

1   **Simulation of dynamic expansion, contraction, and connectivity in a mountain  
2   stream network**

3  
4   *Submitted for Publication in Advances in Water Resources*

5  
6   Adam S. Ward<sup>1</sup>

7   Noah M. Schmadel<sup>1,2</sup>

8   Steven M. Wondzell<sup>3</sup>

9  
10   1. School of Public and Environmental Affairs, Indiana University, Bloomington,  
11   IN 47405, USA.  
12   2. Now at U.S. Geological Survey, Reston, Virginia, USA  
13   3. Pacific Northwest Research Station, Forest Service, United States Department  
14   of Agriculture.

15  
16   Corresponding Author:

17       Adam S. Ward  
18       School of Public and Environmental Affairs  
19       Indiana University  
20       430 MSB-II  
21       Bloomington, IN 47405

22  
23       Email:       adamward@indiana.edu  
24       Phone:       812-865-4820

25  
26   **Highlights:**

27  
28       • Implementation of a mechanistic, dynamic model of network expansion and  
29       contraction  
30       • Importance of geologic setting and hydrologic forcing change through a  
31       water year  
32       • Network expansion is insensitive to hydrologic forcing under wet conditions  
33       • Geologic setting matters most under low and moderate discharge conditions  
34       • Prediction of channel network dynamics may inform management of river  
35       corridors

36   **Key Words:**

37       • river corridor  
38       • hyporheic  
39       • solute tracer  
40       • riparian  
41       • network  
42       • stream

46 **Abstract:**  
47 Headwater stream networks expand and contract in response to changes in stream  
48 discharge. The changes in the extent of the stream network are also controlled by  
49 geologic or geomorphic setting – some reaches go dry even under relatively wet  
50 conditions, other reaches remain flowing under relatively dry conditions. While  
51 such patterns are well recognized, we currently lack tools to predict the extent of  
52 the stream network and the times and locations where the network is dry within  
53 large river networks. Here, we develop a perceptual model of the river corridor in a  
54 headwater mountainous catchment, translate this into a reduced-complexity  
55 mechanistic model, and implement the model to examine connectivity and network  
56 extent over an entire water year. Our model agreed reasonably well with our  
57 observations, showing that the extent and connectivity of the river network was  
58 most sensitive to hydrologic forcing under the lowest discharges ( $Q_{gauge} < 1 \text{ L s}^{-1}$ ),  
59 that at intermediate discharges ( $1 \text{ L s}^{-1} < Q_{gauge} < 10 \text{ L s}^{-1}$ ) the extent of the network  
60 changed dramatically with changes in discharge, and that under wet conditions  
61 ( $Q_{gauge} > 10 \text{ L s}^{-1}$ ) the extent of the network was relatively insensitive to hydrologic  
62 forcing and was instead determined by the network topology. We do not expect that  
63 the specific thresholds observed in this study would be transferable to other  
64 catchments with different geology, topology, or hydrologic forcing. However, we  
65 expect that the general pattern should be robust: the dominant controls will shift  
66 from hydrologic forcing to geologic setting as discharge increases.. Further, our  
67 method is readily transferable as the model can be applied with minimal data  
68 requirements (a single stream gauge, a digital terrain model, and estimates of  
69 hydrogeologic properties) to estimate flow duration or connectivity along the river  
70 corridor in unstudied catchments. As the available information increases, the model  
71 could be better calibrated to match site-specific observations of network extent,  
72 locations of dry reaches, or solute break through curves as demonstrated in this  
73 study. Based on the low initial data requirements and ability to later tune the model  
74 to a specific site, we suggest example applications of this parsimonious model that  
75 may prove useful to both researchers and managers.

76

77

## 78 **1. Introduction**

79 The emerging river corridor perspective considers the surface stream, hyporheic  
80 zone, riparian zone, hillslope, and aquifer as a continuum, exchanging water, solutes,  
81 energy, and materials across a range of spatial and temporal scales (e.g., Harvey and  
82 Gooseff, 2015). Empirical studies have addressed dynamic connectivity along the  
83 river corridor at the network scale (e.g., Godsey and Kirchner, 2014, Gregory and  
84 Walling, 1968; Costigan et al., 2016), while others have documented the changes in  
85 ecosystem services and functions that result from connectivity in the riparian  
86 corridor (Boulton et al., 1998; Brunke and Gonser, 1997; Krause et al., 2011; Merill  
87 and Tonjes, 2014; US EPA, 2015). However, despite empirical advances, we lack an  
88 accurate framework to predict the temporal dynamics of hydrologic connectivity  
89 along the river corridor. Thus, an overarching objective of this study is to predict  
90 spatial and temporal patterns of hydrologic connectivity along the river corridor at  
91 the network scale. To achieve this objective, we synthesize our understanding of

92 how hydrologic forcing and geologic setting interact to control dynamic exchange  
93 processes in the river corridor, convert that understanding into a numerical model  
94 simulating the dominant processes in the river corridor, and implement the model  
95 at the network scale using readily available data. As a result, we derive and calibrate  
96 a mechanistic representation of dynamic hydrologic connectivity along the river  
97 corridor.

98 Hydrologic connectivity between the river corridor and its catchment, along  
99 the length of the river corridor, results from the geologic setting interacting with  
100 hydrologic forcing (Ward et al., 2016, 2014, 2012). The geologic setting is static at  
101 the time scales of interest here and includes the geologic constraint of the valley  
102 (e.g., D'Angelo et al., 1993; Stanford and Ward, 1993; Ward et al., 2016, 2012;  
103 Wondzell, 2006; Wright et al., 2005), channel and streambed morphology (Kasahara  
104 and Wondzell, 2003; see also review by Boano et al., 2014), and multi-scale  
105 heterogeneity in hydraulic conductivity of the valley floor sediment (e.g., Packman  
106 and Salehin, 2003; Ryan et al., 2004; Salehin et al., 2004; Sawyer and Cardenas,  
107 2009; Vaux, 1968; Ward et al., 2011). Hydrologic forcing includes the lateral inflows  
108 to the valley bottom from either hillslope sources or from deeper groundwater and  
109 stream discharge – all of which vary with time and can thus lead to highly dynamic  
110 changes in connectivity. In mountain streams, the steep valley walls constrain the  
111 river corridor such that the entire valley bottom (stream, hyporheic zone, riparian  
112 zone) often can be collectively considered the river corridor.

113 Interactions between hydrologic forcing and geologic setting give rise to  
114 river corridor exchange across a wide range of spatial and temporal scales, driven  
115 by mechanisms including (after Kaser et al., 2009) turnover exchange (e.g., Elliott  
116 and Brooks, 1997a, 1997b; Packman et al., 2001), diffusion of turbulent momentum  
117 into the streambed (e.g., Malzone et al., 2016; Packman and Bencala, 2000),  
118 hydrostatically-driven exchange (e.g., Gooseff et al., 2006; Harvey and Bencala,  
119 1993; Kasahara and Wondzell, 2003), and hydrodynamic pumping into the  
120 streambed and banks (e.g., Elliott and Brooks, 1997a, 1997b; Wörman et al., 2002).

121 Most studies examining exchange processes either assess one or just a small  
122 number of potential controls and most commonly within a short reach during  
123 baseflow conditions. Rarely are multiple controls studied over larger spatial and  
124 temporal scales. Consequently, the influence of individual factors are well  
125 understood at small spatial scales, but substantial challenges remain in aggregating  
126 the effects of multiple factors within a very long reach or an entire networks – the  
127 critical scales at which resources are managed and predictions are desired (Ward,  
128 2015; Harvey and Gooseff, 2015).

129 The most widely applied strategy to translate process understanding in the  
130 river corridor to the reach or network scale uses reduced-complexity modeling.  
131 Bencala and Walters (1983) first developed their transient storage model, which  
132 was fit to solute breakthrough curves, to estimate advection, dispersion, and  
133 transient storage at the reach scale. This reduced-complexity modeling strategy  
134 eschewed the extensive parameterization required for distributed hydrologic  
135 models, but provided a mechanistic interpretation of processes that was absent  
136 from fully empirical models. While the transient storage model has been applied as a  
137 basis for understanding both short reaches and whole networks (Fernald et al.,

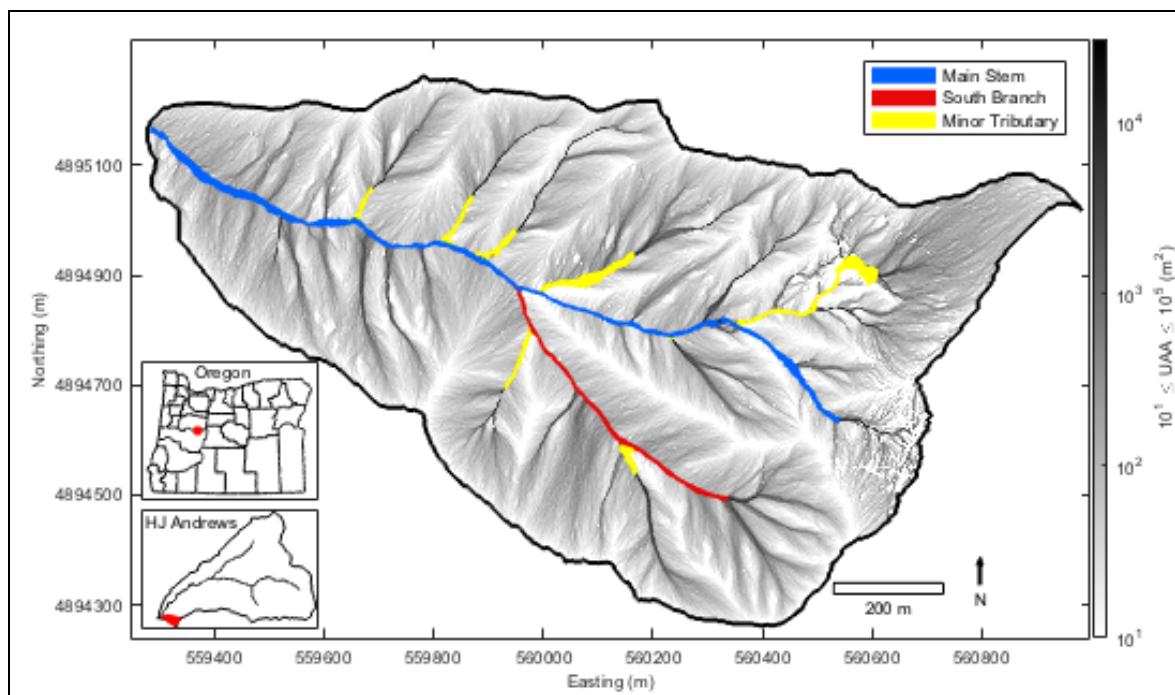
138 2001; Schmadel et al., 2014; Stewart et al., 2011), the model formulation is not able  
139 to simulate the dominant processes of mountain systems, where down-valley  
140 subsurface flow is important (Castro and Hornberger, 1991; Kennedy et al., 1984;  
141 Ward et al., 2016). Additionally, the transient storage model was never intended to  
142 represent dynamic network expansion and contraction, nor to accommodate  
143 spatially intermittent flows.

144 A second approach to upscaling river corridor exchange uses empirical  
145 relationships between catchment topology and river corridor processes based on  
146 field experiments (Covino et al., 2011; Mallard et al., 2014) or model experiments  
147 (Gomez-Velez et al., 2015; Gomez-Velez and Harvey, 2014; Kiel and Cardenas,  
148 2014). These empirical approaches are readily implemented based on observable  
149 metrics (e.g., drainage area, stream discharge, sinuosity, streambed grain size).  
150 However, empirical approaches are site-specific in nature, with limited  
151 transferability across geologic settings and even to differing flow conditions. Studies  
152 based on model experiments assume the model processes simulated at one scale are  
153 the dominant processes across the continuum of nested scales of exchange in the  
154 river corridor.

155 Thirdly, distributed (or “top-down”) hydrologic models build upon  
156 generalized knowledge, representing river corridor processes spanning spatial and  
157 temporal scales (Frei et al., 2009; Yu et al., 2016). A key strength of distributed  
158 models is their ability to represent heterogeneity, which may be important to  
159 determining intermittent connections between streams and their aquifers  
160 (Fleckenstein et al., 2007). However, distributed models require extensive  
161 parameterization and calibration, limiting their ability to be rapidly applied on the  
162 landscape.

163 While each of the existing approaches have been successful in advancing our  
164 understanding of specific mechanisms at a given spatial or temporal scale, these  
165 approaches all have limited ability to represent river corridor exchange in a way  
166 that is mechanistic, fully dynamic, and representative of the dominant processes  
167 within the network. Therefore, we suggest that a new predictive framework is  
168 needed – one that provides a mechanistic understanding of hydrologic connectivity  
169 along the river corridor, reflects the hydrologic dynamics that lead to time-variable  
170 connectivity, and would be readily transferable and scalable with modest data  
171 requirements. We propose a dominant process approach similar to Grayson and  
172 Blöschl (2000). This approach recognizes that reduced-complexity models will  
173 necessarily omit some processes in favor of representing those which are  
174 considered most important in a catchment (Smith et al., 2013). As such, we limit the  
175 over-parameterization of distributed models and avoid their problems with non-  
176 unique solutions (e.g., Beven, 2006, Bredehoeft and Konikow, 1993; Cardenas and  
177 Zlotnik, 2003; Oreskes et al., 1994; Poeter, 2007; Wondzell et al., 2009a). Here, we  
178 closely follow the approach of Smith et al. (2013) in identifying dominant processes  
179 based on our experience in the field, developing a perceptual model to explain our  
180 observations, and then implementing this perceptual model as a reduced-  
181 complexity model that simulates hydrologic processes at the scale of the river  
182 network.

183 Our primary objective is to predict spatial patterns and temporal dynamics of  
 184 hydrologic connectivity along the river corridor at reach-to-network scales (i.e.,  
 185 100s of meters and longer). A secondary objective is to develop an approach that is  
 186 transferable, scalable, easily applied based on limited data requirements, and is  
 187 flexible enough that increased data collection could be used to improve and refine  
 188 the model at sites of interest. While Costigan et al. (2016) proposed a model of  
 189 general meteorologic, geologic, and land cover trends that would be related to  
 190 frequency of intermittency, their conceptual model does not address the dynamic  
 191 transitions that occur between flow states, instead focusing on long-term trends.  
 192 Specifically, we seek to answer the question: How do geologic setting and hydrologic  
 193 forcing combine to result in dynamic connectivity along the river corridor? We  
 194 hypothesize that geologic setting will be dominant during all baseflow conditions  
 195 regardless of the actual discharge magnitude (i.e., during steady high, moderate, and  
 196 low discharge conditions void of precipitation). Conversely, we hypothesize that  
 197 network expansion and contraction will be dominated by hydrological inputs to the  
 198 system during highly dynamic periods—such as storm event responses—that will  
 199 cause rapid expansion and contraction of the network independently of the  
 200 structure of the valley bottom. To test these hypotheses, we develop a reduced-  
 201 complexity model in the spirit of the dominant-process approach. The model is  
 202 calibrated at scales of 100s of meters to a well-documented solute tracer study and  
 203 observed dry streambed locations, and validated based on stream stage  
 204 observations at the field site. Using these results, we assess the dynamic interactions  
 205 of hydrologic forcing and geologic setting, noting the places and times where each  
 206 control is dominant.  
 207



**Figure 1.** Watershed 1 (WS01) at the H.J. Andrews Experimental Forest in the western Cascades, Oregon, U.S.A. Upslope accumulated area (UAA) derived from a 1-

208 m LiDAR digital terrain model is shaded in greyscale. Valley segments draining more  
209 than 3 ha, defining the river corridor simulated in our model, are shown in color.

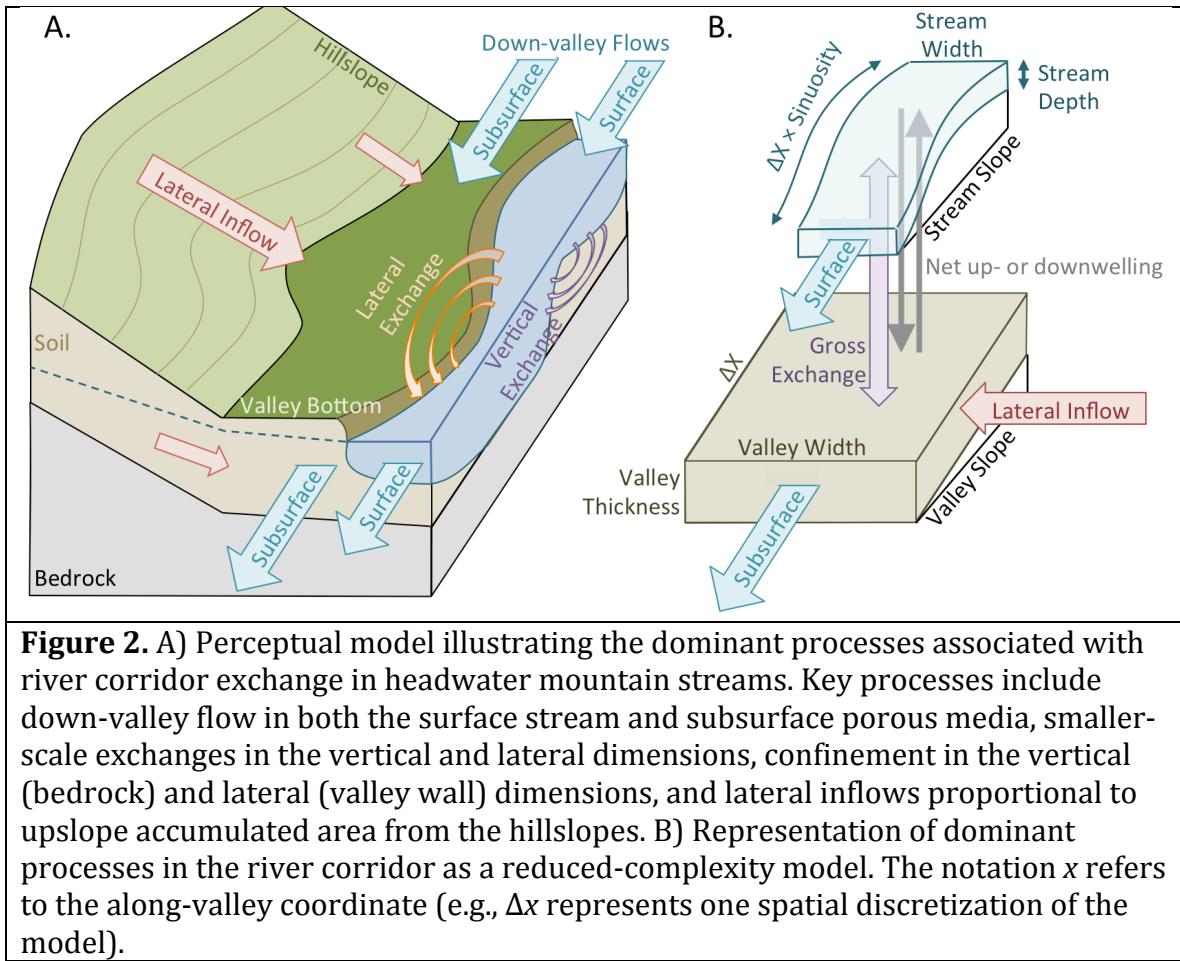
210 **2. Background & Model Development**

211 **2.1 Site Description**

212 The perceptual model presented here is based on extensive study of headwater  
213 mountain catchments in the western Cascades, Oregon, U.S.A., specifically the H.J.  
214 Andrews Experimental Forest. This site was selected based on the body of research  
215 documenting process dynamics in the river corridor of a mountain stream.

