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Abstract:

Headwater stream networks expand and contract in response to changes in stream
discharge. The changes in the extent of the stream network are also controlled by
geologic or geomorphic setting — some reaches go dry even under relatively wet
conditions, other reaches remain flowing under relatively dry conditions. While
such patterns are well recognized, we currently lack tools to predict the extent of
the stream network and the times and locations where the network is dry within
large river networks. Here, we develop a perceptual model of the river corridor in a
headwater mountainous catchment, translate this into a reduced-complexity
mechanistic model, and implement the model to examine connectivity and network
extent over an entire water year. Our model agreed reasonably well with our
observations, showing that the extent and connectivity of the river network was
most sensitive to hydrologic forcing under the lowest discharges (Qgauge < 1 L s°1),
that at intermediate discharges (1 L s < Qgauge < 1 L s°1) the extent of the network
changed dramatically with changes in discharge, and that under wet conditions
(Qgauge > 1 L s'1) the extent of the network was relatively insensitive to hydrologic
forcing and was instead determined by the network topology. We do not expect that
the specific thresholds observed in this study would be transferable to other
catchments with different geology, topology, or hydrologic forcing. However, we
expect that the general pattern should be robust: the dominant controls will shift
from hydrologic forcing to geologic setting as discharge increases.. Further, our
method is readily transferable as the model can be applied with minimal data
requirements (a single stream gauge, a digital terrain model, and estimates of
hydrogeologic properties) to estimate flow duration or connectivity along the river
corridor in unstudied catchments. As the available information increases, the model
could be better calibrated to match site-specific observations of network extent,
locations of dry reaches, or solute break through curves as demonstrated in this
study. Based on the low initial data requirements and ability to later tune the model
to a specific site, we suggest example applications of this parsimonious model that
may prove useful to both researchers and managers.

1. Introduction

The emerging river corridor perspective considers the surface stream, hyporheic
zone, riparian zone, hillslope, and aquifer as a continuum, exchanging water, solutes,
energy, and materials across a range of spatial and temporal scales (e.g., Harvey and
Gooseff, 2015). Empirical studies have addressed dynamic connectivity along the
river corridor at the network scale (e.g., Godsey and Kirchner, 2014, Gregory and
Walling, 1968; Costigan et al., 2016), while others have documented the changes in
ecosystem services and functions that result from connectivity in the riparian
corridor (Boulton et al., 1998; Brunke and Gonser, 1997; Krause et al., 2011; Merill
and Tonjes, 2014; US EPA, 2015). However, despite empirical advances, we lack an
accurate framework to predict the temporal dynamics of hydrologic connectivity
along the river corridor. Thus, an overarching objective of this study is to predict
spatial and temporal patterns of hydrologic connectivity along the river corridor at
the network scale. To achieve this objective, we synthesize our understanding of
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how hydrologic forcing and geologic setting interact to control dynamic exchange
processes in the river corridor, convert that understanding into a numerical model
simulating the dominant processes in the river corridor, and implement the model
at the network scale using readily available data. As a result, we derive and calibrate
a mechanistic representation of dynamic hydrologic connectivity along the river
corridor.

Hydrologic connectivity between the river corridor and its catchment, along
the length of the river corridor, results from the geologic setting interacting with
hydrologic forcing (Ward et al,, 2016, 2014, 2012). The geologic setting is static at
the time scales of interest here and includes the geologic constraint of the valley
(e.g., D’Angelo et al., 1993; Stanford and Ward, 1993; Ward et al., 2016, 2012;
Wondzell, 2006; Wright et al., 2005), channel and streambed morphology (Kasahara
and Wondzell, 2003; see also review by Boano et al,, 2014), and multi-scale
heterogeneity in hydraulic conductivity of the valley floor sediment (e.g., Packman
and Salehin, 2003; Ryan et al., 2004; Salehin et al., 2004; Sawyer and Cardenas,
2009; Vaux, 1968; Ward et al., 2011). Hydrologic forcing includes the lateral inflows
to the valley bottom from either hillslope sources or from deeper groundwater and
stream discharge - all of which vary with time and can thus lead to highly dynamic
changes in connectivity. In mountain streams, the steep valley walls constrain the
river corridor such that the entire valley bottom (stream, hyporheic zone, riparian
zone) often can be collectively considered the river corridor.

Interactions between hydrologic forcing and geologic setting give rise to
river corridor exchange across a wide range of spatial and temporal scales, driven
by mechanisms including (after Kaser et al., 2009) turnover exchange (e.g., Elliott
and Brooks, 1997a, 1997b; Packman et al., 2001), diffusion of turbulent momentum
into the streambed (e.g., Malzone et al., 2016; Packman and Bencala, 2000),
hydrostatically-driven exchange (e.g., Gooseff et al., 2006; Harvey and Bencala,
1993; Kasahara and Wondzell, 2003), and hydrodynamic pumping into the
streambed and banks (e.g., Elliott and Brooks, 1997a, 1997b; Wérman et al., 2002).

Most studies examining exchange processes either assess one or just a small
number of potential controls and most commonly within a short reach during
baseflow conditions. Rarely are multiple controls studied over larger spatial and
temporal scales. Consequently, the influence of individual factors are well
understood at small spatial scales, but substantial challenges remain in aggregating
the effects of multiple factors within a very long reach or an entire networks - the
critical scales at which resources are managed and predictions are desired (Ward,
2015; Harvey and Gooseff, 2015).

The most widely applied strategy to translate process understanding in the
river corridor to the reach or network scale uses reduced-complexity modeling.
Bencala and Walters (1983) first developed their transient storage model, which
was fit to solute breakthrough curves, to estimate advection, dispersion, and
transient storage at the reach scale. This reduced-complexity modeling strategy
eschewed the extensive parameterization required for distributed hydrologic
models, but provided a mechanistic interpretation of processes that was absent
from fully empirical models. While the transient storage model has been applied as a
basis for understanding both short reaches and whole networks (Fernald et al.,
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2001; Schmadel et al., 2014; Stewart et al., 2011), the model formulation is not able
to simulate the dominant processes of mountain systems, where down-valley
subsurface flow is important (Castro and Hornberger, 1991; Kennedy et al., 1984;
Ward et al.,, 2016). Additionally, the transient storage model was never intended to
represent dynamic network expansion and contraction, nor to accommodate
spatially intermittent flows.

A second approach to upscaling river corridor exchange uses empirical
relationships between catchment topology and river corridor processes based on
field experiments (Covino et al.,, 2011; Mallard et al., 2014) or model experiments
(Gomez-Velez et al., 2015; Gomez-Velez and Harvey, 2014; Kiel and Cardenas,
2014). These empirical approaches are readily implemented based on observable
metrics (e.g., drainage area, stream discharge, sinuosity, streambed grain size).
However, empirical approaches are site-specific in nature, with limited
transferability across geologic settings and even to differing flow conditions. Studies
based on model experiments assume the model processes simulated at one scale are
the dominant processes across the continuum of nested scales of exchange in the
river corridor.

Thirdly, distributed (or “top-down”) hydrologic models build upon
generalized knowledge, representing river corridor processes spanning spatial and
temporal scales (Frei et al., 2009; Yu et al., 2016). A key strength of distributed
models is their ability to represent heterogeneity, which may be important to
determining intermittent connections between streams and their aquifers
(Fleckenstein et al., 2007). However, distributed models require extensive
parameterization and calibration, limiting their ability to be rapidly applied on the
landscape.

While each of the existing approaches have been successful in advancing our
understanding of specific mechanisms at a given spatial or temporal scale, these
approaches all have limited ability to represent river corridor exchange in a way
that is mechanistic, fully dynamic, and representative of the dominant processes
within the network. Therefore, we suggest that a new predictive framework is
needed - one that provides a mechanistic understanding of hydrologic connectivity
along the river corridor, reflects the hydrologic dynamics that lead to time-variable
connectivity, and would be readily transferable and scalable with modest data
requirements. We propose a dominant process approach similar to Grayson and
Bloschl (2000). This approach recognizes that reduced-complexity models will
necessarily omit some processes in favor of representing those which are
considered most important in a catchment (Smith et al., 2013). As such, we limit the
over-parameterization of distributed models and avoid their problems with non-
unique solutions (e.g., Beven, 2006, Bredehoeft and Konikow, 1993; Cardenas and
Zlotnik, 2003; Oreskes et al., 1994; Poeter, 2007; Wondzell et al., 2009a). Here, we
closely follow the approach of Smith et al. (2013) in identifying dominant processes
based on our experience in the field, developing a perceptual model to explain our
observations, and then implementing this perceptual model as a reduced-
complexity model that simulates hydrologic processes at the scale of the river
network.
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Our primary objective is to predict spatial patterns and temporal dynamics of
hydrologic connectivity along the river corridor at reach-to-network scales (i.e.,
100s of meters and longer). A secondary objective is to develop an approach that is
transferable, scalable, easily applied based on limited data requirements, and is
flexible enough that increased data collection could be used to improve and refine
the model at sites of interest. While Costigan et al. (2016) proposed a model of
general meteorologic, geologic, and land cover trends that would be related to
frequency of intermittency, their conceptual model does not address the dynamic
transitions that occur between flow states, instead focusing on long-term trends.
Specifically, we seek to answer the question: How do geologic setting and hydrologic
forcing combine to result in dynamic connectivity along the river corridor? We
hypothesize that geologic setting will be dominant during all baseflow conditions
regardless of the actual discharge magnitude (i.e., during steady high, moderate, and
low discharge conditions void of precipitation). Conversely, we hypothesize that
network expansion and contraction will be dominated by hydrological inputs to the
system during highly dynamic periods—such as storm event responses—that will
cause rapid expansion and contraction of the network independently of the
structure of the valley bottom. To test these hypotheses, we develop a reduced-
complexity model in the spirit of the dominant-process approach. The model is
calibrated at scales of 100s of meters to a well-documented solute tracer study and
observed dry streambed locations, and validated based on stream stage
observations at the field site. Using these results, we assess the dynamic interactions
of hydrologic forcing and geologic setting, noting the places and times where each
control is dominant.
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Figure 1. Watershed 1 (WS01) at the H.]. Andrews Experimental Forest in the
western Cascades, Oregon, U.S.A. Upslope accumulated area (UAA) derived from a 1-
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m LiDAR digital terrain model is shaded in greyscale. Valley segments draining more
than 3 ha, defining the river corridor simulated in our model, are shown in color.

