	Temporal	Trends	in	Connectivity	689 
Model	results	were	used	to	evaluate	nine	metrics	describing	the	hydrologic	690 
connectivity.	For	each	river	corridor	segment,	we	tabulated:	(1)	the	flowing	status	691 
(i.e.,	surface	flow	or	no	surface	flow),	(2)	subsurface	discharge,	and	(3)	surface	692 
discharge	every	10	minutes	throughout	the	1-y	simulation	period.	Based	on	this	693 
information	and	the	network	topology,	we	also	tabulated	(4)	whether	the	surface	694 
flow	was	contiguous	to	the	outlet	(i.e.,	if	there	was	an	unbroken	connection	of	695 
surface	flow	between	a	segment	and	the	outlet).	Using	these	metrics,	we	next	696 
calculated	(5)	the	total	flowing	length	of	the	surface	stream	network,	(6)	the	total	697 
contiguous	length	of	the	surface	stream	network,	and	(7)	the	drainage	density	698 
(flowing	stream	network	length	per	catchment	area)	for	the	flowing	network.	After	699 
completion	of	the	entire	1-y	simulation,	we	calculated	(8)	the	probability	of	surface	700 
flow	and	(9)	the	probability	of	contiguous	flow	for	each	segment	by	dividing	the	701 
number	of	timesteps	with	surface	or	contiguous	flow	by	the	total	number	of	702 
timesteps.		703 
	704 
4.	Results	705 
4.1	Model	Calibration	&	Validation	706 
Overall,	the	calibrated	model	predicted	the	tracer	breakthrough	curve	observed	in	707 
August	2010	with	an	RMSE	of	12.4	μS	cm-1.	After	calibration,	we	also	assessed	model	708 
predictions	using	r2	(0.86	comparing	time-series	observations	to	calibrated	model	709 
predictions),	mean	arrival	time	for	the	in-stream	solute	tracer	timeseries	(observed	710 
75.6	hr,	modeled	66.3	hr),	coefficient	of	variation	for	the	in-stream	solute	tracer	711 
timeseries	(observed	0.72,	modeled	0.70),	and	skewness	for	the	in-stream	solute	712 
tracer	timeseries	(observed	1.13,	modeled	0.66).		Based	on	the	high	r2	and	low	713 
errors	for	mean	arrival	time	and	coefficient	of	variation,	we	interpret	that	advection	714 
of	the	input	tracer	signal	and	its	longitudinal	spread	are	being	accurately	715 
represented	by	the	model.	The	disparity	in	skewness	corresponds	to	the	716 
acknowledged	limitations	of	the	solute	transport	model,	wherein	only	the	advective	717 
transport	processes	are	being	considered.	That	the	observed	late-time	low-718 
concentration	“tails”	of	the	in-stream	timeseries,	which	drive	larger	positive	values	719 
of	skewness,	are	not	being	well	fit	by	the	reduced-complexity	model	is	expected	720 
given	that	longitudinal	dispersion	and	in-channel	transient	storage	are	not	721 
simulated.		722 

Next,	we	used	observations	of	dry	streambeds	to	estimate	Qlim.	We	did	not	723 
observe	any	dry	streambed	during	the	May	and	June	2016	surveys.	In	July	2016	we	724 
observed	a	total	of	3.5	m	of	dry	streambed	at	5	locations	(range	0.5	to	1	m	in	dry	725 
length).	In	August	2016	we	observed	106.1	m	of	dry	streambed	across	26	separate	726 
locations	(range	0.4	to	26.9	m,	mean	4.1	m,	median	1.0	m).	At	the	time	of	the	August	727 
2016	observations,	the	stream	discharges	in	the	model	segments	within	the	728 
surveyed	stream	reach	(0	m	to	650	m	from	the	stream	gauge)	ranged	from	0.18	to	729 
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0.45	L	s-1.	However,	because	our	field	observations	recorded	some	of	these	730 
segments	as	dry,	Qlim	must	be	greater	than	0.18	L	s-1	(i.e.,	discharges	of	less	than	Qlim	731 
were	not	observable	as	surface	flow	in	the	field).	Furthermore,	because	discharge	at	732 
the	gauge	was	measured	between	0.32	and	0.45	L	s-1	during	the	same	period,	this	733 
also	implies	that	Qlim	must	be	less	than	0.32	L	s-1.	We	searched	possible	values	for	734 
Qlim	in	this	range	at	a	resolution	of	0.001	L	s-1	(comparable	to	the	resolution	of	the	735 
gauge	when	the	v-notch	weir	is	installed	during	the	summer	low	flow	period).	The	736 
best	agreement	for	total	dry	streambed	length	in	the	segment	spanning	0	to	759	m	737 
was	found	for	Qlim	=	0.221	L	s-1,	which	results	in	a	simulated	14.2%	of	the	total	738 
length	in	dry	streambed	conditions	(compared	to	13.9%	observed	in	the	field).	739 
Using	this	value	of	Qlim,	the	May	and	June	2016	simulation	periods	accurately	predict	740 
100%	of	the	observed	conditions	in	the	field	(Fig.	S1).	For	July	2016	we	observed	741 
about	0.5%	of	the	streambed	to	be	dry	(less	than	the	length	of	one	model	segment)	742 
and	the	reduced	complexity	model	predicts	all	segments	flowing	fully	(Fig.	S1).		743 

