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Abstract The seismic fragility of a system is the probability that the system enters a

damage state under seismic ground motions with specified characteristics. Plots of the

seismic fragilities with respect to scalar ground motion intensity measures are called

fragility curves. Recent studies show that fragility curves may not be satisfactory measures

for structural seismic performance, since scalar intensity measures cannot comprehensively

characterize site seismicity. The limitations of traditional seismic intensity measures, e.g.,

peak ground acceleration or pseudo-spectral acceleration, are shown and discussed in

detail. A bivariate vector with coordinates moment magnitude m and source-to-site dis-

tance r is proposed as an alternative seismic intensity measure. Implicitly, fragility surfaces

in the (m, r)-space could be used as graphical representations of seismic fragility. Unlike

fragility curves, which are functions of scalar intensity measures, fragility surfaces are

characterized by two earthquake-hazard parameters, (m, r). The calculation of fragility

surfaces may be computationally expensive for complex systems. Thus, as solutions to this

issue, a bi-variate log-normal parametric model and an efficient calculation method, based

on stochastic-reduced-order models, for fragility surfaces are proposed.
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1 Introduction

Seismic fragility is commonly used to measure seismic performance of structures, and

estimates the probability of entering specified damage states for given levels of ground

shaking (Hazus 2003). Traditionally, seismic fragility is used in performance seismic

design as functions of scalar seismic intensity measures. Graphical representations of

seismic fragilities expressed as functions of scalar intensity measures are known as fra-

gility curves. They describe the relationship between earthquake hazard and the structural

response expressed as engineer design parameters (e.g., maximum inter-story drift, max-

imum displacement). Peak ground acceleration (PGA) (Shinozuka et al. 2000; Sasani et al.

2002; Choun and Elnashai 2010; Garcia and Soong 2003; Banerjee and Shinozuka 2008)

and pseudo-spectral acceleration (PSA) (Gardoni and Rosowski 2009; Liel et al. 2009;

Ellingwood et al. 2007; Lin et al. 2013a; Jalayer et al. 2015) are among the most widely

used intensity measures in fragility analysis. Two major issues regarding fragility are

discussed in this paper and solutions to overcome them are sought. First, the number of

ground-motion records available at a site is insufficient to calculate fragility curves.

Secondly, the traditional seismic intensity measures are assumed to carry enough infor-

mation on the ground motion to rate the performance of realistic complex systems for

selected damage parameters. A comprehensive review of the existing methods for con-

structing fragility curves is available in Rossetto (2013).

One popular method to resolve the first issue of insufficient number of ground-motion

records available is by scaling existing ground-motion records to common intensity

measures. Scaling ground motions is conceptually simple but may yield unsatisfactory

fragilities (Kafali and Grigoriu 2010) for certain non-linear systems. Scaling only changes

the intensity of the ground motions, and the ground motions used to construct fragilities

have the same frequency content irrespective of their intensity (Grigoriu 2011). One

approach, known as incremental dynamic analysis, involves repeated scaling of seismic

ground motions to increasing intensity measures until the specified damage state is reached

(Vamvatsikos and Cornell 2002; Zareian and Krawinkler 2007; Goulet et al. 2007).

Another method for calculating fragility curves, known as multiple stripes analysis (Lin

et al. 2013b; Baker 2015), uses ground-motion records from a large dataset selected to be

consistent with different spectral values of the response (Ozer and Akkar 2012; Baker

2011). The log-normal cumulative distribution function is commonly used as a parametric

model for fragility curves (Singhal and Kiremidjian 1996; Baker 2007; Jalayer et al. 2007).

This model is also adopted by the Federal Emergency Management Agency (FEMA)

through ATC-58 (Porter et al. 2006; FEMA 2012). Various methods have been proposed to

estimate the parameters of the log-normal distribution from data (Koutsourelakis 2010;

Baker 2015; Jalayer et al. 2015).