2. Background & Model Development

2.1 Site Description

The perceptual model presented here is based on extensive study of headwater
mountain catchments in the western Cascades, Oregon, U.S.A., specifically the H.].
Andrews Experimental Forest. This site was selected based on the body of research
documenting process dynamics in the river corridor of a mountain stream.
Furthermore, this site fits the geological factors that Costigan et al. (2016) associate
with increased intermittency including relatively large grain sizes, steep riffle
morphology, impermeable lithology, and small drainage areas in a highly dissected
catchment. This steep, geologically confined mountain stream network is also
complimentary to recent efforts to model connectivity in low-gradient alluvial
systems (Gomez-Velez et al., 2015; Gomez-Velez and Harvey, 2014; Kiel and
Cardenas, 2014). Due to the high confinement of the valley bottom, the river
corridor in this system is functionally equivalent to the valley bottom, which
includes the stream, hyporheic zone, and riparian zone.

Within the H.J. Andrews Experimental Forest we selected the highly-studied
Watershed 1 (WS01) as a study location because the dynamics of river corridor
exchange have been studied in greater detail than other sites (Fig. 1). Briefly, this
headwater catchment drains about 96 ha at the outlet stream gauge. Basin
elevations range from 432 to 1010 m a.m.s.l. The catchment is highly dissected, with
steep valley walls and hillslopes forming v-shaped valleys that are rapidly
downcutting through Oligocene and lower Miocene aged volcanic bedrock. The
longitudinal slope of the valley floor averages 11.9% (Voltz et al., 2013). In places
the stream flows on exposed bedrock, but along most of its length, the valley bottom
is covered in poorly-sorted colluvium, much of which was emplaced as landslide and
debris-flow deposits. The depth of the colluvium ranges from 0 to at least 1.74 m,
the deepest penetration achieved during installation of riparian monitoring wells
(Wondzell, 2006). Precipitation data were collected at the nearby H.]. Andrews
Primary Meteorological Station (about 0.5 km N of the gauge; elevation 430 m
a.m.s.l.). Further physical description of the H.]. Andrews Experimental Forest and
WSO01 are available in a host of related publications (Dyrness, 1969; Swanson and
James, 1975; Swanson and Jones, 2002; Voltz et al.,, 2013; Ward et al., 2016;
Wondzell, 2006; Wondzell et al., 2009b).
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Figure 2. A) Perceptual model illustrating the dominant processes associated with
river corridor exchange in headwater mountain streams. Key processes include
down-valley flow in both the surface stream and subsurface porous media, smaller-
scale exchanges in the vertical and lateral dimensions, confinement in the vertical
(bedrock) and lateral (valley wall) dimensions, and lateral inflows proportional to
upslope accumulated area from the hillslopes. B) Representation of dominant
processes in the river corridor as a reduced-complexity model. The notation x refers
to the along-valley coordinate (e.g., Ax represents one spatial discretization of the
model).

2.2 Perceptual Model of the River Corridor in Mountain Streams

We developed a perceptual model that explains dynamic expansion and contraction
of the active channel network. A perceptual model is a qualitative representation of
the dominant hydrologic processes operating at a given field site, integrating the
processes that are known to be important based on field observations, numerical
simulations, and a field-based understanding of the system (McGlynn et al., 2002,
1999; Sivapalan, 2003; Wagener et al., 2007). Thus, the model presented below is
qualitative in nature, but synthesizes the observations of the site in a cohesive
framework. This model is akin to a hypothesis explaining the interactions between
geologic and hydrologic controls in the river corridor and is based on our current
understanding developed over several decades of field studies at the site (Burt and
McDonnell, 2015; Fig. 2A).

The perceptual model posits that the river corridor can be described as two
parallel, interacting domains that transport water and solutes in the down-valley
direction—via surface flows through the stream channel and via subsurface flows
through the valley bottom (Ward et al., 2016). This builds directly from Bencala et
al’s (2011) notion that streams are dynamic expressions of the local groundwater
system, and is well-aligned with the perceptual models of Godsey and Kirchner
(2014) and Whiting and Godsey (2016). Subsurface transport in the down-valley
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direction is known to be an important mechanism in higher-gradient stream
networks (Castro and Hornberger, 1991; Jackman et al., 1984; Kennedy et al., 1984).
Several studies have found relatively constant transport in the subsurface,
attributing this primarily to an unchanging geologic setting (e.g., hydraulic
conductivity field, major roughness elements, bedrock constraints, and valley width)
and a down-valley hydraulic gradient set by topography (Voltz et al., 2013; Ward et
al,, 2016, 2014, 2012; Wondzell, 2006; Wondzell and Swanson, 1996). The primary
mechanism of river corridor exchange in mountain streams is expected to be driven
by hydrostatic pressure gradients (Wondzell and Gooseff, 2014; Schmadel et al.,
2017). The down-valley subsurface discharge is functionally controlled by down-
valley capacity, or the ability of the subsurface to transmit water through saturated
porous media. In parallel, the surface stream flow represents only the excess of
down-valley discharge that cannot be accommodated by the down-valley capacity.
Thus, in-stream discharge and transport can be highly dynamic in response to the
stream while transport in the saturated subsurface remains relatively constant.
While subsurface down-valley discharge is relatively constant in time, it is spatially
variable due to changes in the down-valley capacity of the subsurface, caused by
changes in valley width, colluvium depth, slope, or heterogeneity in hydraulic
conductivity.

The concept of spatially contiguous down-valley discharge is supported by
the observed “long-term storage” of Ward et al. (2013a) in WS01. Their study found
significant mass losses from stream solute tracer studies, concluding that the mass
entered flowpaths that traveled down-valley but remained in the subsurface.
Additionally, these flowpaths could not have been losses to a deeper groundwater
aquifer because the river corridor is ultimately confined by intact bedrock.

Inputs of hillslope water to the valley bottom can affect the extent of long-
term storage and these inputs vary in both space and time. Spatially, inputs from the
hillslopes to the river corridor are assumed to vary in proportion with the
contributing upslope accumulated area (UAA) after Jencso et al. (2009) and Corson-
Rikert et al. (2016). Past studies in nearby catchments concluded that topography
controls the transport of water from hillslopes to valley bottoms (e.g., McGuire et al.,
2005). Discharge in the valley varies in time and impacts river corridor exchange
during storm events (Ward et al., 2013a), seasonal baseflow recession (Ward et al.,
2016, 2014, 2012), and diurnal fluctuations driven by evapotranspiration from
riparian zones and perhaps the lower hillslopes (Schmadel et al,, 2016; 2017; Voltz
et al.,, 2013; Wondzell et al,, 2010, 2007).

The upper reaches of the Main Stem and South Branch have surface flow
during the winter and spring, but portions of them are frequently dry during the
summer months (Fig. 1). We generally have not observed surface flow from
convergent areas lateral to the main stem or south branch (i.e., those areas
identified as “minor tributaries” in Fig. 1; Amatya et al., 2016). The colluvium
accumulated within these areas is generally too deep and porous for the relatively
small drainage areas to support surface flow. However, there are weakly developed
channels, 10 to 30 cm wide, that suggest surface flow does occur during major
storms in two specific conditions: (1) below bedrock outcrops where soils are quite
shallow, forcing flow to the surface, and (2) high in the north-east corner of the

8
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watershed where deep seated earthflows have created a drainage network around
multiple small slumps where water may flow at the surface for much of the year.
These areas are notable in that surface flow may occur with very small UAA, but
they are always discontinuous to the channel network from which they are far
removed (>50 m from the simulated channel network). Because of that, we do not
consider them further in this study. Finally, both evapotranspiration from, and
direct precipitation to, the valley bottom and stream are omitted given the small
plan-view area of these landscape elements relative to the hillslopes.

2.3. Development of a Mathematical Model

The dominant processes in the perceptual model were translated into a numerical
model (Fig. 2B). Subsequent sections describe the development of the surface and
subsurface hydraulics, and the solute transport components of the model which are
formulated for one-dimensional (1-D) segments of the valley bottom, with boundary
conditions at the upstream end of each simulated segment.