216 Furthermore, this site fits the geological factors that Costigan et al. (2016) associate  
217 with increased intermittency including relatively large grain sizes, steep riffle  
218 morphology, impermeable lithology, and small drainage areas in a highly dissected  
219 catchment. This steep, geologically confined mountain stream network is also  
220 complimentary to recent efforts to model connectivity in low-gradient alluvial  
221 systems (Gomez-Velez et al., 2015; Gomez-Velez and Harvey, 2014; Kiel and  
222 Cardenas, 2014). Due to the high confinement of the valley bottom, the river  
223 corridor in this system is functionally equivalent to the valley bottom, which  
224 includes the stream, hyporheic zone, and riparian zone.

225 Within the H.J. Andrews Experimental Forest we selected the highly-studied  
226 Watershed 1 (WS01) as a study location because the dynamics of river corridor  
227 exchange have been studied in greater detail than other sites (Fig. 1). Briefly, this  
228 headwater catchment drains about 96 ha at the outlet stream gauge. Basin  
229 elevations range from 432 to 1010 m a.m.s.l. The catchment is highly dissected, with  
230 steep valley walls and hillslopes forming v-shaped valleys that are rapidly  
231 downcutting through Oligocene and lower Miocene aged volcanic bedrock. The  
232 longitudinal slope of the valley floor averages 11.9% (Voltz et al., 2013). In places  
233 the stream flows on exposed bedrock, but along most of its length, the valley bottom  
234 is covered in poorly-sorted colluvium, much of which was emplaced as landslide and  
235 debris-flow deposits. The depth of the colluvium ranges from 0 to at least 1.74 m,  
236 the deepest penetration achieved during installation of riparian monitoring wells  
237 (Wondzell, 2006). Precipitation data were collected at the nearby H.J. Andrews  
238 Primary Meteorological Station (about 0.5 km N of the gauge; elevation 430 m  
239 a.m.s.l.). Further physical description of the H.J. Andrews Experimental Forest and  
240 WS01 are available in a host of related publications (Dyrness, 1969; Swanson and  
241 James, 1975; Swanson and Jones, 2002; Voltz et al., 2013; Ward et al., 2016;  
242 Wondzell, 2006; Wondzell et al., 2009b).



243

244

## 2.2 Perceptual Model of the River Corridor in Mountain Streams

245

246

We developed a perceptual model that explains dynamic expansion and contraction of the active channel network. A perceptual model is a qualitative representation of the dominant hydrologic processes operating at a given field site, integrating the processes that are known to be important based on field observations, numerical simulations, and a field-based understanding of the system (McGlynn et al., 2002, 1999; Sivapalan, 2003; Wagener et al., 2007). Thus, the model presented below is qualitative in nature, but synthesizes the observations of the site in a cohesive framework. This model is akin to a hypothesis explaining the interactions between geologic and hydrologic controls in the river corridor and is based on our current understanding developed over several decades of field studies at the site (Burt and McDonnell, 2015; Fig. 2A).

256

257

258

259

260

261

262

The perceptual model posits that the river corridor can be described as two parallel, interacting domains that transport water and solutes in the down-valley direction—via surface flows through the stream channel and via subsurface flows through the valley bottom (Ward et al., 2016). This builds directly from Bencala et al.'s (2011) notion that streams are dynamic expressions of the local groundwater system, and is well-aligned with the perceptual models of Godsey and Kirchner (2014) and Whiting and Godsey (2016). Subsurface transport in the down-valley

direction is known to be an important mechanism in higher-gradient stream networks (Castro and Hornberger, 1991; Jackman et al., 1984; Kennedy et al., 1984). Several studies have found relatively constant transport in the subsurface, attributing this primarily to an unchanging geologic setting (e.g., hydraulic conductivity field, major roughness elements, bedrock constraints, and valley width) and a down-valley hydraulic gradient set by topography (Voltz et al., 2013; Ward et al., 2016, 2014, 2012; Wondzell, 2006; Wondzell and Swanson, 1996). The primary mechanism of river corridor exchange in mountain streams is expected to be driven by hydrostatic pressure gradients (Wondzell and Gooseff, 2014; Schmadel et al., 2017). The down-valley subsurface discharge is functionally controlled by down-valley capacity, or the ability of the subsurface to transmit water through saturated porous media. In parallel, the surface stream flow represents only the excess of down-valley discharge that cannot be accommodated by the down-valley capacity. Thus, in-stream discharge and transport can be highly dynamic in response to the stream while transport in the saturated subsurface remains relatively constant. While subsurface down-valley discharge is relatively constant in time, it is spatially variable due to changes in the down-valley capacity of the subsurface, caused by changes in valley width, colluvium depth, slope, or heterogeneity in hydraulic conductivity.

The concept of spatially contiguous down-valley discharge is supported by the observed “long-term storage” of Ward et al. (2013a) in WS01. Their study found significant mass losses from stream solute tracer studies, concluding that the mass entered flowpaths that traveled down-valley but remained in the subsurface. Additionally, these flowpaths could not have been losses to a deeper groundwater aquifer because the river corridor is ultimately confined by intact bedrock.

Inputs of hillslope water to the valley bottom can affect the extent of long-term storage and these inputs vary in both space and time. Spatially, inputs from the hillslopes to the river corridor are assumed to vary in proportion with the contributing upslope accumulated area (UAA) after Jencso et al. (2009) and Corson-Rikert et al. (2016). Past studies in nearby catchments concluded that topography controls the transport of water from hillslopes to valley bottoms (e.g., McGuire et al., 2005). Discharge in the valley varies in time and impacts river corridor exchange during storm events (Ward et al., 2013a), seasonal baseflow recession (Ward et al., 2016, 2014, 2012), and diurnal fluctuations driven by evapotranspiration from riparian zones and perhaps the lower hillslopes (Schmadel et al., 2016; 2017; Voltz et al., 2013; Wondzell et al., 2010, 2007).

The upper reaches of the Main Stem and South Branch have surface flow during the winter and spring, but portions of them are frequently dry during the summer months (Fig. 1). We generally have not observed surface flow from convergent areas lateral to the main stem or south branch (i.e., those areas identified as “minor tributaries” in Fig. 1; Amatya et al., 2016). The colluvium accumulated within these areas is generally too deep and porous for the relatively small drainage areas to support surface flow. However, there are weakly developed channels, 10 to 30 cm wide, that suggest surface flow does occur during major storms in two specific conditions: (1) below bedrock outcrops where soils are quite shallow, forcing flow to the surface, and (2) high in the north-east corner of the

309 watershed where deep seated earthflows have created a drainage network around  
310 multiple small slumps where water may flow at the surface for much of the year.  
311 These areas are notable in that surface flow may occur with very small UAA, but  
312 they are always discontinuous to the channel network from which they are far  
313 removed (>50 m from the simulated channel network). Because of that, we do not  
314 consider them further in this study. Finally, both evapotranspiration from, and  
315 direct precipitation to, the valley bottom and stream are omitted given the small  
316 plan-view area of these landscape elements relative to the hillslopes.  
317

318

### 319 **2.3. Development of a Mathematical Model**

320 The dominant processes in the perceptual model were translated into a numerical  
321 model (Fig. 2B). Subsequent sections describe the development of the surface and  
322 subsurface hydraulics, and the solute transport components of the model which are  
323 formulated for one-dimensional (1-D) segments of the valley bottom, with boundary  
324 conditions at the upstream end of each simulated segment.  
325

326 **2.3.1 Hydraulic Model**

327 Open channel flow was simulated using the continuity equation and kinematic wave  
328 routing:  
329

330 
$$\frac{dA}{dt} + \frac{dQ_{str}}{dx} + \frac{Q_{up}}{dx} - \frac{Q_{down}}{dx} = 0 \quad (1)$$
  
331

332 where  $t$  is time (s),  $x$  is the spatial coordinate along the valley bottom (m),  $A$  is the  
333 stream cross-sectional area ( $m^2$ ),  $Q_{str}$  is the stream discharge ( $m^3 s^{-1}$ ), and  $Q_{up}$  and  
334  $Q_{down}$  represent gross up- and downwelling flux ( $m^3 s^{-1}$ ), respectively. Net up- or  
335 downwelling flux ( $Q_{net}$ ;  $m^3 s^{-1}$ ) is  $Q_{net} = Q_{up} - Q_{down}$ . We formulated the model using  
336 the gross exchanges to more accurately reflect the associated fluxes of solute (after  
337 Payn et al., 2008). Lateral inflows enter the model in the subsurface domain and  
338 represent either upwelling of valley bottom groundwater (unlikely in our case of  
339 bedrock constraint, but the term could be used for this flux in other settings) or  
340 lateral inputs of hillslope water, and influence the stream via the  $Q_{up}$  and  $Q_{down}$   
341 terms. Thus, a term describing lateral inflows occurs only in the continuity equation  
342 applied to the subsurface domain (Equation 3). This formulation requires that  
343 lateral inflows to the simulated network do not consist of channelized overland  
344 flow. If that were the case, the simulated network should be expanded to include  
345 explicit simulation of any channelized flow at the surface. We relate discharge and  
346 channel geometry using Manning's equation:  
347

348 
$$Q_{str} = \frac{1}{n} \frac{A^{\frac{5}{3}}}{P^{\frac{2}{3}}} S_{stream}^{\frac{1}{2}} \quad (2)$$
  
349

350 where  $n$  is Manning's roughness coefficient (unitless),  $S_{stream}$  is the down-valley  
351 slope along the stream channel ( $m m^{-1}$ ), the constant value of 1 in the numerator has  
352 associated units of  $m^{1/3} s^{-1}$ , and  $P$  is the wetted perimeter (m). We approximate the

353 stream geometry as a rectangular channel. Thus,  $A = by$  and  $P = b + 2y$ , where  $b$  is the  
354 channel width (m) and  $y$  is the depth of flow in the surface channel (m).

355 In the subsurface, we solve the continuity equation for water as

357 
$$\frac{dA_s}{dt} + \frac{dQ_{sub}}{dx} - \frac{Q_{up}}{dx} + \frac{Q_{down}}{dx} + \frac{Q_{lat}}{dx} = 0 \quad (3)$$

359 where  $A_s$  is the cross-sectional area of the saturated portion of the subsurface ( $m^2$ ),  
360  $Q_{sub}$  is the down-valley subsurface discharge ( $m^3 s^{-1}$ ), and  $Q_{lat}$  represents lateral  
361 inflows from the hillslopes into the valley bottom ( $m^3 s^{-1}$ ), defined as the unit inflow  
362 per drainage area ( $q_{lat}$ ) multiplied by the difference between UAA at the up- and  
363 downstream ends of the segment. All lateral inflows to the simulated network are  
364 assumed to occur in the subsurface; surface streams can initiate and combine at  
365 junctions if the down-valley discharge in a tributary exceeds down-valley capacity  
366 ( $Q_{sub, cap}$ ;  $m^3 s^{-1}$ ). Darcy's law is used to calculate  $Q_{sub}$  as a function of valley width  
367 ( $b_{valley}$ ; m), depth of subsurface flow ( $y_{sub}$ ; m), hydraulic conductivity ( $K$ ;  $m s^{-1}$ ),  
368 porosity ( $\theta$ , unitless), and valley slope ( $S_{valley}$ ;  $m m^{-1}$ ):

369  
370 
$$Q_{sub} = \frac{b_{valley}y_{sub}K}{\theta} S_{valley} \quad (4)$$

371 We assume the slope of the valley bottom is a good approximation of the down-  
372 valley hydraulic gradient (Ward et al., 2016, 2013b; Wondzell, 2011). The maximum  
373 capacity of the subsurface to transport water in the down-valley direction (down-  
374 valley capacity;  $Q_{sub, cap}$ ) occurs when  $y_{sub} = T$ , where  $T$  is the thickness of the valley  
375 bottom colluvium (m). Colluvium dimensions are related to geometry as  $A_s =$   
376  $b_{valley}y_{sub}$ . Total down-valley discharge ( $Q_{dv}$ ;  $m^3 s^{-1}$ ) is the sum of surface and  
377 subsurface discharges:

378  
379  
380 
$$Q_{dv} = Q_{str} + Q_{sub} \quad (5)$$

### 382 2.3.2 Solute Transport Model

383 We solve for conservative solute mass in the surface using a volumetrically  
384 averaged mass balance for the stream:

385  
386 
$$\frac{d(VC)}{dt} = Q_{in}C_{in} - Q_{str}C + Q_{up}C_s - Q_{down}C \quad (6)$$

387 where  $Q_{in}$  is the stream discharge from the upstream valley segment ( $m^3 s^{-1}$ ),  $C_{in}$  is  
388 the stream solute concentration from the upstream valley segment ( $g m^{-3}$ ),  $C$  is the  
389 stream solute concentration ( $g m^{-3}$ ), and  $C_s$  is solute concentration in the subsurface  
390 ( $g m^{-3}$ ). The volume of water in the surface domain, ( $V$ ;  $m^3$ ), is calculated as:

391  
392  
393 
$$V = Sinuosity * dx * b * y \quad (7)$$

394 where *Sinuosity* is the sinuosity of the stream, calculated as the along-stream  
395 distance in each segment divided by the length of the segment ( $m m^{-1}$ ).

397 For solute transport in the subsurface, we use a similar formulation:

398

$$400 \frac{d(V_S C_S)}{dt} = Q_{sub,in} C_{S,in} - Q_{sub} C_S - Q_{up} C_S + Q_{down} C + Q_{lat} C_{lat} \quad (8)$$

401 where  $Q_{sub,in}$  is the subsurface discharge from the upstream valley segment ( $\text{m}^3 \text{ s}^{-1}$ ),  
402  $C_{S,in}$  is the subsurface solute concentration from the upstream valley segment ( $\text{g m}^{-3}$ ),  
403  $C_{lat}$  is the concentration of lateral inflows from the hillslopes to the river corridor  
404 ( $\text{g m}^{-3}$ ), and  $V_S$  is the volume of water in the subsurface domain ( $\text{m}^3$ ), calculated as  
405 the volume of void space filled with water:

406

$$407 V_S = A_S \theta dx \quad (9)$$

408 For this formulation we assume that all pore space is connected for transport of  
409 water and solutes, and that the subsurface domain is well-mixed within each spatial  
410 discretization.

411

#### 412 **2.4 Model Implementation**

##### 413 **2.4.1 Model Solution for Interior and Downstream Segments**

414 The model equations presented above allow for spatially variable, dynamic  
415 activation of surface flow and continuity in space given the total down-valley flow  
416 and the amount that can be accommodated via the subsurface. We simulated  
417 transport through the river corridor at the network scale for water year 2016 (1-  
418 Oct-2015 through 30-Sept-2016). The model equations are implemented as a finite  
419 difference numerical solution along the river corridor, discretized using a 5-m  
420 segment length. Up- and downwelling fluxes ( $Q_{up}$  and  $Q_{down}$ ) are calculated at each  
421 model segment on the basis of two logical operators, which operate to first assign all  
422 flow to the subsurface domain and then assign any flow exceeding  $Q_{sub,cap}$  into the  
423 surface domain.

424 Channel water balance studies in mountain streams note that gross exchange  
425 of water between streams and their subsurface often exceeds net exchange (Covino  
426 et al., 2011; Payn et al., 2009; Ward et al., 2013b). To represent the gross up- and  
427 downward exchanges in the water balance, we define the parameter  $Q_{subgrid}$  ( $\text{m}^3 \text{ s}^{-1}$ )  
428 to increase exchanges of water between surface and subsurface domains within  
429 each model segment.

430 For net up- or downwelling between the surface and subsurface domains,  
431 three possible behaviors exist. First, for cases when the flow entering a model  
432 segment is greater than the down-valley capacity (i.e.,  $Q_{sub,in} + Q_{lat} \geq Q_{sub,cap}$ ), net  
433 upwelling of the excess subsurface discharge is implemented:

434

$$435 Q_{down} = Q_{subgrid} \quad (10)$$

436

$$437 Q_{up} = (Q_{sub,in} + Q_{lat} - Q_{sub,cap}) + Q_{subgrid} \quad (11)$$

438 Second, for cases where the down-valley capacity is larger than the inflows to the

442 subsurface domain, net downwelling is required to ensure the full down-valley  
443 capacity is met before surface flow activates. Net downwelling is predicted for cases  
444 when  $Q_{sub,in} + Q_{lat} < Q_{sub,cap}$ . If the subsurface can accommodate the total down-valley  
445 discharge (i.e.,  $Q_{in} + Q_{sub,in} + Q_{lat} \leq Q_{sub,cap}$ ), all of the down-valley discharge is assigned  
446 to the subsurface, resulting in a dry streambed. Exchange discharges are, then:

447

$$448 Q_{down} = Q_{in} + Q_{subgrid} \quad (12)$$

449

$$450 Q_{up} = Q_{subgrid} \quad (13)$$

451

452 Finally, for cases of net downwelling (i.e.,  $Q_{sub,in} + Q_{lat} < Q_{sub,cap}$ ) where the subsurface  
453 cannot accommodate all of the down-valley discharge (i.e.,  $Q_{in} + Q_{sub,in} + Q_{lat} >$   
454  $Q_{sub,cap}$ ), stream discharge will occur. Vertical exchanges are, then:

455

$$456 Q_{down} = (Q_{sub,cap} - Q_{sub,in} - Q_{lat}) + Q_{subgrid} \quad (14)$$

457

$$458 Q_{up} = Q_{subgrid} \quad (15)$$

459

460 In this implementation, the down-valley capacity of the subsurface is always filled  
461 before the stream channel activates.

