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Abstract The seismic fragility of a system is the probability that the system enters a
damage state under seismic ground motions with specified characteristics. Plots of the
seismic fragilities with respect to scalar ground motion intensity measures are called
fragility curves. Recent studies show that fragility curves may not be satisfactory measures
for structural seismic performance, since scalar intensity measures cannot comprehensively
characterize site seismicity. The limitations of traditional seismic intensity measures, e.g.,
peak ground acceleration or pseudo-spectral acceleration, are shown and discussed in
detail. A bivariate vector with coordinates moment magnitude m and source-to-site dis-
tance r is proposed as an alternative seismic intensity measure. Implicitly, fragility surfaces
in the (m, r)-space could be used as graphical representations of seismic fragility. Unlike
fragility curves, which are functions of scalar intensity measures, fragility surfaces are
characterized by two earthquake-hazard parameters, (m, r). The calculation of fragility
surfaces may be computationally expensive for complex systems. Thus, as solutions to this
issue, a bi-variate log-normal parametric model and an efficient calculation method, based
on stochastic-reduced-order models, for fragility surfaces are proposed.
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1 Introduction

Seismic fragility is commonly used to measure seismic performance of structures, and
estimates the probability of entering specified damage states for given levels of ground
shaking (Hazus 2003). Traditionally, seismic fragility is used in performance seismic
design as functions of scalar seismic intensity measures. Graphical representations of
seismic fragilities expressed as functions of scalar intensity measures are known as fra-
gility curves. They describe the relationship between earthquake hazard and the structural
response expressed as engineer design parameters (e.g., maximum inter-story drift, max-
imum displacement). Peak ground acceleration (PGA) (Shinozuka et al. 2000; Sasani et al.
2002; Choun and Elnashai 2010; Garcia and Soong 2003; Banerjee and Shinozuka 2008)
and pseudo-spectral acceleration (PSA) (Gardoni and Rosowski 2009; Liel et al. 2009;
Ellingwood et al. 2007; Lin et al. 2013a; Jalayer et al. 2015) are among the most widely
used intensity measures in fragility analysis. Two major issues regarding fragility are
discussed in this paper and solutions to overcome them are sought. First, the number of
ground-motion records available at a site is insufficient to calculate fragility curves.
Secondly, the traditional seismic intensity measures are assumed to carry enough infor-
mation on the ground motion to rate the performance of realistic complex systems for
selected damage parameters. A comprehensive review of the existing methods for con-
structing fragility curves is available in Rossetto (2013).

One popular method to resolve the first issue of insufficient number of ground-motion
records available is by scaling existing ground-motion records to common intensity
measures. Scaling ground motions is conceptually simple but may yield unsatisfactory
fragilities (Kafali and Grigoriu 2010) for certain non-linear systems. Scaling only changes
the intensity of the ground motions, and the ground motions used to construct fragilities
have the same frequency content irrespective of their intensity (Grigoriu 2011). One
approach, known as incremental dynamic analysis, involves repeated scaling of seismic
ground motions to increasing intensity measures until the specified damage state is reached
(Vamvatsikos and Cornell 2002; Zareian and Krawinkler 2007; Goulet et al. 2007).
Another method for calculating fragility curves, known as multiple stripes analysis (Lin
et al. 2013b; Baker 2015), uses ground-motion records from a large dataset selected to be
consistent with different spectral values of the response (Ozer and Akkar 2012; Baker
2011). The log-normal cumulative distribution function is commonly used as a parametric
model for fragility curves (Singhal and Kiremidjian 1996; Baker 2007; Jalayer et al. 2007).
This model is also adopted by the Federal Emergency Management Agency (FEMA)
through ATC-58 (Porter et al. 2006; FEMA 2012). Various methods have been proposed to
estimate the parameters of the log-normal distribution from data (Koutsourelakis 2010;
Baker 2015; Jalayer et al. 2015).