2.3.1 Hydraulic Model
Open channel flow was simulated using the continuity equation and kinematic wave
routing:

dA | dQstr | Qup _ Qdown _
dt+ dx + dx dx =0 (1)

where t is time (s), x is the spatial coordinate along the valley bottom (m), A is the
stream cross-sectional area (m?), Qs is the stream discharge (m3 s'1), and Q. and
Qdown represent gross up- and downwelling flux (m3 s-1), respectively. Net up- or
downwelling flux (Qnes; m3s1) is Qner = Qup - Qdown. We formulated the model using
the gross exchanges to more accurately reflect the associated fluxes of solute (after
Payn et al., 2008). Lateral inflows enter the model in the subsurface domain and
represent either upwelling of valley bottom groundwater (unlikely in our case of
bedrock constraint, but the term could be used for this flux in other settings) or
lateral inputs of hillslope water, and influence the stream via the Qup and Qdown
terms. Thus, a term describing lateral inflows occurs only in the continuity equation
applied to the subsurface domain (Equation 3). This formulation requires that
lateral inflows to the simulated network do not consist of channelized overland
flow. If that were the case, the simulated network should be expanded to include
explicit simulation of any channelized flow at the surface. We relate discharge and
channel geometry using Manning’s equation:

1
SStreamz (2)

o) |D>
win] wi;

1
Qstr = n

where n is Manning’s roughness coefficient (unitless), Sstream is the down-valley
slope along the stream channel (m m1), the constant value of 1 in the numerator has
associated units of m'/3 s'1, and P is the wetted perimeter (m). We approximate the
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stream geometry as a rectangular channel. Thus, A = by and P = b +2y, where b is the
channel width (m) and y is the depth of flow in the surface channel (m).
In the subsurface, we solve the continuity equation for water as

dﬁ dQsub _ Qﬂ Qdown % —
dt dx dx + dx + dx 0 (3)

where Ay is the cross-sectional area of the saturated portion of the subsurface (m2),
Qsub is the down-valley subsurface discharge (m3 s'1), and Qi represents lateral
inflows from the hillslopes into the valley bottom (m3 s-1), defined as the unit inflow
per drainage area (qi.¢) multiplied by the difference between UAA at the up- and
downstream ends of the segment. All lateral inflows to the simulated network are
assumed to occur in the subsurface; surface streams can initiate and combine at
junctions if the down-valley discharge in a tributary exceeds down-valley capacity
(Qsub,cap; m3 s71). Darcy’s law is used to calculate Qsu» as a function of valley width
(bvaitey; m), depth of subsurface flow (ysu»; m), hydraulic conductivity (K; m s1),
porosity (6, unitless), and valley slope (Svaiiey; m m1):

byaileyYsubK
Qsup = P) Svalley (4)

We assume the slope of the valley bottom is a good approximation of the down-
valley hydraulic gradient (Ward et al., 2016, 2013b; Wondzell, 2011). The maximum
capacity of the subsurface to transport water in the down-valley direction (down-
valley capacity; Qsub,cap) 0ccurs when ysp» = T, where T is the thickness of the valley
bottom colluvium (m). Colluvium dimensions are related to geometry as 4As =
byatieyysun. Total down-valley discharge (Qav; m3 s'1) is the sum of surface and
subsurface discharges:

de = Qstr + qub (5)

2.3.2 Solute Transport Model
We solve for conservative solute mass in the surface using a volumetrically
averaged mass balance for the stream:

d(vce
% = QinCin — QstrC + QupCS — QaownC (6)

where Qin is the stream discharge from the upstream valley segment (m3 s1), Ci, is
the stream solute concentration from the upstream valley segment (g m-3), C is the
stream solute concentration (g m-3), and Cs is solute concentration in the subsurface
(g m3). The volume of water in the surface domain, (V; m3), is calculated as:

V = Sinuosity xdx x b xy (7)

where Sinuosity is the sinuosity of the stream, calculated as the along-stream
distance in each segment divided by the length of the segment (m m-1).

10
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For solute transport in the subsurface, we use a similar formulation:

d(VsCs)
dst == qub,inCS,in — QsunCs — QuPCS + QaownC + QuarCiae (8)

where Qsup,in is the subsurface discharge from the upstream valley segment (m3 s1),
Cs,in is the subsurface solute concentration from the upstream valley segment (g m-
3), Ciat is the concentration of lateral inflows from the hillslopes to the river corridor
(g m3), and Vs is the volume of water in the subsurface domain (m3), calculated as
the volume of void space filled with water:

VS = A59dx (9)

For this formulation we assume that all pore space is connected for transport of
water and solutes, and that the subsurface domain is well-mixed within each spatial
discretization.

2.4 Model Implementation

2.4.1 Model Solution for Interior and Downstream Segments

The model equations presented above allow for spatially variable, dynamic
activation of surface flow and continuity in space given the total down-valley flow
and the amount that can be accommodated via the subsurface. We simulated
transport through the river corridor at the network scale for water year 2016 (1-
Oct-2015 through 30-Sept-2016). The model equations are implemented as a finite
difference numerical solution along the river corridor, discretized using a 5-m
segment length. Up- and downwelling fluxes (Qup and Qdown) are calculated at each
model segment on the basis of two logical operators, which operate to first assign all
flow to the subsurface domain and then assign any flow exceeding Qsup,cap into the
surface domain.

Channel water balance studies in mountain streams note that gross exchange
of water between streams and their subsurface often exceeds net exchange (Covino
etal.,, 2011; Payn et al., 2009; Ward et al., 2013b). To represent the gross up- and
downward exchanges in the water balance, we define the parameter Qsubgrid (m?3 s1)
to increase exchanges of water between surface and subsurface domains within
each model segment.

For net up- or downwelling between the surface and subsurface domains,
three possible behaviors exist. First, for cases when the flow entering a model
segment is greater than the down-valley capacity (i.e., Qsub,in + Qiac 2 Qsub,cap), Net
upwelling of the excess subsurface discharge is implemented:

Qdown = qubgrid (10)
Qup = (qub,in + Qlat - qub,cap)"‘ qubgrid (1 1)
Second, for cases where the down-valley capacity is larger than the inflows to the
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subsurface domain, net downwelling is required to ensure the full down-valley
capacity is met before surface flow activates. Net downwelling is predicted for cases
when Qsub,in + Qlat < Qsub,cap- If the subsurface can accommodate the total down-valley
discharge (i.e., Qin+ Qsub,in + Qiat < Qsub,cap), all of the down-valley discharge is assigned
to the subsurface, resulting in a dry streambed. Exchange discharges are, then:

Qdown = Qin"‘ qubgrid (12)

Qup = qubgrid (13)

Finally, for cases of net downwelling (i.e., Qsub,in + Qlat < Qsub,cap) Where the subsurface
cannot accommodate all of the down-valley discharge (i.e., Qin + Qsub,in + Qiat >
Qsub,cap), stream discharge will occur. Vertical exchanges are, then:

Qdown = (qub,cap - qub,in - Qlat) + qubgrid (14)

Qup = qubgrid (15)

In this implementation, the down-valley capacity of the subsurface is always filled
before the stream channel activates.

2.4.2 Boundary Conditions and Initial Conditions

For all model segments, initial conditions of Qav(x,t=0), C(x,t=0), and Cs(x,t=0) are
specified. The logical tests described above are used to partition Qay(x,t=0) into Qs
and Qsup fractions at t=0.

At the head of each channel (Fig. 1; Main Stem, South Branch, and all minor
tributaries), specified boundary conditions of Qav(x=xs,t), C(x=x4,t), and Cs(x=xy,,t) are
required, where x, is the upstream-most, or nt’, segment. We specify C(x=x,,t)=
Cs(x=xp,t)=0 and Qav(x=x,t) based on area-proportional discharge assigned from the
gauge. This specification means that lateral inflows from the hillslope to the valley
bottom are all synchronized in time to the stream gauge and does not allow for
heterogeneity in hillslope responses to precipitation input. These simplifications are
necessary to balance the desire for reduced-complexity with the representation of
processes occurring in the landscape. For segments whose upstream end is the
confluence of two tributaries, the discharge is defined as the sum of the outflows
from the two upstream segments; the concentration is defined by conservative
mixing of the two upstream tributaries.

With the time-variable boundary conditions established, the model equations
are solved using a forward-in-time, backward-in-space solution scheme, which is
computationally efficient and allows for an explicit solution of the model equations.
We implement adaptive time stepping, allowing timesteps to grow or shrink by a
factor of 4 depending on hydrologic and solute dynamics. Timesteps are limited in
growth to constrain changes in discharge or concentration to less than 1% in a given
timestep, with minimum and maximum timesteps of 1 and 3600 s, respectively.

2.5 Model Limitations
12
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Implementation of the perceptual model as a reduced complexity model necessarily
simplifies the processes in the river corridor to represent dynamics at reach-to-
network scales. First, this simplification does not capture the smaller-scale
flowpaths that are associated with individual channel-unit features smaller than 5 m
in length. Instead, the 1-D representation of the valley bottom focuses on larger-
scale, down-valley flow, and in our model, varies only in response to changes in
valley width and longitudinal gradient. As a result, the spatial distributions of
exchange fluxes or flowing status are not expected to have a high fidelity at
representing individual features, but are expected to be representative at reach and
longer scales (see Section 3.4 for reach-scale metrics). Therefore, we consider it
inappropriate to expect performance to match small-scale patterns of intermittent
flow that may develop because of individual features that are smaller than the
spatial resolution of the model.