While	the	simulated	length	of	dry	channel	was	similar	to	that	observed	at	the	744 
reach	scale,	the	agreement	in	the	spatial	location	of	dry	segments	was	quite	poor.	745 
We	expected	considerable	disagreement	between	the	model	and	the	observations	746 
over	short	distances	where	small	scale	channel	morphology	–	like	wedges	of	747 
sediment	accumulated	above	in-channel	logs	–	would	lead	to	local	increases	in	748 
sediment	thickness	or	create	variable	deposition	environments	leading	to	749 
substantial	variability	in	saturated	hydraulic	conductivity.	As	expected,	the	model	750 
did	not	simulate	many	of	the	short	dry	segments	we	observed,	but	it	also	simulated	751 
a	long	dry	section	between	600	and	750	m	above	the	stream	gauge	whereas	we	752 
observed	large	dry	segments	between	150	and	300	m.	The	lack	of	agreement	753 
suggests	that	spatial	patterning	is	being	controlled	by	factors	other	than	channel-754 
unit	scale	variations	in	morphology.	Certainly,	large	logs	transported	in	debris	flows	755 
can	form	large	log	jams	with	depositions	several	meters	thick	that	extend	more	than	756 
100-m	upstream	from	the	log	jam.	We	used	a	constant	thickness	of	0.75	m	resulting	757 
from	model	calibration	in	a	short	tracer-injection	reach	near	the	bottom	of	the	758 
watershed.	Penetration	depths	of	41	wells	located	within	that	reach	show	that	the	759 
sediment	thickness	averages	only	1	m	and	in	early	summer	with	Qgauge=34	L	s-1	the	760 
saturated	thickness	averages	0.48	m.	It	is	likely	that	sediment	thickness	at	other	761 
locations	would	be	substantially	deeper	or	shallower	than	the	best-fit,	reach-scale	762 
value	that	was	calibrated.	Using	a	constant	thickness	would	lead	to	the	model	763 
simulating	dry	channels	in	locations	where	the	actual	sediment	was	thinner	than	764 
0.75	m	or	wet	channels	in	locations	where	the	actual	sediment	is	thicker	than	0.75	765 
m.	Note	that	Qsub,cap	is	relatively	constant	from	750	m	down	to	the	mouth	of	the	766 
watershed	whereas	UAA	and	Q	both	nearly	double	over	this	distance.	Thus,	small	767 
overestimates	of	sediment	thickness	at	the	top	of	this	reach	would	readily	result	in	768 
the	model	simulating	a	dry	channel	where	one	may	not	be	observed.	Conversely,	769 
limiting	sediment	thickness	to	only	0.75	m	lower	in	the	reach,	where	discharge	is	770 
much	higher,	would	make	it	unlikely	that	the	model	would	simulate	a	dry	segment.		771 

Finally,	we	compared	the	predictions	of	the	stream	status	(flowing	or	dry)	to	772 
water	surface	profiles	interpolated	from	15	pressure	transducers	located	in	the	773 
lower	650	m	of	the	Main	Stem	channel.	In	total,	we	compared	99	model	segments	774 
spanning	32,443	timesteps	that	comprise	approximately	3.2	million	points	(Fig.	S2,	775 
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S3).	Overall,	the	reduced-complexity	model	correctly	predicted	about	2.6	million	776 
flowing	conditions	(about	81.9%	of	all	points;	Fig.	S2,	S3)	and	434,576	dry	777 
streambed	conditions	(about	13.5%	of	all	points;	Fig.	S2,	S3).	The	reduced	778 
complexity	model	incorrectly	predicted	145,886	points	(about	4.5%	of	all	points;	779 
Fig.	S2,	S3).	Based	on	more	than	95%	agreement	between	the	model	predictions	and	780 
validation	data,	we	are	encouraged	to	interpret	the	model	as	a	reasonable	781 
description	of	the	dynamics	in	the	system.	Overall,	model	performance	is	generally	782 
strongest	under	higher	discharge	conditions.	One	key	limitation	of	the	model	is	the	783 
spatial	resolution	limits	the	simulation	of	segments	that	are	partially	flowing.	While	784 
the	network-scale	metrics	are	reasonably	predicted,	the	spatial	organization	is		785 
generally	not	well	predicted	by	the	model	(Figs.	S1,	S2,	S3)	because	of	the	assumed	786 
spatial	homogeneity	of	model	parameters.	787 

The	model	could	be	further	tuned	by	making	T	and	K	spatially	variable.	788 
However,	collecting	spatially	explicit	data	on	sediment	depth	in	the	valley	floor	789 
throughout	the	stream	network	would	be	a	daunting	task.	But	more	importantly,	790 
adding	substantial	complexity	to	the	model,	just	to	improve	the	model	fit,	runs	791 
counter	to	the	modeling	philosophy	that	guides	this	effort.	That	is,	to	develop	a	792 
highly	transferable	model	that	can	be	parameterized	using	readily	available	data	to	793 
simulate	dominant	hydrological	processes	within	a	large	stream	network.	We	794 
recognize	that	this	simple	model	is	far	from	perfect.	Still,	we	argue	that	it	represents	795 
the	dominant	hydrologic	processes	operating	along	the	length	of	the	stream	796 
network	in	this	watershed.		797 
	798 
4.2	Spatial	Trends	in	Network-scale	Hydrologic	Connectivity	799 
The	study	network	is	comprised	of	2,825	m	of	stream	channel	(3	ha	channel	800 
initiation	threshold),	equivalent	to	a	channel	density	of	2.9	km	km-2.	Valley	801 
topography,	topology,	slope,	and	sediment	characteristics	result	in	an	average	802 
down-valley	capacity	(Qsub,cap)	of	4.6×10-2	L	s-1	(range	1.2×10-3	to	3.7×10-1	L	s-1;	803 
median	3.7×10-2	L	s-1;	Fig.	3A).	Since	network	average	values	were	used	for	T,	K,	and	804 
θ,	this	variation	reflects	the	spatial	variability	in	down-valley	slopes	and	valley	805 
bottom	widths	in	along	the	river	corridor.	806 
	 The	probability	of	surface	flow	peaks	at	about	99.3%	at	the	outlet	of	WS01	807 
(Fig.	3B).	The	probability	of	surface	flow	decreases	approximately	linearly	with	808 
distance	to	93.0%	at	the	confluence	of	the	South	Branch	and	Main	Stem.	The	809 
probability	of	surface	flow	decreases	abruptly	above	the	confluence	in	both	810 
branches	due	to	the	step	decrease	in	tributary	UAA	(Fig.	3C).	In	both	branches,	811 
probability	of	surface	flow	remains	at	or	about	70%	to	a	distance	of	about	1,100	m	812 
upstream	from	the	outlet	(about	330	m	upstream	of	the	confluence).	Sharp	changes	813 
in	the	probability	of	surface	flow	occur	at	locations	where	an	increase	in	Qsub,cap	814 
accommodates	the	entire	down-valley	flow	more	frequently	(for	example,	the	Main	815 
Stem	at	1150	m	or	the	South	Branch	near	1,260	m;	Fig.	3B).	Overall,	the	probability	816 
of	surface	flow	is	lower	in	the	upper	Main	Stem,	upper	South	Branch,	and	the	minor	817 
tributaries	compared	to	the	lower	Main	Stem	below	the	confluence;	this	is	due	to	818 
the	lower	UAA	in	the	upper	basin	(Fig.	3C).	819 
	 The	probability	of	surface	flow	throughout	the	network	that	is	contiguous	to	820 
the	outlet	is	lower	than	the	probability	of	surface	flow	in	all	cases,	indicating	periods	821 
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of	time	that	dry	locations	along	the	valley	break	the	contiguity	of	the	network	(Fig.	822 
3D).	The	nearly	perfectly	horizontal	portions	of	the	probabilities	across	the	plot	823 
(e.g.,	x	=	850	to	1100	m	along	the	South	Branch;	Fig.	3D)	are	caused	by	a	824 
downstream	segment	controlling	the	extent	of	contiguity	up	the	branch.	Although	825 
upstream	segments	are	regularly	flowing,	they	are	prevented	from	becoming	826 
contiguous	by	a	small	location	of	sufficient	down-valley	capacity	to	prevent	a	827 
contiguous	surface	connection	from	forming.	828 