The second issue related to the construction of fragility curves is imposed by the
commonly used intensity measures, i.e., they are attractively simple, but they have limi-
tations. Recent studies have shown that fragilities viewed as functions of a single scalar
seismic intensity measure can be unsatisfactory. It was shown in Grigoriu et al. (2014) that
response statistics calculated for non-linear systems subjected to different ground motion
processes with similar intensity measures can yield significant differences. A compre-
hensive study on the efficiency and sufficiency of seismic intensity measure (Grigoriu
2016) examines the dependence of PSA on the demand parameters for non-linear structures
with elements of information theory. Also, a critical study (Kliigel 2007) on the proba-
bilistic seismic-hazard analysis notices the limitations of PSA by energy-conservation
principles, noticing that seismic events with very different energy content may have similar
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PSA. Concerns regarding the performance of the spectral acceleration in estimating
demand parameters of realistic structures have been expressed also in Kohrangi et al.
(20164a, b) and Schotanus et al. (2004), which analyse a set of intensity measures used in
practice for realistic 3D structures, or in Kostinakis et al. (2017) and Douglas et al. (2015),
which express the need of intensity measures to be structure-specific. A similar observation
is offered in Vargas et al. (2013), which uses ordinates of the spectral displacement as
intensity measure, but seeks an approach that takes into account the non-linear behaviours
of structures. Alternative two-dimensional vector-valued seismic intensity measures were
proposed in Baker and Cornell (2006), Baker and Cornell (2005), Tothong and Luco
(2007) and Kohrangi et al. (2016b). Graphical representations of seismic fragility as
functions of vector intensity measures are called fragility surfaces. They provide the same
information as fragility curves, that is, probabilities of exceedance of limiting engineering
design parameters, but are calculated as functions of two-dimensional vector-valued
intensity measures (Gardoni et al. 2002). For example, fragility surfaces have been con-
structed as functions of the absolute maxima of the ground-motion metrics, such as peak
ground-acceleration, velocity or displacement (Seyedi et al. 2009; Gehl et al. 2013);
spectral ordinates at distinct structural periods (Gehl et al. 2011); or structure-specific
parameters such as imposed drift and aspect ratio (Yazdi et al. 2016). Similar approaches
use response surfaces (Rajashekhar and Ellingwood 1993; Buratti et al. 2010) for relia-
bility studies for structures.

This paper proposes a solution for the two issues stated above, through the use of (1)
simulated ground-motion records characterized by the moment magnitude m and source-to-
site distance r, and (2) a vector measure (m, r) for fragility analysis (Kafali and Grigoriu
2010). We only use synthetic records to have full knowledge of structural performance so
that the accuracy of different fragilities can be assessed precisely. Our objectives are (1) to
show that fragilities defined as failure/damage probabilities conditional on current IMs are
unsatisfactory and (2) to develop a practical framework which defines fragilities as fail-
ure/damage probabilities conditional on the defining parameters of the ground-acceleration
stochastic process rather than responses of linear oscillators to these processes. Synthetic
ground-motion records are simulated for each pair of values (m, r) considered in the
fragility analysis. A regional seismological model which uses the specific barrier model
(Halldorsson and Papageorgiou 2005) allows the simulation of ground motion samples as a
function of (m, r). Calculating fragility surfaces is computationally expensive, since it is
based on response analyses of structures subjected to seismic ground motions characterized
by various values of (m, r). To overcome this drawback, an efficient method for calculating
fragility surfaces based on stochastic reduced order models (Radu and Grigoriu 2014b;
Grigoriu 2009) and a parametric model for fragility surfaces are proposed. These models
are The stochastic reduced order model (SROM) resembles the Monte-Carlo method. Like
Monte-Carlo, the method calculates structural responses to samples of the ground-motion
process. Unlike Monte-Carlo, which uses a large number of samples selected at random,
the proposed method uses a small number of samples selected in an optimal way. Similarly
to the method adopted by the ATC-58 in which a log-normal distribution function is
adopted as a model for fragility curves, a parametric bi-variate log-normal cumulative
distribution function is used as a parametric model for fragility surfaces. Fragility surfaces
are essential tools in performance-based seismic design and are used to estimate the life-
cycle damage and cost of structures subjected to seismic loads. A related study (Shome
et al. 1998) also did a comprehensive analysis on the nonlinear response of structures in the
context of the (m, r) space, but with respect to the PSA. That study proposed several
alternative, equivalent approaches to the approach presented in the current study, referred
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therein to as the direct approach. The approaches proposed in Shome et al. (1998) focus on
the reduction of the number of dynamic analyses, achieved by scaling the few ground-
motion records available in the four (i, r) bins considered in their study. This paper is an
extension of the direct approach, which is now possible for a refined mesh of the
(m, r) space, by considering (m, r)-synthetic ground-motion records and the SROM for the
reduction of the number of nonlinear dynamic analyses. Numerical results in this paper are
presented for simple linear and non-linear systems subjected to synthetic ground motions,
with fully defined probabilistic laws. The seismic performance of systems is assessed
through fragility surfaces. The advantages of using fragility surfaces with the proposed
(m, r) intensity measure are discussed by comparison with traditional fragility curves. It is
shown that fragility surfaces in (m, r) coordinates are superior to fragility curves in terms
of sufficiency and efficiency of uncertainty quantification.