462

#### 463 **2.4.2 Boundary Conditions and Initial Conditions**

464 For all model segments, initial conditions of  $Q_{dv}(x,t=0)$ ,  $C(x,t=0)$ , and  $C_s(x,t=0)$  are  
465 specified. The logical tests described above are used to partition  $Q_{dv}(x,t=0)$  into  $Q_{str}$   
466 and  $Q_{sub}$  fractions at  $t=0$ .

467 At the head of each channel (Fig. 1; Main Stem, South Branch, and all minor  
468 tributaries), specified boundary conditions of  $Q_{dv}(x=x_n,t)$ ,  $C(x=x_n,t)$ , and  $C_s(x=x_n,t)$  are  
469 required, where  $x_n$  is the upstream-most, or  $n^{th}$ , segment. We specify  $C(x=x_n,t) =$   
470  $C_s(x=x_n,t) = 0$  and  $Q_{dv}(x=x_n,t)$  based on area-proportional discharge assigned from the  
471 gauge. This specification means that lateral inflows from the hillslope to the valley  
472 bottom are all synchronized in time to the stream gauge and does not allow for  
473 heterogeneity in hillslope responses to precipitation input. These simplifications are  
474 necessary to balance the desire for reduced-complexity with the representation of  
475 processes occurring in the landscape. For segments whose upstream end is the  
476 confluence of two tributaries, the discharge is defined as the sum of the outflows  
477 from the two upstream segments; the concentration is defined by conservative  
478 mixing of the two upstream tributaries.

479 With the time-variable boundary conditions established, the model equations  
480 are solved using a forward-in-time, backward-in-space solution scheme, which is  
481 computationally efficient and allows for an explicit solution of the model equations.  
482 We implement adaptive time stepping, allowing timesteps to grow or shrink by a  
483 factor of 4 depending on hydrologic and solute dynamics. Timesteps are limited in  
484 growth to constrain changes in discharge or concentration to less than 1% in a given  
485 timestep, with minimum and maximum timesteps of 1 and 3600 s, respectively.

486

#### 487 **2.5 Model Limitations**

488 Implementation of the perceptual model as a reduced complexity model necessarily  
489 simplifies the processes in the river corridor to represent dynamics at reach-to-  
490 network scales. First, this simplification does not capture the smaller-scale  
491 flowpaths that are associated with individual channel-unit features smaller than 5 m  
492 in length. Instead, the 1-D representation of the valley bottom focuses on larger-  
493 scale, down-valley flow, and in our model, varies only in response to changes in  
494 valley width and longitudinal gradient. As a result, the spatial distributions of  
495 exchange fluxes or flowing status are not expected to have a high fidelity at  
496 representing individual features, but are expected to be representative at reach and  
497 longer scales (see Section 3.4 for reach-scale metrics). Therefore, we consider it  
498 inappropriate to expect performance to match small-scale patterns of intermittent  
499 flow that may develop because of individual features that are smaller than the  
500 spatial resolution of the model.

501 Second, the solute transport routine represents only advective processes  
502 along the stream, with numerical solutions introducing a small amount of numerical  
503 dispersion. The addition of longitudinal dispersion, transient storage, or sorption-  
504 desorption dynamics (e.g., after Bencala and Walters, 1983; Runkel, 1998) would  
505 likely improve the representation of solute transport. It is important to note,  
506 however, that we do simulate advective exchange between the surface and  
507 subsurface, but at spatial scales larger than 5 m. We also allow specification of  
508 surface-subsurface exchange occurring at scales smaller than 5 m, using the term  
509  $Q_{subgrid}$ , but this term is treated as a constant across the entire network and thus  
510 cannot represent spatial variation in exchange processes driven by channel-unit  
511 features smaller than the resolution of the model. Collectively, surface-subsurface  
512 exchange is commonly considered to be an important component of transient  
513 storage. By contrast, fine-scale transient storage in the surface channel (i.e., in pools  
514 and eddies) is not simulated in our model because we expect surface-subsurface  
515 exchange to dominate at the scales we are simulating. Representing in-channel  
516 transient storage, longitudinal dispersion, and sorption-desorption would come at a  
517 computational cost. Further, several of these processes are likely sensitive to  
518 channel-unit scale features that cannot be extracted from typical airborne LiDAR  
519 data so including these processes in the model would likely require much more  
520 detailed data on stream topography.

521 Third, the assumption that all pore water is well mixed and equally  
522 connected is limiting. We acknowledge that the subsurface domain is likely not  
523 completely mixed over short timescales (e.g., Ward et al., 2012). Pores are  
524 recognized to range from fully connected to functionally disconnected from  
525 advective transport (e.g., dual-domain representations of porous media). This  
526 simplification also omits heterogeneity in the hydraulic conductivity, which has  
527 been shown to be an additional control on interactions between streams and their  
528 aquifers (e.g., Fleckenstein et al., 2007). In cases where the subsurface domain is not  
529 well-mixed, this assumption causes the exchanged mass to mix with a larger volume  
530 of water. The result is a slower equilibration between the stream and subsurface  
531 (i.e., concentrations in the subsurface rise and flush more slowly than would occur  
532 in a system that was not well-mixed). We do not consider these processes to be  
533 sufficiently important to be included in the perceptual model outlined above and are

534 thus not represented in the numerical model, but acknowledge these processes may  
535 be important at other sites.

536 Finally, the numerical model simplifies all hillslope hydrology as (1)  
537 instantaneously synchronized with discharge observed at the gauge and (2)  
538 discharge is proportionally distributed on the basis of upslope accumulated areas.  
539 Both are oversimplifications of catchment hydrology and hydraulics and are areas  
540 for potential future improvement.

541

### 542 **3. Methods**

543 The model derived above can be implemented using only a digital terrain model, a  
544 single stream gauge at the outlet of the catchment, and estimates of hydrogeologic  
545 properties. The highest uncertainty will likely come in the estimation of a  
546 representative hydraulic conductivity because this parameter is expected to span  
547 orders of magnitude. We suggest initial estimates based on any available data, grain  
548 size distributions, or modest field campaigns (e.g., falling-head tests in temporary  
549 piezometers or shallow wells) could be used to better constrain this model  
550 parameter. These modest data requirements are a key contribution of this relatively  
551 simple model. Again, we emphasize that reduced-complexity models are  
552 constructed to represent dominant mechanisms and interactions in a system of  
553 interest, acknowledging that this comes at the expense of representing complexity  
554 and heterogeneity of some processes in the system. In the following sections we  
555 detail how the model is parameterized using available data from our field site.

556

#### 557 **3.1 Model Parameters Specified for the Study Site**

558 Implementing the model derived above requires analysis of stream, valley,  
559 and catchment topography to identify the drainage network, the valley floors, and  
560 the hillslope area contributing to each model segment. We used a modified version  
561 of the TopoToolbox (Schwanghart and Kuhn, 2010; Schwanghart and Scherler,  
562 2014) to analyze the 1-m LiDAR digital terrain model available for WS01. We  
563 selected a spatial discretization of 5-m segments along the river corridor. Briefly, we  
564 applied the multidirectional flow routing algorithm (Seibert and McGlynn, 2007).  
565 Based on visual observations at the field site under high discharge conditions, we  
566 defined a threshold of 3 ha for channel initiation (i.e., all points where drainage area  
567  $\geq 3$  ha are simulated as part of the river corridor). We selected the threshold of 3 ha  
568 because we seldom observe channelized flow in locations draining this small of an  
569 area. As a result, the upper extent of each simulated tributary should have no  
570 overland flow and the model equations are used to predict the flow initiation point  
571 along each headwater.

572 We measured the valley width at 30 locations, measuring from the stream  
573 centerline to the valley wall along a line perpendicular to the longitudinal axis of the  
574 valley (break-point visually identified in the field after Jencso et al., 2009). Our  
575 topographic analysis showed that the floodplain margin between hillslope and  
576 valley bottom was best approximated using an elevation 1.5 m above the streambed  
577 provided the best fit between widths extracted from the DEM and our field  
578 observations. Using that threshold, we discretized the stream network into 5-m  
579 segments and for each segment we extracted valley widths (left and right sides),

580 valley slope, stream channel slope, and stream channel sinuosity. We also calculated  
 581 the lateral UAA along each side of the valley using TopoToolbox (Schwanghart and  
 582 Kuhn, 2010; Schwanghart and Scherler, 2014).

583 Inflows to the valley bottom ( $Q_{lat}$ ;  $\text{m}^3 \text{ s}^{-1}$ ) were calculated using an area-  
 584 weighted flow based on the WS01 gauge station. For each segment, the total lateral  
 585 inflows were calculated as

586

587 
$$Q_{lat} = \Delta UAA * Q_{gauge} / UAA_{gauge} \quad (16)$$

588

589 where  $\Delta UAA$  is the change in UAA along the stream centerline in each model  
 590 segment (ha),  $Q_{gauge}$  is the discharge at the WS01 stream gauge ( $\text{m}^3 \text{ s}^{-1}$ ), and  $UAA_{gauge}$   
 591 is the UAA at the stream gauge (about 96 ha). The topographic analysis and area-  
 592 weighted assignment of lateral inflows are identical to recent work in the catchment  
 593 (Corson-Rikert et al., 2016). The gauge discharge data are used as published by the  
 594 H.J. Andrews Experimental Forest. A summary of the specified or calibrated  
 595 parameters are provided in Table 1.

596

597

**Table 1: Sources and values for the model parameters.**

| Parameter                                     | Value or range                              | Units                              | Methods and/or source                                                                                                                                |
|-----------------------------------------------|---------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Channel width ( $b$ )                         | 0.44 – 1.88                                 | m                                  | Regression with drainage area (Castro and Jackson, 2001)                                                                                             |
| Lateral inflow ( $q_{lat}$ )                  | $2.0 \times 10^{-6}$ - $1.1 \times 10^{-2}$ | $\text{m}^3 \text{ s}^{-1}$ per ha | Proportional to drainage area along stream centerline                                                                                                |
| Concentration of lateral inflow ( $C_{lat}$ ) | 0                                           | $\text{g m}^{-3}$                  | By definition for a tracer injected into the stream channel only                                                                                     |
| Manning's Roughness ( $n$ )                   | 0.05                                        | (unitless)                         | Visual inspection                                                                                                                                    |
| Valley slope ( $S_{valley}$ )                 | 0.01 – 1.04                                 | $\text{m m}^{-1}$                  | TopoToolbox analysis <sup>1</sup>                                                                                                                    |
| Channel slope ( $S_{stream}$ )                | 0.01 – 2.42                                 | $\text{m m}^{-1}$                  | TopoToolbox analysis <sup>1</sup>                                                                                                                    |
| Channel sinuosity ( $Sinuosity$ )             | 1.04 – 1.18                                 | $\text{m m}^{-1}$                  | TopoToolbox analysis <sup>1</sup>                                                                                                                    |
| Valley width ( $b_{valley}$ )                 | 5.0 – 36.9                                  | m                                  | TopoToolbox analysis <sup>1</sup>                                                                                                                    |
| Drainage area ( $UAA$ )                       | 3 – 95.5                                    | ha                                 | TopoToolbox analysis <sup>1</sup>                                                                                                                    |
| Porosity ( $\theta$ )                         | 0.3                                         | (unitless)                         | Midpoint of previously reported range of values for the site (Dyrness, 1969; Kasahara and Wondzell, 2003; Ward et al., 2016; Wondzell et al., 2009a) |
| Sub-grid exchange ( $Q_{subgrid}$ )           | $4.18 \times 10^{-5}$                       | $\text{m}^3 \text{ s}^{-1}$        | Calibrated. Parameter range $1 \times 10^{-6}$ to $1 \times 10^{-2}$ (Ward et al., 2013b)                                                            |
| Thickness of colluvium ( $T$ )                | 0.75                                        | m                                  | Calibrated. Parameter range 0 to 4 considered (Gooseff et al., 2006; Wondzell et al., 2009a)                                                         |

|                                                 |                       |                            |                                                                                                        |
|-------------------------------------------------|-----------------------|----------------------------|--------------------------------------------------------------------------------------------------------|
| Hydraulic conductivity ( $K$ )                  | $5.62 \times 10^{-6}$ | $\text{m s}^{-1}$          | Calibrated. Parameter range $4.3 \times 10^{-6}$ to $6.1 \times 10^{-4}$ (Kasahara and Wondzell, 2003) |
| Limit to define surface discharge ( $Q_{lim}$ ) | $2.21 \times 10^{-4}$ | $\text{m}^3 \text{s}^{-1}$ | Calibrated. Parameter range 0.18-0.32 (see section 4.1)                                                |

598 1 - TopoToolbox analysis refers to the analysis of the digital terrain model described in section 3.1  
 599 using tools developed by Schwanghart and Kuhn (2010) and Schwanghart and Scherler (2014).  
 600

### 601 **3.2 Model Calibration**

602 Recognizing the model limitations, we define two calibration targets that represent  
 603 reach-scale behaviors to demonstrate reasonable representation of system  
 604 processes: (1) reach-scale solute transport and (2) reach-scale fraction of dry  
 605 streambed. These calibration targets will generate reach-averaged best-fit model  
 606 parameters rather than spatially variable distributions, closely following the  
 607 approach of other reduced-complexity models of headwater streams (e.g., Bencala  
 608 and Walters, 1983).

609 First, we calibrated the model parameters  $T$ ,  $K$ , and  $Q_{subgrid}$  using a break-  
 610 through curve from a solute tracer injection from 2-Aug-2010 (see Voltz et al., 2013;  
 611 Ward et al., 2016 for details). We simulated the tracer injection and compared  
 612 observed versus simulated concentrations of tracer at two locations: immediately  
 613 downstream of the injection where complete mixing was assumed (166-m upstream  
 614 of the WS01 gauge) and at the WS01 gauge station itself. We varied  $T$  from zero  
 615 (observed at bedrock outcrops) to a maximum depth of 4 m. This greatly exceeds  
 616 the maximum penetration depth of 1.74 m observed when installing wells, and thus  
 617 allows for uncertainty between the refusal depth and impermeable bedrock. This  
 618 difference may represent, for example, a zone of weathered bedrock below the  
 619 colluvium but still bounded by impermeable, unweathered bedrock below. We  
 620 varied  $K$  across the range of values observed by Kasahara and Wondzell (2003) in  
 621 WS01 and a nearby headwater catchment, spanning  $4.3 \times 10^{-6}$  to  $6.1 \times 10^{-4} \text{ m s}^{-1}$ .  
 622 Finally,  $Q_{subgrid}$  was varied from  $1 \times 10^{-6}$  to  $1 \times 10^{-2} \text{ m}^3 \text{s}^{-1}$  based on observations at the  
 623 field site. For comparison, Ward et al. (2013a) found average gross stream-to-  
 624 subsurface exchanges of about  $3.5 \times 10^{-3} \text{ m}^3 \text{s}^{-1}$  per 5 m of valley distance (range 0 –  
 625  $1.6 \times 10^{-2} \text{ m}^3 \text{s}^{-1}$ , median  $2.7 \times 10^{-3} \text{ m}^3 \text{s}^{-1}$ ) during a storm event using reach-scale  
 626 solute tracer studies. Thus, the range spans nearly the complete observation set  
 627 (with a lower bound of  $10^{-6} \text{ m}^3 \text{s}^{-1}$  rather than zero). This first model calibration step  
 628 was performed by uniformly sampling the distributions of  $K$ ,  $T$ , and  $Q_{subgrid}$  and  
 629 varying the parameters jointly, increasing resolution around the best-fit parameters.  
 630 More than 1,100 simulations were performed. Overall model fit was evaluated  
 631 based on minimizing root mean square error (RMSE) between the observed tracer  
 632 breakthrough curve and simulations. We selected minimizing RMSE because this is  
 633 analogous to the residual sum of squared errors used to evaluate model fits in  
 634 inverse modeling of stream solute tracers (e.g., Runkel, 1998; Ward et al., 2017).

635 Next, we calibrated the model by comparing the observed versus simulated  
 636 total length of dry streambed in the reach of stream between the gauge and the  
 637 confluence of the Main Stem and South Branch (Fig. 1). The model formulation

638 allows for computation of extremely small surface flows that would not be visually  
639 differentiated from a “damp streambed” or flow fully through the armored cobble  
640 layer on the bed in the field (e.g., values of  $Q_{str} = 1 \times 10^{-4} \text{ m}^3 \text{ s}^{-1}$ ). These simulated  
641 discharges are numerically non-zero, but functionally non-observable in the field.  
642 Thus, we require a threshold to differentiate observably flowing from dry segments  
643 in the model output ( $Q_{lim}$ ). We select the target of total reach-scale dry streambed in  
644 acknowledgement that the reduced complexity model is not intended to represent  
645 small-scale features nor their spatial distributions that would be observed in the  
646 field, but instead to capture representative behavior for reaches 100s of meters and  
647 longer. This target is also comparable to reasonably available field data for a site  
648 with limited characterization, where available information may be based on visual  
649 inspection or personal knowledge that will typify applications lacking detailed site  
650 investigations (e.g., anecdotal “about 20% of the streambed is dry in late August”).  
651 On 25-May-2016, 21-June-2016, 04-July-2016, and 13-Aug-2016 we walked from  
652 the gauging station to the main confluence, recording the locations of dry streambed  
653 at sub-meter resolution. Using the specified parameters (Table 1) and those  
654 calibrated for the solute tracer ( $K$ ,  $T$ ,  $Q_{subgrid}$ ), we assessed the accuracy of dry  
655 streambed predictions to select an appropriate value of the discharge threshold to  
656 define surface flow ( $Q_{lim}$ ) to maximize accuracy of predicting the total dry length  
657 observed in the study reach. This calibration step tested more than 10,000 values for  
658  $Q_{lim}$ , and selected the value that minimize the error in predicted dry streambed  
659 length along the observed reach.  
660

### 661 **3.3 Model Validation**

662 To validate the model, we compared the flowing status predicted by the reduced  
663 complexity model with a similar dataset generated by combining a detailed survey  
664 with measured changes in stream stage. In the reach spanning 95 to 626 m  
665 upstream of the gauging station, we surveyed the elevation of the streambed and  
666 stream water surface at <1.0 m horizontal resolution and <0.01 vertical resolution  
667 during conditions with  $Q_{gauge}$  ranging from 5.8 to 6.7  $\text{L s}^{-1}$ . Fifteen pressure  
668 transducers were installed along the surveyed reach, recording data every 15  
669 minutes from 1-Oct-2015 to 2-Sept-2016. All loggers were installed in shallow wells  
670 to ensure they remained submerged all season even if water levels dropped below  
671 the streambed.