The second issue related to the construction of fragility curves is imposed by the

commonly used intensity measures, i.e., they are attractively simple, but they have limi-

tations. Recent studies have shown that fragilities viewed as functions of a single scalar

seismic intensity measure can be unsatisfactory. It was shown in Grigoriu et al. (2014) that

response statistics calculated for non-linear systems subjected to different ground motion

processes with similar intensity measures can yield significant differences. A compre-

hensive study on the efficiency and sufficiency of seismic intensity measure (Grigoriu

2016) examines the dependence of PSA on the demand parameters for non-linear structures

with elements of information theory. Also, a critical study (Klügel 2007) on the proba-

bilistic seismic-hazard analysis notices the limitations of PSA by energy-conservation

principles, noticing that seismic events with very different energy content may have similar
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PSA. Concerns regarding the performance of the spectral acceleration in estimating

demand parameters of realistic structures have been expressed also in Kohrangi et al.

(2016a, b) and Schotanus et al. (2004), which analyse a set of intensity measures used in

practice for realistic 3D structures, or in Kostinakis et al. (2017) and Douglas et al. (2015),

which express the need of intensity measures to be structure-specific. A similar observation

is offered in Vargas et al. (2013), which uses ordinates of the spectral displacement as

intensity measure, but seeks an approach that takes into account the non-linear behaviours

of structures. Alternative two-dimensional vector-valued seismic intensity measures were

proposed in Baker and Cornell (2006), Baker and Cornell (2005), Tothong and Luco

(2007) and Kohrangi et al. (2016b). Graphical representations of seismic fragility as

functions of vector intensity measures are called fragility surfaces. They provide the same

information as fragility curves, that is, probabilities of exceedance of limiting engineering

design parameters, but are calculated as functions of two-dimensional vector-valued

intensity measures (Gardoni et al. 2002). For example, fragility surfaces have been con-

structed as functions of the absolute maxima of the ground-motion metrics, such as peak

ground-acceleration, velocity or displacement (Seyedi et al. 2009; Gehl et al. 2013);

spectral ordinates at distinct structural periods (Gehl et al. 2011); or structure-specific

parameters such as imposed drift and aspect ratio (Yazdi et al. 2016). Similar approaches

use response surfaces (Rajashekhar and Ellingwood 1993; Buratti et al. 2010) for relia-

bility studies for structures.

This paper proposes a solution for the two issues stated above, through the use of (1)

simulated ground-motion records characterized by the moment magnitude m and source-to-

site distance r, and (2) a vector measure (m, r) for fragility analysis (Kafali and Grigoriu

2010). We only use synthetic records to have full knowledge of structural performance so

that the accuracy of different fragilities can be assessed precisely. Our objectives are (1) to

show that fragilities defined as failure/damage probabilities conditional on current IMs are

unsatisfactory and (2) to develop a practical framework which defines fragilities as fail-

ure/damage probabilities conditional on the defining parameters of the ground-acceleration

stochastic process rather than responses of linear oscillators to these processes. Synthetic

ground-motion records are simulated for each pair of values (m, r) considered in the

fragility analysis. A regional seismological model which uses the specific barrier model

(Halldorsson and Papageorgiou 2005) allows the simulation of ground motion samples as a

function of (m, r). Calculating fragility surfaces is computationally expensive, since it is

based on response analyses of structures subjected to seismic ground motions characterized

by various values of (m, r). To overcome this drawback, an efficient method for calculating

fragility surfaces based on stochastic reduced order models (Radu and Grigoriu 2014b;

Grigoriu 2009) and a parametric model for fragility surfaces are proposed. These models

are The stochastic reduced order model (SROM) resembles the Monte-Carlo method. Like

