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A large number of ground-motion time histories is required for a reliable probabilistic seismic-hazard analysis.
However, insufficient ground-motion records has been a major issue in earthquake engineering even in high-
seismicity areas. Stochastic and seismological ground-motion models are used to simulate time histories in order
to overcome this issue. Many times these models require a large number of records for calibration, are available
only for regions with a wealth of data, or fail to characterize well specific sites.

The current paper introduces a novel stochastic ground-motion model that allows simulation of realistic non-
stationary, non-Gaussian time histories that are statistically consistent with data even at sites with very low
numbers of records. This goal is achieved by combining the prior knowledge from a seismological model, ca-
librated to global data, with the site-specific data within a Bayesian framework. The proposed model uses the

specific barrier model as the seismological model and numerical results consistent with records from a nuclear
powerplant site in Romania are presented.

1. Introduction

Detailed seismic-risk assessment is a requirement for various ap-
plications, from the design of high-value structures to the development
of risk-management solutions and risk-transfer solutions for the (re)
insurance market. An accurate evaluation of the seismic risk of struc-
tures at specified sites requires the dynamic analyses of those buildings
subjected to site-specific records. This is usually constrained by the
limited number of recorded ground motions available at individual
sites. The methods proposed to overcome this issue can be split in two
classes: methods that select ground-motion records from large datasets,
and scale them to desired intensity measures; and methods that simu-
late artificial ground-motion records.

A review of ground-motion selection is provided in [1]. A popular
procedure is to select ground-motion records to match a response
target-acceleration spectrum [2-4]. Computational methods for se-
lecting ground motions and selection algorithms were developed in
[5,6]. The selected records are then used for probabilistic seismic-ha-
zard analyses by scaling them to obtain ground motions of various in-
tensities. This procedure has limitations since it only changes the am-
plitude of the motion, but not its frequency content [7]. The alternative
to scaling selected ground motions is the simulation of ground motions
by using either stochastic models or seismological models. For the
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purpose of this discussion, we define seismological models as the
models whose calibration involves event characteristics of a physical
nature, such as stress drop, rupture model, etc., while stochastic models
are mathematical models calibrated just to recorded time histories and
their description in terms of magnitude, epicentral distance, soil type,
etc.

Seismological models, such as the point-source model SMSIM [8] or
the finite-fault model EXSIM [9], used for ground-motion simulation
show that important work has been developed in this area. Note that
these two models are defined as stochastic in the seismological com-
munity [12]. Detailed comparisons between the two models have been
presented in [10,11]. Usually seismological and physics-based models
are very complex and target specific events, such as a hypothetical 7.8-
magnitude event on the San Andreas fault in California [13]; the 1915
Marsica earthquake in Italy [14]; the 1999 7.1-magnitude earthquake
in Turkey [15]; or the 2011 9.1-magnitude event in Japan [16,17]. A
model in [18] is called “semi-stochastic”, since it combines a physics-
based model for the low-frequency and a stochastic model for the high-
frequency contributions.

The stochastic models for ground-motion simulations represent
more of an engineering approach which relies on the idea of earth-
quakes as filtered Gaussian noise with finite duration [19,20]. Sto-
chastic models are usually defined as parametric models which can be
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fit to specified regions, such as north-western Europe in [22], or cali-
brated to generate ground motions compatible with design response
spectra [21,23] or given ground-motion prediction equations [24].
However, models with a large number of parameters, such as [25-27],
may be difficult to calibrate reliably in regions with poor ground-mo-
tion records. Others [28] postulate mathematical models, in this case
the Karhunen-Loéve expansion, to produce artificial records, by esti-
mating the distributions and the second-order moment properties from
recorded ground motions. Special attention has been given to the re-
presentation of the non-stationary character of the ground motions [29]
in stochastic models. Many formulations of the evolutionary power-
spectral density for ground-motion simulations [30-32] use the model
introduced by Priestley [33]. Other models [25,34] use a frequency
filter to achieve this goal, while in a newer approach [26,27] a multi-
modal Kanai-Tajimi spectrum is used to describe the time dependency
of the frequency content. In Ref. [35,36] a spectral density estimated by
wavelets is used to describe the evolution in time of the spectral values
of simulated ground motions. In a more comprehensive context of uti-
lizing wavelets, a recent paper [37] proposes the construction of a
power-spectral density function for non-stationary processes based on a
compressive-sensing approach, for the purpose of reconstructing sto-
chastic processes with scarce or incomplete data. In a different ap-
proach [38], empirical ground-motion prediction models are used to
produce realistic Fourier spectra for the ground-acceleration processes,
whose non-stationary character is modelled by log-normal distributions
of the P- and S- pulse arrivals.