	
Figure	3.	A)	Down-valley	capacity	for	subsurface	flow	(Qsub,cap)	as	a	function	of	
distance	along	the	river	corridor	from	the	outlet	at	the	stream	gauge.	B)	Probability	
of	surface	flow	for	each	model	segment.	C)	Upslope	accumulated	area	(UAA)	as	a	
function	of	distance	along	the	river	corridor	from	the	stream	gauge.	D)	Probability	
of	surface	flow	being	contiguous	to	the	stream	gauge	for	each	model	segment.	The	
vertical	black	line	labeled	“Confluence”	denotes	the	confluence	of	the	Main	Stem	and	
South	Branch.	For	individual	segments	the	upstream	and	downstream	ends	are	
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marked	with	circles	and	triangles,	respectively.	
	829 
4.3	Temporal	Trends	in	Network-scale	Hydrologic	Connectivity	830 
Throughout	water	year	2016	the	length	of	the	flowing	network	averaged	about	831 
1,661	m	(range	0	to	2,350	m;	median	1,810	m;	Fig.	4B).	Drainage	density	based	on	832 
the	flowing	length	averaged	1.73	km	km-2	(range	0	to	2.45	km	km-2;	median	1.89	km	833 
km-2).		834 
	 During	the	highest	discharge	conditions,	the	flowing	channel	network	835 
expands	greatly,	but	small	sections	of	dry	streambed	persist	at	some	locations	along	836 
the	channel	so	only	small	increases	in	the	contiguous	length	are	simulated	(callout	2	837 
in	Fig.	4A	and	4B).	Because	of	this,	the	fraction	of	contiguously	flowing	network	838 
decreases	during	the	highest	flow	events	(callout	2	in	Fig.	4C).	Under	the	lowest	839 
discharge	conditions,	the	fraction	of	flowing	length	that	is	contiguous	occasionally	840 
reaches	a	value	of	1.0	(i.e.,	entirely	contiguous)	because	only	the	downstream-most	841 
segments	are	predicted	to	have	surface	flow	(e.g.,	callout	4	in	Fig.	4).		842 

The	length	of	network	contiguous	to	the	outlet	averaged	1,282	m	(range	0	to	843 
1,570	m,	median	1,520	m;	Fig.	4B).	The	contiguous	network	represents	an	average	844 
and	maximum	of	45%	and	64%,	respectively,	of	the	river	corridor	length.	The	845 
contiguous	drainage	density	averaged	1.34	km	km-2	(range	0	to	1.64	km	km-2;	846 
median	1.59	km	km-2).	Throughout	the	water	year,	the	contiguous	network	847 
represented	an	average	of	76%	of	the	flowing	network	(i.e.,	24%	of	flowing	848 
segments	were	not	contiguous	to	the	outlet;	Fig.	4C).	The	fraction	of	the	flowing	849 
network	that	was	contiguous	ranged	from	0.8%	to	100%	across	the	year,	with	a	850 
median	value	of	77.5%.		851 
	852 
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Figure	4.	A)	Water	year	2016	discharge	at	the	WS01	gauge	and	precipitation	at	the	
H.J.	Andrews	Primary	Meteorological	Station.	B)	Timeseries	of	total	flowing	length	
and	total	contiguous	length	along	the	river	corridor.	C)	Timeseries	of	the	fraction	of	
flowing	length	that	is	contiguous	to	the	gauge.	Vertical	dashed	lines	highlight	the	
four	timesteps	shown	in	Figure	5	and	are	provided	as	a	reference	throughout	Figs.	
4-7.	Finally,	we	note	that	a	step-change	decrease	in	discharge	appears	to	occur	on	
28-June-2016	(from	a	peak	discharge	of	3.0	L	s-1	on	27-June	to	1.9	L	s-1	on	28-June;	
panel	A).	This	is	a	known	discrepancy	in	the	HJ	Andrews	discharge	databases	and	
results	from	installing	v-notch	weirs	on	the	trapezoidal	gauges	to	improve	
resolution	of	small	changes	in	discharge.		The	V-notch	weirs	are	typically	installed	in	
June	and	removed	in	October	of	each	year	(Henshaw	and	Creel,	2005).	We	use	the	
stream	discharge	data	as	reported.	
	853 
4.4	Spatial	and	Temporal	Trends	in	Hydrologic	Connectivity:	Seasonal,	Storm,	854 
and	Diurnal	Dynamics	855 
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	 Spatial	patterns	of	surficial	flow	and	contiguity	are	highly	dynamic	(Fig.	5;	856 
animation	of	water	year	2016	in	Supplemental	Video).	In	many	cases,	a	small	857 
number	of	short	segments	of	dry	streambed	separate	significant	fractions	of	flowing	858 
streams	from	the	outlet	(Fig.	5),	which	is	consistent	with	our	field	observations.	859 
Even	in	the	highest	discharge	conditions,	many	of	the	minor	tributaries	do	not	860 
generate	surface	flow	(Fig.	5,	second	column).	During	the	lowest	discharge	861 
conditions,	the	subsurface	transmits	a	majority	of	discharge	in	all	but	the	862 
downstream-most	reaches	(e.g.,	Fig.	5,	fourth	column).	Under	the	highest	discharge	863 
conditions	the	channel	network	expands	significantly	(e.g.,	Fig.	6B,	callout	1).	The	864 
newly	activated	surficial	flows	may	persist	for	several	days,	or	several	months	(e.g.,	865 
Fig.	6B,	callout	2,	horizontal	band	of	discharge	about	1,320	m	upstream	of	the	866 
outlet).	Still,	these	locations	are	upstream	of	a	persistently	dry	segment	and	never	867 
contribute	to	the	contiguous	length	of	the	network,	causing	the	gap	between	flowing	868 
and	contiguous	length	(Fig.	4B).	At	locations	of	tributaries,	there	is	a	clear	step	869 
change	in	discharge	due	to	the	step	change	in	UAA	at	the	confluence	of	the	Main	870 
Stem	and	South	Branch	(visible	as	changes	in	color	in	the	vertical	direction;	Fig.	6B,	871 
callout	3;	Fig.	6C	at	1,100	m	upstream	of	outlet).		872 
	873 
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Figure	5.	A)	Water	year	2016	discharge	at	the	WS01	gauge	and	precipitation	at	the	
H.J.	Andrews	Primary	Meteorological	Station.	B)	Four	snapshots	in	time	of	stream	
discharge	(Qstr,	top	row),	subsurface	discharge	(Qsub,	middle	row),	and	fraction	of	
total	down-valley	discharge	in	the	subsurface	(calculated	as	Qsub/Qdv	or	
Qsub/(Qstr+Qsub)).	The	dashed	lines	in	the	top	panel	correspond	to	the	four	columns	of	
sub-plots	(left-to-right).	X	and	Y	coordinates	are	listed	in	UTM	Zone	10N.	
	874 
	 For	gauge	discharges	greater	than	about	1	L	s-1,	the	spatial	extent	of	the	875 
network	is	relatively	constant,	extending	to	about	1,120	m	along	the	Main	Stem	(Fig.	876 
6B)	and	to	1,000	to	1,250	m	along	the	South	Branch	(Fig.	6C).	For	gauge	discharges	877 
less	than	about	1	L	s-1,	the	South	Branch	is	mostly	dry	whereas	the	Main	Stem,	878 
especially	the	lower	750	m,	becomes	temporally	dynamic	with	large	oscillations	in	879 
the	length	of	flowing	channel.	Significant	contraction	is	observed	during	the	lowest	880 
flow	periods	(Fig.	6B,	callout	4).	The	first	small	storm	of	Fall	2016	(13.7	mm	of	881 
rainfall	from	2-Sept	to	7-Sept-2016)	causes	rapid	network	expansion	(visible	as	a	882 
nearly	vertical	line;	Fig.	6B,	callout	5).		883 
	 The	most	frequent	expansions	and	contractions	of	the	channel	network	occur	884 
at	the	times	when	evapotranspiration-driven	fluctuations	in	Qdv	(Voltz	et	al.,	2013;	885 
Wondzell	et	al.,	2010,	2007)	cause	Qdv	to	fluctuate	near	Qsub,cap,	the	threshold	for	886 
surface	flow	(Fig.	7).	In	these	cases,	the	flowing	length	and	contiguous	length	can	887 
vary	by	hundreds	of	meters	on	a	daily	basis	(Fig.	7B),	which	is	confirmed	by	our	888 
field	observations.	In	locations	where	the	stream	remains	flowing	we	observe	889 
strong	diurnal	variations	in	discharge	(visible	as	vertical	bands	in	Fig.	7C).		890 