2 Problem description

The goal of the paper is to estimate accurately the performance of structural systems
subjected to seismic loads. The framework used for this purpose comprises of two main
parts: the input, which is the seismic ground motion, assumed to be a stochastic process;
and the structural system, modelled as simple linear and non-linear structural models. The
response of the structural systems to the ground-motion samples will then be used to assess
the performance of the structural systems in the form of seismic fragilities.

2.1 Seismic ground motion

We define the seismic ground-motion records at a site, produced by a seismic event with
magnitude m and source-to-site distance r, as samples of a stochastic process A(f). The
ground motion process A(f) is assumed to be a zero-mean, non-stationary, Gaussian process
given by

A(D) = h()Z(), 0<1 <1, (1)

where 1 is the duration of the record and

h(t) = ot exp{—yt} (2)

is a deterministic modulation function with constant parameters o, § and y, which gives the
non-stationary character of the ground motion. The process Z(¢) is a zero-mean, stationary,
Gaussian process with marginal distribution ®(z) = [ 1/v2mexp(—0.5x)dx,
V0 <t <t, with second-order moment properties given by the one-sided spectral density
function g(v;m,r), v>0. Function g(v;m,r) is the result of a seismological model based
on the specific-barrier model (SBM) (Halldorsson and Papageorgiou 2005) and depends on
parameters (m, r), type of soil and tectonic regime. Constants o, f3, 7 and the duration #; in
Egs. (1) and (2) are also outputs of the specific barrier model. A statistically updated
version of this model, to allow simulation of site-specific ground motion samples, is
available in Radu and Grigoriu (2014a). The updated version is able to produce site-
specific spectral density functions consistent with the site seismicity.

The simplified seismological model used for the purpose of this paper may be replaced
by other simple stochastic (Tsioulou et al. 2018) or more complex physics-based (Goda
et al. 2016) models that can produce synthetic processes as functions of (m, r). The general
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character of the proposed methodology allows for the use of ground-motion records pro-
duced by complex seismological models, that account for types of seismic sources,
directivity, local-amplification conditions, such as the point-source model SMSIM (Boore
2005), the finite-fault model EXSIM (Motazedian and Atkinson 2005), or hybrid models
(Seyhan et al. 2013), that combines physics-based and stochastic models for the low and
high frequency contents, respectively.

Figure 1 illustrates two samples of the ground-motion process A(?) in Eq. (1) for two
one-sided power-spectral-density functions shown in Fig. 3a, respectively, for (m,r) =
(5.4,30km) and (m,r) = (7.5,100km) and a soil type with shear velocity in the top 30 m
of soil of v3p = 620m/s. Important differences in the frequency content of the two pro-
cesses are noticed as parameters (m, r) change.

2.2 Structural systems

Let X(¢) be the relative displacement of a single-degree-of-freedom system subjected to the
seismic ground acceleration A(f). For the linear and the non-linear Bouc—Wen systems, X()
satisfies Eqgs. (3) and (4), respectively, shown as follows:

X(t) + 2ovoX(T) + viX(1) = —A(t) (3)
X(6) + 20w X(T) + (X (1) + (1 - ))W(H) = ~A). @)

where
W (1) = 9X(0) — aXONIW ()" W () — BX(1)[W(0)[", (5)

is the hysteretic displacement of the non-linear system and vy, (o, p, «, 5, 7, n are system
parameters. Numerical results are shown for vy =2nrad/s, {,=0.02, p=0.15,
o =0.001, f =2,7 =4 and n = 1. Note that for p = 1, the Bouc—Wen system is identical
with the linear system.