Second, the solute transport routine represents only advective processes
along the stream, with numerical solutions introducing a small amount of numerical
dispersion. The addition of longitudinal dispersion, transient storage, or sorption-
desorption dynamics (e.g., after Bencala and Walters, 1983; Runkel, 1998) would
likely improve the representation of solute transport. It is important to note,
however, that we do simulate advective exchange between the surface and
subsurface, but at spatial scales larger than 5 m. We also allow specification of
surface-subsurface exchange occurring at scales smaller than 5 m, using the term
Qsungria, but this term is treated as a constant across the entire network and thus
cannot represent spatial variation in exchange processes driven by channel-unit
features smaller than the resolution of the model. Collectively, surface-subsurface
exchange is commonly considered to be an important component of transient
storage. By contrast, fine-scale transient storage in the surface channel (i.e., in pools
and eddies) is not simulated in our model because we expect surface-subsurface
exchange to dominate at the scales we are simulating. Representing in-channel
transient storage, longitudinal dispersion, and sorption-desorption would come at a
computational cost. Further, several of these processes are likely sensitive to
channel-unit scale features that cannot be extracted from typical airborne LiDAR
data so including these processes in the model would likely require much more
detailed data on stream topography.

Third, the assumption that all pore water is well mixed and equally
connected is limiting. We acknowledge that the subsurface domain is likely not
completely mixed over short timescales (e.g.,, Ward et al., 2012). Pores are
recognized to range from fully connected to functionally disconnected from
advective transport (e.g., dual-domain representations of porous media). This
simplification also omits heterogeneity in the hydraulic conductivity, which has
been shown to be an additional control on interactions between streams and their
aquifers (e.g., Fleckenstein et al., 2007). In cases where the subsurface domain is not
well-mixed, this assumption causes the exchanged mass to mix with a larger volume
of water. The result is a slower equilibration between the stream and subsurface
(i.e., concentrations in the subsurface rise and flush more slowly than would occur
in a system that was not well-mixed). We do not consider these processes to be
sufficiently important to be included in the perceptual model outlined above and are
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thus not represented in the numerical model, but acknowledge these processes may
be important at other sites.

Finally, the numerical model simplifies all hillslope hydrology as (1)
instantaneously synchronized with discharge observed at the gauge and (2)
discharge is proportionally distributed on the basis of upslope accumulated areas.
Both are oversimplifications of catchment hydrology and hydraulics and are areas
for potential future improvement.

3. Methods

The model derived above can be implemented using only a digital terrain model, a
single stream gauge at the outlet of the catchment, and estimates of hydrogeologic
properties. The highest uncertainty will likely come in the estimation of a
representative hydraulic conductivity because this parameter is expected to span
orders of magnitude. We suggest initial estimates based on any available data, grain
size distributions, or modest field campaigns (e.g., falling-head tests in temporary
piezometers or shallow wells) could be used to better constrain this model
parameter. These modest data requirements are a key contribution of this relatively
simple model. Again, we emphasize that reduced-complexity models are
constructed to represent dominant mechanisms and interactions in a system of
interest, acknowledging that this comes at the expense of representing complexity
and heterogeneity of some processes in the system. In the following sections we
detail how the model is parameterized using available data from our field site.

3.1 Model Parameters Specified for the Study Site

Implementing the model derived above requires analysis of stream, valley,
and catchment topography to identify the drainage network, the valley floors, and
the hillslope area contributing to each model segment. We used a modified version
of the TopoToolbox (Schwanghart and Kuhn, 2010; Schwanghart and Scherler,
2014) to analyze the 1-m LiDAR digital terrain model available for WS01. We
selected a spatial discretization of 5-m segments along the river corridor. Briefly, we
applied the multidirectional flow routing algorithm (Seibert and McGlynn, 2007).
Based on visual observations at the field site under high discharge conditions, we
defined a threshold of 3 ha for channel initiation (i.e., all points where drainage area
= 3 ha are simulated as part of the river corridor). We selected the threshold of 3 ha
because we seldom observe channelized flow in locations draining this small of an
area. As a result, the upper extent of each simulated tributary should have no
overland flow and the model equations are used to predict the flow initiation point
along each headwater.

We measured the valley width at 30 locations, measuring from the stream
centerline to the valley wall along a line perpendicular to the longitudinal axis of the
valley (break-point visually identified in the field after Jencso et al., 2009). Our
topographic analysis showed that the floodplain margin between hillslope and
valley bottom was best approximated using an elevation 1.5 m above the streambed
provided the best fit between widths extracted from the DEM and our field
observations. Using that threshold, we discretized the stream network into 5-m
segments and for each segment we extracted valley widths (left and right sides),
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valley slope, stream channel slope, and stream channel sinuosity. We also calculated
the lateral UAA along each side of the valley using TopoToolbox (Schwanghart and

Kuhn, 2010; Schwanghart and Scherler, 2014).

Inflows to the valley bottom (Qia; m3 s'1) were calculated using an area-
weighted flow based on the WS01 gauge station. For each segment, the total lateral
inflows were calculated as

Qlat = AUAA*anuge/ UAAgauge

(16)

where AUAA is the change in UAA along the stream centerline in each model
segment (ha), Qgauge is the discharge at the WS01 stream gauge (m3 s'1), and UAAgauge
is the UAA at the stream gauge (about 96 ha). The topographic analysis and area-
weighted assignment of lateral inflows are identical to recent work in the catchment
(Corson-Rikert et al., 2016). The gauge discharge data are used as published by the
H.J. Andrews Experimental Forest. A summary of the specified or calibrated

parameters are provided in Table 1.

Table 1: Sources and values for the model parameters.

Value or

Parameter range Units | Methods and/or source
. ~ Regression with drainage area
Channel width (b) 0.44 -1.88 m (Castro and Jackson, 2001)
. 2.0x106 - m3 sl Proportional to drainage area along

Lateral inflow (qac) 1.1x10-2 per ha | stream centerline

Concentration of 0 -3 By definition for a tracer injected

lateral inflow (Ciat) & into the stream channel only

Manning’s : . . :

Roughness (n) 0.05 (unitless) | Visual inspection

Valley slope (Svaey) | 0.01-1.04 | mm?! | TopoToolbox analysis?

glannil slope 0.01-2.42 mm1 | TopoToolbox analysis!?

stream

Channel sinuosity ~ 4 .1

(Sinuosity) 1.04-1.18 m m TopoToolbox analysis

Valley width (bvaiey) | 5.0 - 36.9 m TopoToolbox analysis?!

Drainage area (UAA) 3-955 ha TopoToolbox analysis?!
Midpoint of previously reported
range of values for the site

Porosity (0) 0.3 (unitless) | (Dyrness, 1969; Kasahara and
Wondzell, 2003; Ward et al., 2016;
Wondzell et al., 2009a)

Sub-grid exchange = 3 o1 Calibrated. Parameter range 1x10-6

(Qsubgrid) 4.18x10 ms to 1x10-2 (Ward et al., 2013b)

Thickness of Calibrated. Parameter range 0 to 4

0.75 m considered (Gooseff et al., 2006;

colluvium (7)

Wondzell et al., 2009a)
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Calibrated. Parameter range 4.3x10-
5.62x10¢ m s1 6to0 6.1x10-* (Kasahara and
Wondzell, 2003)

Hydraulic
conductivity (K)

Limit to define
surface discharge 2.21x104 m3 sl

(Qiim)

Calibrated. Parameter range 0.18-
0.32 (see section 4.1)

1 - TopoToolbox analysis refers to the analysis of the digital terrain model described in section 3.1
using tools developed by Schwanghart and Kuhn (2010) and Schwanghart and Scherler (2014).

3.2 Model Calibration

Recognizing the model limitations, we define two calibration targets that represent
reach-scale behaviors to demonstrate reasonable representation of system
processes: (1) reach-scale solute transport and (2) reach-scale fraction of dry
streambed. These calibration targets will generate reach-averaged best-fit model
parameters rather than spatially variable distributions, closely following the
approach of other reduced-complexity models of headwater streams (e.g., Bencala
and Walters, 1983).

First, we calibrated the model parameters 7, K, and Qsubgria using a break-
through curve from a solute tracer injection from 2-Aug-2010 (see Voltz et al., 2013;
Ward et al., 2016 for details). We simulated the tracer injection and compared
observed versus simulated concentrations of tracer at two locations: immediately
downstream of the injection where complete mixing was assumed (166-m upstream
of the WS01 gauge) and at the WS01 gauge station itself. We varied T from zero
(observed at bedrock outcrops) to a maximum depth of 4 m. This greatly exceeds
the maximum penetration depth of 1.74 m observed when installing wells, and thus
allows for uncertainty between the refusal depth and impermeable bedrock. This
difference may represent, for example, a zone of weathered bedrock below the
colluvium but still bounded by impermeable, unweathered bedrock below. We
varied K across the range of values observed by Kasahara and Wondzell (2003) in
WSO01 and a nearby headwater catchment, spanning 4.3x10¢ to 6.1x10-4 m s
Finally, Qsungrie was varied from 1x10-6 to 1x10-2 m3 s based on observations at the
field site. For comparison, Ward et al. (2013a) found average gross stream-to-
subsurface exchanges of about 3.5x10-3 m3 s'1 per 5 m of valley distance (range 0 -
1.6x102m3 s-1, median 2.7x10-3m3 s-1) during a storm event using reach-scale
solute tracer studies. Thus, the range spans nearly the complete observation set
(with a lower bound of 10-¢ m3 s-1 rather than zero). This first model calibration step
was performed by uniformly sampling the distributions of K, T, and Qsubgria and
varying the parameters jointly, increasing resolution around the best-fit parameters.
More than 1,100 simulations were performed. Overall model fit was evaluated
based on minimizing root mean square error (RMSE) between the observed tracer
breakthrough curve and simulations. We selected minimizing RMSE because this is
analogous to the residual sum of squared errors used to evaluate model fits in
inverse modeling of stream solute tracers (e.g., Runkel, 1998; Ward et al., 2017).