Monte-Carlo, the method calculates structural responses to samples of the ground-motion

process. Unlike Monte-Carlo, which uses a large number of samples selected at random,

the proposed method uses a small number of samples selected in an optimal way. Similarly

to the method adopted by the ATC-58 in which a log-normal distribution function is

adopted as a model for fragility curves, a parametric bi-variate log-normal cumulative

distribution function is used as a parametric model for fragility surfaces. Fragility surfaces

are essential tools in performance-based seismic design and are used to estimate the life-

cycle damage and cost of structures subjected to seismic loads. A related study (Shome

et al. 1998) also did a comprehensive analysis on the nonlinear response of structures in the

context of the (m, r) space, but with respect to the PSA. That study proposed several

alternative, equivalent approaches to the approach presented in the current study, referred
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therein to as the direct approach. The approaches proposed in Shome et al. (1998) focus on

the reduction of the number of dynamic analyses, achieved by scaling the few ground-

motion records available in the four (m, r) bins considered in their study. This paper is an

extension of the direct approach, which is now possible for a refined mesh of the

(m, r) space, by considering (m, r)-synthetic ground-motion records and the SROM for the

reduction of the number of nonlinear dynamic analyses. Numerical results in this paper are

presented for simple linear and non-linear systems subjected to synthetic ground motions,

with fully defined probabilistic laws. The seismic performance of systems is assessed

through fragility surfaces. The advantages of using fragility surfaces with the proposed

(m, r) intensity measure are discussed by comparison with traditional fragility curves. It is

shown that fragility surfaces in (m, r) coordinates are superior to fragility curves in terms

of sufficiency and efficiency of uncertainty quantification.

2 Problem description

The goal of the paper is to estimate accurately the performance of structural systems

subjected to seismic loads. The framework used for this purpose comprises of two main

parts: the input, which is the seismic ground motion, assumed to be a stochastic process;

and the structural system, modelled as simple linear and non-linear structural models. The

response of the structural systems to the ground-motion samples will then be used to assess

the performance of the structural systems in the form of seismic fragilities.

2.1 Seismic ground motion

We define the seismic ground-motion records at a site, produced by a seismic event with

magnitude m and source-to-site distance r, as samples of a stochastic process A(t). The

ground motion process A(t) is assumed to be a zero-mean, non-stationary, Gaussian process

given by

AðtÞ ¼ hðtÞZðtÞ; 0� t� tf ; ð1Þ

where tf is the duration of the record and

hðtÞ ¼ atb expf�ctg ð2Þ

is a deterministic modulation function with constant parameters a, b and c, which gives the

non-stationary character of the ground motion. The process Z(t) is a zero-mean, stationary,

Gaussian process with marginal distribution UðzÞ ¼
R z

�1 1=
ffiffiffiffiffiffi
2p

p
expð�0:5x2Þdx;

80� t� tf , with second-order moment properties given by the one-sided spectral density

function gðm;m; rÞ; m� 0. Function gðm;m; rÞ is the result of a seismological model based

on the specific-barrier model (SBM) (Halldorsson and Papageorgiou 2005) and depends on

parameters (m, r), type of soil and tectonic regime. Constants a, b, c and the duration tf in

Eqs. (1) and (2) are also outputs of the specific barrier model. A statistically updated

version of this model, to allow simulation of site-specific ground motion samples, is

available in Radu and Grigoriu (2014a). The updated version is able to produce site-

specific spectral density functions consistent with the site seismicity.

The simplified seismological model used for the purpose of this paper may be replaced

by other simple stochastic (Tsioulou et al. 2018) or more complex physics-based (Goda

et al. 2016) models that can produce synthetic processes as functions of (m, r). The general
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character of the proposed methodology allows for the use of ground-motion records pro-

duced by complex seismological models, that account for types of seismic sources,

directivity, local-amplification conditions, such as the point-source model SMSIM (Boore

2005), the finite-fault model EXSIM (Motazedian and Atkinson 2005), or hybrid models

(Seyhan et al. 2013), that combines physics-based and stochastic models for the low and

high frequency contents, respectively.

Figure 1 illustrates two samples of the ground-motion process A(t) in Eq. (1) for two

one-sided power-spectral-density functions shown in Fig. 3a, respectively, for ðm; rÞ ¼
ð5:4; 30 kmÞ and ðm; rÞ ¼ ð7:5; 100 kmÞ and a soil type with shear velocity in the top 30 m

of soil of v30 ¼ 620 m=s. Important differences in the frequency content of the two pro-

cesses are noticed as parameters (m, r) change.