The behaviors of the two systems in Egs. (3) and (4) are shown in Fig. 2, represented by
the backbone curves, i.e., the maximum restoring force and the hysteretic restoring force,
respectively, as functions of the maximum absolute displacement max, ¢ |X(z)|.

(a) (b)
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0.01 0.01
z z
: :
oo 0 o 0
= —
S ]
-0.01 | -0.01
-0.02 : ‘ : : -0.02 :
0 2 4 6 8 0 10 20 30 40
t [s] t [s]

Fig. 1 Samples of the ground motion process A(?) for a (m,r) = (5.8,50km) and b (m,r) = (7.6,150km)
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3 Background on intensity measures

The metric used for the assessment of the seismic performance of the structural systems is
the seismic fragility, which is the probability the system enters a damage state for a
specified seismic ground-motion intensity measure. Graphic representations of seismic
fragility are known as fragility curves for univariate intensity measures, and fragility
surfaces for multi-variate intensity measures. Traditionally, PGA and PSA are used as
intensity measures for the construction of seismic fragility curves. The current paper
proposes a novel alternative bi-variate intensity measure for the representation of seismic
fragility, in the form of vector (m, r), where m is the moment magnitude and r is the
source-to-site distance r. As seen in Sect. 2.1, the SBM characterizes the frequency content
of the ground-motion process. Furthermore, under the assumption stated, the probability
law of the process A(f) conditional on (m, r) is completely defined and, thus, the fragility
surfaces indexed by (m, r) are uniquely defined. The uniqueness of fragility surfaces is a
reasonable assumption even for real ground-motion records, since (m, r) define almost
completely their frequency content (Boore 2003; Halldorsson and Papageorgiou 2005).
The limitations of the traditional intensity measures and the advantages of using the
alternative (m, r) are discussed further in this section.

Following the problem definition in Sect. 2, the PGA is defined as the maximum
absolute acceleration A(r), i.e., PGA = maXo<,< |A(?)|, and the PSA is defined as the
maximum absolute response acceleration for a linear SDOF system characterized by the
natural frequency vo and damping ratio (o, i.e., PSA = v maxo<, <, |X(t;vo,{o)|, where
X(t;vo, (o) is the response of the linear SDOF system in Eq. (3). It is shown below that
ground-motion records with similar PGA or PSA can have very different frequency con-
tent, which is their main limitation, because the structural response is sensitive to the
frequency content of the input excitation.

3.1 Peak ground acceleration (PGA)

Two versions of the input process A(r) defined in Eq. (1), with parameters (m,r) =
(7.5,100km) and (m,r) = (5.4,30km), respectively, are characterized by the one-sided
power spectral densities g(v;m, r), shown in Fig. 3a.

Probability density functions of the PGAs of A(f) can easily be calculated, either by
using simulations of ground-motion records using the model in Eq. (1), or by analytically
using mean crossing-rates (Radu and Grigoriu 2014a), and they are shown in Fig. 3b. It is
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Fig. 3 a Power spectral densities and b PGA probability density functions, of ground motions with
parameters (m, r) equal to (7.5,100km) and (5.4,30km), respectively

seen that the two processes have similar probability densities of the PGA, and identical
modes (value of the PGA for which the probability density function reaches its maximum),
even though they have significantly different frequency contents.

Since the response of the systems is sensitive to the frequency content of the motion
rather than to its maximum absolute amplitude alone, in Fig. 4 the responses of (a) the
linear and the (b) non-linear Bouc—Wen systems are compared when subjected to the two
motions described in Fig. 3. Large differences between the exceedance probabilities of the
maximum absolute displacement of X(¢) of critical values x., i.e., P{max, > |X(#)| > x},
are noticed for each of the systems when subjected to the two motions, despite their being
apparently indistinguishable with respect to their PGAs.

Furthermore, scatter plots of the PGAs of the ground motions with parameters (m, r) =
(7.0,30km) versus the maximum absolute displacements of the linear and the Bouc—Wen
systems, respectively, are shown in Fig. 5. It is seen that the PGA measure of the ground

motion and the response of the systems are uncorrelated, with correlation coefficients
below 3%.