Next, we calibrated the model by comparing the observed versus simulated
total length of dry streambed in the reach of stream between the gauge and the
confluence of the Main Stem and South Branch (Fig. 1). The model formulation
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allows for computation of extremely small surface flows that would not be visually
differentiated from a “damp streambed” or flow fully through the armored cobble
layer on the bed in the field (e.g., values of Qs = 1x10-4 m3 s'1). These simulated
discharges are numerically non-zero, but functionally non-observable in the field.
Thus, we require a threshold to differentiate observably flowing from dry segments
in the model output (Qiim). We select the target of total reach-scale dry streambed in
acknowledgement that the reduced complexity model is not intended to represent
small-scale features nor their spatial distributions that would be observed in the
field, but instead to capture representative behavior for reaches 100s of meters and
longer. This target is also comparable to reasonably available field data for a site
with limited characterization, where available information may be based on visual
inspection or personal knowledge that will typify applications lacking detailed site
investigations (e.g., anecdotal “about 20% of the streambed is dry in late August”).
On 25-May-2016, 21-June-2016, 04-July-2016, and 13-Aug-2016 we walked from
the gauging station to the main confluence, recording the locations of dry streambed
at sub-meter resolution. Using the specified parameters (Table 1) and those
calibrated for the solute tracer (K, T, Qsungria), We assessed the accuracy of dry
streambed predictions to select an appropriate value of the discharge threshold to
define surface flow (Qiim) to maximize accuracy of predicting the total dry length
observed in the study reach.This calibration step tested more than 10,000 values for
Qiim, and selected the value that minimize the error in predicted dry streambed
length along the observed reach.

3.3 Model Validation

To validate the model, we compared the flowing status predicted by the reduced
complexity model with a similar dataset generated by combining a detailed survey
with measured changes in stream stage. In the reach spanning 95 to 626 m
upstream of the gauging station, we surveyed the elevation of the streambed and
stream water surface at <1.0 m horizontal resolution and <0.01 vertical resolution
during conditions with Qgauge ranging from 5.8 to 6.7 L s-1. Fifteen pressure
transducers were installed along the surveyed reach, recording data every 15
minutes from 1-Oct-2015 to 2-Sept-2016. All loggers were installed in shallow wells
to ensure they remained submerged all season even if water levels dropped below
the streambed.

We constructed a spatially continuous water surface by calculating changes
in the water surface elevation at each of the 15 sensors and then interpolating these
changes to every model segment for each timestep. This exactly follows the
procedures described by Schmadel et al. (2017). We then extracted the stream stage
relative to the streambed for each 5-m segment within the surveyed reach and
assigned a status of not flowing (for segments containing no surface flow), partially
flowing (for segments with both surface flow and dry streambed), and fully flowing
(for segments with active surface flow along the entire length of the segment). We
assess reduced-complexity model performance by tabulating the frequency of
correct predictions of flowing (times and locations where constructed profiles and
model results both indicate fully flowing status) and correct predictions of not
flowing (times and locations where constructed profiles indicate either partially or
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not flowing status and the model predicts no flow). We elect to include “partially
flowing” status from the profiles as equal to “not flowing” status in the reduced-
complexity model because we expect the low discharges in a partially flowing
segment would be below the calibrated Qi value.

3.4 Evaluation of Model Results: Spatial and Temporal Trends in Connectivity
Model results were used to evaluate nine metrics describing the hydrologic
connectivity. For each river corridor segment, we tabulated: (1) the flowing status
(i.e., surface flow or no surface flow), (2) subsurface discharge, and (3) surface
discharge every 10 minutes throughout the 1-y simulation period. Based on this
information and the network topology, we also tabulated (4) whether the surface
flow was contiguous to the outlet (i.e., if there was an unbroken connection of
surface flow between a segment and the outlet). Using these metrics, we next
calculated (5) the total flowing length of the surface stream network, (6) the total
contiguous length of the surface stream network, and (7) the drainage density
(flowing stream network length per catchment area) for the flowing network. After
completion of the entire 1-y simulation, we calculated (8) the probability of surface
flow and (9) the probability of contiguous flow for each segment by dividing the
number of timesteps with surface or contiguous flow by the total number of
timesteps.

4. Results

4.1 Model Calibration & Validation

Overall, the calibrated model predicted the tracer breakthrough curve observed in
August 2010 with an RMSE of 12.4 uS cm-1. After calibration, we also assessed model
predictions using r2 (0.86 comparing time-series observations to calibrated model
predictions), mean arrival time for the in-stream solute tracer timeseries (observed
75.6 hr, modeled 66.3 hr), coefficient of variation for the in-stream solute tracer
timeseries (observed 0.72, modeled 0.70), and skewness for the in-stream solute
tracer timeseries (observed 1.13, modeled 0.66). Based on the high r2 and low
errors for mean arrival time and coefficient of variation, we interpret that advection
of the input tracer signal and its longitudinal spread are being accurately
represented by the model. The disparity in skewness corresponds to the
acknowledged limitations of the solute transport model, wherein only the advective
transport processes are being considered. That the observed late-time low-
concentration “tails” of the in-stream timeseries, which drive larger positive values
of skewness, are not being well fit by the reduced-complexity model is expected
given that longitudinal dispersion and in-channel transient storage are not
simulated.

Next, we used observations of dry streambeds to estimate Qjim. We did not
observe any dry streambed during the May and June 2016 surveys. In July 2016 we
observed a total of 3.5 m of dry streambed at 5 locations (range 0.5 to 1 m in dry
length). In August 2016 we observed 106.1 m of dry streambed across 26 separate
locations (range 0.4 to 26.9 m, mean 4.1 m, median 1.0 m). At the time of the August
2016 observations, the stream discharges in the model segments within the
surveyed stream reach (0 m to 650 m from the stream gauge) ranged from 0.18 to
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0.45 L s'1. However, because our field observations recorded some of these
segments as dry, Qim must be greater than 0.18 L s'1 (i.e., discharges of less than Qjim
were not observable as surface flow in the field). Furthermore, because discharge at
the gauge was measured between 0.32 and 0.45 L s’ during the same period, this
also implies that Qii» must be less than 0.32 L s'1. We searched possible values for
Qiim in this range at a resolution of 0.001 L s (comparable to the resolution of the
gauge when the v-notch weir is installed during the summer low flow period). The
best agreement for total dry streambed length in the segment spanning 0 to 759 m
was found for Qiim = 0.221 L s'1, which results in a simulated 14.2% of the total
length in dry streambed conditions (compared to 13.9% observed in the field).
Using this value of Qjim, the May and June 2016 simulation periods accurately predict
100% of the observed conditions in the field (Fig. S1). For July 2016 we observed
about 0.5% of the streambed to be dry (less than the length of one model segment)
and the reduced complexity model predicts all segments flowing fully (Fig. S1).
While the simulated length of dry channel was similar to that observed at the
reach scale, the agreement in the spatial location of dry segments was quite poor.
We expected considerable disagreement between the model and the observations
over short distances where small scale channel morphology - like wedges of
sediment accumulated above in-channel logs — would lead to local increases in
sediment thickness or create variable deposition environments leading to
substantial variability in saturated hydraulic conductivity. As expected, the model
did not simulate many of the short dry segments we observed, but it also simulated
a long dry section between 600 and 750 m above the stream gauge whereas we
observed large dry segments between 150 and 300 m. The lack of agreement
suggests that spatial patterning is being controlled by factors other than channel-
unit scale variations in morphology. Certainly, large logs transported in debris flows
can form large log jams with depositions several meters thick that extend more than
100-m upstream from the log jam. We used a constant thickness of 0.75 m resulting
from model calibration in a short tracer-injection reach near the bottom of the
watershed. Penetration depths of 41 wells located within that reach show that the
sediment thickness averages only 1 m and in early summer with Qgauge=34 L s°! the
saturated thickness averages 0.48 m. It is likely that sediment thickness at other
locations would be substantially deeper or shallower than the best-fit, reach-scale
value that was calibrated. Using a constant thickness would lead to the model
simulating dry channels in locations where the actual sediment was thinner than
0.75 m or wet channels in locations where the actual sediment is thicker than 0.75
m. Note that Qsup,cqp is relatively constant from 750 m down to the mouth of the
watershed whereas UAA and Q both nearly double over this distance. Thus, small
overestimates of sediment thickness at the top of this reach would readily result in
the model simulating a dry channel where one may not be observed. Conversely,
limiting sediment thickness to only 0.75 m lower in the reach, where discharge is
much higher, would make it unlikely that the model would simulate a dry segment.
Finally, we compared the predictions of the stream status (flowing or dry) to
water surface profiles interpolated from 15 pressure transducers located in the
lower 650 m of the Main Stem channel. In total, we compared 99 model segments
spanning 32,443 timesteps that comprise approximately 3.2 million points (Fig. S2,
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S3). Overall, the reduced-complexity model correctly predicted about 2.6 million
flowing conditions (about 81.9% of all points; Fig. S2, S3) and 434,576 dry
streambed conditions (about 13.5% of all points; Fig. S2, S3). The reduced
complexity model incorrectly predicted 145,886 points (about 4.5% of all points;
Fig. S2, S3). Based on more than 95% agreement between the model predictions and
validation data, we are encouraged to interpret the model as a reasonable
description of the dynamics in the system. Overall, model performance is generally
strongest under higher discharge conditions. One key limitation of the model is the
spatial resolution limits the simulation of segments that are partially flowing. While
the network-scale metrics are reasonably predicted, the spatial organization is
generally not well predicted by the model (Figs. S1, S2, S3) because of the assumed
spatial homogeneity of model parameters.