The current study proposes a new stochastic model that can simu-
late site-specific ground motions statistically consistent with site data.
The model proposed combines site records with a seismological model
within a Bayesian framework in order to describe the frequency content
of the motions, and assumes a non-Gaussian distribution for the motion
in order to incorporate the contribution of site records to other statis-
tical moments, besides the mean and variance. The importance of ha-
zard-consistent ground motions has been addressed before in [39], and
a recent study [40] shows the significant effects of soil amplifications
on ground motions. The seismological model adopted as part of our
development is the specific barrier model (SBM) [41], calibrated to
regional data in [42]. An augmented version of the model with addi-
tional source characteristics is presented in [43,44]. The SBM describes
the frequency content of ground motions as a function of magnitude,
epicentral distance, seismological regime and soil type. Our paper is
structured in three main parts: model description, model calibration,
and model evaluation. In summary, our model is a zero-mean, non-
Gaussian stochastic process with second-order moment properties de-
fined by a parametric seismological-based, one-sided, power-spectral
density. The non-stationary character of the motion is achieved using
both amplitude- and frequency-modulation parametric functions. In the
model-calibration part, the probability distributions of the frequency-
related parameters are updated to the site records. In the final part, the
model is evaluated by comparison with an independent regional
ground-motion prediction model in terms of intensity distributions.
Calibration and numerical examples shown in the paper are for the
Cernavoda site of a nuclear power plant in Romania, which lacks a large
number of records, but which would require an accurate seismic-hazard
analysis in case of a disaster-risk-reduction study.

2. Ground-motion model

The analysis of real ground-motion records shows that they are
samples x(t), 0 < t < t; with time length ¢; of complex stochastic pro-
cesses X (t; ©, ¥), which can be simplified in three natural distinct
time-sections [45]: (1) a built-up part, in which amplitudes
maxoggtf{x(t)} increase with time until they reach their highest-in-
tensity range, (2) a stationary part, in which amplitudes preserve their
highest-intensity characteristics, and (3) a decaying part, in which
amplitudes decay exponentially over time. Fig. 1 (a) shows this split for
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a ground-motion record. A further analysis in the frequency domain of
these three parts of the record shows that the frequency content of the
three parts is significantly different, as seen in Fig. 1 (b). Thus, not only
the ground-motion amplitudes are non-stationary but also their fre-
quency content.

More techniques used to perform time-frequency analyses of non-
stationary signals are shown in [46], or more recently in [47] by using a
Hilber spectrum. Following the observations above, the ground-motion
model proposed for the simulation of site-specific ground motions is a
non-stationary stochastic process

X(0,%)=c)Y(h(; ¥); 0),0 <t <Lt @

where ; is the duration of the motion, and ® and ¥ are stochastic
parameters calibrated to site records. Functions c(¢) and h(t; ¥) are the
amplitude- and frequency-modulation functions. The process Y (¢; ©) is
a zero-mean, stationary process with second-order moment properties
governed by the parametric one-sided power-spectral density function
gy (v; ©), with the random parameter ©. Function g, (v; ©) is an updated
version of the one-sided power-spectral density function g, (v) pro-
vided by the specific-barrier model (SBM) [41,42]. The SBM is a seis-
mological model calibrated to global data, and provides as an output
the function gg,,(v), as a function of the moment magnitude m, epi-
central distance r, type of soil and seismic regime. Note that for sim-
plification purposes, the notation regarding these parameters is not
used in the remainder of the paper. The random vector @ in g, (v; 0) is
used to update g, (v) to site records, as shown previously in [48], a
methodology which is described in the next section.