@, | | M), |
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Fig. 4 Probability P{max,>¢ |X(¢)| > x.-} for a the linear and b the Bouc—-Wen SDOF systems
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Fig. 5 Correlation between the PGA for 1000 motions with (m,r) = (7.0,30km) and the corresponding
maximum absolute displacement for a the linear and b the Bouc—Wen SDOF systems

3.2 Pseudo spectral acceleration (PSA)

A similar analysis is conducted with respect to the PSA, for which two other processes A(¢)
defined by the parameters (m,r) = (8.0,210km) and (m, r) = (5.4,30km), respectively,
are chosen. Their one-sided power-spectral-density functions g(v; m, r) are shown in Fig. 6.
Probability density functions of the PSAs of A(#) are calculated as before, and it is seen

in Fig. 6 that even though the two processes have very different frequency contents, they
have almost identical probability density functions of their respective PSAs. Thus, the two
processes, characterized by different (m, r), are indistinguishable with respect to the PSA.
Also the response statistics in the form of the probability of exceedance
P{max,>¢ |X(#)| > x.} are compared for the two systems individually in Fig. 7. It is
noticed that they are identical for the linear system subjected to the two distinct motions,
but fairly different for the non-linear system. As expected, the PSA is a suitable measure
for linear SDOF systems since its maximum displacement is directly proportional to the

PSA.
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Fig. 6 a Power spectral densities and b PGA probability density functions, of ground motions with
parameters (m, r) equal to (5.4,30km) and (8.0,210km), respectively

@ Springer



Bull Earthquake Eng

@ , ) |
- - (m,r) = (5.4, 30 km) - - (m,r) = (5.4, 30 km)
- —(m,r) = (8.0, 210 km) -~ —(m,r) = (8.0, 210 km)
S 08 1 S 0.8
A N k
A
= 08 = 06
s =
K‘ 0.4 % 0.4
o 0.2 Ev: 0.2
0 * 0 *
0 0.5 1 15 0 0.5 1 1.5
Zer[M) 10 Zer[m] %10

Fig. 7 Probability P{max, > |X(f)| > x.,} for a the linear and b the Bouc-Wen SDOF systems

Similar observations can be made when looking at the scatter plots of the PSAs of the
ground motions with parameters (m,r) = (7.0,30km) versus the maximum absolute dis-
placements of the linear and the Bouc—Wen systems, respectively, in Fig. 8. As expected,
the correlation coefficient between the PSA and the absolute maximum displacement of the
linear response is 100%, but it decreases to approximately 25% in the case of the non-linear
system.

It has been shown above that the traditional ground-motion intensity measures may be
uninformative. The PGA is unsatisfactory even for linear SDOF systems. The PSA,
however, which is widely used in the earthquake-engineering community, though a good
measure for linear SDOF systems, fails to perform well for simple non-linear systems.
Thus, PSA may be used as a proper intensity measure only under the assumption that
structures behave as linear SDOF systems, which may be unreasonable for complex,
realistic systems. Since the SBM, as well as other seismological models (Boore 2003; Goda
et al. 2016), show that the frequency content of the motion is highly dependent on the
moment magnitude m and the source-to-site distance r, the bi-variate intensity measure
(m, r) would seem to be a more appropriate choice. Additionally, it has also been shown in
this section that the response is highly dependent on the frequency content and therefore
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Fig. 8 Correlation between the PSA for 1000 motions with (m,r) = (7.0,30km) and the corresponding
maximum absolute displacement for a the linear and b the Bouc—Wen SDOF systems
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varies with (m, r) for apparently indistinguishable ground motions in terms of PGA or
PSA. This conclusion agrees with previous observations (Grigoriu 2011) that scaling
ground-motion records with respect to PGA or PSA, for the purpose of calculating fragility
curves, is unsuitable because scaling only changes the amplitude of the motion and fails to
capture the variability in the frequency content of seismic events.

4 Fragility surfaces

Fragility surfaces Py(m,r) = P(maxo<,<, |X(t)| > x.,) are graphical representations of
probabilities that a structural response X(f) exceeds a critical limit x.,. under a seismic
ground motion A(f) corresponding to moment magnitude m and source-to-site distance r.
4.1 Construction of fragility surfaces using Monte Carlo

Monte-Carlo (MC) is the only general method for calculating response statistics. The
following algorithm can be used to calculate fragility surfaces for a structural system.