The model could be further tuned by making T and K spatially variable.
However, collecting spatially explicit data on sediment depth in the valley floor
throughout the stream network would be a daunting task. But more importantly,
adding substantial complexity to the model, just to improve the model fit, runs
counter to the modeling philosophy that guides this effort. That is, to develop a
highly transferable model that can be parameterized using readily available data to
simulate dominant hydrological processes within a large stream network. We
recognize that this simple model is far from perfect. Still, we argue that it represents
the dominant hydrologic processes operating along the length of the stream
network in this watershed.

4.2 Spatial Trends in Network-scale Hydrologic Connectivity
The study network is comprised of 2,825 m of stream channel (3 ha channel
initiation threshold), equivalent to a channel density of 2.9 km km--2. Valley
topography, topology, slope, and sediment characteristics result in an average
down-valley capacity (Qsub,cap) of 4.6x10-2 L s (range 1.2x10-3 to 3.7x10-1 L s°1;
median 3.7x10-2 L s'1; Fig. 3A). Since network average values were used for T, K, and
0, this variation reflects the spatial variability in down-valley slopes and valley
bottom widths in along the river corridor.

The probability of surface flow peaks at about 99.3% at the outlet of WS01
(Fig. 3B). The probability of surface flow decreases approximately linearly with
distance to 93.0% at the confluence of the South Branch and Main Stem. The
probability of surface flow decreases abruptly above the confluence in both
branches due to the step decrease in tributary UAA (Fig. 3C). In both branches,
probability of surface flow remains at or about 70% to a distance of about 1,100 m
upstream from the outlet (about 330 m upstream of the confluence). Sharp changes
in the probability of surface flow occur at locations where an increase in Qsun,cap
accommodates the entire down-valley flow more frequently (for example, the Main
Stem at 1150 m or the South Branch near 1,260 m; Fig. 3B). Overall, the probability
of surface flow is lower in the upper Main Stem, upper South Branch, and the minor
tributaries compared to the lower Main Stem below the confluence; this is due to
the lower UAA in the upper basin (Fig. 3C).

The probability of surface flow throughout the network that is contiguous to
the outlet is lower than the probability of surface flow in all cases, indicating periods
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of time that dry locations along the valley break the contiguity of the network (Fig.
3D). The nearly perfectly horizontal portions of the probabilities across the plot
(e.g., x =850 to 1100 m along the South Branch; Fig. 3D) are caused by a
downstream segment controlling the extent of contiguity up the branch. Although
upstream segments are regularly flowing, they are prevented from becoming
contiguous by a small location of sufficient down-valley capacity to prevent a
contiguous surface connection from forming.
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Figure 3. A) Down-valley capacity for subsurface flow (Qsuscap) as a function of
distance along the river corridor from the outlet at the stream gauge. B) Probability
of surface flow for each model segment. C) Upslope accumulated area (UAA) as a
function of distance along the river corridor from the stream gauge. D) Probability
of surface flow being contiguous to the stream gauge for each model segment. The
vertical black line labeled “Confluence” denotes the confluence of the Main Stem and
South Branch. For individual segments the upstream and downstream ends are
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4.3 Temporal Trends in Network-scale Hydrologic Connectivity

Throughout water year 2016 the length of the flowing network averaged about
1,661 m (range 0 to 2,350 m; median 1,810 m; Fig. 4B). Drainage density based on
the flowing length averaged 1.73 km km-2 (range 0 to 2.45 km km2; median 1.89 km
km-2).

During the highest discharge conditions, the flowing channel network
expands greatly, but small sections of dry streambed persist at some locations along
the channel so only small increases in the contiguous length are simulated (callout 2
in Fig. 4A and 4B). Because of this, the fraction of contiguously flowing network
decreases during the highest flow events (callout 2 in Fig. 4C). Under the lowest
discharge conditions, the fraction of flowing length that is contiguous occasionally
reaches a value of 1.0 (i.e., entirely contiguous) because only the downstream-most
segments are predicted to have surface flow (e.g., callout 4 in Fig. 4).

The length of network contiguous to the outlet averaged 1,282 m (range 0 to
1,570 m, median 1,520 m; Fig. 4B). The contiguous network represents an average
and maximum of 45% and 64%, respectively, of the river corridor length. The
contiguous drainage density averaged 1.34 km km-2 (range 0 to 1.64 km km-Z;
median 1.59 km km-2). Throughout the water year, the contiguous network
represented an average of 76% of the flowing network (i.e., 24% of flowing
segments were not contiguous to the outlet; Fig. 4C). The fraction of the flowing
network that was contiguous ranged from 0.8% to 100% across the year, with a
median value of 77.5%.
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Figure 4. A) Water year 2016 discharge at the WS01 gauge and precipitation at the
H.J. Andrews Primary Meteorological Station. B) Timeseries of total flowing length
and total contiguous length along the river corridor. C) Timeseries of the fraction of
flowing length that is contiguous to the gauge. Vertical dashed lines highlight the
four timesteps shown in Figure 5 and are provided as a reference throughout Figs.
4-7. Finally, we note that a step-change decrease in discharge appears to occur on
28-June-2016 (from a peak discharge of 3.0 L s'1 on 27-June to 1.9 L s'1 on 28-June;
panel A). This is a known discrepancy in the H] Andrews discharge databases and
results from installing v-notch weirs on the trapezoidal gauges to improve
resolution of small changes in discharge. The V-notch weirs are typically installed in
June and removed in October of each year (Henshaw and Creel, 2005). We use the
stream discharge data as reported.

4.4 Spatial and Temporal Trends in Hydrologic Connectivity: Seasonal, Storm,
and Diurnal Dynamics
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Spatial patterns of surficial flow and contiguity are highly dynamic (Fig. 5;
animation of water year 2016 in Supplemental Video). In many cases, a small
number of short segments of dry streambed separate significant fractions of flowing
streams from the outlet (Fig. 5), which is consistent with our field observations.
Even in the highest discharge conditions, many of the minor tributaries do not
generate surface flow (Fig. 5, second column). During the lowest discharge
conditions, the subsurface transmits a majority of discharge in all but the
downstream-most reaches (e.g., Fig. 5, fourth column). Under the highest discharge
conditions the channel network expands significantly (e.g., Fig. 6B, callout 1). The
newly activated surficial flows may persist for several days, or several months (e.g.,
Fig. 6B, callout 2, horizontal band of discharge about 1,320 m upstream of the
outlet). Still, these locations are upstream of a persistently dry segment and never
contribute to the contiguous length of the network, causing the gap between flowing
and contiguous length (Fig. 4B). At locations of tributaries, there is a clear step
change in discharge due to the step change in UAA at the confluence of the Main
Stem and South Branch (visible as changes in color in the vertical direction; Fig. 6B,
callout 3; Fig. 6C at 1,100 m upstream of outlet).
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Figure 5. A) Water year 2016 discharge at the WS01 gauge and precipitation at the
H.J. Andrews Primary Meteorological Station. B) Four snapshots in time of stream
discharge (Qstr, top row), subsurface discharge (Qsu», middle row), and fraction of
total down-valley discharge in the subsurface (calculated as Qsu»/Qav or

Qsub/ (Qstr+Qsub)). The dashed lines in the top panel correspond to the four columns of
sub-plots (left-to-right). X and Y coordinates are listed in UTM Zone 10N.

For gauge discharges greater than about 1 L s1, the spatial extent of the
network is relatively constant, extending to about 1,120 m along the Main Stem (Fig.
6B) and to 1,000 to 1,250 m along the South Branch (Fig. 6C). For gauge discharges
less than about 1 L s'1 the South Branch is mostly dry whereas the Main Stem,
especially the lower 750 m, becomes temporally dynamic with large oscillations in
the length of flowing channel. Significant contraction is observed during the lowest
flow periods (Fig. 6B, callout 4). The first small storm of Fall 2016 (13.7 mm of
rainfall from 2-Sept to 7-Sept-2016) causes rapid network expansion (visible as a
nearly vertical line; Fig. 6B, callout 5).

The most frequent expansions and contractions of the channel network occur
at the times when evapotranspiration-driven fluctuations in Qav (Voltz et al., 2013;
Wondzell et al., 2010, 2007) cause Qv to fluctuate near Qsus,cap, the threshold for
surface flow (Fig. 7). In these cases, the flowing length and contiguous length can
vary by hundreds of meters on a daily basis (Fig. 7B), which is confirmed by our
field observations. In locations where the stream remains flowing we observe
strong diurnal variations in discharge (visible as vertical bands in Fig. 7C).