A	small	storm	delivered	about	38.6	mm	of	rainfall	between	the	7th	and	12th	of	891 
July,	2016	(Fig.	7A).	This	rainfall	caused	a	simulated	expansion	of	more	than	50%	of	892 
the	flowing	(from	about	900	to	1,650	m)	and	contiguous	(from	about	800	to	1,300	893 
m)	lengths	of	the	channel	network	for	a	period	of	just	48	hours	(Fig.	7B).	Within	four	894 
days,	the	discharge	again	reached	a	level	where	Qdv	and	Qsub,cap	were	matched,	895 
reinitiating	the	daily	oscillations	in	the	flowing	and	contiguous	channel	lengths.	896 
Over	the	last	half	of	July,	baseflow	recession	continues,	so	that	Qsub,cap	exceeded	Qdv	897 
for	longer	and	longer	periods	of	each	day,	and	over	more	and	more	of	the	length	of	898 
the	upper	Main	Stem,	so	that	most	channel	segments	were	dry	most	of	the	time	(Fig.	899 
7C).	This	recession	continues	until	all	of	the	diurnal	maximum	discharge	can	be	fully	900 
accommodated	in	the	subsurface,	at	which	point	the	channel	remains	dry	until	a	901 
storm	in	early	September	provides	sufficient	water	to	the	catchment	to	reinitiate	902 
flow	in	the	upper	Main	Stem	(Fig.	6A	and	6B).		903 
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Figure	6.	A)	Discharge	at	the	WS01	stream	gauge	and	precipitation	at	the	Primary	
Meteorological	Station.	Surface	flow	as	a	function	of	space	and	time	in	the	Main	
Stem	(panel	B)	and	South	Branch	(panel	C).	Callouts	in	panel	B	highlight	(1)	surface	
flow	under	only	the	highest	discharge	conditions,	(2)	a	relatively	persistent	location	
of	disconnected	surface	flow	high	in	the	network,	(3)	a	solid	horizontal	line	marking	
a	step-change	in	discharge	at	the	confluence	of	the	Main	Stem	and	South	Branch,	(4)	
a	nearly	dry	stream	channel	under	seasonal	low-flow	conditions,	and	(5)	rapid	
expansion	in	response	to	the	first	rain	of	Fall	2016.	Unshaded	(white)	portions	of	
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panels	B	and	C	represent	places	and	times	where	Qsub,cap>Qdv,	resulting	in	fully	
subsurface	flow.	The	inset	area	is	detailed	in	Figure	7.	Black	dashed	lines	in	panel	A	
correspond	to	those	throughout	Figs.	4-7.	
	904 
	905 

	
Figure	7.	A)	WS01	gauge	discharge	during	baseflow	recession	of	water	year	2016	
and	precipitation	at	the	Primary	Meteorological	Station.	B)	Dynamics	of	river	
corridor	length	with	surface	flow	and	contiguous	surface	flow	to	the	gauge.	C)	
Spatial	and	temporal	dynamics	of	surface	flow	in	response	to	diurnal	discharge	
fluctuations	driven	by	evapotranspiration	(Voltz	et	al.,	2013;	Wondzell	et	al.,	2010,	
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2007)	and	a	small	precipitation	event.	The	black	dashed	line	corresponds	to	the	
right-most	vertical	line	in	Figs.	4-6.	
	906 
	907 
5.	Discussion	908 
5.1	Network	Expansion,	Contraction,	and	Connectivity	Reflect	Interactions	of	909 
Hydrologic	Forcing	and	Geologic	Setting	910 
Based	on	the	simulated	water	year,	we	posit	a	systematic	gradient	from	hydrologic	911 
to	geologic	control	dominance	as	discharge	decreases	in	the	catchment.	This	finding	912 
agrees	with	empirical	relationships	developed	by	Godsey	and	Kirchner	(2014),	913 
extending	it	to	consideration	through	the	full	range	of	discharge	conditions	in	the	914 
simulated	water	year.		915 