1. Generate N samples q;(t), i = 1,...,N of the seismic ground motion process A(f) in
Eq. (1) for fixed (m, r);
2. Calculate samples of response x;(¢), i = 1,..., N for the structural system in Eq. (3) or

(4) subjected to a;(t);
3. Calculate the value of the fragility surface at coordinates (m, r) for a specified critical
limit for the displacement x,,

Py(m, r) =}Vzl{ mas. [ (1) >} (6)

0<r<t

where 1 is the indicator function, i.e., 1{x > xo} = 1 if x > x¢, and zero otherwise.

The algorithm above describes a simple method to construct fragility surfaces for the
maximum displacement of simple SDOF systems. The same procedure is applicable to any
other system for any desired engineering-design parameter (e.g., inter-story drift, angle of
rotation etc.). Figure 9a—c shows fragility surfaces calculated for the Bouc—Wen system in
Eq. (4) for increasing demand x., = {0.5, 1,2} cm.

Monte Carlo simulation usually requires a large number N of samples for the analysis.
Since fragility surfaces are calculated by response analyses, their construction could be
computationally expensive for complex structural systems. A more efficient, accurate
method to calculate fragility surfaces is presented in the next section.

4.2 Construction of fragility surfaces using stochastic reduced-order models
(SROM)

A new, highly efficient and non-intrusive method based on stochastic reduced-order
models (SROM) (Grigoriu 2009) is proposed for calculating response statistics. The
stochastic reduced-order model can be viewed as a smart Monte Carlo method. Like Monte
Carlo, the method uses random samples of the seismic ground-motion process to charac-
terize the structural response. Unlike Monte Carlo, which uses a large number N of samples
at random, SROM uses only a small number of samples N < <N, selected in an optimal
way. The SROM samples can be regarded as representative ground-motion records.
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Fig. 9 Evolution of fragility surfaces using MC, with increasing demand: a x.,, = 0.5cm, b x,, = lcm,
Cx,=2cm

Similar to the studies on ground-motion selection in Lin et al. (2013b) and Lin et al.
(2013a), the SROM-based method selects just a small number of records from a large
database of real or synthetic ground motions. In contrast to the aforementioned studies, the
SROM samples are selected to match the probability law of the ground-motion records,
rather than just the response spectra of linear SDOF systems.

Our goal is to construct SROMs for the process A(f) for each (m, r) and to use them to
calculate fragility surfaces. A stochastic reduced-order model A(r) for A(r) is a stochastic
process with N samples {a;(¢), i = 1,...,N} of A(z). Usually the samples of A(z) are not
equally likely and are weighed by some probabilities p = {p; >0, i =1,.. ., N } such that
Z?]:] pi = 1. The pairs of samples and their probabilities (a;(¢), p;) define completely the
probability law of A(z).

To construct A(z) we select sets of N samples of A(f) and calculate their corresponding
probabilities p;, i = 1, ..., N such that the discrepancy between the probability laws of A(f)
and A(t) is minimized. Consider the metric

@(p) = w191 (P) +w20,(P) +w305(P), (7)

where ¢, ¢,, and ¢5 are functions which account for the differences between the marginal

distributions, the moments and the correlation functions of A(7) and A(t) The weights
{w; >0,i=1,2,3} can be used to focus on certain properties of the two processes. For
each set of N samples we calculate an optimal probability vector p°®* of p by minimizing
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@(p), such that p?” >0, i=1,...,N and Zﬁilp;”” = 1. Functions ¢, (p), k = 1,2,3 have
the expressions

= /_m /: (F(x,1) — F(x,1)) drdx, )
/ (t:q) = u(r;@))dr, o)
@3(p) = /O'f/of(é(t’ s) — c(t,s))2dds, 0)

where F(x,1), F(x,t) are marginal distribution functions, fi(x, ), u(x,) are moments and
é(t,s), c(t,s) are correlation functions for A () and A(r), respectively, and n, is the order of
the highest moment considered. Functions F(x,t), p(x,f) and c(z, s) can be calculated
directly from the distribution of A(#), or from its samples if the distribution of A(f) was
unknown. Properties for the SROM A(r) are calculated as follows

F(x,1) = P{A(r) <x} = Zpll{a ) <x} (11)
(t 61) =L A sz aj (12)
étys) = A /i Zp,al a;(s (13)

under the zero-mean assumption of A(?).

The set of N samples which provides the minimum value for the metric @(p°!) defines
the SROM A(r). The range of A(t) is sub-optimal because we use a fixed, relatively small
number of distinct sets of N samples of A(7) to select the samples for the SROM.