2.2 Structural systems

Let X(t) be the relative displacement of a single-degree-of-freedom system subjected to the

seismic ground acceleration A(t). For the linear and the non-linear Bouc–Wen systems, X(t)

satisfies Eqs. (3) and (4), respectively, shown as follows:

€XðtÞ þ 2f0m0
_XðTÞ þ m2

0XðtÞ ¼ �AðtÞ ð3Þ

€XðtÞ þ 2f0m0
_XðTÞ þ m2

0ðqXðtÞ þ ð1 � qÞWðtÞÞ ¼ �AðtÞ; ð4Þ

where

_WðtÞ ¼ c _XðtÞ � aj _XðtÞjjWðtÞjn�1
WðtÞ � b _XðtÞjWðtÞjn; ð5Þ

is the hysteretic displacement of the non-linear system and m0; f0; q; a; b; c; n are system

parameters. Numerical results are shown for m0 ¼ 2p rad=s, f0 ¼ 0:02, q ¼ 0:15,

a ¼ 0:001, b ¼ 2, c ¼ 4 and n ¼ 1. Note that for q ¼ 1, the Bouc–Wen system is identical

with the linear system.

The behaviors of the two systems in Eqs. (3) and (4) are shown in Fig. 2, represented by

the backbone curves, i.e., the maximum restoring force and the hysteretic restoring force,

respectively, as functions of the maximum absolute displacement maxt� 0 jXðtÞj.
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Fig. 1 Samples of the ground motion process A(t) for a ðm; rÞ ¼ ð5:8; 50 kmÞ and b ðm; rÞ ¼ ð7:6; 150 kmÞ
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3 Background on intensity measures

The metric used for the assessment of the seismic performance of the structural systems is

the seismic fragility, which is the probability the system enters a damage state for a

specified seismic ground-motion intensity measure. Graphic representations of seismic

fragility are known as fragility curves for univariate intensity measures, and fragility

surfaces for multi-variate intensity measures. Traditionally, PGA and PSA are used as

intensity measures for the construction of seismic fragility curves. The current paper

proposes a novel alternative bi-variate intensity measure for the representation of seismic

fragility, in the form of vector (m, r), where m is the moment magnitude and r is the

source-to-site distance r. As seen in Sect. 2.1, the SBM characterizes the frequency content

of the ground-motion process. Furthermore, under the assumption stated, the probability

law of the process A(t) conditional on (m, r) is completely defined and, thus, the fragility

surfaces indexed by (m, r) are uniquely defined. The uniqueness of fragility surfaces is a

reasonable assumption even for real ground-motion records, since (m, r) define almost

completely their frequency content (Boore 2003; Halldorsson and Papageorgiou 2005).

The limitations of the traditional intensity measures and the advantages of using the

alternative (m, r) are discussed further in this section.

Following the problem definition in Sect. 2, the PGA is defined as the maximum

absolute acceleration A(t), i.e., PGA ¼ max0� t� tf jAðtÞj, and the PSA is defined as the

maximum absolute response acceleration for a linear SDOF system characterized by the

natural frequency m0 and damping ratio f0, i.e., PSA ¼ m2
0 max0� t� tf jXðt; m0; f0Þj, where

Xðt; m0; f0Þ is the response of the linear SDOF system in Eq. (3). It is shown below that

ground-motion records with similar PGA or PSA can have very different frequency con-

tent, which is their main limitation, because the structural response is sensitive to the

frequency content of the input excitation.

3.1 Peak ground acceleration (PGA)

Two versions of the input process A(t) defined in Eq. (1), with parameters ðm; rÞ ¼
ð7:5; 100 kmÞ and ðm; rÞ ¼ ð5:4; 30 kmÞ, respectively, are characterized by the one-sided

power spectral densities gðm;m; rÞ, shown in Fig. 3a.