A small storm delivered about 38.6 mm of rainfall between the 7t and 12t of
July, 2016 (Fig. 7A). This rainfall caused a simulated expansion of more than 50% of
the flowing (from about 900 to 1,650 m) and contiguous (from about 800 to 1,300
m) lengths of the channel network for a period of just 48 hours (Fig. 7B). Within four
days, the discharge again reached a level where Q4 and Qsup,caqp Were matched,
reinitiating the daily oscillations in the flowing and contiguous channel lengths.
Over the last half of July, baseflow recession continues, so that Qsus,cqap exceeded Qav
for longer and longer periods of each day, and over more and more of the length of
the upper Main Stem, so that most channel segments were dry most of the time (Fig.
7C). This recession continues until all of the diurnal maximum discharge can be fully
accommodated in the subsurface, at which point the channel remains dry until a
storm in early September provides sufficient water to the catchment to reinitiate
flow in the upper Main Stem (Fig. 6A and 6B).
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Figure 6. A) Discharge at the WS01 stream gauge and precipitation at the Primary
Meteorological Station. Surface flow as a function of space and time in the Main
Stem (panel B) and South Branch (panel C). Callouts in panel B highlight (1) surface
flow under only the highest discharge conditions, (2) a relatively persistent location
of disconnected surface flow high in the network, (3) a solid horizontal line marking
a step-change in discharge at the confluence of the Main Stem and South Branch, (4)
a nearly dry stream channel under seasonal low-flow conditions, and (5) rapid
expansion in response to the first rain of Fall 2016. Unshaded (white) portions of
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panels B and C represent places and times where Qsub,cap>Qay, resulting in fully
subsurface flow. The inset area is detailed in Figure 7. Black dashed lines in panel A
correspond to those throughout Figs. 4-7.
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Figure 7. A) WS01 gauge discharge during baseflow recession of water year 2016
and precipitation at the Primary Meteorological Station. B) Dynamics of river
corridor length with surface flow and contiguous surface flow to the gauge. C)
Spatial and temporal dynamics of surface flow in response to diurnal discharge
fluctuations driven by evapotranspiration (Voltz et al., 2013; Wondzell et al., 2010,
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2007) and a small precipitation event. The black dashed line corresponds to the
right-most vertical line in Figs. 4-6.

5. Discussion

5.1 Network Expansion, Contraction, and Connectivity Reflect Interactions of
Hydrologic Forcing and Geologic Setting

Based on the simulated water year, we posit a systematic gradient from hydrologic
to geologic control dominance as discharge decreases in the catchment. This finding
agrees with empirical relationships developed by Godsey and Kirchner (2014),
extending it to consideration through the full range of discharge conditions in the
simulated water year.

The flowing length and contiguous length span relatively narrow ranges
through the wet season (Oct. 2015 - Jul. 2016) despite Qgauge Varying across three
orders of magnitude (Fig. 44, 4B). Flowing length is about 1,800 m for Qgauge =8 L s
1, increasingly to about 2,350 m for Qgauge = 1,085 L s1; for Qgauge > 8 L s°1, contiguous
length is nearly constant at about 1,475 m (Fig. 8A). Under these high discharge
conditions, the most important factors controlling the extent of the stream network
are related to overall wet conditions. The hillslopes are contributing water to the
valley bottom throughout the catchment and the valley bottom is saturated (i.e., Ysu»
=T). Thus, new rainstorms simply increase delivery of water from the hillslopes to
the river corridor which is then transferred to the stream channel because Qay
already exceeds Qsup,cap. Further, spatial variation in Qsup,cap, caused by variation in
valley floor width (bsu») and longitudinal gradient (Svaiiey), is small relative to Qay.
Thus, the network extent is relatively insensitive to hydrologic dynamics.

The network responds dynamically to storm events under moderate flow
conditions (1 < Qgauge < 8 L s'1; Fig. 8A). Under these moderate conditions, Qav is near
Qsub,cap- Thus, precipitation delivers water to the catchment, increases Qav and
temporarily extends the upper end of the flowing network. As a result, both the
flowing and contiguous lengths are highly variable in this range of discharges. The
variability in flowing length is primarily associated with the transient activation of
locations draining less than 10 ha (Fig. 8B). Thus, 10 ha UAA is an apparent
threshold for the initiation of surface flow. The probability of surface flow or
contiguous flow increases rapidly as UAA increases from zero to this 10 ha
threshold. Locations draining more than 10 ha have surface flow more than 70% of
the year.

The rapid expansion of the flowing and contiguous network in response to
storm events under moderate flow conditions demonstrates the importance of
interacting geologic setting and hydrologic forcing under these conditions. Under
any given hydrologic condition, the upper extent of the drainage network reflects
locations where enough drainage area is accumulated for Qav to exceed Qsub,cap.
However, UAA is not accumulated uniformly with distance along the stream
network. Rather, it shows sharp jumps at tributary junctions, and especially at the
confluence between the South Branch and Main Stem. These tributary junctions,
then, create sharp discontinuities in the relation between discharge and both

28




949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984

flowing and contiguous channel lengths (Fig. 8A). Thus the watershed topology - the
arrangement of hillslope contributing areas and tributary locations - emerges as a
dominant control, defining the locations and relative fluxes of water into the river
corridor (as also found in mountain stream networks by Jencso et al., 2009).

The changes in Qsupcap due to valley morphology grow in importance as Qav
and Qsun,cap become closer in magnitude (i.e., Qav = Qsub,cap)- This is readily seen in the
model simulations at very low discharge conditions (Qgauge < 1 L s°1; Fig. 8A). During
these low discharge conditions the river corridor becomes highly sensitive to
hydrologic forcing. As such, even the relatively small diurnal fluctuations in Qav (Fig.
7) cause extensive network expansion and contraction. At locations where the valley
widens, Qsun,cap increases and the stream network dries; where the valley narrows,
Qsub,cap decreases and flow is reinitiated. Thus, geologic factors determining valley
width and slope controls the network expansion and contraction in our model. In
cases where heterogeneous K is considered, the variation of K across orders of
magnitude may be the dominant control. Under these conditions, the storage of
water in the catchment and its release as baseflow become important controls on
when and where surface flow will emerge. Importantly, there is likely a condition of
extremely low discharges in which this sensitivity would disappear because minor
changes in down-valley discharge could be fully transported in the subsurface
without activating the surface network (i.e., when Qav << Qsub,cap)-

While the thresholds described above are specific to our study site, the
general transition to increasing importance of geologic controls under low
discharges adds a dynamic context to the perceptual model we posed in Section 2.
We expect that the perceptual model and the systematic transitions described above
will be consistent across mountain stream networks. While the specific discharge
and area thresholds will vary depending upon, for example, flow generation
processes from the hillslopes, the general behavior is consistent with the
relationships already described in the literature (Godsey and Kirchner, 2014). Still,
this study contributes a dynamic perspective on the activation of the flowing stream
network, including variation in space. The geologic controls we use (slope, valley
width and depth, hydraulic conductivity) to estimate down-valley capacity are not
included in Costigan et al.’s (2016) framework, which is framed to more broadly
identify the types of landscapes in which intermittent flow may occur. Instead, our
work highlights spatial variation in specific process controls and their manifestation
as patterns of stream intermittency.
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Figure 8. A) Flowing and contiguous lengths as a function of discharge at the WS01
gauge, showing a threshold in contiguous length at about 8 L s 1. B) The probability

of surface flow (black) and contiguous surface flow to the gauge (grey) as a function
of UAA, with a visible threshold near about 10 ha. For both panels, lines show best-

fit power law regressions to aid in interpretation of model results.

5.2 A Critical Comparison of Transferability and Limitations of River Corridor
Modeling Approaches

To date, assessment and prediction of hydrologic connectivity in the river
corridor can be grouped into three main approaches (Table 2): empirical upscaling,
distributed modeling, and reduced-complexity modeling. First, empirical studies use
on-the-ground observation or instrumentation to directly measure hydrologic
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connectivity at scales ranging from reaches (Covino et al., 2011; Mallard et al., 2014;
Zimmer and McGlynn, 2017) to entire networks (Godsey and Kirchner, 2014; Jensen
et al,, 2017). Measurements are regressed against hydrologic or geologic parameters
(e.g., stream discharge, upslope accumulated area) and used to estimate processes
along the entire river corridor. Relatively few empirical studies have been published
because they are field intensive, requiring substantial commitments of people’s time
to conduct field campaigns. Additionally, empirical relationships are not readily
transferable to other locations with different geologic settings, catchment
topologies, and hydrologic forcing. Still, these empirical studies directly observe the
processes of interest. Recent work by Arismendi et al. (2017) demonstrates the
potential for advanced statistical techniques (e.g., Hidden Markov Models) as
another strategy for upscaling empirical findings. Other researchers have used a
similar upscaling approach but replaced direct empirical observations with
simulation results from mechanistic models. In these efforts, data from numerical
studies are regressed against geologic or hydrologic characteristics, with
regressions used to describe hydrologic processes as a function of readily
observable properties of the landscape (e.g., Kiel and Cardenas, 2014). The major
strength of these approaches is their rapid scaling to the stream network and ability
to consider a variety of independent variables which thereby enables upscaling of
small-scale processes to entire stream networks (Gomez-Velez et al., 2015; Gomez-
Velez and Harvey, 2014; Kiel and Cardenas, 2014). These efforts assume that the
processes of interest can be reasonably predicted from some measure of landscape
form, but do not account for feedbacks that may occur among smaller-scale
processes nor limitations due to the larger-scale context of the process (Stonedahl et
al,, 2013, 2010; Schmadel et al.,, 2017). To date, these studies lack any dynamic
processes.