The	flowing	length	and	contiguous	length	span	relatively	narrow	ranges	916 
through	the	wet	season	(Oct.	2015	–	Jul.	2016)	despite	Qgauge	varying	across	three	917 
orders	of	magnitude	(Fig.	4A,	4B).	Flowing	length	is	about	1,800	m	for	Qgauge	=	8	L	s-918 
1,	increasingly	to	about	2,350	m	for	Qgauge	=	1,085	L	s-1	;	for	Qgauge	>	8	L	s-1,	contiguous	919 
length	is	nearly	constant	at	about	1,475	m	(Fig.	8A).	Under	these	high	discharge	920 
conditions,	the	most	important	factors	controlling	the	extent	of	the	stream	network	921 
are	related	to	overall	wet	conditions.	The	hillslopes	are	contributing	water	to	the	922 
valley	bottom	throughout	the	catchment	and	the	valley	bottom	is	saturated	(i.e.,	ysub	923 
=	T).	Thus,	new	rainstorms	simply	increase	delivery	of	water	from	the	hillslopes	to	924 
the	river	corridor	which	is	then	transferred	to	the	stream	channel	because	Qdv	925 
already	exceeds	Qsub,cap.	Further,	spatial	variation	in	Qsub,cap,	caused	by	variation	in	926 
valley	floor	width	(bsub)	and	longitudinal	gradient	(Svalley),	is	small	relative	to	Qdv.	927 
Thus,	the	network	extent	is	relatively	insensitive	to	hydrologic	dynamics.		928 

The	network	responds	dynamically	to	storm	events	under	moderate	flow	929 
conditions	(1	<	Qgauge	<	8	L	s-1;	Fig.	8A).	Under	these	moderate	conditions,	Qdv	is	near	930 
Qsub,cap.	Thus,	precipitation	delivers	water	to	the	catchment,	increases	Qdv	and	931 
temporarily	extends	the	upper	end	of	the	flowing	network.	As	a	result,	both	the	932 
flowing	and	contiguous	lengths	are	highly	variable	in	this	range	of	discharges.	The	933 
variability	in	flowing	length	is	primarily	associated	with	the	transient	activation	of	934 
locations	draining	less	than	10	ha	(Fig.	8B).	Thus,	10	ha	UAA	is	an	apparent	935 
threshold	for	the	initiation	of	surface	flow.	The	probability	of	surface	flow	or	936 
contiguous	flow	increases	rapidly	as	UAA	increases	from	zero	to	this	10	ha	937 
threshold.	Locations	draining	more	than	10	ha	have	surface	flow	more	than	70%	of	938 
the	year.		939 

The	rapid	expansion	of	the	flowing	and	contiguous	network	in	response	to	940 
storm	events	under	moderate	flow	conditions	demonstrates	the	importance	of	941 
interacting	geologic	setting	and	hydrologic	forcing	under	these	conditions.	Under	942 
any	given	hydrologic	condition,	the	upper	extent	of	the	drainage	network	reflects	943 
locations	where	enough	drainage	area	is	accumulated	for	Qdv	to	exceed	Qsub,cap.	944 
However,	UAA	is	not	accumulated	uniformly	with	distance	along	the	stream	945 
network.	Rather,	it	shows	sharp	jumps	at	tributary	junctions,	and	especially	at	the	946 
confluence	between	the	South	Branch	and	Main	Stem.	These	tributary	junctions,	947 
then,	create	sharp	discontinuities	in	the	relation	between	discharge	and	both	948 
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flowing	and	contiguous	channel	lengths	(Fig.	8A).	Thus	the	watershed	topology	–	the	949 
arrangement	of	hillslope	contributing	areas	and	tributary	locations	–	emerges	as	a	950 
dominant	control,	defining	the	locations	and	relative	fluxes	of	water	into	the	river	951 
corridor	(as	also	found	in	mountain	stream	networks	by	Jencso	et	al.,	2009).		952 

The	changes	in	Qsub,cap	due	to	valley	morphology	grow	in	importance	as	Qdv	953 
and	Qsub,cap	become	closer	in	magnitude	(i.e.,	Qdv	≈	Qsub,cap).	This	is	readily	seen	in	the	954 
model	simulations	at	very	low	discharge	conditions	(Qgauge	<	1	L	s-1;	Fig.	8A).	During	955 
these	low	discharge	conditions	the	river	corridor	becomes	highly	sensitive	to	956 
hydrologic	forcing.	As	such,	even	the	relatively	small	diurnal	fluctuations	in	Qdv	(Fig.	957 
7)	cause	extensive	network	expansion	and	contraction.	At	locations	where	the	valley	958 
widens,	Qsub,cap	increases	and	the	stream	network	dries;	where	the	valley	narrows,	959 
Qsub,cap	decreases	and	flow	is	reinitiated.	Thus,	geologic	factors	determining	valley	960 
width	and	slope	controls	the	network	expansion	and	contraction	in	our	model.	In	961 
cases	where	heterogeneous	K	is	considered,	the	variation	of	K	across	orders	of	962 
magnitude	may	be	the	dominant	control.	Under	these	conditions,	the	storage	of	963 
water	in	the	catchment	and	its	release	as	baseflow	become	important	controls	on	964 
when	and	where	surface	flow	will	emerge.	Importantly,	there	is	likely	a	condition	of	965 
extremely	low	discharges	in	which	this	sensitivity	would	disappear	because	minor	966 
changes	in	down-valley	discharge	could	be	fully	transported	in	the	subsurface	967 
without	activating	the	surface	network	(i.e.,	when	Qdv	<<	Qsub,cap).	968 