A gamma model [31] is used for the amplitude-modulation func-
tion:

c(t) =atfexp{-yt}, 0<t <1y, )

where 7, «, 8 and y are also outputs of the SBM, and are deterministic
functions of (m, r), soil class, and seismic regime. Note that these
parameters could be randomized, too, but our model calculates site-
specific probability distributions only for the parameters affecting the
frequency content of the motions for two reasons: (1) the response of
structures is highly sensitive to the frequency content of the input, and
(2) a large number of random parameters would limit the usefulness of
the model in regions with little data.

A power-spectral density model which uses a positive, real-valued,
increasing frequency-modulation function h(t; ¥), with zero slope at
t = 0, to describe the time evolution of the frequency content is adopted
[30]. A log-normal parametric model is considered for h(t; ¥):

Ly exp(—an(m - Wy ) "

w,2m 2%

where ¥ is a random vector with coordinates [¥;, ¥,]. The log-normal
cumulative function was chosen because besides the fact that it fulfils
all the requirements for h(t; ¥), it also covers a large range of possi-
bilities with just two parameters, which control both the position of the
function on the t axis as well as the function's shape. Finally, we can
conclude that the process X (t; ©, ¥) is obtained from the stationary
process Y (t; ©) by (1) scaling its amplitudes to c(¢), and (2) associating
its scaled amplitudes to time-dependent frequencies.

A Gaussian distribution for the ground-motion process X (t; ©, ¥) is
the common assumption in previous studies [21,31,34]. However, the
analysis of the ground-motion records in the PEER NGA-West dataset
suggests that a normal distribution may not be appropriate. Fig. 2
shows the kurtosis x calculated for all records in the dataset in com-
parison with the value x = 3, characteristic for Gaussian processes. The
kurtosis in the data is most of the time well above 3 which suggests a
limited usefulness of the Gaussian assumption. High kurtosis indicates
heavy tails of the ground-motion distributions, and therefore higher
peaks [49,50]. Hence, a non-Gaussian process with marginal distribu-
tion Fy(y) =P(Y(t; ©) <),V 0 <t <t must be chosen for process

ht; @) =

3
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Fig. 1. Time dependency of (a) ground-motion amplitudes and (b) frequencies.

Y (t; ©). We assume that the process Y (t; ©) follows a Student's T dis-
tribution with mean u, variance £0%/(£ — 2) and & degrees of freedom,
and probability-density function

F(§+1 &1
f0=—2— (1+§(y;“)) >
rQoyat @

The Student's T distribution suffices for the calibration of ground
motions, because (1) it is symmetric about 0; (2) it is characterized by
three parameters, which can accommodate the model's calibration to
both the second-moment properties and the kurtosis; and (3) it has
heavier tails than the Gaussian distribution. The kurtosis for the
Student's T distribution of process Y (t; ©) is only a function of the
number of degrees of freedom x = 6/(§ — 4), for £ > 4. Parameter ¢ is
calibrated for the NGA-West dataset shown in Fig. 2 (a), since the soil
type at a site is assumed to be constant. The SBM supports soil classi-
fication provided by the National Earthquake Hazards Reduction Pro-
gram (NEHRP). Thus, the kurtosis values for the records in the NGA-
West dataset are grouped into the five NEHRP classes by their shear-
wave velocities vs30, and mean values for the kurtosis x and parameter &
for the distribution Fy (y) are provided in Table 1. Fig. 2 (b) shows the
skewness for the same dataset. The skewness values ¢ are unbiased
around zero value, which support our choice of a symmetrical dis-
tribution for the ground-motion process X (t).

Fig. 3 also shows the kurtosis for the data points in the NGA-West
dataset grouped in the NEHRP soil classes. Even though the mean
parameter £ looks similar between NEHRP soil classes, the log-normal
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Table 1
Average kurtosis ¥ and degrees of freedom £ calibrated to NEHRP Soil-
Classification.