Probability density functions of the PGAs of A(t) can easily be calculated, either by

using simulations of ground-motion records using the model in Eq. (1), or by analytically

using mean crossing-rates (Radu and Grigoriu 2014a), and they are shown in Fig. 3b. It is
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seen that the two processes have similar probability densities of the PGA, and identical

modes (value of the PGA for which the probability density function reaches its maximum),

even though they have significantly different frequency contents.

Since the response of the systems is sensitive to the frequency content of the motion

rather than to its maximum absolute amplitude alone, in Fig. 4 the responses of (a) the

linear and the (b) non-linear Bouc–Wen systems are compared when subjected to the two

motions described in Fig. 3. Large differences between the exceedance probabilities of the

maximum absolute displacement of X(t) of critical values xcr , i.e., Pfmaxt� 0 jXðtÞj[ xcrg,

are noticed for each of the systems when subjected to the two motions, despite their being

apparently indistinguishable with respect to their PGAs.

Furthermore, scatter plots of the PGAs of the ground motions with parameters ðm; rÞ ¼
ð7:0; 30 kmÞ versus the maximum absolute displacements of the linear and the Bouc–Wen

systems, respectively, are shown in Fig. 5. It is seen that the PGA measure of the ground

motion and the response of the systems are uncorrelated, with correlation coefficients

below 3%.
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Fig. 3 a Power spectral densities and b PGA probability density functions, of ground motions with
parameters (m, r) equal to ð7:5; 100 kmÞ and ð5:4; 30 kmÞ, respectively
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Fig. 4 Probability Pfmaxt� 0 jXðtÞj[ xcrg for a the linear and b the Bouc–Wen SDOF systems
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3.2 Pseudo spectral acceleration (PSA)

A similar analysis is conducted with respect to the PSA, for which two other processes A(t)

defined by the parameters ðm; rÞ ¼ ð8:0; 210 kmÞ and ðm; rÞ ¼ ð5:4; 30 kmÞ, respectively,

are chosen. Their one-sided power-spectral-density functions gðm;m; rÞ are shown in Fig. 6.

Probability density functions of the PSAs of A(t) are calculated as before, and it is seen

in Fig. 6 that even though the two processes have very different frequency contents, they

have almost identical probability density functions of their respective PSAs. Thus, the two

processes, characterized by different (m, r), are indistinguishable with respect to the PSA.

Also the response statistics in the form of the probability of exceedance

Pfmaxt� 0 jXðtÞj[ xcrg are compared for the two systems individually in Fig. 7. It is

noticed that they are identical for the linear system subjected to the two distinct motions,

but fairly different for the non-linear system. As expected, the PSA is a suitable measure

for linear SDOF systems since its maximum displacement is directly proportional to the

PSA.
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Fig. 5 Correlation between the PGA for 1000 motions with ðm; rÞ ¼ ð7:0; 30 kmÞ and the corresponding
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Fig. 6 a Power spectral densities and b PGA probability density functions, of ground motions with
parameters (m, r) equal to ð5:4; 30 kmÞ and ð8:0; 210 kmÞ, respectively
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Similar observations can be made when looking at the scatter plots of the PSAs of the

ground motions with parameters ðm; rÞ ¼ ð7:0; 30 kmÞ versus the maximum absolute dis-

placements of the linear and the Bouc–Wen systems, respectively, in Fig. 8. As expected,

the correlation coefficient between the PSA and the absolute maximum displacement of the

linear response is 100%, but it decreases to approximately 25% in the case of the non-linear

system.

It has been shown above that the traditional ground-motion intensity measures may be

uninformative. The PGA is unsatisfactory even for linear SDOF systems. The PSA,

however, which is widely used in the earthquake-engineering community, though a good

measure for linear SDOF systems, fails to perform well for simple non-linear systems.