While	the	thresholds	described	above	are	specific	to	our	study	site,	the	969 
general	transition	to	increasing	importance	of	geologic	controls	under	low	970 
discharges	adds	a	dynamic	context	to	the	perceptual	model	we	posed	in	Section	2.	971 
We	expect	that	the	perceptual	model	and	the	systematic	transitions	described	above	972 
will	be	consistent	across	mountain	stream	networks.	While	the	specific	discharge	973 
and	area	thresholds	will	vary	depending	upon,	for	example,	flow	generation	974 
processes	from	the	hillslopes,	the	general	behavior	is	consistent	with	the	975 
relationships	already	described	in	the	literature	(Godsey	and	Kirchner,	2014).	Still,	976 
this	study	contributes	a	dynamic	perspective	on	the	activation	of	the	flowing	stream	977 
network,	including	variation	in	space.	The	geologic	controls	we	use	(slope,	valley	978 
width	and	depth,	hydraulic	conductivity)	to	estimate	down-valley	capacity	are	not	979 
included	in	Costigan	et	al.’s	(2016)	framework,	which	is	framed	to	more	broadly	980 
identify	the	types	of	landscapes	in	which	intermittent	flow	may	occur.	Instead,	our	981 
work	highlights	spatial	variation	in	specific	process	controls	and	their	manifestation	982 
as	patterns	of	stream	intermittency.	983 
	 	984 
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	985 

	
Figure	8.	A)	Flowing	and	contiguous	lengths	as	a	function	of	discharge	at	the	WS01	
gauge,	showing	a	threshold	in	contiguous	length	at	about	8	L	s-1.	B)	The	probability	
of	surface	flow	(black)	and	contiguous	surface	flow	to	the	gauge	(grey)	as	a	function	
of	UAA,	with	a	visible	threshold	near	about	10	ha.	For	both	panels,	lines	show	best-
fit	power	law	regressions	to	aid	in	interpretation	of	model	results.	
	986 
5.2	A	Critical	Comparison	of	Transferability	and	Limitations	of	River	Corridor	987 
Modeling	Approaches	988 

To	date,	assessment	and	prediction	of	hydrologic	connectivity	in	the	river	989 
corridor	can	be	grouped	into	three	main	approaches	(Table	2):	empirical	upscaling,	990 
distributed	modeling,	and	reduced-complexity	modeling.	First,	empirical	studies	use	991 
on-the-ground	observation	or	instrumentation	to	directly	measure	hydrologic	992 
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connectivity	at	scales	ranging	from	reaches	(Covino	et	al.,	2011;	Mallard	et	al.,	2014;	993 
Zimmer	and	McGlynn,	2017)	to	entire	networks	(Godsey	and	Kirchner,	2014;	Jensen	994 
et	al.,	2017).	Measurements	are	regressed	against	hydrologic	or	geologic	parameters	995 
(e.g.,	stream	discharge,	upslope	accumulated	area)	and	used	to	estimate	processes	996 
along	the	entire	river	corridor.	Relatively	few	empirical	studies	have	been	published	997 
because	they	are	field	intensive,	requiring	substantial	commitments	of	people’s	time	998 
to	conduct	field	campaigns.		Additionally,	empirical	relationships	are	not	readily	999 
transferable	to	other	locations	with	different	geologic	settings,	catchment	1000 
topologies,	and	hydrologic	forcing.	Still,	these	empirical	studies	directly	observe	the	1001 
processes	of	interest.	Recent	work	by	Arismendi	et	al.	(2017)	demonstrates	the	1002 
potential	for	advanced	statistical	techniques	(e.g.,	Hidden	Markov	Models)	as	1003 
another	strategy	for	upscaling	empirical	findings.	Other	researchers	have	used	a	1004 
similar	upscaling	approach	but	replaced	direct	empirical	observations	with	1005 
simulation	results	from	mechanistic	models.	In	these	efforts,	data	from	numerical	1006 
studies	are	regressed	against	geologic	or	hydrologic	characteristics,	with	1007 
regressions	used	to	describe	hydrologic	processes	as	a	function	of	readily	1008 
observable	properties	of	the	landscape	(e.g.,	Kiel	and	Cardenas,	2014).	The	major	1009 
strength	of	these	approaches	is	their	rapid	scaling	to	the	stream	network	and	ability	1010 
to	consider	a	variety	of	independent	variables	which	thereby	enables	upscaling	of	1011 
small-scale	processes	to	entire	stream	networks	(Gomez-Velez	et	al.,	2015;	Gomez-1012 
Velez	and	Harvey,	2014;	Kiel	and	Cardenas,	2014).	These	efforts	assume	that	the	1013 
processes	of	interest	can	be	reasonably	predicted	from	some	measure	of	landscape	1014 
form,	but	do	not	account	for	feedbacks	that	may	occur	among	smaller-scale	1015 
processes	nor	limitations	due	to	the	larger-scale	context	of	the	process	(Stonedahl	et	1016 
al.,	2013,	2010;	Schmadel	et	al.,	2017).	To	date,	these	studies	lack	any	dynamic	1017 
processes.	1018 

Fully	distributed	“top-down”	hydrologic	models	can	represent	dynamic,	1019 
spatially	explicit	exchanges	in	the	river	corridor	(Frei	et	al.,	2009;	Wondzell	et	al.,	1020 
2009a;	Yu	et	al.,	2016).	Models	in	this	class	can	represent	processes	across	a	suite	of	1021 
interacting	spatial	and	temporal	scales.	However,	these	models	are	limited	by	the	1022 
number	of	parameters	required	to	inform	the	processes	being	simulated.	As	a	result,	1023 
non-unique	parameters	prevent	the	identification	of	a	single	best	solution	(e.g.,	1024 
Beven,	1993,	2006;	Beven	and	Binley,	1992).	Such	models	suffer	from	over-1025 
parameterization	and	a	lack	of	the	necessary	data	to	parameterize	the	natural	world	1026 
at	all	relevant	scales	for	all	of	the	processes	that	are	represented.		1027 

The	reduced-complexity	model	derived	and	applied	in	this	study	is	1028 
concerned	with	mechanistic	representation	of	the	hydrologic	processes	perceived	to	1029 
be	dominant	in	the	river	corridor.	As	such,	the	model	only	includes	the	most	1030 
dominant	processes	identified	in	the	perceptual	model.	Obviously,	many	processes	1031 
cannot	be	included	–	ones	that	are	not	considered	dominant	at	our	scale	of	interest	1032 
or	for	the	purposes	for	which	the	model	was	conceived	and	constructed.	One	clear	1033 
example	in	this	study	is	the	parameterization	of	channel-unit	scale	exchange.	In	our	1034 
model	we	simplify	exchange	at	scales	smaller	than	the	5-m	valley	discretization	into	1035 
the	sum	of	the	net	up-	or	downwelling	exchange	flux	and	the	Qsubgrid	terms.	Although	1036 
channel-unit	scale	exchange	has	been	extensively	studied	(see	review	by	Boano	et	1037 
al.,	2014),	it	is	not	a	dominant	mechanism	for	prediction	of	network	expansion	and	1038 