NEHRP Class Description Average vg3o[m/s] x 3

A Hard rock vg30 > 1500 21.3 4.3
B Generic rock 1500 > vg3p > 760 14.4 4.4
C Very dense soil 760 > vg39 > 360 143 4.4
D Stiff soil 360 > vg30 > 180 13.1 4.5
E Soft soil 180 > vg30 113 45
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Fig. 3. Kurtosis of the ground-motion records in the NGA-West Dataset.
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Fig. 2. (a) Kurtosis x and (b) skewness ¢ of the ground-motion records in the NGA-West Dataset.

79



A. Radu, M. Grigoriu

distributions fitted to the kurtosis for each soil class, shown in Fig. 3,
show that their distributions can be quite different. Maximum-like-
lihood estimates of the mean and standard deviation for the kurtosis
distributions are also provided, and this allows for simulation of x va-
lues and therefore accounts for the variability in the distribution Fy (y).

Process Y (t; ©) can be calculated by using a monotonic memoryless-
transformation model [51,52].
Y(t; ©) = Fylod(Z(t; ©)) )
where (1) @(x) = xoo ¢ (y)dy is the standard Gaussian cumulative dis-
tribution function, with the probability density
P(x) = (\/E)_lexp{—xz/z}, and (2) Z(t; ®) is a zero-mean, unit-var-
iance, stationary Gaussian process with spectral density function
g v; )/ j(;w g, (v; ©)dv. The approximation that the spectral density of
Z(t; ©) is just a scaled version of g, (v; ©) is based on the observation
that the differences between the correlation in the non-Gaussian space
and its correspondent in the Gaussian space are not significant for a
broad range of values [52]. Note that the process Z (t; ©) also depends
on (m, r), soil type and seismic regime.

In order to emphasize the importance of the non-Gaussian character
of the ground-motion model, let Z(t; ©®) be the Gaussian image of
Y (t; ©®) with the same second-order moment properties given by the
spectral-density function g, (v). Even though the processes Y (t; ©)
and Z (t; ©) have the same first two moments, they can have other very
different properties when considering a value of kurtosis x = 4.5. Fig. 4
(a) shows a sample of Y (t; ©) and its correspondent in the Gaussian
space Z(t; ©) for (m, r) = (5.8, 50 km). Higher peaks are present in the
sample of Y (t; ©®), which is consistent with the tail distributions of
Y (t; ©) and Z(t; ©) shown in Fig. 4 (b). The mean crossing rates 7, (z)
and 7,(z) at which processes |Y (t; ©)| and IZ(t; ©)| exceed a critical
value z > 0, respectively [53](Section 7.3) can be calculated analyti-
cally by

o] 1.
7y (2) = %EXP{—E[‘D 1°FY(Z)]}

(6)

g z
7,@) = Zcm"(E)’
where 0% = [ g, (V)dv and 62 = [ v2gey, (v)dv are the variances
for processes Z(t; ©) and dZ(t; ©)/dt. -

Fig. 5 shows the differences between the mean crossing rates 7, (z)
and 7,(z) for processes Y (t; ©) and Z(t; ©), respectively. The mean
crossing rates of process Y (t; ©) are higher, which is consistent with the
higher peaks present in its samples, as seen in Fig. 4 (a).
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Fig. 5. Mean crossing rates 7, and 7, of processes Y (t; ©) and Z(t; ©), re-
spectively, for (m, r) = (5.8, 50 km).

3. Model calibration

The goal of the model is to provide site-specific ground motions
statistically consistent with the recorded ground motions. In this sec-
tion, stochastic parameters © and ¥ for the power-spectral density
function g, (v; ©) and the frequency-modulation function h(t; ¥), re-
spectively, are calibrated to site records within a Bayesian framework.

3.1. Site records: Cernavodd site in Romania

The ground-motion model in Eq. (1), presented in the previous
section, can be calibrated for sites with a small number of records. For
the numerical example in this section, earthquake records for the Cer-
navoda site in Romania are used. Romania is in a highly seismic region
of Eastern Europe, which can produce deep, high-magnitude earth-
quakes with epicenters in the Vrancea region [54], but only a few re-
cords are available. The site chosen is of particular interest, since it
hosts a nuclear power plant, and significant earthquake damage could
have a major impact in the region. Only five two-horizontal component
records are available at the site for earthquakes with moment magni-
tude higher than 5. Fig. 6 shows the ten records available at the site that
will be used for the model calibration.