672 We constructed a spatially continuous water surface by calculating changes  
673 in the water surface elevation at each of the 15 sensors and then interpolating these  
674 changes to every model segment for each timestep. This exactly follows the  
675 procedures described by Schmadel et al. (2017). We then extracted the stream stage  
676 relative to the streambed for each 5-m segment within the surveyed reach and  
677 assigned a status of not flowing (for segments containing no surface flow), partially  
678 flowing (for segments with both surface flow and dry streambed), and fully flowing  
679 (for segments with active surface flow along the entire length of the segment). We  
680 assess reduced-complexity model performance by tabulating the frequency of  
681 correct predictions of flowing (times and locations where constructed profiles and  
682 model results both indicate fully flowing status) and correct predictions of not  
683 flowing (times and locations where constructed profiles indicate either partially or

684 not flowing status and the model predicts no flow). We elect to include “partially  
685 flowing” status from the profiles as equal to “not flowing” status in the reduced-  
686 complexity model because we expect the low discharges in a partially flowing  
687 segment would be below the calibrated  $Q_{lim}$  value.

688

### 689 **3.4 Evaluation of Model Results: Spatial and Temporal Trends in Connectivity**

690 Model results were used to evaluate nine metrics describing the hydrologic  
691 connectivity. For each river corridor segment, we tabulated: (1) the flowing status  
692 (i.e., surface flow or no surface flow), (2) subsurface discharge, and (3) surface  
693 discharge every 10 minutes throughout the 1-y simulation period. Based on this  
694 information and the network topology, we also tabulated (4) whether the surface  
695 flow was contiguous to the outlet (i.e., if there was an unbroken connection of  
696 surface flow between a segment and the outlet). Using these metrics, we next  
697 calculated (5) the total flowing length of the surface stream network, (6) the total  
698 contiguous length of the surface stream network, and (7) the drainage density  
699 (flowing stream network length per catchment area) for the flowing network. After  
700 completion of the entire 1-y simulation, we calculated (8) the probability of surface  
701 flow and (9) the probability of contiguous flow for each segment by dividing the  
702 number of timesteps with surface or contiguous flow by the total number of  
703 timesteps.

704

## 705 **4. Results**

### 706 **4.1 Model Calibration & Validation**

707 Overall, the calibrated model predicted the tracer breakthrough curve observed in  
708 August 2010 with an RMSE of  $12.4 \mu\text{S cm}^{-1}$ . After calibration, we also assessed model  
709 predictions using  $r^2$  (0.86 comparing time-series observations to calibrated model  
710 predictions), mean arrival time for the in-stream solute tracer timeseries (observed  
711 75.6 hr, modeled 66.3 hr), coefficient of variation for the in-stream solute tracer  
712 timeseries (observed 0.72, modeled 0.70), and skewness for the in-stream solute tracer  
713 timeseries (observed 1.13, modeled 0.66). Based on the high  $r^2$  and low  
714 errors for mean arrival time and coefficient of variation, we interpret that advection  
715 of the input tracer signal and its longitudinal spread are being accurately  
716 represented by the model. The disparity in skewness corresponds to the  
717 acknowledged limitations of the solute transport model, wherein only the advective  
718 transport processes are being considered. That the observed late-time low-  
719 concentration “tails” of the in-stream timeseries, which drive larger positive values  
720 of skewness, are not being well fit by the reduced-complexity model is expected  
721 given that longitudinal dispersion and in-channel transient storage are not  
722 simulated.

723 Next, we used observations of dry streambeds to estimate  $Q_{lim}$ . We did not  
724 observe any dry streambed during the May and June 2016 surveys. In July 2016 we  
725 observed a total of 3.5 m of dry streambed at 5 locations (range 0.5 to 1 m in dry  
726 length). In August 2016 we observed 106.1 m of dry streambed across 26 separate  
727 locations (range 0.4 to 26.9 m, mean 4.1 m, median 1.0 m). At the time of the August  
728 2016 observations, the stream discharges in the model segments within the  
729 surveyed stream reach (0 m to 650 m from the stream gauge) ranged from 0.18 to

730 0.45 L s<sup>-1</sup>. However, because our field observations recorded some of these  
731 segments as dry,  $Q_{lim}$  must be greater than 0.18 L s<sup>-1</sup> (i.e., discharges of less than  $Q_{lim}$   
732 were not observable as surface flow in the field). Furthermore, because discharge at  
733 the gauge was measured between 0.32 and 0.45 L s<sup>-1</sup> during the same period, this  
734 also implies that  $Q_{lim}$  must be less than 0.32 L s<sup>-1</sup>. We searched possible values for  
735  $Q_{lim}$  in this range at a resolution of 0.001 L s<sup>-1</sup> (comparable to the resolution of the  
736 gauge when the v-notch weir is installed during the summer low flow period). The  
737 best agreement for total dry streambed length in the segment spanning 0 to 759 m  
738 was found for  $Q_{lim} = 0.221$  L s<sup>-1</sup>, which results in a simulated 14.2% of the total  
739 length in dry streambed conditions (compared to 13.9% observed in the field).  
740 Using this value of  $Q_{lim}$ , the May and June 2016 simulation periods accurately predict  
741 100% of the observed conditions in the field (Fig. S1). For July 2016 we observed  
742 about 0.5% of the streambed to be dry (less than the length of one model segment)  
743 and the reduced complexity model predicts all segments flowing fully (Fig. S1).

744 While the simulated length of dry channel was similar to that observed at the  
745 reach scale, the agreement in the spatial location of dry segments was quite poor.  
746 We expected considerable disagreement between the model and the observations  
747 over short distances where small scale channel morphology – like wedges of  
748 sediment accumulated above in-channel logs – would lead to local increases in  
749 sediment thickness or create variable deposition environments leading to  
750 substantial variability in saturated hydraulic conductivity. As expected, the model  
751 did not simulate many of the short dry segments we observed, but it also simulated  
752 a long dry section between 600 and 750 m above the stream gauge whereas we  
753 observed large dry segments between 150 and 300 m. The lack of agreement  
754 suggests that spatial patterning is being controlled by factors other than channel-  
755 unit scale variations in morphology. Certainly, large logs transported in debris flows  
756 can form large log jams with depositions several meters thick that extend more than  
757 100-m upstream from the log jam. We used a constant thickness of 0.75 m resulting  
758 from model calibration in a short tracer-injection reach near the bottom of the  
759 watershed. Penetration depths of 41 wells located within that reach show that the  
760 sediment thickness averages only 1 m and in early summer with  $Q_{gauge}=34$  L s<sup>-1</sup> the  
761 saturated thickness averages 0.48 m. It is likely that sediment thickness at other  
762 locations would be substantially deeper or shallower than the best-fit, reach-scale  
763 value that was calibrated. Using a constant thickness would lead to the model  
764 simulating dry channels in locations where the actual sediment was thinner than  
765 0.75 m or wet channels in locations where the actual sediment is thicker than 0.75  
766 m. Note that  $Q_{sub,cap}$  is relatively constant from 750 m down to the mouth of the  
767 watershed whereas UAA and Q both nearly double over this distance. Thus, small  
768 overestimates of sediment thickness at the top of this reach would readily result in  
769 the model simulating a dry channel where one may not be observed. Conversely,  
770 limiting sediment thickness to only 0.75 m lower in the reach, where discharge is  
771 much higher, would make it unlikely that the model would simulate a dry segment.  
772

773 Finally, we compared the predictions of the stream status (flowing or dry) to  
774 water surface profiles interpolated from 15 pressure transducers located in the  
775 lower 650 m of the Main Stem channel. In total, we compared 99 model segments  
spanning 32,443 timesteps that comprise approximately 3.2 million points (Fig. S2,

776 S3). Overall, the reduced-complexity model correctly predicted about 2.6 million  
777 flowing conditions (about 81.9% of all points; Fig. S2, S3) and 434,576 dry  
778 streambed conditions (about 13.5% of all points; Fig. S2, S3). The reduced  
779 complexity model incorrectly predicted 145,886 points (about 4.5% of all points;  
780 Fig. S2, S3). Based on more than 95% agreement between the model predictions and  
781 validation data, we are encouraged to interpret the model as a reasonable  
782 description of the dynamics in the system. Overall, model performance is generally  
783 strongest under higher discharge conditions. One key limitation of the model is the  
784 spatial resolution limits the simulation of segments that are partially flowing. While  
785 the network-scale metrics are reasonably predicted, the spatial organization is  
786 generally not well predicted by the model (Figs. S1, S2, S3) because of the assumed  
787 spatial homogeneity of model parameters.

788 The model could be further tuned by making  $T$  and  $K$  spatially variable.  
789 However, collecting spatially explicit data on sediment depth in the valley floor  
790 throughout the stream network would be a daunting task. But more importantly,  
791 adding substantial complexity to the model, just to improve the model fit, runs  
792 counter to the modeling philosophy that guides this effort. That is, to develop a  
793 highly transferable model that can be parameterized using readily available data to  
794 simulate dominant hydrological processes within a large stream network. We  
795 recognize that this simple model is far from perfect. Still, we argue that it represents  
796 the dominant hydrologic processes operating along the length of the stream  
797 network in this watershed.

798

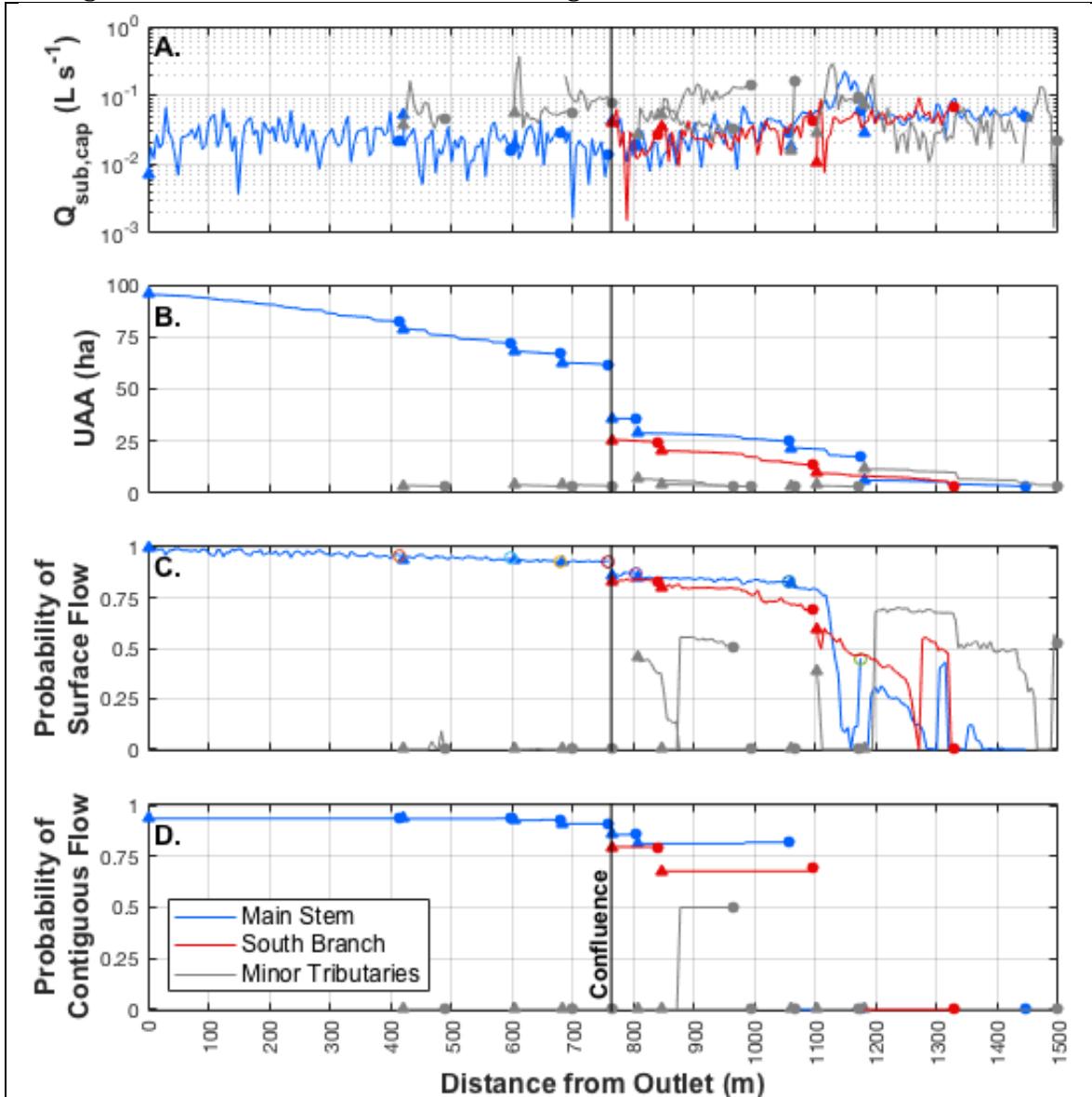
#### 799 **4.2 Spatial Trends in Network-scale Hydrologic Connectivity**

800 The study network is comprised of 2,825 m of stream channel (3 ha channel  
801 initiation threshold), equivalent to a channel density of 2.9 km km<sup>-2</sup>. Valley  
802 topography, topology, slope, and sediment characteristics result in an average  
803 down-valley capacity ( $Q_{sub,cap}$ ) of  $4.6 \times 10^{-2}$  L s<sup>-1</sup> (range  $1.2 \times 10^{-3}$  to  $3.7 \times 10^{-1}$  L s<sup>-1</sup>;  
804 median  $3.7 \times 10^{-2}$  L s<sup>-1</sup>; Fig. 3A). Since network average values were used for  $T$ ,  $K$ , and  
805  $\theta$ , this variation reflects the spatial variability in down-valley slopes and valley  
806 bottom widths in along the river corridor.

807 The probability of surface flow peaks at about 99.3% at the outlet of WS01  
808 (Fig. 3B). The probability of surface flow decreases approximately linearly with  
809 distance to 93.0% at the confluence of the South Branch and Main Stem. The  
810 probability of surface flow decreases abruptly above the confluence in both  
811 branches due to the step decrease in tributary UAA (Fig. 3C). In both branches,  
812 probability of surface flow remains at or about 70% to a distance of about 1,100 m  
813 upstream from the outlet (about 330 m upstream of the confluence). Sharp changes  
814 in the probability of surface flow occur at locations where an increase in  $Q_{sub,cap}$   
815 accommodates the entire down-valley flow more frequently (for example, the Main  
816 Stem at 1150 m or the South Branch near 1,260 m; Fig. 3B). Overall, the probability  
817 of surface flow is lower in the upper Main Stem, upper South Branch, and the minor  
818 tributaries compared to the lower Main Stem below the confluence; this is due to  
819 the lower UAA in the upper basin (Fig. 3C).

820 The probability of surface flow throughout the network that is contiguous to  
821 the outlet is lower than the probability of surface flow in all cases, indicating periods

822 of time that dry locations along the valley break the contiguity of the network (Fig.  
 823 3D). The nearly perfectly horizontal portions of the probabilities across the plot  
 824 (e.g.,  $x = 850$  to  $1100$  m along the South Branch; Fig. 3D) are caused by a  
 825 downstream segment controlling the extent of contiguity up the branch. Although  
 826 upstream segments are regularly flowing, they are prevented from becoming  
 827 contiguous by a small location of sufficient down-valley capacity to prevent a  
 828 contiguous surface connection from forming.



**Figure 3.** A) Down-valley capacity for subsurface flow ( $Q_{sub,cap}$ ) as a function of distance along the river corridor from the outlet at the stream gauge. B) Probability of surface flow for each model segment. C) Upslope accumulated area (UAA) as a function of distance along the river corridor from the stream gauge. D) Probability of surface flow being contiguous to the stream gauge for each model segment. The vertical black line labeled “Confluence” denotes the confluence of the Main Stem and South Branch. For individual segments the upstream and downstream ends are

marked with circles and triangles, respectively.