32	
	

contraction	at	the	scales	considered	here.	Still,	future	improvements	could	add	sub-1039 
discretization	exchange	parameterized	by	metrics	derived	from	topography	(e.g.,	1040 
streambed	concavity;	Anderson	et	al.,	2005)	or	based	on	empirical	relationships	1041 
derived	for	bedforms	and	individual	features	(e.g.,	Gomez-Velez	et	al.,	2015).	These	1042 
processes	would	need	to	be	included	if	the	model	were	applied	to	predict	reactive	1043 
transport,	particularly	where	exchanges	with	short	timescales	are	the	most	1044 
important	for	reactive	processes.	Likewise,	improved	representation	of	1045 
heterogeneity	in	the	valley	colluvium	thickness	(T)	and	hydraulic	conductivity	(K)	1046 
would	likely	improve	the	ability	of	the	model	to	reflect	site-specific	patterns	in	1047 
intermittency	(Fleckenstein	et	al.,	2007).	1048 

The	model	also	greatly	simplifies	hillslope-valley	floor-stream	connectivity.	1049 
We	assumed	that	lateral	inflows	would	proportional	to	UAA,	and	implicitly	assume	1050 
that	these	inflows	will	be	instantaneously	synchronized	with	Qgauge.	Several	existing	1051 
studies	consider	spatial	and	temporal	variability	in	hillslope	discharge	to	valley	1052 
bottoms	(e.g.,	Jencso	et	al.,	2009;	Smith	et	al.,	2013)	and	could	potentially	be	1053 
integrated	to	improve	the	representation	of	those	inputs.	We	elected	not	to	1054 
parameterize	these	processes,	nor	the	many	others	that	are	omitted	or	simplified,	1055 
because	they	would	increase	data	needs	and	are	not	considered	dominant	processes	1056 
in	our	perceptual	model	of	network	expansion	and	contraction.	Of	course,	processes	1057 
not	included	in	the	perceptual	model	may	be	incorrectly	omitted.	In	this	case,	1058 
iterative	advances	of	hypotheses,	field	observations,	and	mechanistic	models	are	1059 
important	to	correct	these	deficiencies.	1060 
	1061 
	 	1062 
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Table	2:	Summary	of	three	approaches	to	simulate	river	corridor	exchange	at	1063 
the	scale	of	networks		1064 
Approach	 Empirical	Upscaling	 Reduced-

complexity	
modeling	

Distributed	Modeling	

Hydrologic	
Philosophy	

Observational,	empiricism	 Bottom-up,	
Dominant	process	

Top-down	

Complexity	
and	data	
needs	

Low	 Moderate	 Extensive	

Description	 (1)	conduct	field	or	
numerical	experiments;	
(2)	regress	metrics	
describing	process	(e.g.,	
fluxes)	against	
measureable	explanatory	
variable(s);	(3)	assign	the	
resultant	property	of	
interest	to	river	corridor;	
(4)	aggregate	along	river	
corridor.		

Representation	of	
the	most	
important	
processes	at	scales	
relevant	to	the	
hydrologic	
question	of	
interest.		

Fully-coupled	
representation	of	
process	dynamics	
spanning	multiple	
spatial	and	temporal	
scales.	Mechanistic	
predictions	of	
hydrologic	dynamics	
in	the	river	corridor	as	
a	function	of	the	full	
suite	of	geologic	
setting	and	hydrologic	
forcing.	

Geologic	
Setting	

Independent	variable(s)	
for	regression	

Parameterization	
of	physical	
properties	

Parameterization	of	
physical	properties		

Hydrologic	
Forcing	

Q	may	be	used	as	an	
explanatory	variable	

Time-variable	
lateral	inflows	are	
a	function	of	Qgauge	

Explicitly	represented,	
based	on	observed	
meteorology	

Physically-
based	

No	 Yes	 Yes	

Strengths	 Based	on	site-specific	
observations	

Dynamic	
hydrology	

Representation	of	
interacting,	multi-scale	
hydrologic	processes;	
dynamic	hydrology	

Limitations	 Steady-state	hydrology	 Omits	processes	
perceived	to	be	
unimportant,	
which	may	reflect	
incorrect	
assumptions	

Extensive	
parameterization	

Examples	
in	the	river	
corridor	

Covino	et	al.,	2011;	
Gomez-Velez	et	al.,	2015;	
Gomez-Velez	and	Harvey,	
2014;	Kiel	and	Cardenas,	

Bencala	and	
Walters,	1983;	
This	study	
	

Frei	et	al.,	2009;	
Wondzell	et	al.,	2009a;	
Yu	et	al.,	2016	
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2014;	Mallard	et	al.,	2014;	
Stewart	et	al.,	2011;	
Zimmer	and	McGlynn,	
2017;	Jensen	et	al.,	2017;	
Arismedni	et	al.,	2017	

	1065 
5.3	Potential	Applications	for	Assessment	of	Connectivity	in	the	River	Corridor	1066 
“Although the fine scales of field and laboratory studies are best suited to identifying the 1067 
fundamental physical and biological processes, that understanding must be successfully 1068 
linked to cumulative effects at watershed to regional and continental scales.” Harvey and 1069 
Gooseff (2015)	1070 
	1071 
	 Improved	understanding	of	dynamic	hydrologic	connectivity	along	the	river	1072 
corridor	is	increasingly	of	interest	to	water	resource	researchers	and	managers	in	1073 
the	U.S	(e.g.,	Department	of	Defense,	Environmental	Protection	Agency,	2014).	In	the	1074 
wake	of	the	Rapanos	v.	U.S.	(2006)	decision,	new	tools	are	needed	to	quantify	1075 
connectivity	along	river	networks	and	thus	provide	both	a	scientific	and	legal	basis	1076 
for	river	corridor	management.	For	example,	Caruso	(2015)	proposes	the	1077 
development	of	connectivity	indices	based	on	statistical	descriptors	of	discharge,	1078 
topology,	and	topography,	but	lacks	any	mechanistic	predictive	power	and	requires	1079 
extensive	data	collection	at	each	point	to	be	evaluated.	In	contrast,	this	study	1080 
represents	an	advance	in	the	application	of	hydrologic	science	to	inform	river	1081 
corridor	management.	The	relatively	low	data	needs	enable	this	framework	to	be	1082 
transferable	and	readily	implemented	to	assess	connectivity	along	the	river	1083 
corridor.		As	with	any	model,	an	initial	implementation	based	on	uncalibrated	1084 
parameter	estimates	would	provide	only	a	preliminary	assessment	of	connectivity.	1085 
Site-specific	parameterization,	calibration,	and	validation	would	be	required	to	use	1086 
this	model	as	the	sole	basis	for	management	efforts.		1087 