The records are available in the European Strong-Motion Database
[55,56]. A brief summary of the five records used for calibration is
provided in Table 2, including the date, moment magnitude and
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Fig. 4. (a) Comparison between a sample y(t) of Y (¢; ©) and its Gaussian image Z (t; ©), (b) Marginal distribution functions for processes Y (t; ©) and its Gaussian

image Z(t; ©).
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Fig. 6. Horizontal components for five earthquake records at the Cernavoda site in Romania.

Table 2
Summary of five earthquakes in Romania used for model calibration.

Date Moment magnitude m Epicentral distance r [km]
31/05/1990 6.3 194
06/10/2013 53 182
22/11/2014 5.6 187
23/09/2016 5.6 196
27/12/2016 5.6 191

epicentral distance.

The seismic design codes in Romania do not provide a classification
of sites based on the shear-wave velocity vy, but only maps with design
corner-periods 7., which include the soil contribution to the seismic
risk. A corner period T, = 0.7 s from the Romanian seismic design code
for Cernavoda [57] and a regression relation between v, and T, de-
veloped for different sites in Bucharest [58], would lead to a conclusion
that Cernavoda is located on soft soil. In a separate study [59] it is
shown that the nuclear power plant is, however, located on a layer of
hard rock and therefore soil type A is used in the model calibration.

3.2. Bayesian updating

Stochastic parameters © and ¥ are calibrated to site records com-
bined with prior information about the model within a Bayesian fra-
mework. In this study, the prior information is reflected in the SBM,
which can be substituted by any other seismological model that pro-
vides information on the ground-motion frequency content [17]. Note
that the site records X = {Xe(t), k=1, ..,N,i=1, ..,n} used for the
update are available in discrete form, i.e. as values at times
ti=idt,i =1, ..,n at constant time intervals Jt, where n = t;/5t. The
Gaussian images 7 = {Ze(t), k=1, ..,N,i=1, ..,n} of records X are
calculated using the transformation suggested in Eq. (5), i.e.
Zi(t;) = @7 1oFy (X (t;)). Parameters (u, o, £) of the Student's T distribu-
tion Fy(y) are estimated from the mean, variance and kurtosis of the
strong-motion part of each sample Z; (¢), and are assumed to be time-
invariant.

Bayes' theorem states that the posterior probability-density function

81

p(6, ¥Z) of the unknown parameters @ and ¥ is

p©6, PIZ) o £ (6, PI(ZI6, ), ®)

where f (6, ¥) is a postulated prior density for © and ¥ and 1(Zle, P) is
the likelihood function, which accounts for the significance of the ob-
served data Z in the distribution of ©® and ¥. A uniform prior prob-
ability-density function f (6, ¥) is used for ©.

For a given site, the update of the model is done for each set of
(m, r), by writing the likelihood function I(Z16; ¥) for all N, ) records
Zi, k=1, ..,Nyn,) with a similar pair of parameters (im, r). Note that,
for computational convenience, the update is done for moment mag-
nitudes m and epicentral distances grouped in bins of size 0.1 and 5 km,
respectively. The logarithmic form of the likelihood function, under the
assumptions described previously, is written as:

1og(1(Z16; $)) —glog(IZ(G, D) — % ; @76, Y) %, ©

where |2 (6, 1)l is the determinant of the covariance matrix X (6, 1) and
Zr = {Z(t)i = 1, ...,n} denotes the vector with the discrete values of
Zx (t). Note that the total number of records at a site N = Z(W) Nom,r)-
The components of the covariance matrix
26, ) ={Z(y t; 6, ¥), u, v =1, ..,n} are calculated using the inverse
Fourier transform of the power-spectral density function g, (v; ©; ¥) of
process X (t; ©; ¥) [60] (Section 3.6), which can be written as:

Z(t, t; 0, ) = c(t)e(ty) j;)o & (v; ©)cos(v (h(ty; P) — h(ty; P)))dv,
(10)

where c(t) and h(t; 1) are the amplitude- and the frequency-modulation

functions shown in Egs. (2) and (3), respectively. The power-spectral

density g, (v; ©) can be seen as a stochastic version of the SBM g, (v)
and is defined as

3
& ¥ 0) =) 0ip(),

el a1
where © = [6;, i = 1, 2, 3] is a random vector and ¢,(v), i = 1, 2, 3 are
three functions of frequency v such that gy, (v) = Zle ¢,(v), and
therefore they depend on (m, r), soil type and seismic regime. The SBM



A. Radu, M. Grigoriu

gspm (V)

Fig. 7. Power-spectral and its

density function g, (v)
o,(v),i=1,2,3, for (m, r) = (6.3, 195 km), soil type D and far-field seismic
regime.

components

is only available in algorithmic form, therefore g, (v) does not have a
closed form. Functions ¢,(v), i = 1, 2, 3 can be obtained using a sin-
gular-value decomposition of functions gg,,(v) for a given range of
(m, r), frequencies v, soil type and seismic regime. A detailed descrip-
tion of the surrogate model and its statistical update using the strong-
motion part of the records under the stationarity assumption is avail-
able in [48]. Fig. 7 shows the power-spectral density function gg,, (v)
and its components ¢,(v), i =1, 2, 3, for (m, r) = (6.3, 195 km), soil
type D and far-field seismic regime. Note that individual components do
not have any physical meaning, and, hence, them alone not re-
presenting power spectral-density functions, ¢,(v), i =1, 2, 3 can take
negative values.

Following the procedure described above, the distribution of the
stochastic-model parameters [©, ¥] is updated in light of the observed
data Z at the Cernavoda station, and the corresponding posterior dis-
tribution p(6, ¥IZ) can be calculated.

Fig. 8 shows the marginal-probability densities of the ©® compo-
nents, i.e. p(6; 12), p(6, 1Z) and p(6; 12), respectively. Due to the lim-
ited number of records available at the site, no large deviations from the
uniform prior distributions of ®, and ©; are noticed, a result consistent
with [48], in which was shown both analytically and numerically, that
the model converges to the “true” power-spectral density as the number
of samples in the update increases.

Fig. 9 (a) and (b) show the two-dimensional marginal distribution
p@y, 1,b2|Z ) of ¥ = [¥, ¥,] and its projection, indicating the maximum
likelihood estimator $,,; = [1.5, 0.81] of ¥ by a red marker. Similar to
the previous statement, the posterior distribution of ¥, stays almost
uniform, similar to its prior distribution, due to the limited number of
records used for the update. For a better understanding of the effects of
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the updates, plots of the updated power-spectral density functions are
shown in Figs. 10 and 11. Fig. 10 (a) shows the mean and 95% con-
fidence intervals (C.1.) for the power-spectral density function g, (v; ©),
and the prior and posterior densities of ©, for (m, r) = (6.3, 195 km),
soil type D and far-field seismic regime. No significant difference is
noticed between the prior and the posterior C.Ls, but significant
changes are observed from the prior to the posterior distribution of
g, (v; @) at a fixed frequency v = 10 rad/s in Fig. 10 (b).

The effects of the parameter ¥ are shown in Fig. 11 (a), in which the
evolutionary power-spectral density function g
(v, tl®@=11,1,1], ¥ = $MLE) is shown for (m, r) = (6.3, 195 km), soil
type A and far-field seismic regime, for the maximum likelihood esti-
mator ¢, of ¥. Note that © = [1, 1, 1] corresponds to the SBM power-
spectral density. In addition, Fig. 11 (b) shows the correlation functions
p(t, thlO=[1,1,1], ¥ = $MLE) at fixed times t, € {3, 6, 10} seconds and
the corresponding g, (v) for the same seismological parameters in-
dicated above. The correlation function p(z, 10 = [1, 1, 1], ¥ = $MLE)
and the corresponding one-sided power-spectral density functions
g, (e =[1,1,1], ¥ = $MLE) at fixed times t, are Fourier pairs for
fixed parameters © and ¥.