829

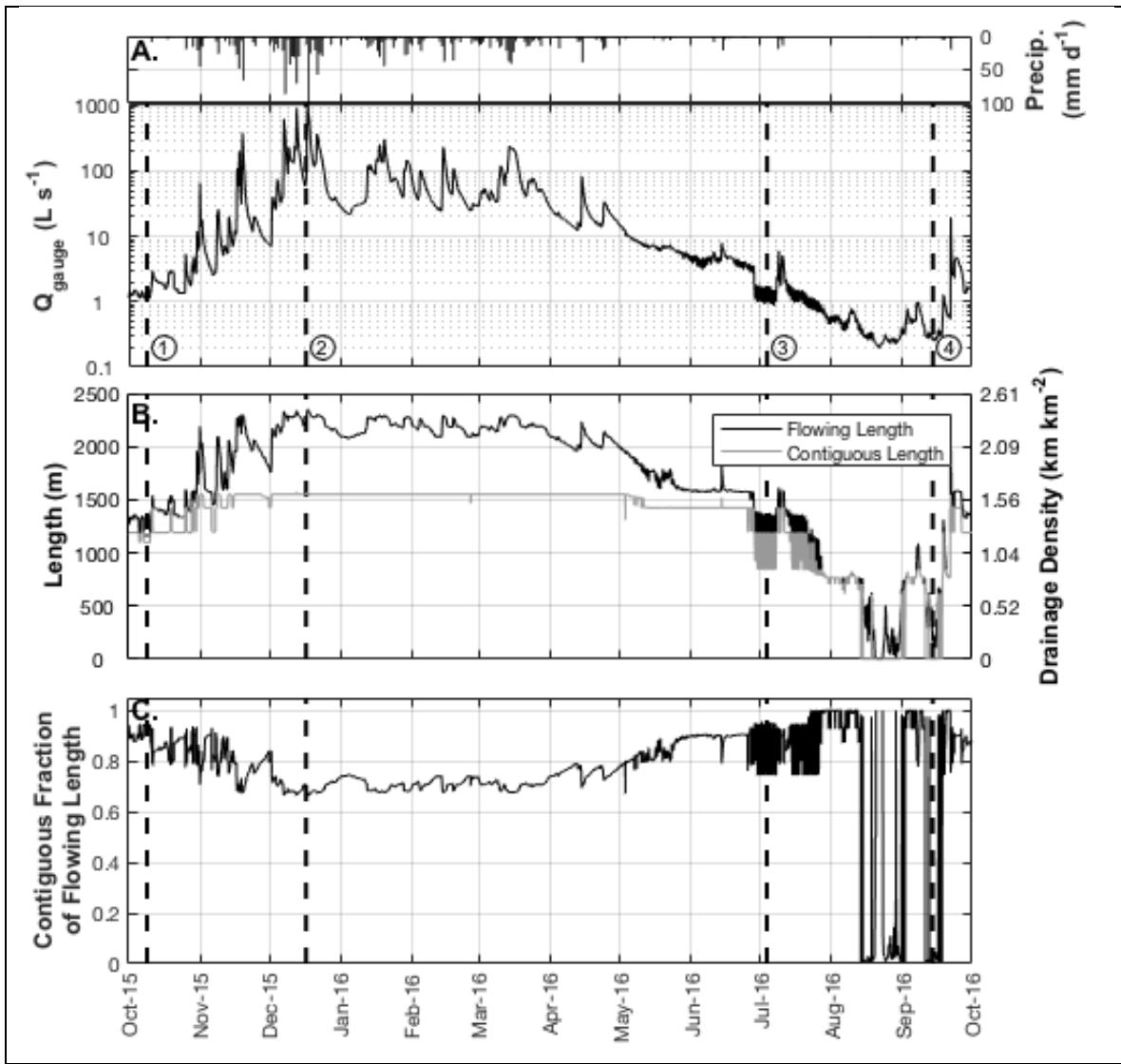
### 830 **4.3 Temporal Trends in Network-scale Hydrologic Connectivity**

831 Throughout water year 2016 the length of the flowing network averaged about  
832 1,661 m (range 0 to 2,350 m; median 1,810 m; Fig. 4B). Drainage density based on  
833 the flowing length averaged  $1.73 \text{ km km}^{-2}$  (range 0 to  $2.45 \text{ km km}^{-2}$ ; median  $1.89 \text{ km}$   
834  $\text{km}^{-2}$ ).

835 During the highest discharge conditions, the flowing channel network  
836 expands greatly, but small sections of dry streambed persist at some locations along  
837 the channel so only small increases in the contiguous length are simulated (callout 2  
838 in Fig. 4A and 4B). Because of this, the fraction of contiguously flowing network  
839 decreases during the highest flow events (callout 2 in Fig. 4C). Under the lowest  
840 discharge conditions, the fraction of flowing length that is contiguous occasionally  
841 reaches a value of 1.0 (i.e., entirely contiguous) because only the downstream-most  
842 segments are predicted to have surface flow (e.g., callout 4 in Fig. 4).

843 The length of network contiguous to the outlet averaged 1,282 m (range 0 to  
844 1,570 m, median 1,520 m; Fig. 4B). The contiguous network represents an average  
845 and maximum of 45% and 64%, respectively, of the river corridor length. The  
846 contiguous drainage density averaged  $1.34 \text{ km km}^{-2}$  (range 0 to  $1.64 \text{ km km}^{-2}$ ;  
847 median  $1.59 \text{ km km}^{-2}$ ). Throughout the water year, the contiguous network  
848 represented an average of 76% of the flowing network (i.e., 24% of flowing  
849 segments were not contiguous to the outlet; Fig. 4C). The fraction of the flowing  
850 network that was contiguous ranged from 0.8% to 100% across the year, with a  
851 median value of 77.5%.

852



**Figure 4.** A) Water year 2016 discharge at the WS01 gauge and precipitation at the H.J. Andrews Primary Meteorological Station. B) Timeseries of total flowing length and total contiguous length along the river corridor. C) Timeseries of the fraction of flowing length that is contiguous to the gauge. Vertical dashed lines highlight the four timesteps shown in Figure 5 and are provided as a reference throughout Figs. 4-7. Finally, we note that a step-change decrease in discharge appears to occur on 28-June-2016 (from a peak discharge of  $3.0 \text{ L s}^{-1}$  on 27-June to  $1.9 \text{ L s}^{-1}$  on 28-June; panel A). This is a known discrepancy in the HJ Andrews discharge databases and results from installing v-notch weirs on the trapezoidal gauges to improve resolution of small changes in discharge. The V-notch weirs are typically installed in June and removed in October of each year (Henshaw and Creel, 2005). We use the stream discharge data as reported.

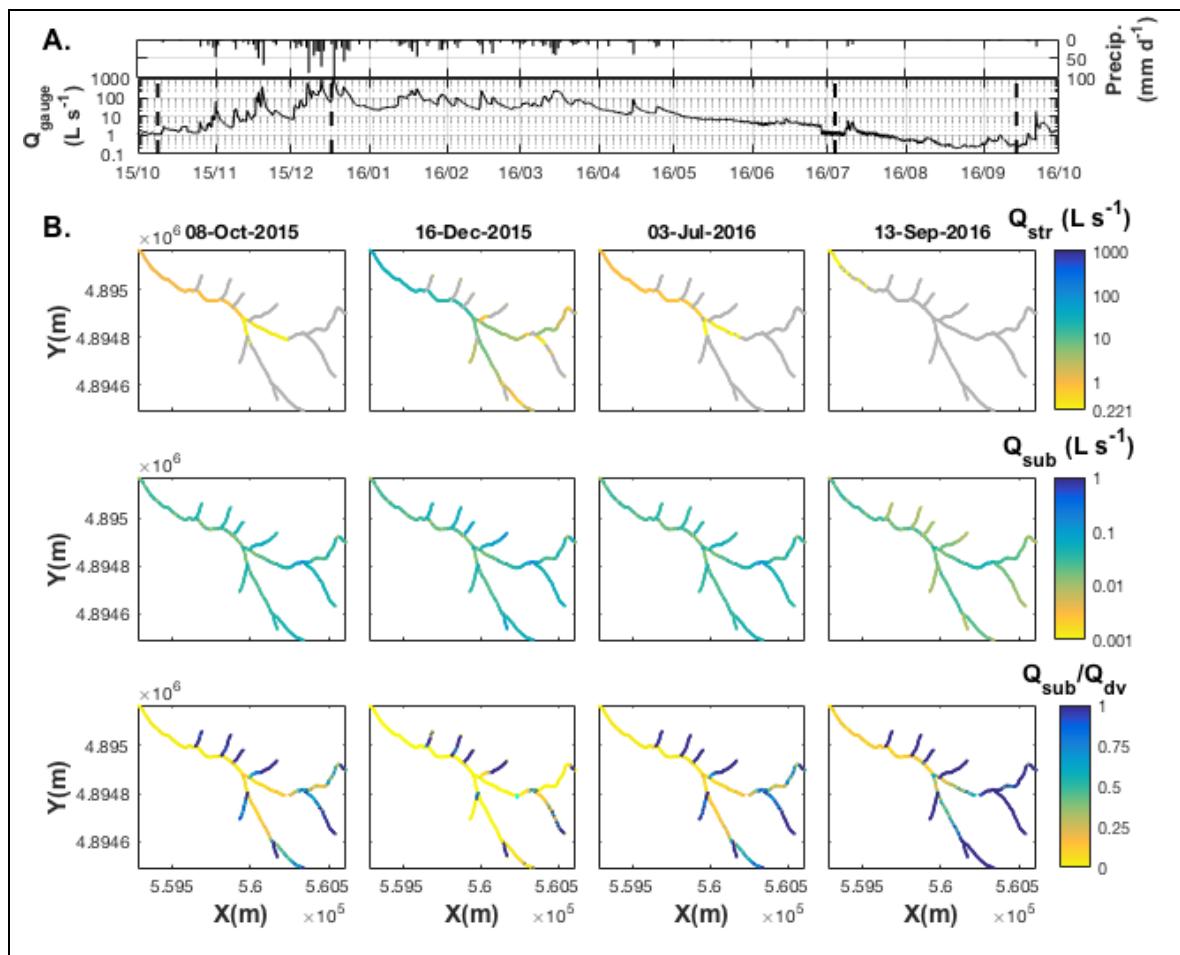
853

854

855

#### 4.4 Spatial and Temporal Trends in Hydrologic Connectivity: Seasonal, Storm, and Diurnal Dynamics

856 Spatial patterns of surficial flow and contiguity are highly dynamic (Fig. 5;  
 857 animation of water year 2016 in Supplemental Video). In many cases, a small  
 858 number of short segments of dry streambed separate significant fractions of flowing  
 859 streams from the outlet (Fig. 5), which is consistent with our field observations.  
 860 Even in the highest discharge conditions, many of the minor tributaries do not  
 861 generate surface flow (Fig. 5, second column). During the lowest discharge  
 862 conditions, the subsurface transmits a majority of discharge in all but the  
 863 downstream-most reaches (e.g., Fig. 5, fourth column). Under the highest discharge  
 864 conditions the channel network expands significantly (e.g., Fig. 6B, callout 1). The  
 865 newly activated surficial flows may persist for several days, or several months (e.g.,  
 866 Fig. 6B, callout 2, horizontal band of discharge about 1,320 m upstream of the  
 867 outlet). Still, these locations are upstream of a persistently dry segment and never  
 868 contribute to the contiguous length of the network, causing the gap between flowing  
 869 and contiguous length (Fig. 4B). At locations of tributaries, there is a clear step  
 870 change in discharge due to the step change in UAA at the confluence of the Main  
 871 Stem and South Branch (visible as changes in color in the vertical direction; Fig. 6B,  
 872 callout 3; Fig. 6C at 1,100 m upstream of outlet).  
 873

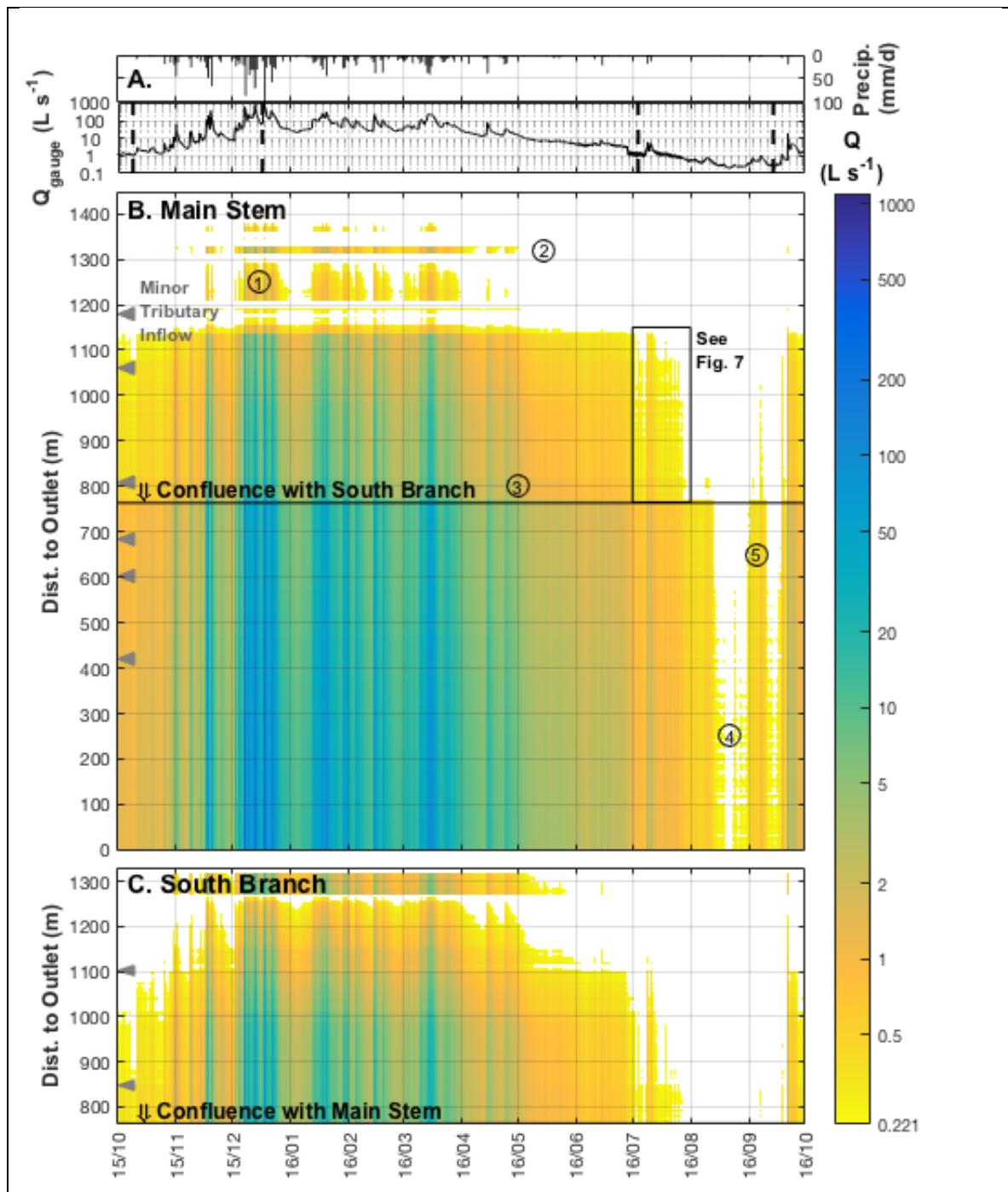


**Figure 5.** A) Water year 2016 discharge at the WS01 gauge and precipitation at the H.J. Andrews Primary Meteorological Station. B) Four snapshots in time of stream discharge ( $Q_{str}$ , top row), subsurface discharge ( $Q_{sub}$ , middle row), and fraction of total down-valley discharge in the subsurface (calculated as  $Q_{sub}/Q_{dv}$  or  $Q_{sub}/(Q_{str}+Q_{sub})$ ). The dashed lines in the top panel correspond to the four columns of sub-plots (left-to-right). X and Y coordinates are listed in UTM Zone 10N.

874  
 875 For gauge discharges greater than about  $1 \text{ L s}^{-1}$ , the spatial extent of the  
 876 network is relatively constant, extending to about 1,120 m along the Main Stem (Fig.  
 877 6B) and to 1,000 to 1,250 m along the South Branch (Fig. 6C). For gauge discharges  
 878 less than about  $1 \text{ L s}^{-1}$ , the South Branch is mostly dry whereas the Main Stem,  
 879 especially the lower 750 m, becomes temporally dynamic with large oscillations in  
 880 the length of flowing channel. Significant contraction is observed during the lowest  
 881 flow periods (Fig. 6B, callout 4). The first small storm of Fall 2016 (13.7 mm of  
 882 rainfall from 2-Sept to 7-Sept-2016) causes rapid network expansion (visible as a  
 883 nearly vertical line; Fig. 6B, callout 5).

884 The most frequent expansions and contractions of the channel network occur  
 885 at the times when evapotranspiration-driven fluctuations in  $Q_{dv}$  (Voltz et al., 2013;  
 886 Wondzell et al., 2010, 2007) cause  $Q_{dv}$  to fluctuate near  $Q_{sub,cap}$ , the threshold for  
 887 surface flow (Fig. 7). In these cases, the flowing length and contiguous length can  
 888 vary by hundreds of meters on a daily basis (Fig. 7B), which is confirmed by our  
 889 field observations. In locations where the stream remains flowing we observe  
 890 strong diurnal variations in discharge (visible as vertical bands in Fig. 7C).

891 A small storm delivered about 38.6 mm of rainfall between the 7<sup>th</sup> and 12<sup>th</sup> of  
 892 July, 2016 (Fig. 7A). This rainfall caused a simulated expansion of more than 50% of  
 893 the flowing (from about 900 to 1,650 m) and contiguous (from about 800 to 1,300  
 894 m) lengths of the channel network for a period of just 48 hours (Fig. 7B). Within four  
 895 days, the discharge again reached a level where  $Q_{dv}$  and  $Q_{sub,cap}$  were matched,  
 896 reinitiating the daily oscillations in the flowing and contiguous channel lengths.  
 897 Over the last half of July, baseflow recession continues, so that  $Q_{sub,cap}$  exceeded  $Q_{dv}$   
 898 for longer and longer periods of each day, and over more and more of the length of  
 899 the upper Main Stem, so that most channel segments were dry most of the time (Fig.  
 900 7C). This recession continues until all of the diurnal maximum discharge can be fully  
 901 accommodated in the subsurface, at which point the channel remains dry until a  
 902 storm in early September provides sufficient water to the catchment to reinitiate  
 903 flow in the upper Main Stem (Fig. 6A and 6B).