1 N
— E . m X 14
l’) Nl-:lpl {0<ra<xt |XI()‘ >xcr} ( )

Figure 10a, b shows fragility surfaces calculated by Monte Carlo and SROM for the
Bouc—Wen system in Eq. (4) subjected to the stochastic process A(f) for x., = 2 cm, for
N = 1000 and N = 20 samples for each value of (m, r) in the fragility surface, respec-
tively. The approximate surfaces are satisfactory good by comparing them with the MC
surfaces, with errors below 5%.

4.3 Parametric model for fragility surfaces

Similar to the common approach of using a log-normal cumulative distribution function as
a model for fragility curves, a bi-variate log-normal cumulative distribution function is
proposed as a parametric model for fragility surfaces. This model can be easily calibrated
to data, which allows for efficient development of fragility surfaces.

@ Springer



Bull Earthquake Eng

=0 il i

\

T m

Fig. 10 Fragility surface obtained by a MC with N = 1000, b SROM with N = 20, and ¢ parametric bi-
variate log-normal model fit

The bi-variate log-normal distribution function Fry(m, r; ti;, 01, tt5, 02, p) is completely
defined by five parameters {u,, g1, (&, 02, p} and has the following form

m pr
FLN(I’I’L,F;[J“O']?,UZ,O'LP):/ / fLN(fa’7?#17017M2»02;P)d€d’77 (15)
0 0

where

- ! __
Juwm,r) = 2no1024/1 — pzmrexp( 2(1 - P2)>

, (lnm,ul)2 <lnmfy1) (]nrf,uz) (1nr,u2>2
f= () 2 + :
01 01 02 02
is the the probability density function for the bi-variate log-normal distribution.
We use the fragility surface calculated in Eqgs. (6) and (14) to estimate the values of the
bi-variate log-normal distribution’s parameters. These parameters will define the para-
metric model in Eq. (15) for the fragility surface for any m and r. Figure 10c shows the
parametric models for the fragility surfaces calculated for the Bouc—Wen calculated by MC
and SROM methods shown in Fig. 10a, b, respectively. The parameters of the bi-variate
parametric model for the fragility surface estimated are p, = 1.803, &, = 0.054,
1y, =4.978, 0, =0.107 and p = —0.977, for the data obtained by Monte Carlo; and
u; = 1.809, g; = 0.046, 1, = 5.003, 0, = 0.122 and p = —0.962, for the data obtained by
SROM.
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5 Discussion

This paper proposes a novel, improved bi-variate intensity measure in the form of the
vector (m, r), where m and r are the moment magnitude and the source-to-site distance
characterizing the seismic ground motion. It has been shown that m and r (together with
other secondary parameters, which, for simplicity’s sake, are disregarded here) control the
frequency content of the seismic ground motion. The main advantage of using (m, r) rather
than the traditional intensity measures PGA and PSA is the accuracy of the estimates of the
response statistics. It has been shown in Sect. 3 that the ground motion is well defined by
(m, r) for motions that are otherwise indistinguishable with respect to the traditional scalar
measures.

Thus seismic fragility is still used as a measure of the seismic performance of structures,
but they are expressed in (m, r) coordinates. The differences between the fragility curves as
functions of PSA and fragility surfaces as functions of (m, r) are discussed. It has been
shown why the representation of seismic fragility in (m, r) coordinates is more accurate.
For a more appropriate comparison between fragility curves and surfaces, two methods for
calculating equivalent fragility curves from fragility surfaces are suggested. Since a one-to-
one transformation between (M, R) and PSA is not possible, we can use either (1) samples
of the conditional random variable PSAI(M, R) or (2) statistics of PSAI(M, R), in this case,
its mode. Note that (M, R) denotes the random vector with coordinates moment magnitude
M and source-to-site distance R. In the first attempt to represent fragility surfaces as
fragility curves by using samples of PSAI(M, R), the value of the probability of failure
P¢(m,r), uniquely defined by (m, r) in Eq. (6), is assigned for various samples of
PSAI(M, R). Figure 11 shows in dots the values of P¢(m,r), for N = 1000 samples of
PSAI(M, R), for each value of (m, r) used in the representation of the fragility surfaces in
Fig. 9, in each of the three cases with different thresholds of the critical displacement x,,.
In other words, Fig. 11 should be regarded as a mapping of the fragility surfaces in Fig. 9 to
fragility curves, i.e., each discrete point on the vertical axis represents the probability
P¢(m, r) for a given value of (M, R) = (m, r), while the points on the horizontal axis, for a
given Py(m,r), represent the N = 1000 sampled of PSA|(M,R) = (m,r). Additionally,
log-normal parametric models of fragility curves are fitted to the data from the fragility
surfaces and are shown in Fig. 11 as the solid lines. Analysing the ranges of PSA values for
fixed values of P¢(m, r), it can be clearly seen that the fragility surfaces are able to capture
the large uncertainties in the ground motions, unlike fragility curves, and therefore they are
more desirable for uncertainty quantification in the structural response.