4. Model evaluation

Once the model parameters [©, ¥] have been statistically calibrated
to site records, X ({10, ¥) can be used to simulate site-specific ground-
motion records for given seismological parameters. In order to evaluate
the performance of the model, this section provides a summary of the
model in the form of a sample-simulation algorithm and a qualitative
comparison with another model in the region.

4.1. Simulation algorithm

A step-by-step algorithm for simulating a sample x;(#6;, ¥,) of
X (10, ¥).

1. Simulate a sample [6;, 1] of [©, ¥] from the posterior distribution
p(6, ¥IZ) from Eq. (8);

2. For a fixed time step 6t and a fixed frequency step dv, calculate
& (v, ti; 6 ;) at each discrete time f = kot and frequency v; = jov;

3. Calculate the Gaussian process sample z;(#) using the spectral re-
presentation [29] with the power-spectral density function
& v, t; 655 1);

4. Calculate the mean u and the standard deviation ¢ from
& (v, t; 6 ,) at each time ;.

5. Simulate a value of the kurtosis x; from the distributions in Fig. 3
and calculate the degrees of freedom & for the Student's T dis-
tribution in Eq. (4).

6. Calculate the non-Gaussian image y, (#) of z;(fi) at each time f; from
Eq. (5).

7. Scale amplitudes of y,(t;) using the function in Eq. (2) to calculate

a c
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Fig. 8. Marginal distributions of the ® components: (a) p(@l\f ), (b) p(@z\f ), (©) p(63|7 ).
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(b)

Fig. 9. (a) Marginal distribution of the ¥ parameter p(s,, ¥,1Z); and (b) its projection, indicating the maximum likelihood estimator of ¥ in red star.
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Fig. 10. (a) The mean and 95% confidence intervals (C.I.) for the power-spectral density function g, (v; ©), and the prior and posterior densities of ©, for
(m, r) = (6.3, 195 km), soil type A and far-field seismic regime; (b) The prior and posterior distributions of g, (v; ©) at a fixed frequency v = 10 rad/s.
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Fig. 11. (a) The power-spectral density function g,(v, tl0 =[1,1,1], ¥ = $MLE) for (m, r) =(6.3,195km), soil type A and far-field seismic regime; (b)
p(t, 1@ =[1,1,1], ¥ = $MLE) at fixed times ¢, € {3, 6, 10}s and the corresponding g, (v).

sample-to-sample comparison is irrelevant. Therefore, statistics of in-
dependent models are used for comparison. Simple attenuation rela-
tions have been developed for Romania [54] using ground-motion re-

the sample x; (t16;, ;) = c(t)y;(t).

4.2. Model comparison cords of major earthquakes in the Vrancea region. One of the equations

expresses the peak ground acceleration (PGA) expressed in units of

The goal of the ground-motion model is to produce time histories of  g1yity acceleration g in logarithmic scale as a function of moment
specified characteristics, such as (m, r), soil type and seismic regime, magnitude m and epicentral distance r:

that are statistically consistent with site records. Since the model for the
ground motion-time histories X (t; ©, ¥) is a stochastic model, a
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Fig. 12. PGA probability density function from the attenuation relation in Eq. (12) vs. histograms of simulated PGA samples of X (t; ©, ¥), for (m, r) = (6.3, 195 km),

using (a) Gaussian and (b) non-Gaussian distributions.

In(PGA) = —9.3922 + 0.9665 m + 0.11491n(r) — 0.004738r,
= 0.473,

Oln(PGA)
12)

where 0j,(pga) is the standard deviation of the In(PGA). The paper re-
commends accounting for local soil conditions by scaling In(PGA) va-
lues by coefficient S in the range of [0.8, 1.0] for hard rock, [0.7, 0.8] for
thin sedimentary layers and [0.65, 0.7] for thick sedimentary layers.