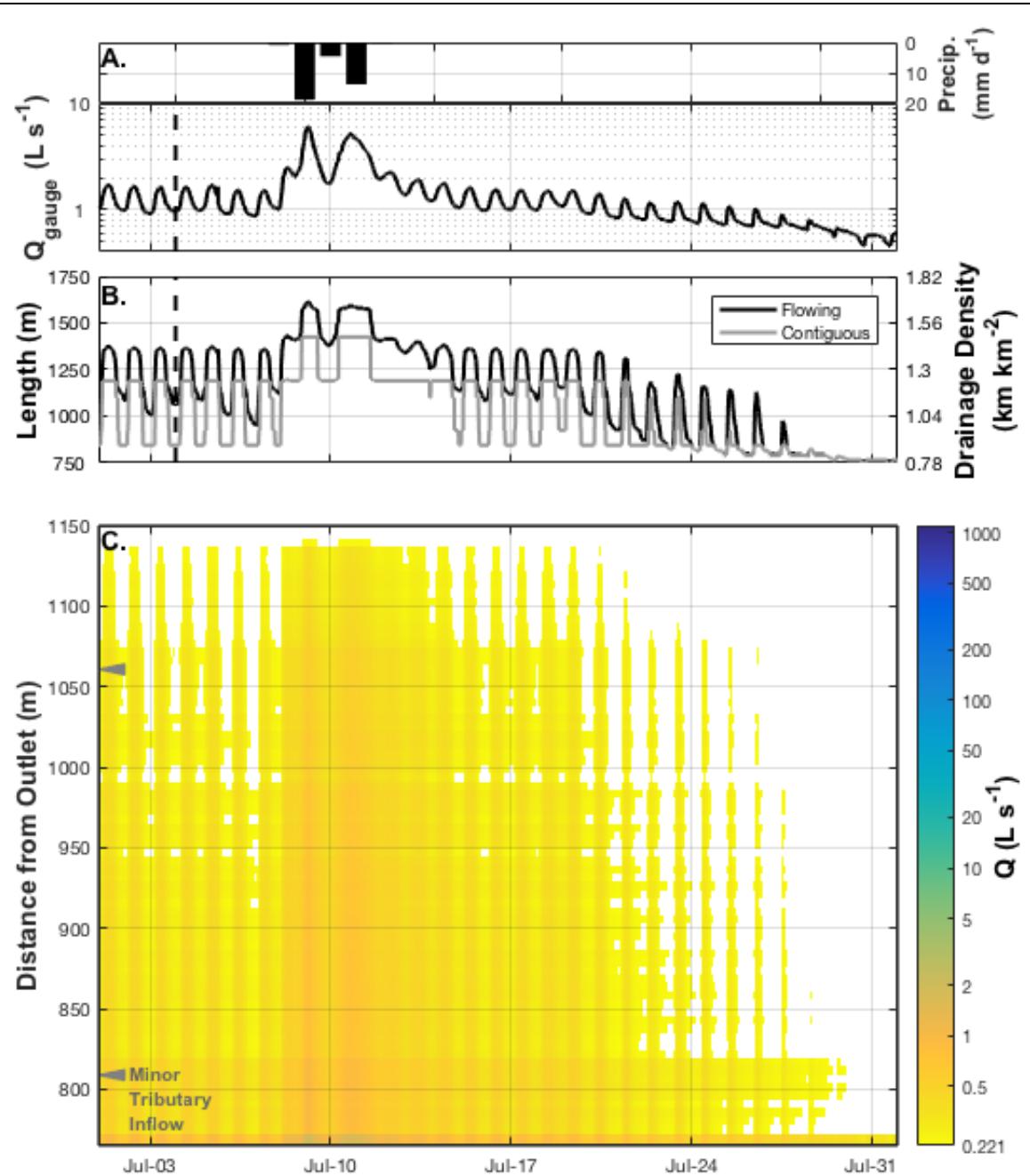


**Figure 6.** A) Discharge at the WS01 stream gauge and precipitation at the Primary Meteorological Station. Surface flow as a function of space and time in the Main Stem (panel B) and South Branch (panel C). Callouts in panel B highlight (1) surface flow under only the highest discharge conditions, (2) a relatively persistent location of disconnected surface flow high in the network, (3) a solid horizontal line marking a step-change in discharge at the confluence of the Main Stem and South Branch, (4) a nearly dry stream channel under seasonal low-flow conditions, and (5) rapid expansion in response to the first rain of Fall 2016. Unshaded (white) portions of

panels B and C represent places and times where  $Q_{sub,cap} > Q_{dv}$ , resulting in fully subsurface flow. The inset area is detailed in Figure 7. Black dashed lines in panel A correspond to those throughout Figs. 4-7.

904

905



**Figure 7.** A) WS01 gauge discharge during baseflow recession of water year 2016 and precipitation at the Primary Meteorological Station. B) Dynamics of river corridor length with surface flow and contiguous surface flow to the gauge. C) Spatial and temporal dynamics of surface flow in response to diurnal discharge fluctuations driven by evapotranspiration (Voltz et al., 2013; Wondzell et al., 2010).

2007) and a small precipitation event. The black dashed line corresponds to the right-most vertical line in Figs. 4-6.

906

907

## 908 5. Discussion

### 909 5.1 Network Expansion, Contraction, and Connectivity Reflect Interactions of 910 Hydrologic Forcing and Geologic Setting

911 Based on the simulated water year, we posit a systematic gradient from hydrologic  
912 to geologic control dominance as discharge decreases in the catchment. This finding  
913 agrees with empirical relationships developed by Godsey and Kirchner (2014),  
914 extending it to consideration through the full range of discharge conditions in the  
915 simulated water year.

916 The flowing length and contiguous length span relatively narrow ranges  
917 through the wet season (Oct. 2015 – Jul. 2016) despite  $Q_{gauge}$  varying across three  
918 orders of magnitude (Fig. 4A, 4B). Flowing length is about 1,800 m for  $Q_{gauge} = 8 \text{ L s}^{-1}$ ,  
919 increasingly to about 2,350 m for  $Q_{gauge} = 1,085 \text{ L s}^{-1}$ ; for  $Q_{gauge} > 8 \text{ L s}^{-1}$ , contiguous  
920 length is nearly constant at about 1,475 m (Fig. 8A). Under these high discharge  
921 conditions, the most important factors controlling the extent of the stream network  
922 are related to overall wet conditions. The hillslopes are contributing water to the  
923 valley bottom throughout the catchment and the valley bottom is saturated (i.e.,  $y_{sub}$   
924 =  $T$ ). Thus, new rainstorms simply increase delivery of water from the hillslopes to  
925 the river corridor which is then transferred to the stream channel because  $Q_{dv}$   
926 already exceeds  $Q_{sub,cap}$ . Further, spatial variation in  $Q_{sub,cap}$ , caused by variation in  
927 valley floor width ( $b_{sub}$ ) and longitudinal gradient ( $S_{valley}$ ), is small relative to  $Q_{dv}$ .  
928 Thus, the network extent is relatively insensitive to hydrologic dynamics.

929 The network responds dynamically to storm events under moderate flow  
930 conditions ( $1 < Q_{gauge} < 8 \text{ L s}^{-1}$ ; Fig. 8A). Under these moderate conditions,  $Q_{dv}$  is near  
931  $Q_{sub,cap}$ . Thus, precipitation delivers water to the catchment, increases  $Q_{dv}$  and  
932 temporarily extends the upper end of the flowing network. As a result, both the  
933 flowing and contiguous lengths are highly variable in this range of discharges. The  
934 variability in flowing length is primarily associated with the transient activation of  
935 locations draining less than 10 ha (Fig. 8B). Thus, 10 ha UAA is an apparent  
936 threshold for the initiation of surface flow. The probability of surface flow or  
937 contiguous flow increases rapidly as UAA increases from zero to this 10 ha  
938 threshold. Locations draining more than 10 ha have surface flow more than 70% of  
939 the year.

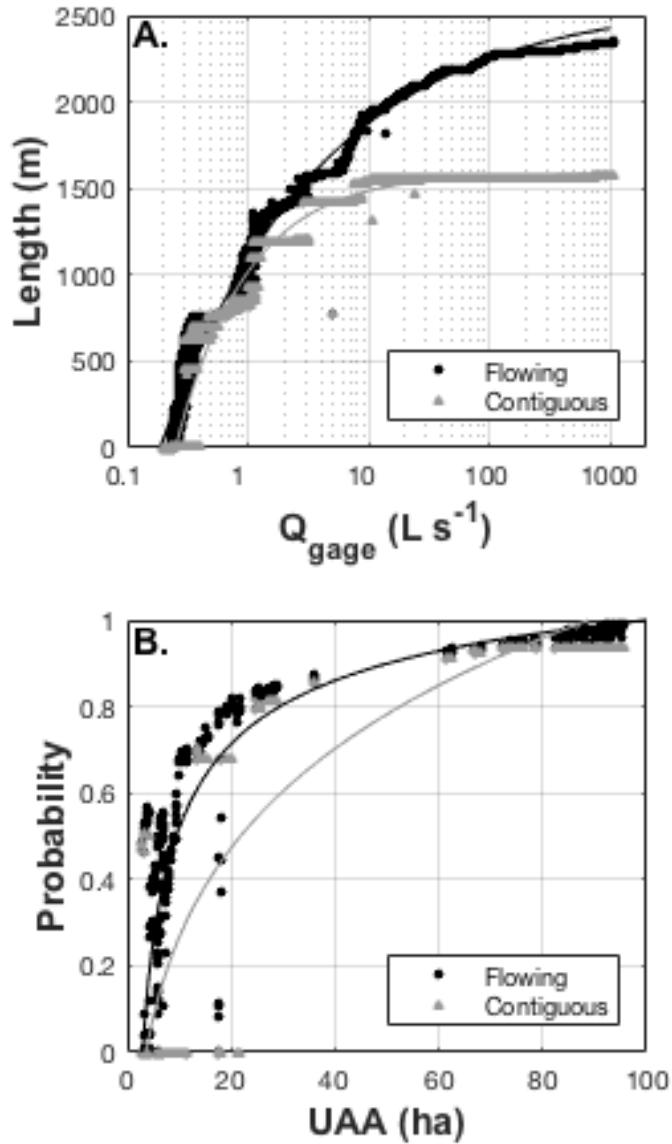
940 The rapid expansion of the flowing and contiguous network in response to  
941 storm events under moderate flow conditions demonstrates the importance of  
942 interacting geologic setting and hydrologic forcing under these conditions. Under  
943 any given hydrologic condition, the upper extent of the drainage network reflects  
944 locations where enough drainage area is accumulated for  $Q_{dv}$  to exceed  $Q_{sub,cap}$ .  
945 However, UAA is not accumulated uniformly with distance along the stream  
946 network. Rather, it shows sharp jumps at tributary junctions, and especially at the  
947 confluence between the South Branch and Main Stem. These tributary junctions,  
948 then, create sharp discontinuities in the relation between discharge and both

949 flowing and contiguous channel lengths (Fig. 8A). Thus the watershed topology – the  
950 arrangement of hillslope contributing areas and tributary locations – emerges as a  
951 dominant control, defining the locations and relative fluxes of water into the river  
952 corridor (as also found in mountain stream networks by Jencso et al., 2009).

953 The changes in  $Q_{sub,cap}$  due to valley morphology grow in importance as  $Q_{dv}$   
954 and  $Q_{sub,cap}$  become closer in magnitude (i.e.,  $Q_{dv} \approx Q_{sub,cap}$ ). This is readily seen in the  
955 model simulations at very low discharge conditions ( $Q_{gauge} < 1 \text{ L s}^{-1}$ ; Fig. 8A). During  
956 these low discharge conditions the river corridor becomes highly sensitive to  
957 hydrologic forcing. As such, even the relatively small diurnal fluctuations in  $Q_{dv}$  (Fig.  
958 7) cause extensive network expansion and contraction. At locations where the valley  
959 widens,  $Q_{sub,cap}$  increases and the stream network dries; where the valley narrows,  
960  $Q_{sub,cap}$  decreases and flow is reinitiated. Thus, geologic factors determining valley  
961 width and slope controls the network expansion and contraction in our model. In  
962 cases where heterogeneous K is considered, the variation of K across orders of  
963 magnitude may be the dominant control. Under these conditions, the storage of  
964 water in the catchment and its release as baseflow become important controls on  
965 when and where surface flow will emerge. Importantly, there is likely a condition of  
966 extremely low discharges in which this sensitivity would disappear because minor  
967 changes in down-valley discharge could be fully transported in the subsurface  
968 without activating the surface network (i.e., when  $Q_{dv} \ll Q_{sub,cap}$ ).

969 While the thresholds described above are specific to our study site, the  
970 general transition to increasing importance of geologic controls under low  
971 discharges adds a dynamic context to the perceptual model we posed in Section 2.  
972 We expect that the perceptual model and the systematic transitions described above  
973 will be consistent across mountain stream networks. While the specific discharge  
974 and area thresholds will vary depending upon, for example, flow generation  
975 processes from the hillslopes, the general behavior is consistent with the  
976 relationships already described in the literature (Godsey and Kirchner, 2014). Still,  
977 this study contributes a dynamic perspective on the activation of the flowing stream  
978 network, including variation in space. The geologic controls we use (slope, valley  
979 width and depth, hydraulic conductivity) to estimate down-valley capacity are not  
980 included in Costigan et al.'s (2016) framework, which is framed to more broadly  
981 identify the types of landscapes in which intermittent flow may occur. Instead, our  
982 work highlights spatial variation in specific process controls and their manifestation  
983 as patterns of stream intermittency.

984



**Figure 8.** A) Flowing and contiguous lengths as a function of discharge at the WS01 gauge, showing a threshold in contiguous length at about  $8 \text{ L s}^{-1}$ . B) The probability of surface flow (black) and contiguous surface flow to the gauge (grey) as a function of UAA, with a visible threshold near about 10 ha. For both panels, lines show best-fit power law regressions to aid in interpretation of model results.

## 5.2 A Critical Comparison of Transferability and Limitations of River Corridor Modeling Approaches

To date, assessment and prediction of hydrologic connectivity in the river corridor can be grouped into three main approaches (Table 2): empirical upscaling, distributed modeling, and reduced-complexity modeling. First, empirical studies use on-the-ground observation or instrumentation to directly measure hydrologic

993 connectivity at scales ranging from reaches (Covino et al., 2011; Mallard et al., 2014;  
994 Zimmer and McGlynn, 2017) to entire networks (Godsey and Kirchner, 2014; Jensen  
995 et al., 2017). Measurements are regressed against hydrologic or geologic parameters  
996 (e.g., stream discharge, upslope accumulated area) and used to estimate processes  
997 along the entire river corridor. Relatively few empirical studies have been published  
998 because they are field intensive, requiring substantial commitments of people's time  
999 to conduct field campaigns. Additionally, empirical relationships are not readily  
1000 transferable to other locations with different geologic settings, catchment  
1001 topologies, and hydrologic forcing. Still, these empirical studies directly observe the  
1002 processes of interest. Recent work by Arismendi et al. (2017) demonstrates the  
1003 potential for advanced statistical techniques (e.g., Hidden Markov Models) as  
1004 another strategy for upscaling empirical findings. Other researchers have used a  
1005 similar upscaling approach but replaced direct empirical observations with  
1006 simulation results from mechanistic models. In these efforts, data from numerical  
1007 studies are regressed against geologic or hydrologic characteristics, with  
1008 regressions used to describe hydrologic processes as a function of readily  
1009 observable properties of the landscape (e.g., Kiel and Cardenas, 2014). The major  
1010 strength of these approaches is their rapid scaling to the stream network and ability  
1011 to consider a variety of independent variables which thereby enables upscaling of  
1012 small-scale processes to entire stream networks (Gomez-Velez et al., 2015; Gomez-  
1013 Velez and Harvey, 2014; Kiel and Cardenas, 2014). These efforts assume that the  
1014 processes of interest can be reasonably predicted from some measure of landscape  
1015 form, but do not account for feedbacks that may occur among smaller-scale  
1016 processes nor limitations due to the larger-scale context of the process (Stonedahl et  
1017 al., 2013, 2010; Schmadel et al., 2017). To date, these studies lack any dynamic  
1018 processes.

1019 Fully distributed "top-down" hydrologic models can represent dynamic,  
1020 spatially explicit exchanges in the river corridor (Frei et al., 2009; Wondzell et al.,  
1021 2009a; Yu et al., 2016). Models in this class can represent processes across a suite of  
1022 interacting spatial and temporal scales. However, these models are limited by the  
1023 number of parameters required to inform the processes being simulated. As a result,  
1024 non-unique parameters prevent the identification of a single best solution (e.g.,  
1025 Beven, 1993, 2006; Beven and Binley, 1992). Such models suffer from over-  
1026 parameterization and a lack of the necessary data to parameterize the natural world  
1027 at all relevant scales for all of the processes that are represented.

1028 The reduced-complexity model derived and applied in this study is  
1029 concerned with mechanistic representation of the hydrologic processes perceived to  
1030 be dominant in the river corridor. As such, the model only includes the most  
1031 dominant processes identified in the perceptual model. Obviously, many processes  
1032 cannot be included – ones that are not considered dominant at our scale of interest  
1033 or for the purposes for which the model was conceived and constructed. One clear  
1034 example in this study is the parameterization of channel-unit scale exchange. In our  
1035 model we simplify exchange at scales smaller than the 5-m valley discretization into  
1036 the sum of the net up- or downwelling exchange flux and the  $Q_{subgrid}$  terms. Although  
1037 channel-unit scale exchange has been extensively studied (see review by Boano et  
1038 al., 2014), it is not a dominant mechanism for prediction of network expansion and

contraction at the scales considered here. Still, future improvements could add sub-discretization exchange parameterized by metrics derived from topography (e.g., streambed concavity; Anderson et al., 2005) or based on empirical relationships derived for bedforms and individual features (e.g., Gomez-Velez et al., 2015). These processes would need to be included if the model were applied to predict reactive transport, particularly where exchanges with short timescales are the most important for reactive processes. Likewise, improved representation of heterogeneity in the valley colluvium thickness ( $T$ ) and hydraulic conductivity ( $K$ ) would likely improve the ability of the model to reflect site-specific patterns in intermittency (Fleckenstein et al., 2007).

The model also greatly simplifies hillslope-valley floor-stream connectivity. We assumed that lateral inflows would proportional to UAA, and implicitly assume that these inflows will be instantaneously synchronized with  $Q_{gauge}$ . Several existing studies consider spatial and temporal variability in hillslope discharge to valley bottoms (e.g., Jencso et al., 2009; Smith et al., 2013) and could potentially be integrated to improve the representation of those inputs. We elected not to parameterize these processes, nor the many others that are omitted or simplified, because they would increase data needs and are not considered dominant processes in our perceptual model of network expansion and contraction. Of course, processes not included in the perceptual model may be incorrectly omitted. In this case, iterative advances of hypotheses, field observations, and mechanistic models are important to correct these deficiencies.