Fully distributed “top-down” hydrologic models can represent dynamic,
spatially explicit exchanges in the river corridor (Frei et al., 2009; Wondzell et al.,
2009a; Yu et al.,, 2016). Models in this class can represent processes across a suite of
interacting spatial and temporal scales. However, these models are limited by the
number of parameters required to inform the processes being simulated. As a result,
non-unique parameters prevent the identification of a single best solution (e.g.,
Beven, 1993, 2006; Beven and Binley, 1992). Such models suffer from over-
parameterization and a lack of the necessary data to parameterize the natural world
at all relevant scales for all of the processes that are represented.

The reduced-complexity model derived and applied in this study is
concerned with mechanistic representation of the hydrologic processes perceived to
be dominant in the river corridor. As such, the model only includes the most
dominant processes identified in the perceptual model. Obviously, many processes
cannot be included - ones that are not considered dominant at our scale of interest
or for the purposes for which the model was conceived and constructed. One clear
example in this study is the parameterization of channel-unit scale exchange. In our
model we simplify exchange at scales smaller than the 5-m valley discretization into
the sum of the net up- or downwelling exchange flux and the Qsungria terms. Although
channel-unit scale exchange has been extensively studied (see review by Boano et
al,, 2014), it is not a dominant mechanism for prediction of network expansion and
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contraction at the scales considered here. Still, future improvements could add sub-
discretization exchange parameterized by metrics derived from topography (e.g.,
streambed concavity; Anderson et al., 2005) or based on empirical relationships
derived for bedforms and individual features (e.g., Gomez-Velez et al., 2015). These
processes would need to be included if the model were applied to predict reactive
transport, particularly where exchanges with short timescales are the most
important for reactive processes. Likewise, improved representation of
heterogeneity in the valley colluvium thickness (7) and hydraulic conductivity (K)
would likely improve the ability of the model to reflect site-specific patterns in
intermittency (Fleckenstein et al., 2007).

The model also greatly simplifies hillslope-valley floor-stream connectivity.
We assumed that lateral inflows would proportional to UAA, and implicitly assume
that these inflows will be instantaneously synchronized with Qgauge. Several existing
studies consider spatial and temporal variability in hillslope discharge to valley
bottoms (e.g., Jencso et al., 2009; Smith et al., 2013) and could potentially be
integrated to improve the representation of those inputs. We elected not to
parameterize these processes, nor the many others that are omitted or simplified,
because they would increase data needs and are not considered dominant processes
in our perceptual model of network expansion and contraction. Of course, processes
not included in the perceptual model may be incorrectly omitted. In this case,
iterative advances of hypotheses, field observations, and mechanistic models are
important to correct these deficiencies.
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Table 2: Summary of three approaches to simulate river corridor exchange at
the scale of networks

Approach | Empirical Upscaling Reduced- Distributed Modeling
complexity
modeling
Hydrologic | Observational, empiricism | Bottom-up, Top-down
Philosophy Dominant process
Complexity | Low Moderate Extensive
and data
needs
Description | (1) conduct field or Representation of | Fully-coupled
numerical experiments; the most representation of
(2) regress metrics important process dynamics
describing process (e.g., processes at scales | spanning multiple
fluxes) against relevant to the spatial and temporal
measureable explanatory | hydrologic scales. Mechanistic
variable(s); (3) assign the | question of predictions of
resultant property of interest. hydrologic dynamics
interest to river corridor; in the river corridor as
(4) aggregate along river a function of the full
corridor. suite of geologic
setting and hydrologic
forcing.
Geologic Independent variable(s) Parameterization | Parameterization of
Setting for regression of physical physical properties
properties
Hydrologic | Q may be used as an Time-variable Explicitly represented,
Forcing explanatory variable lateral inflows are | based on observed
a function of Qgauge | meteorology
Physically- | No Yes Yes
based
Strengths Based on site-specific Dynamic Representation of
observations hydrology interacting, multi-scale
hydrologic processes;
dynamic hydrology
Limitations | Steady-state hydrology Omits processes Extensive
perceived to be parameterization
unimportant,
which may reflect
incorrect
assumptions
Examples Covino et al., 2011; Bencala and Frei et al., 2009;
in the river | Gomez-Velez et al.,, 2015; | Walters, 1983; Wondzell et al., 20093;
corridor Gomez-Velez and Harvey, | This study Yuetal, 2016

2014; Kiel and Cardenas,
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2014; Mallard et al., 2014;
Stewart et al,, 2011;
Zimmer and McGlynn,
2017; Jensen et al., 2017;
Arismedni et al., 2017

5.3 Potential Applications for Assessment of Connectivity in the River Corridor
“Although the fine scales of field and laboratory studies are best suited to identifying the
fundamental physical and biological processes, that understanding must be successfully
linked to cumulative effects at watershed to regional and continental scales.” Harvey and
Gooseft (2015)

Improved understanding of dynamic hydrologic connectivity along the river
corridor is increasingly of interest to water resource researchers and managers in
the U.S (e.g., Department of Defense, Environmental Protection Agency, 2014). In the
wake of the Rapanos v. U.S. (2006) decision, new tools are needed to quantify
connectivity along river networks and thus provide both a scientific and legal basis
for river corridor management. For example, Caruso (2015) proposes the
development of connectivity indices based on statistical descriptors of discharge,
topology, and topography, but lacks any mechanistic predictive power and requires
extensive data collection at each point to be evaluated. In contrast, this study
represents an advance in the application of hydrologic science to inform river
corridor management. The relatively low data needs enable this framework to be
transferable and readily implemented to assess connectivity along the river
corridor. As with any model, an initial implementation based on uncalibrated
parameter estimates would provide only a preliminary assessment of connectivity.
Site-specific parameterization, calibration, and validation would be required to use
this model as the sole basis for management efforts.

In the Pacific Northwestern United States, the management of the river
corridor increasingly depends upon understanding channel network expansion and
contraction. One critical location in the river corridor is the “perennial initiation
point” or “perennial flow initiation point”, defined as the farthest upslope location
with flow during summer low-flow conditions (Jaeger et al, 2007). Current practices
attempt to construct empirical models to predict the locations of the perennial
initiation points as a function of drainage area, lithology, land use, and other readily
identifiable independent variables (e.g., Jaeger et al., 2007; Clark et al., 2008; Wood
et al.,, 2009). Comparisons among empirical predictions, reduced-complexity model
predictions, and distributed model predictions of intermittency will help develop an
improved basis for management in unobserved locations.

We envision two immediate applications of the reduced complexity model
presented here. First, the model could be used to design field studies. Initial model
analyses could use feasible ranges of parameters (e.g., hydraulic conductivity,
sediment thickness) to determine key locations that appear to control the potential
expansion, contraction, and changes in connectivity along the river corridor.
Similarly, sensitivity analyses could be used to identify the parameters with the
greatest influence on model projections. These results could then be used to plan
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field campaigns that would improve estimates of key parameters or identify the
places and times when observations of intermittency or network extent may be
most important. This approach could help make the most efficient use of limited
resources that might be available for field work. Second, the model could be used as
the basis of heuristic studies scaling up processes from reaches to entire networks.
Indeed, the strategy of scaling reduced-complexity models to large networks—even
in cases when acceptable validation data are not readily available—is emerging as
an important area of research in the river corridor (e.g., Gomez-Velez et al., 2015).
Current models do not include parametrization for mountain streams; this
framework could form the basis of an upscaling strategy for high-gradient river
networks.

6. Conclusions

The overall objective of this study was to predict dynamic hydrologic
connectivity along the river corridor. To achieve this objective, we selected a well-
studied headwater catchment to develop a perceptual model of river corridor
exchange. Building on this perceptual model we next developed a reduced-
complexity, mechanistic model to predict the dynamic hydrologic connectivity along
the river corridor. The model developed may be of broad interest for hydrologists
and water resource managers working in mountain river networks. While this study
was designed to calibrate the reduced-complexity model by leveraging detailed,
site-specific observations, we emphasize that the model was developed with
potential transferability in mind. The reduced-complexity model has modest data
requirements (stream discharge, catchment topography, reasonable estimates of
hydrogeologic parameters) to generate an initial prediction at the river network
scale. Calibration using site-specific observations of discharge, intermittency,
and/or solute tracer studies can be implemented to refine predictions at sites of
interest, as we demonstrate here. The framework is mechanistic, based on a state-
of-the-science understanding of the river corridor in a mechanistic way, and is
capable of simulating both hydrodynamics and solute transport. Additionally, the
model is dynamic, enabling the simulation of network expansion and contraction.
We expect the perceptual model detailed in this study is transferable to other
mountain stream networks, where streams reflect down-valley discharge in excess
of the down-valley capacity. Importantly, the reach-scale success of this approach
also highlights the role that heterogeneity along a valley controls along-network
connectivity. Variation in bedrock topography, hydraulic conductivity, and
individual morphologic features result in a more complex pattern of connectivity
that was captured by this model (Figs. S1, S2, S3). This result highlights the need for
future study of these processes as controls on intermittency of stream flows.

In this study, we asked how geologic setting interacts with hydrologic forcing
to produce spatial and temporal patterns of connectivity along the river corridor?
We expected geologic controls to dominate periods of steady flow and hydrologic
controls to be important only during highly dynamic periods (e.g., storm event
responses). Instead, we found that geologic setting controls network dynamics
during relatively low discharge conditions, and that the spatial patterns of lateral
inflows arising from storage and release of water from hillslopes are dominant
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1152  during relatively wet periods. In contrast, connectivity in the river corridor is highly
1153  sensitive to hydrologic dynamics under the lowest flow conditions.
1154
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