In	the	Pacific	Northwestern	United	States,	the	management	of	the	river	1088 
corridor	increasingly	depends	upon	understanding	channel	network	expansion	and	1089 
contraction.	One	critical	location	in	the	river	corridor	is	the	“perennial	initiation	1090 
point”	or	“perennial	flow	initiation	point”,	defined	as	the	farthest	upslope	location	1091 
with	flow	during	summer	low-flow	conditions	(Jaeger	et	al,	2007).	Current	practices	1092 
attempt	to	construct	empirical	models	to	predict	the	locations	of	the	perennial	1093 
initiation	points	as	a	function	of	drainage	area,	lithology,	land	use,	and	other	readily	1094 
identifiable	independent	variables	(e.g.,	Jaeger	et	al.,	2007;	Clark	et	al.,	2008;	Wood	1095 
et	al.,	2009).	Comparisons	among	empirical	predictions,	reduced-complexity	model	1096 
predictions,	and	distributed	model	predictions	of	intermittency	will	help	develop	an	1097 
improved	basis	for	management	in	unobserved	locations.		1098 

We	envision	two	immediate	applications	of	the	reduced	complexity	model	1099 
presented	here.	First,	the	model	could	be	used	to	design	field	studies.	Initial	model	1100 
analyses	could	use	feasible	ranges	of	parameters	(e.g.,	hydraulic	conductivity,	1101 
sediment	thickness)	to	determine	key	locations	that	appear	to	control	the	potential	1102 
expansion,	contraction,	and	changes	in	connectivity	along	the	river	corridor.	1103 
Similarly,	sensitivity	analyses	could	be	used	to	identify	the	parameters	with	the	1104 
greatest	influence	on	model	projections.	These	results	could	then	be	used	to	plan	1105 
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field	campaigns	that	would	improve	estimates	of	key	parameters	or	identify	the	1106 
places	and	times	when	observations	of	intermittency	or	network	extent	may	be	1107 
most	important.	This	approach	could	help	make	the	most	efficient	use	of	limited	1108 
resources	that	might	be	available	for	field	work.	Second,	the	model	could	be	used	as	1109 
the	basis	of	heuristic	studies	scaling	up	processes	from	reaches	to	entire	networks.	1110 
Indeed,	the	strategy	of	scaling	reduced-complexity	models	to	large	networks—even	1111 
in	cases	when	acceptable	validation	data	are	not	readily	available—is	emerging	as	1112 
an	important	area	of	research	in	the	river	corridor	(e.g.,	Gomez-Velez	et	al.,	2015).	1113 
Current	models	do	not	include	parametrization	for	mountain	streams;	this	1114 
framework	could	form	the	basis	of	an	upscaling	strategy	for	high-gradient	river	1115 
networks.		1116 

	1117 
6.	Conclusions	1118 

The	overall	objective	of	this	study	was	to	predict	dynamic	hydrologic	1119 
connectivity	along	the	river	corridor.	To	achieve	this	objective,	we	selected	a	well-1120 
studied	headwater	catchment	to	develop	a	perceptual	model	of	river	corridor	1121 
exchange.	Building	on	this	perceptual	model	we	next	developed	a	reduced-1122 
complexity,	mechanistic	model	to	predict	the	dynamic	hydrologic	connectivity	along	1123 
the	river	corridor.	The	model	developed	may	be	of	broad	interest	for	hydrologists	1124 
and	water	resource	managers	working	in	mountain	river	networks.	While	this	study	1125 
was	designed	to	calibrate	the	reduced-complexity	model	by	leveraging	detailed,	1126 
site-specific	observations,	we	emphasize	that	the	model	was	developed	with	1127 
potential	transferability	in	mind.	The	reduced-complexity	model	has	modest	data	1128 
requirements	(stream	discharge,	catchment	topography,	reasonable	estimates	of	1129 
hydrogeologic	parameters)	to	generate	an	initial	prediction	at	the	river	network	1130 
scale.	Calibration	using	site-specific	observations	of	discharge,	intermittency,	1131 
and/or	solute	tracer	studies	can	be	implemented	to	refine	predictions	at	sites	of	1132 
interest,	as	we	demonstrate	here.	The	framework	is	mechanistic,	based	on	a	state-1133 
of-the-science	understanding	of	the	river	corridor	in	a	mechanistic	way,	and	is	1134 
capable	of	simulating	both	hydrodynamics	and	solute	transport.	Additionally,	the	1135 
model	is	dynamic,	enabling	the	simulation	of	network	expansion	and	contraction.	1136 
We	expect	the	perceptual	model	detailed	in	this	study	is	transferable	to	other	1137 
mountain	stream	networks,	where	streams	reflect	down-valley	discharge	in	excess	1138 
of	the	down-valley	capacity.	Importantly,	the	reach-scale	success	of	this	approach	1139 
also	highlights	the	role	that	heterogeneity	along	a	valley	controls	along-network	1140 
connectivity.	Variation	in	bedrock	topography,	hydraulic	conductivity,	and	1141 
individual	morphologic	features	result	in	a	more	complex	pattern	of	connectivity	1142 
that	was	captured	by	this	model	(Figs.	S1,	S2,	S3).	This	result	highlights	the	need	for	1143 
future	study	of	these	processes	as	controls	on	intermittency	of	stream	flows.	1144 

In	this	study,	we	asked	how	geologic	setting	interacts	with	hydrologic	forcing	1145 
to	produce	spatial	and	temporal	patterns	of	connectivity	along	the	river	corridor?	1146 
We	expected	geologic	controls	to	dominate	periods	of	steady	flow	and	hydrologic	1147 
controls	to	be	important	only	during	highly	dynamic	periods	(e.g.,	storm	event	1148 
responses).	Instead,	we	found	that	geologic	setting	controls	network	dynamics	1149 
during	relatively	low	discharge	conditions,	and	that	the	spatial	patterns	of	lateral	1150 
inflows	arising	from	storage	and	release	of	water	from	hillslopes	are	dominant	1151 
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during	relatively	wet	periods.	In	contrast,	connectivity	in	the	river	corridor	is	highly	1152 
sensitive	to	hydrologic	dynamics	under	the	lowest	flow	conditions.	1153 
	 	1154 
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