**Table 2: Summary of three approaches to simulate river corridor exchange at the scale of networks**

| Approach                       | Empirical Upscaling                                                                                                                                                                                                                                | Reduced-complexity modeling                                                                               | Distributed Modeling                                                                                                                                                                                                                             |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hydrologic Philosophy          | Observational, empiricism                                                                                                                                                                                                                          | Bottom-up, Dominant process                                                                               | Top-down                                                                                                                                                                                                                                         |
| Complexity and data needs      | Low                                                                                                                                                                                                                                                | Moderate                                                                                                  | Extensive                                                                                                                                                                                                                                        |
| Description                    | (1) conduct field or numerical experiments; (2) regress metrics describing process (e.g., fluxes) against measurable explanatory variable(s); (3) assign the resultant property of interest to river corridor; (4) aggregate along river corridor. | Representation of the most important processes at scales relevant to the hydrologic question of interest. | Fully-coupled representation of process dynamics spanning multiple spatial and temporal scales. Mechanistic predictions of hydrologic dynamics in the river corridor as a function of the full suite of geologic setting and hydrologic forcing. |
| Geologic Setting               | Independent variable(s) for regression                                                                                                                                                                                                             | Parameterization of physical properties                                                                   | Parameterization of physical properties                                                                                                                                                                                                          |
| Hydrologic Forcing             | Q may be used as an explanatory variable                                                                                                                                                                                                           | Time-variable lateral inflows are a function of $Q_{gauge}$                                               | Explicitly represented, based on observed meteorology                                                                                                                                                                                            |
| Physically-based               | No                                                                                                                                                                                                                                                 | Yes                                                                                                       | Yes                                                                                                                                                                                                                                              |
| Strengths                      | Based on site-specific observations                                                                                                                                                                                                                | Dynamic hydrology                                                                                         | Representation of interacting, multi-scale hydrologic processes; dynamic hydrology                                                                                                                                                               |
| Limitations                    | Steady-state hydrology                                                                                                                                                                                                                             | Omits processes perceived to be unimportant, which may reflect incorrect assumptions                      | Extensive parameterization                                                                                                                                                                                                                       |
| Examples in the river corridor | Covino et al., 2011; Gomez-Velez et al., 2015; Gomez-Velez and Harvey, 2014; Kiel and Cardenas,                                                                                                                                                    | Bencala and Walters, 1983; This study                                                                     | Frei et al., 2009; Wondzell et al., 2009a; Yu et al., 2016                                                                                                                                                                                       |

|  |                                                                                                                                      |  |  |
|--|--------------------------------------------------------------------------------------------------------------------------------------|--|--|
|  | 2014; Mallard et al., 2014;<br>Stewart et al., 2011;<br>Zimmer and McGlynn,<br>2017; Jensen et al., 2017;<br>Arismendni et al., 2017 |  |  |
|--|--------------------------------------------------------------------------------------------------------------------------------------|--|--|

1065

1066 **5.3 Potential Applications for Assessment of Connectivity in the River Corridor**

1067 “Although the fine scales of field and laboratory studies are best suited to identifying the  
1068 fundamental physical and biological processes, that understanding must be successfully  
1069 linked to cumulative effects at watershed to regional and continental scales.” Harvey and  
1070 Gooseff (2015)

1071

1072 Improved understanding of dynamic hydrologic connectivity along the river  
1073 corridor is increasingly of interest to water resource researchers and managers in  
1074 the U.S (e.g., Department of Defense, Environmental Protection Agency, 2014). In the  
1075 wake of the Rapanos v. U.S. (2006) decision, new tools are needed to quantify  
1076 connectivity along river networks and thus provide both a scientific and legal basis  
1077 for river corridor management. For example, Caruso (2015) proposes the  
1078 development of connectivity indices based on statistical descriptors of discharge,  
1079 topology, and topography, but lacks any mechanistic predictive power and requires  
1080 extensive data collection at each point to be evaluated. In contrast, this study  
1081 represents an advance in the application of hydrologic science to inform river  
1082 corridor management. The relatively low data needs enable this framework to be  
1083 transferable and readily implemented to assess connectivity along the river  
1084 corridor. As with any model, an initial implementation based on uncalibrated  
1085 parameter estimates would provide only a preliminary assessment of connectivity.  
1086 Site-specific parameterization, calibration, and validation would be required to use  
1087 this model as the sole basis for management efforts.

1088 In the Pacific Northwestern United States, the management of the river  
1089 corridor increasingly depends upon understanding channel network expansion and  
1090 contraction. One critical location in the river corridor is the “perennial initiation  
1091 point” or “perennial flow initiation point”, defined as the farthest upslope location  
1092 with flow during summer low-flow conditions (Jaeger et al, 2007). Current practices  
1093 attempt to construct empirical models to predict the locations of the perennial  
1094 initiation points as a function of drainage area, lithology, land use, and other readily  
1095 identifiable independent variables (e.g., Jaeger et al., 2007; Clark et al., 2008; Wood  
1096 et al., 2009). Comparisons among empirical predictions, reduced-complexity model  
1097 predictions, and distributed model predictions of intermittency will help develop an  
1098 improved basis for management in unobserved locations.

1099 We envision two immediate applications of the reduced complexity model  
1100 presented here. First, the model could be used to design field studies. Initial model  
1101 analyses could use feasible ranges of parameters (e.g., hydraulic conductivity,  
1102 sediment thickness) to determine key locations that appear to control the potential  
1103 expansion, contraction, and changes in connectivity along the river corridor.  
1104 Similarly, sensitivity analyses could be used to identify the parameters with the  
1105 greatest influence on model projections. These results could then be used to plan

1106 field campaigns that would improve estimates of key parameters or identify the  
1107 places and times when observations of intermittency or network extent may be  
1108 most important. This approach could help make the most efficient use of limited  
1109 resources that might be available for field work. Second, the model could be used as  
1110 the basis of heuristic studies scaling up processes from reaches to entire networks.  
1111 Indeed, the strategy of scaling reduced-complexity models to large networks—even  
1112 in cases when acceptable validation data are not readily available—is emerging as  
1113 an important area of research in the river corridor (e.g., Gomez-Velez et al., 2015).  
1114 Current models do not include parametrization for mountain streams; this  
1115 framework could form the basis of an upscaling strategy for high-gradient river  
1116 networks.

1117

## 1118 **6. Conclusions**

1119 The overall objective of this study was to predict dynamic hydrologic  
1120 connectivity along the river corridor. To achieve this objective, we selected a well-  
1121 studied headwater catchment to develop a perceptual model of river corridor  
1122 exchange. Building on this perceptual model we next developed a reduced-  
1123 complexity, mechanistic model to predict the dynamic hydrologic connectivity along  
1124 the river corridor. The model developed may be of broad interest for hydrologists  
1125 and water resource managers working in mountain river networks. While this study  
1126 was designed to calibrate the reduced-complexity model by leveraging detailed,  
1127 site-specific observations, we emphasize that the model was developed with  
1128 potential transferability in mind. The reduced-complexity model has modest data  
1129 requirements (stream discharge, catchment topography, reasonable estimates of  
1130 hydrogeologic parameters) to generate an initial prediction at the river network  
1131 scale. Calibration using site-specific observations of discharge, intermittency,  
1132 and/or solute tracer studies can be implemented to refine predictions at sites of  
1133 interest, as we demonstrate here. The framework is mechanistic, based on a state-  
1134 of-the-science understanding of the river corridor in a mechanistic way, and is  
1135 capable of simulating both hydrodynamics and solute transport. Additionally, the  
1136 model is dynamic, enabling the simulation of network expansion and contraction.  
1137 We expect the perceptual model detailed in this study is transferable to other  
1138 mountain stream networks, where streams reflect down-valley discharge in excess  
1139 of the down-valley capacity. Importantly, the reach-scale success of this approach  
1140 also highlights the role that heterogeneity along a valley controls along-network  
1141 connectivity. Variation in bedrock topography, hydraulic conductivity, and  
1142 individual morphologic features result in a more complex pattern of connectivity  
1143 that was captured by this model (Figs. S1, S2, S3). This result highlights the need for  
1144 future study of these processes as controls on intermittency of stream flows.

1145 In this study, we asked how geologic setting interacts with hydrologic forcing  
1146 to produce spatial and temporal patterns of connectivity along the river corridor?  
1147 We expected geologic controls to dominate periods of steady flow and hydrologic  
1148 controls to be important only during highly dynamic periods (e.g., storm event  
1149 responses). Instead, we found that geologic setting controls network dynamics  
1150 during relatively low discharge conditions, and that the spatial patterns of lateral  
1151 inflows arising from storage and release of water from hillslopes are dominant

1152 during relatively wet periods. In contrast, connectivity in the river corridor is highly  
1153 sensitive to hydrologic dynamics under the lowest flow conditions.  
1154

1155 **Acknowledgements**

1156 Data and facilities were provided by the H.J. Andrews Experimental Forest research  
1157 program, funded by the National Science Foundation's (NSF's) Long-Term Ecological  
1158 Research Program (DEB 1440409), US Forest Service Pacific Northwest Research  
1159 Station, and Oregon State University. Wondzell was supported by NSF Grant No. EAR  
1160 1417603. Ward was supported by NSF Grant No. EAR 1652293. Tools for solute  
1161 tracer time series analyses and spatial data processing were developed by Ward and  
1162 others with support provided in part by NSF Grant Nos. EAR 1505309 and EAR  
1163 1331906. Ward was also supported by the Indiana University Office of the Vice  
1164 Provost for Research and the Indiana Water Resources Research Center. This  
1165 research was also supported in part by Lilly Endowment, Inc., through its support  
1166 for the Indiana University (IU) Pervasive Technology Institute, and in part by the  
1167 Indiana METACyt Initiative. The Indiana METACyt Initiative at IU is also supported  
1168 in part by Lilly Endowment, Inc.

1169 Any opinions, findings, and conclusions or recommendations expressed in  
1170 this material are those of the authors and do not necessarily reflect the views of the  
1171 National Science Foundation, U.S. Forest Service, or Indiana University.  
1172 Precipitation, discharge, and topographic data are available from the H.J. Andrews  
1173 Experimental Forest Data Catalog (<http://andrewsforest.oregonstate.edu/>).  
1174 Topographic survey and in-stream specific conductance data are available upon  
1175 request to the corresponding author. The authors declare no conflicts of interest.

1176

1177

1178

1179 **References**

1180 Amatya, D., Campbell, J., Wohlgemuth, P., Elder, K., Sebestyen, S., Johnson, S.L.,  
1181 Keppeler, E., Adams, M., Caldwell, P., Misra, D., 2016. Hydrological Processes of  
1182 Reference Watersheds in Experimental Forests , USA, in: Amatya, D., Williams,  
1183 T., Bren, L., de Jong, C. (Eds.), *Forest Hydrology: Processes, Management and*  
1184 *Assessment*. CAB International, Oxfordshire, UK, pp. 219–239.

1185 Arismendi, I., Dunham, J., Heck, M., Schultz, L., Hockman-Wert, D., 2017. A Statistical  
1186 Method to Predict Flow Permanence in Dryland Streams from Time Series of  
1187 Stream Temperature. *Water* 9, 946. doi:10.3390/w9120946

1188 Bencala, K.E., Gooseff, M.N., Kimball, B.A., 2011. Rethinking Hyporheic Flow and  
1189 Transient Storage to Advance Understanding of Stream-Catchment  
1190 Connections. *Water Resour. Res.* 47, W00H03.

1191 Bencala, K.E., Walters, R.A., 1983. Simulation of solute transport in a mountain pool-  
1192 and-riffle stream: a transient storage model. *Water Resour. Res.* 19, 718–724.  
1193 doi:10.1029/WR019i003p00718

1194 Beven, K.J., 2006. A manifesto for the equifinality thesis. *J. Hydrol.* 320, 18–36.

1195 Beven, K.J., 1993. Prophecy, reality and uncertainty in distributed hydrological  
1196 modelling. *Adv. Water Resour.* 16, 41–51. doi:10.1016/0309-1708(93)90028-E

1197 Beven, K.J., Binley, A.M., 1992. The future of distributed models: model calibration  
1198 and uncertainty prediction. *Hydrol. Process.* 6, 279–298.  
1199 doi:10.1002/hyp.3360060305

1200 Boano, F., Harvey, J.W., Marion, A., Packman, A.I., Revelli, R., Ridolfi, L., Wörman, A.,  
1201 2014. Hyporheic flow and transport processes: Mechanisms, models, and  
1202 biogeochemical implications. *Rev. Geophys.* 52, 2012RG000417.  
1203 doi:10.1002/2012RG000417.

1204 Boulton, A.J., Findlay, S., Marmonier, P., Stanley, E.H., Valett, H.M., 1998. The  
1205 functional significance of the hyporheic zone in streams and rivers. *Annu. Rev.*  
1206 *Ecol. Syst.* 29, 59–81.

1207 Bredehoeft, J.D., Konikow, L.F. 1993. Ground water models: validate or invalidate.  
1208 *Ground Water* 31 (2), 178–179.

1209 Brunke, M., Gonser, T., 1997. The ecological significance of exchange processes  
1210 between rivers and groundwater. *Freshw. Biol.* 37, 1–33.

1211 Burt, T.P., McDonnell, J.J., 2015. Whither field hydrology? The need for discovery  
1212 science and outrageous hydrological hypotheses. *Water Resour. Res.* 51.  
1213 doi:10.1016/0022-1694(68)90080-2

1214 Cardenas, M.B., Zlotnik, V.A., 2003. Three-dimensional model of modern channel  
1215 bend deposits. *Water Resour. Res.* 39, 1141.

1216 Caruso, B.S., 2015. A hydrologic connectivity index for jurisdictional analysis of  
1217 headwater streams in a montane watershed. *Environ. Monit. Assess.* 187.  
1218 doi:10.1007/s10661-015-4862-2

1219 Castro, J., Jackson, P., 2001. Bankfull discharge recurrence intervals and regional  
1220 hydraulic geometry relationships.. *J. Am. Water Resour. Assoc.* 37, 1249–1262.

1221 Castro, N.M., Hornberger, G.M., 1991. Surface-subsurface water interactions in an  
1222 alluviated mountain stream channel. *Water Resour. Res.* 27, 1613–1621.

1223 Clarke, S.E., Burnett, K.M., Miller, D.J., 2008. Modeling streams and hydrogeomorphic  
1224 attributes in Oregon from digital and field data. *J. Am. Water Resour. Assoc.* 44,

1225 459–477. doi:10.1111/j.1752-1688.2008.00175.x  
1226 Corson-Rikert, H.A., Wondzell, S.M., Haggerty, R., Santelmann, M. V, 2016. Carbon  
1227 dynamics in the hyporheic zone of a headwater mountain stream in the Cascade  
1228 Mountains, Oregon. *Water Resour. Res.* 52, 7556–7576.  
1229 doi:10.1029/2008WR006912.M  
1230 Costigan, K. H., Jaeger, K. L., Goss, C. W., Fritz, K. M., and Goebel, P. C., 2016.  
1231 Understanding controls on flow permanence in intermittent rivers to aid  
1232 ecological research: integrating meteorology, geology and land cover.  
1233 *Ecohydrol.*, 9: 1141–1153. doi: 10.1002/eco.1712.  
1234 Covino, T.P., McGlynn, B.L., Mallard, J., 2011. Stream-groundwater exchange and  
1235 hydrologic turnover at the network scale. *Water Resour. Res.* 47, W12521.  
1236 D'Angelo, D.J., Webster, J.R., Gregory, S. V, Meyer, J.L., Angelo, A.D.J.D., Webster, J.R.,  
1237 Gregory, S. V, Meyer, J.L., 1993. Transient Storage in Appalachian and Cascade  
1238 Mountain Streams as Related to Hydraulic Characteristics. *J. North Am. Benthol.*  
1239 Soc. 12, 223–235. doi:10.2307/1467457  
1240 Department of Defense, Environmental Protection Agency, 2014. Definition of  
1241 “Waters of the United States” Under the Clean Water Act. *Fed. Regist.* 79,  
1242 22188–22247.  
1243 Dyrness, C.T., 1969. Hydrologic properties of soils on three small watersheds in the  
1244 western Cascades of Oregon. *USDA For. Serv. Res. Note PNW-111*, SEP 1969. 17  
1245 P.  
1246 Elliott, A.H., Brooks, N.H., 1997a. Transfer of nonsorbing solutes to a streambed with  
1247 bed forms: Laboratory experiments. *Water Resour. Res.* 33, 137–151.  
1248 Elliott, H., Brooks, N.H., 1997b. Transfer of nonsorbing solutes to a streambed with  
1249 bed forms : Theory. *Water Resour. Res.* 33, 123–136.  
1250 Fernald, A.G., Wigington, P.J., Landers, D., 2001. Transient storage and hyporheic  
1251 flow along the Willamette River, Oregon: Field measurements and model  
1252 estimates. *Water Resour. Res.* 37, 1681–1694.  
1253 Fleckenstein, J.H., Niswonger, R.G., Fogg, G.E., 2006. River-aquifer interactions,  
1254 geologic heterogeneity, and low-flow management. *Ground Water* 44: 837-852.  
1255 Frei, S., Fleckenstein, J.H., Kollet, S.J., Maxwell, R.M., 2009. Patterns and dynamics of  
1256 river-aquifer exchange with variably-saturated flow using a fully-coupled  
1257 model. *J. Hydrol.* 375, 383–393. doi:10.1016/j.jhydrol.2009.06.038  
1258 Godsey, S.E., Kirchner, J.W., 2014. Dynamic, discontinuous stream networks:  
1259 Hydrologically driven variations in active drainage density, flowing channels  
1260 and stream order. *Hydrol. Process.* 28, 5791–5803. doi:10.1002/hyp.10310  
1261 Gomez-Velez, J.D., Harvey, J.W., 2014. A hydrogeomorphic river network model  
1262 predicts where and why hyporheic exchange is important in large basins 1–10.  
1263 doi:10.1002/2014GL061099  
1264 Gomez-Velez, J.D., Harvey, J.W., Cardenas, M.B., Kiel, B., 2015. Denitrification in the  
1265 Mississippi River network controlled by flow through river bedforms. *Nat.*  
1266 *Geosci.* 8, 1–8. doi:10.1038/ngeo2567  
1267 Gooseff, M.N., Anderson, J.K., Wondzell, S.M., LaNier, J., Haggerty, R., 2006. A  
1268 modelling study of hyporheic exchange pattern and the sequence, size, and  
1269 spacing of stream bedforms in mountain stream networks, Oregon, USA.  
1270 *Hydrol. Process.* 20, 2443–2457.