In the second attempt to represent fragility surfaces in Fig. 9 as curves using statistics of
PSAI(M, R), the values of Pf(M ,R) for the mode of PSAI(M, R), for each value of (m, r),
are represented by the circles in Fig. 12. As before, the fragility curves in Fig. 12 can be
regarded as the mapping of the fragility surfaces in Fig. 9 to curves. As in the first attempt,
fragility curves are fitted to this data obtained from the fragility surfaces. Visually com-
paring the curves in Figs. 11 and 12, we notice that using the mode of PSAI(M, R) alone,
rather than the entire distribution of PSAI(M, R), overestimates the probability of failure.
Fragility curves obtained using the entire distribution of PSA|(M, R) = (m, r), through its
samples, resemble more the fragility curves calculated empirically using the same data and
shown in Fig. 13.

The empirical fragility curves in Fig. 13 have been calculated using the same response
data used to calculate the fragility surfaces, i.e., all N = 1000 samples of ground motion
A(?) simulated for each (m, r). The motions were grouped in bins with similar values of
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Fig. 11 Fragility curves (solid lines) obtained from fragility surface data Py(m,r) for all samples of
PSAI(M, R) (dots), for increasing demand: a x.,, = 0.5cm, b x,, = 1cm, ¢ x;, =2cm

PSA, for which probabilities Pr(PSA) were calculated. The slight deviation from the curves
estimated from the fragility surfaces at high values of PSA may be explained by the smaller
number of events simulated in that range.

The discussion of fragility analysis using surfaces in (m, r) coordinates rather than
fragility curves can be concluded with the observation that fragility surfaces provide
important advantages over fragility curves, among which the most important are (1) the
uniqueness of the probability of failure for a given (m, r), and (2) the superior quantifi-
cation of the uncertainty in the ground motion. It is also important to note that the com-
prehensive characterization of the ground motion by (m, r) allows for an easy
transformation of the fragility surfaces to the traditional curves expressed as functions of
PSA, the reverse not being possible.

6 Conclusion

This paper analyses critically the currently used intensity measures, i.e., the peak ground
acceleration (PGA) and the pseudo-spectral acceleration (PSA), showing that they are
inadequate for the representation of seismic fragility for complex non-linear systems. The
response of the structures is sensitive to the frequency content of the ground motions, and
seismic ground motions with significantly different frequency content may have similar or
identical intensity measures. As an alternative to these traditional scalar intensity measures,
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Fig. 12 Fragility curves (solid lines) obtained from fragility surface data Ps(m,r) for the modes of
PSAI(M, R) (circles), for increasing demand: a x.,, = 0.5c¢m, b x,, = 1em, ¢ x;, =2cm
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the current study proposes a bi-variate intensity measure with coordinates moment mag-
nitude m and source-to-site distance r, which define almost completely the frequency
content of the seismic ground motion. Seismic fragilities expressed in the (m, r) space are
called fragility surfaces and they are calculated using synthetic ground-motion records,
using Monte Carlo simulations, which may be computationally challenging when dealing
with complex systems. An efficient method for calculating fragility surfaces using
stochastic reduced-order models (SROM), as well as a parametric model for fragility
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surfaces, are proposed to overcome the computational issue. Finally, fragility surfaces
expressed in (m, r) coordinates are translated into fragility curves expressed in PSA and
compared with empirical fragility curves. It is shown that fragility surfaces capture better
the uncertainty in the ground motion and that they are unique with respect to (m, r), which
makes them desirable for seismic fragility analysis.
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