Figs. 12 (a) and (b) compare the histograms of 10, 000 PGA samples
of simulated ground-motion records for (m, r) = (6.3, 195 km), fol-
lowing Gaussian and non-Gaussian distributions, respectively, with the
PGA probability-density functions assumed to follow log-normal dis-
tributions with parameters calculated by the attenuation law in Eq.
(12). These figures show how the inclusion of the kurtosis effect re-
flected in the simulation of soil conditions results in heavier tails in the
distribution of the PGAs, which is more consistent with the distribution
assumed in Eq. (12). Note that even though the results are very sa-
tisfactory, the comparison in Fig. 12 should be just of a qualitative
nature since the results are not expected to match perfectly, given that
the two models are conceptually different and are calibrated to dif-
ferent sets of data. The attenuation relation in Eq. (12) is just a re-
gression relation between seismological parameters and PGA observa-
tions at various sites. The model developed in this paper is based on
prior knowledge given by a global model, the SBM, calibrated solely to
records at the site of interest.

Furthermore, an analytical relationship for the probability dis-
tribution of the PGA for the model proposed in Eq. (1) can be developed
using crossing-rates theory [53] (Section 7.1):

Froa(x) = EXP{— ‘/(:tf 7y (x, t)df}, a13)

where 7y (x, t) are the instantaneous mean crossing rates of the process
X (t; ©, ¥) defined similarly as in Eq. (6), by replacing Y (t; ©®) with
X (t; ©, ¥). Also the second-moment properties of X (t; O, ¥), i.e. o (t)
and ¢ (¢), are calculated using the power-spectral density g, (v, t; ©, ¥)
as:

0.5
o(t):( Lﬁzogx(v,t; s,zp)p(9,¢|7)dvd¢de) ,

A
a(r):(j(;

where p(6, ¥I1Z) is the posterior distribution on the parameters @ and
¥, calculated in Eq. (8). Figs. 13 (a) and (b) show comparisons between
the PGA marginal distributions calculated from the attenuation relation
in Eq. (12), under the log-normal assumption of the PGA distribution,
and the analytical distribution relation calculated in Eq. (13), for

(14)

0.5
, . -
/:y S ) 'I’)p(@,z,b\Z)dvdt,bd@) , as)
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(m, r) =(6.3,195 km) and (m, r) = (7.0, 195 km), respectively, events
similar to the 1991 and 1977 earthquakes in Romania. It can be con-
cluded that the ground-motion model developed performs well, even at
sites with a low number of records, the results being consistent with
local empirical results.

5. Conclusions

This paper introduced a novel stochastic earthquake ground-motion
model that produces time histories consistent with site records. The
model combines in a Bayesian framework the physics from the specific-
barrier model, a seismological model calibrated to global data, with
site-specific data. The ground-motion time histories are samples of a
non-Gaussian, non-stationary stochastic process with frequency content
characterized by a one-sided spectral density as a function of seismo-
logical parameters, such as moment magnitude, epicentral distance, soil
type and seismological regime. The probability law of the stochastic
process is governed by stochastic parameters, whose probability dis-
tributions are statistically consistent with site data. Analytical relations
for the probability distribution of the peak ground acceleration (PGA)
are also developed for the updated model. The paper concludes with a
step-by-step algorithm that presents both stages of the model, i.e., the
calibration to site records and the simulation of samples of ground
motions using the distributions of the stochastic parameters.

Among the advantages of the model proposed, the main ones are
that it is easy to use; it can be calibrated to a low number of records;
and it simulates realistic ground-motion records with minimum com-
putational effort, which allows for the simulation of any number of
records. Numerical examples are shown for the proposed model cali-
brated to the few records available at a nuclear-powerplant site in
Romania. The model is validated for this site through a qualitative
comparison between the numerical distribution of the PGA obtained
from ground-motion simulations and an independent study on the
ground-motion prediction equations in the region. The model performs
well and it can be used to produce reliable site-specific ground motions
for the probabilistic seismic-hazard analyses.
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Fig. 13. PGA marginal distributions calculated from the attenuation relation in Eq. (12) (dashed) vs. the analytical relation in Eq.
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and (b) (m, r) = (7.0, 195 km).
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