1271 Grayson, R., Bloschl, G. (eds), 2000. *Spatial Patterns in Catchment Hydrology: Observations and Modeling*. Cambridge University Press, Cambridge, UK.

1272 Gregory, K.J., Walling, D.E., 1968. the Variation of Drainage Density Within a Catchment. *Int. Assoc. Sci. Hydrol. Bull.* 13, 61–68.  
doi:10.1080/0262666809493583

1273 Harvey, J.W., Bencala, K.E., 1993. The effect of streambed topography on surface-subsurface water exchange in mountain catchments. *Water Resour. Res.* 29, 89–98.

1274 Harvey, J.W., Gooseff, M.N., 2015. River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins. *Water Resour. Res. Special Issue*, 1–30. doi:10.1002/2015WR017617

1275 Henshaw, D., Creel, C. 2005. Andrews Experimental Forest Small Watershed Flume History. Available online at: [https://andrewsforest.oregonstate.edu/sites/default/files/lter/data/studies/h04/weir\\_descriptions.pdf](https://andrewsforest.oregonstate.edu/sites/default/files/lter/data/studies/h04/weir_descriptions.pdf). Accessed on 22-June-2017.

1276 Jackman, A.P., Walters, R.A., Kennedy, V.C., 1984. Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble-bed stream in Santa Clara County, California, U.S.A.: 2. Mathematical modeling. *J. Hydrol.* 75, 111–141.

1277 Jaeger, K.L., Montgomery, D.R., Bolton, S.M., 2007. Channel and perennial flow initiation in headwater streams: Management implications of variability in source-area size. *Environ. Manage.* 40, 775–786. doi:10.1007/s00267-005-0311-2

1278 Jencso, K.G., McGlynn, B.L., Gooseff, M.N., Wondzell, S.M., Bencala, K.E., Marshall, L.A., 2009. Hydrologic connectivity between landscapes and streams: Transferring reach-and plot-scale understanding to the catchment scale. *Water Resour. Res.* 45.

1279 Jensen, C.K., McGuire, K.J., Prince, P.S., 2017. Headwater stream length dynamics across four physiographic provinces of the Appalachian Highlands. *Hydrol. Process.* 31, 3350–3363. doi:10.1002/hyp.11259

1280 Kasahara, T., Wondzell, S.M., 2003. Geomorphic controls on hyporheic exchange flow in mountain streams. *Water Resour. Res.* 39, 1005.

1281 Kaser, D.H., Binley, A.M., Heathwaite, A.L., Krause, S., 2009. Spatio-temporal variations of hyporheic flow in a riffle-step-pool sequence. *Hydrol. Process.* 23.

1282 Kennedy, V.C., Jackman, A.P., Zand, S.M., Zellweger, G.W., Avanzino, R.J., Walters, R.A., 1984. Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble-bed stream in Santa Clara County, California, USA: 2. Mathematical modeling. *J. Hydrol.* 75, 67–110.

1283 Kiel, B., Cardenas, M., 2014. Lateral hyporheic exchange throughout the Mississippi River network. *Nat. Geosci.* 7, 413–417. doi:10.1038/ngeo2157

1284 Krause, S., Hannah, D.M., Fleckenstein, J.H., Heppell, C.M., Kaeser, D., Pickup, R., Pinay, G., Robertson, A.L., Wood, P.J., 2011. Inter-disciplinary perspectives on processes in the hyporheic zone. *Ecohydrology* 4, 481–499.

1285 Mallard, J., McGlynn, B., Covino, T., 2014. Lateral inflows, stream-groundwater exchange, and network geometry influence streamwater composition. *Water Resour. Res.* 50, 4603–4623. doi:10.1002/2013WR014222

1317 Malzone, J.M., Lowry, C.S., Ward, A.S., 2016. Response of the hyporheic zone to  
1318 transient groundwater fluctuations on the annual and storm event time scales.  
1319 *Water Resour. Res.* 52, 1–20. doi:10.1002/2014WR015716

1320 McGlynn, B.L., McDonnell, J.J., Brammer, D.D., 2002. A review of the evolving  
1321 perceptual model of hillslope flowpaths at the Maimai catchments, New  
1322 Zealand 257.

1323 McGlynn, B.L., McDonnell, J.J., Shanley, J., Kendall, C., 1999. Riparian zone flowpath  
1324 dynamics during snowmelt in a small headwater catchment. *J. Hydrol.* 222, 75–  
1325 92. doi:10.1016/S0022-1694(99)00102-X

1326 McGuire, K.J., McDonnell, J.J., Weiler, M., Kendall, C., McGlynn, B.L., Welker, J.M.,  
1327 Seibert, J., 2005. The role of topography on catchment-scale water residence  
1328 time. *Water Resour. Res.* 41, W05002.

1329 Merill, L., Tonjes, D.J., 2014. A Review of the Hyporheic Zone, Stream Restoration,  
1330 and Means to Enhance Denitrification. *Crit. Rev. Environ. Sci. Technol.* 44,  
1331 2337–2379. doi:10.1080/10643389.2013.829769

1332 Oreskes, N., Shrader-Frechette, K., Belitz, K., 1994. Verification, Validation, and  
1333 Confirmation of Numerical Models in the Earth Sciences. *Science.* 263, 641–646.

1334 Packman, A.I., Bencala, K.E., 2000. Modeling surface-subsurface hydrological  
1335 interactions, in: Jones, J.B., Mulholland, P.J. (Eds.), *Streams and Ground Waters.*  
1336 pp. 45–80.

1337 Packman, A.I., Salehin, M., 2003. Relative roles of stream flow and sedimentary  
1338 conditions in controlling hyporheic exchange. *Hydrobiologia* 494, 291–297.

1339 Packman, A.I., Brooks, N.H., 2001. Hyporheic exchange of solutes and colloids with  
1340 moving bed forms. *Water Resour. Res.* 37, 2591–2605.

1341 Payn, R.A., Gooseff, M.N., McGlynn, B.L., Bencala, K.E., Wondzell, S.M., 2009. Channel  
1342 water balance and exchange with subsurface flow along a mountain headwater  
1343 stream in Montana, United States. *Water Resour. Res.* 45, W11427.

1344 Poeter, E., 2007. All Models are Wrong, How Do We Know Which are Useful? *Ground  
1345 Water* 45, 390–391. doi:10.1111/j.1745-6584.2007.00350.x

1346 Rapanos v. United States. 547 US 715, (2006).

1347 Runkel, R.L. 1998. One-dimensional Transport with Inflow and Storage (OTIS): A  
1348 Solute Transport Model for Streams and Rivers. US Dept. of the Interior, US  
1349 Geological Survey; Information Services.

1350 Ryan, R.J., Packman, A.I., Welty, C., 2004. Estimation of solute transport and storage  
1351 parameters in a stream with anthropogenically produced unsteady flow and  
1352 industrial bromide input. *Water Resour. Res.* 40, W01602.

1353 Salehin, M., Packman, A.I., Paradis, M., 2004. Hyporheic exchange with  
1354 heterogeneous streambeds: laboratory experiments and modeling. *Water  
1355 Resour. Res.* 40, W11504.

1356 Sawyer, A.H., Cardenas, M.B., 2009. Hyporheic flow and residence time distributions  
1357 in heterogeneous cross-bedded sediment. *Water Resour. Res.* 45, W08406.

1358 Schmadel, N. M., B. T. Neilson, J. E. Heavilin, D. K. Stevens, and A. Wörman, 2014.  
1359 The influence of spatially variable stream hydraulics on reach scale transient  
1360 storage modeling, *Water Resour. Res.*, 50, 9287–9299,  
1361 doi:10.1002/2014WR015440.

1362 Schmadel, N.M., Ward, A.S., Lowry, C.S., Malzone, J.M., 2016. Hyporheic exchange

1363 controlled by dynamic hydrologic boundary conditions. *Geophys. Res. Lett.* 1-  
1364 10. doi:10.1002/2016GL068286

1365 Schmadel, N. M., A. S. Ward, S. M. Wondzell, 2017. Hydrologic controls on hyporheic  
1366 exchange in a mountain stream, *Water Resour. Res.* 53, 6260-6278.

1367 Schwanghart, W., Kuhn, N.J., 2010. TopoToolbox: A set of Matlab functions for  
1368 topographic analysis. *Environ. Model. Softw.* 25, 770-781.  
1369 doi:10.1016/j.envsoft.2009.12.002

1370 Schwanghart, W., Scherler, D., 2014. Short Communication: TopoToolbox 2 -  
1371 MATLAB-based software for topographic analysis and modeling in Earth  
1372 surface sciences. *Earth Surf. Dyn.* 2, 1-7. doi:10.5194/esurf-2-1-2014

1373 Sivapalan, M., 2003. Process complexity at hillslope scale, process simplicity at the  
1374 watershed scale: is there a connection? *Hydrol. Process.* 17, 1037-1041.  
1375 doi:10.1002/hyp.5109

1376 Smith, T., Marshall, L., McGlynn, B., Jencso, K., 2013. Using field data to inform and  
1377 evaluate a new model of catchment hydrologic connectivity. *Water Resour. Res.*  
1378 49, 6834-6846. doi:10.1002/wrcr.20546

1379 Stanford, J.A., Ward, J. V., 1993. An ecosystem perspective of alluvial rivers:  
1380 Connectivity and the hyporheic corridor. *J. North Am. Benthol. Soc.* 12, 48-60.

1381 Stewart, R.J., Wollheim, W.M., Gooseff, M.N., Briggs, M. a., Jacobs, J.M., Peterson, B.J.,  
1382 Hopkinson, C.S., 2011. Separation of river network-scale nitrogen removal  
1383 among the main channel and two transient storage compartments. *Water  
1384 Resour. Res.* 47, W00J10.

1385 Stonedahl, S.H., Harvey, J.W., Packman, A.I., 2013. Interactions between hyporheic  
1386 flow produced by stream meanders, bars, and dunes. *Water Resour. Res.* 49,  
1387 5450-5461. doi:10.1002/wrcr.20400

1388 Stonedahl, S.H., Harvey, J.W., Wörman, A., Salehin, M., Packman, A.I., 2010. A  
1389 multiscale model for integrating hyporheic exchange from ripples to meanders.  
1390 *Water Resour. Res.* 46, W12539. doi:10.1029/2009WR008865

1391 Swanson, F.J., James, M.E., 1975. Geology and geomorphology of the H.J. Andrews  
1392 Experimental Forest, Western Cascades, Oregon. Pacific Northwest Forest and  
1393 Range Experiment Station, Forest Service, U.S. Dept. of Agriculture. Research  
1394 Paper PNW-188.

1395 Swanson, F.J., Jones, J.A., 2002. Geomorphology and hydrology of the HJ Andrews  
1396 experimental forest, Blue River, Oregon. *F. Guid. to Geol. Process. Cascadia* 36,  
1397 289-314.

1398 US EPA, 2015. Connectivity of Streams & Wetlands to Downstream Waters: A  
1399 Review and Synthesis of the Scientific Evidence (Final Report). Washington, DC.  
1400 doi:10.1017/CBO9781107415324.004

1401 Vaux, W.G., 1968. Intragravel flow and interchange of water in a streambed. *Fish.  
1402 Bull.* 66, 479.

1403 Voltz, T.J., Gooseff, M.N., Ward, A.S., Singha, K., Fitzgerald, M., Wagener, T., 2013.  
1404 Riparian hydraulic gradient and stream-groundwater exchange dynamics in  
1405 steep headwater valleys. *J. Geophys. Res. Earth Surf.* 118, 953-969.  
1406 doi:10.1002/jgrf.20074

1407 Wagener, T., Sivapalan, M., Troch, P., Woods, R., 2007. Catchment Classification and  
1408 Hydrologic Similarity. *Geogr. Compass* 1, 901-931. doi:10.1111/j.1749-

1409 8198.2007.00039.x  
1410 Ward, A.S., Fitzgerald, M., Gooseff, M.N., Voltz, T.J., Binley, A.M., Singha, K., 2012.  
1411 Hydrologic and geomorphic controls on hyporheic exchange during base flow  
1412 recession in a headwater mountain stream. *Water Resour. Res.* 48, W04513.  
1413 Ward, A.S., Gooseff, M.N., Fitzgerald, M., Voltz, T.J., Singha, K., 2014. Spatially  
1414 distributed characterization of hyporheic solute transport during baseflow  
1415 recession in a headwater mountain stream using electrical geophysical imaging.  
1416 *J. Hydrol.* 517, 362–377. doi:10.1016/j.jhydrol.2014.05.036  
1417 Ward, A.S., Gooseff, M.N., Johnson, P.A., 2011. How can subsurface modifications to  
1418 hydraulic conductivity be designed as stream restoration structures? Analysis  
1419 of Vaux's conceptual models to enhance hyporheic exchange. *Water Resour.*  
1420 *Res.* 47, W08512. doi:10.1029/2010wr010028  
1421 Ward, A.S., Gooseff, M.N., Voltz, T.J., Fitzgerald, M., Singha, K., Zarnetske, J.P., 2013a.  
1422 How does rapidly changing discharge during storm events affect transient  
1423 storage and channel water balance in a headwater mountain stream? *Water*  
1424 *Resour. Res.* 49, 5473–5486. doi:10.1002/wrcr.20434  
1425 Ward, A.S., Payn, R.A., Gooseff, M.N., McGlynn, B.L., Bencala, K.E., Kelleher, C. A.,  
1426 Wondzell, S.M., Wagener, T., 2013b. Variations in surface water - ground water  
1427 interactions along a headwater mountain stream: Comparisons between  
1428 transient storage and water balance analyses. *Water Resour. Res.* 3359-3374.  
1429 doi:10.1002/wrcr.20148  
1430 Ward, A.S., Schmadel, N.M., Wondzell, S.M., Harman, C.J., Gooseff, M.N., Singha, K.,  
1431 2016. Hydrogeomorphic controls on hyporheic and riparian transport in two  
1432 headwater mountain streams during base flow recession. *Water Resour. Res.*  
1433 52, 1479–1497.  
1434 Ward, A.S., Kelleher, C.A., Mason, S.J.K., Wagener, T., McIntyre, N., McGlynn, B.,  
1435 Runkel, R.L., Payn, R.A. 2017. A software tool to assess uncertainty in transient-  
1436 storage model parameters using Monte Carlo simulations. *Freshwater Sci.* 36,  
1437 195-217.  
1438 Whiting, J.A., Godsey, S.E., 2016. Discontinuous headwater stream networks with  
1439 stable flowheads, Salmon River basin, Idaho. *Hydrol. Process.* 30, 2305–2316.  
1440 doi:10.1002/hyp.10790  
1441 Wood, M.S., Rea, A., Skinner, K.D., Hortness, J.E., 2009. Estimating Locations of  
1442 Perennial Streams in Idaho Using a Generalized Least-Squares Regression  
1443 Model of 7-Day , 2-Year Low Flows: U.S. Geological Survey Scientific  
1444 Investigations Report 2009-5015.  
1445 Wondzell, S.M., 2011. The role of the hyporheic zone across stream networks.  
1446 *Hydrol. Process.* 25, 3525–3532. doi:10.1002/hyp.8119  
1447 Wondzell, S.M., 2006. Effect of morphology and discharge on hyporheic exchange  
1448 flows in two small streams in the Cascade Mountains of Oregon, USA. *Hydrol.*  
1449 *Process.* 20, 267–287.  
1450 Wondzell, S.M., Gooseff, M.N., 2014. Geomorphic Controls on Hyporheic Exchange  
1451 Across Scales: Watersheds to Particles, in: Schroder, J., Wohl, E. (Eds.), *Treatise*  
1452 *on Geomorphology*. Academic Press, San Diego, CA, pp. 203–218.  
1453 Wondzell, S.M., Gooseff, M.N., McGlynn, B.L., 2010. An analysis of alternative  
1454 conceptual models relating hyporheic exchange flow to diel fluctuations in

1455                    discharge during baseflow recession. *Hydrol. Process.* 24, 686–694.

1456 Wondzell, S.M., Gooseff, M.N., McGlynn, B.L., 2007. Flow velocity and the hydrologic  
1457                    behavior of streams during baseflow. *Geophys. Res. Lett.* 34, L24404.  
1458                    doi:10.1029/2007GL031256

1459 Wondzell, S.M., LaNier, J., Haggerty, R., 2009a. Evaluation of alternative groundwater  
1460                    flow models for simulating hyporheic exchange in a small mountain stream. *J.*  
1461                    *Hydrol.* 364, 142–151.

1462 Wondzell, S.M., LaNier, J., Haggerty, R., Woodsmith, R.D., Edwards, R.T., 2009b.  
1463                    Changes in hyporheic exchange flow following experimental wood removal in a  
1464                    small, low-gradient stream. *Water Resour. Res.* 45, W05406.

1465 Wondzell, S.M., Swanson, F.J., 1996. Seasonal and storm dynamics of the hyporheic  
1466                    zone of a 4 th-order mountain stream. 2: Nitrogen cycling. *J. North Am. Benthol.*  
1467                    *Soc.* 15, 3–19.

1468 Wörman, A., Packman, A.I., Jonsson, K., Wörman, A., Johansson, H., 2002. Effect of  
1469                    flow-induced exchange in hyporheic zones on longitudinal transport of solutes  
1470                    in streams and rivers. *Water Resour. Res.* 38, 1–15.

1471 Wright, K.K., Baxter, Li, J.L., 2005. Restricted hyporheic exchange in an alluvial river  
1472                    system: implications for theory and management. *J. North Am. Benthol. Soc.* 24,  
1473                    447–460.

1474 Yu, X., Duffy, C., Gil, Y., Leonard, L., Bhatt, G., Thomas, E., 2016. Cyber-Innovated  
1475                    Watershed Research at the Shale Hills Critical Zone Observatory. *IEEE Syst. J.*  
1476                    10, 1239–1250. doi:10.1109/JSYST.2015.2484219

1477 Zimmer, M.A., McGlynn, B.L., 2017. Ephemeral and intermittent runoff generation  
1478                    processes in a low relief, highly weathered catchment. *Water Resour. Res.* 53,  
1479                    7055–7077. doi:10.1002/2016WR019742

1480

1481