Thus, PSA may be used as a proper intensity measure only under the assumption that

structures behave as linear SDOF systems, which may be unreasonable for complex,

realistic systems. Since the SBM, as well as other seismological models (Boore 2003; Goda

et al. 2016), show that the frequency content of the motion is highly dependent on the

moment magnitude m and the source-to-site distance r, the bi-variate intensity measure

(m, r) would seem to be a more appropriate choice. Additionally, it has also been shown in

this section that the response is highly dependent on the frequency content and therefore
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Fig. 7 Probability Pfmaxt� 0 jXðtÞj[ xcrg for a the linear and b the Bouc–Wen SDOF systems
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Fig. 8 Correlation between the PSA for 1000 motions with ðm; rÞ ¼ ð7:0; 30 kmÞ and the corresponding
maximum absolute displacement for a the linear and b the Bouc–Wen SDOF systems
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varies with (m, r) for apparently indistinguishable ground motions in terms of PGA or

PSA. This conclusion agrees with previous observations (Grigoriu 2011) that scaling

ground-motion records with respect to PGA or PSA, for the purpose of calculating fragility

curves, is unsuitable because scaling only changes the amplitude of the motion and fails to

capture the variability in the frequency content of seismic events.

4 Fragility surfaces

Fragility surfaces Pf ðm; rÞ ¼ P max0� t� tf jXðtÞj[ xcr
� �

are graphical representations of

probabilities that a structural response X(t) exceeds a critical limit xcr under a seismic

ground motion A(t) corresponding to moment magnitude m and source-to-site distance r.

4.1 Construction of fragility surfaces using Monte Carlo

Monte-Carlo (MC) is the only general method for calculating response statistics. The

following algorithm can be used to calculate fragility surfaces for a structural system.

1. Generate N samples aiðtÞ; i ¼ 1; . . .;N of the seismic ground motion process A(t) in

Eq. (1) for fixed (m, r);

2. Calculate samples of response xiðtÞ; i ¼ 1; . . .;N for the structural system in Eq. (3) or

(4) subjected to aiðtÞ;
3. Calculate the value of the fragility surface at coordinates (m, r) for a specified critical

limit for the displacement xcr

Pf ðm; rÞ ¼
1

N

XN

i¼1

1 max
0� t� tf

jxiðtÞj[ xcr

� �

; ð6Þ

where 1 is the indicator function, i.e., 1fx[ x0g ¼ 1 if x[ x0, and zero otherwise.

The algorithm above describes a simple method to construct fragility surfaces for the

maximum displacement of simple SDOF systems. The same procedure is applicable to any

other system for any desired engineering-design parameter (e.g., inter-story drift, angle of

rotation etc.). Figure 9a–c shows fragility surfaces calculated for the Bouc–Wen system in

Eq. (4) for increasing demand xcr ¼ f0:5; 1; 2g cm.

Monte Carlo simulation usually requires a large number N of samples for the analysis.

Since fragility surfaces are calculated by response analyses, their construction could be

computationally expensive for complex structural systems. A more efficient, accurate

method to calculate fragility surfaces is presented in the next section.

4.2 Construction of fragility surfaces using stochastic reduced-order models
(SROM)

A new, highly efficient and non-intrusive method based on stochastic reduced-order

models (SROM) (Grigoriu 2009) is proposed for calculating response statistics. The

stochastic reduced-order model can be viewed as a smart Monte Carlo method. Like Monte

Carlo, the method uses random samples of the seismic ground-motion process to charac-

terize the structural response. Unlike Monte Carlo, which uses a large number N of samples

at random, SROM uses only a small number of samples ~N\\N, selected in an optimal

way. The SROM samples can be regarded as representative ground-motion records.
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Similar to the studies on ground-motion selection in Lin et al. (2013b) and Lin et al.

(2013a), the SROM-based method selects just a small number of records from a large

database of real or synthetic ground motions. In contrast to the aforementioned studies, the

SROM samples are selected to match the probability law of the ground-motion records,

rather than just the response spectra of linear SDOF systems.

Our goal is to construct SROMs for the process A(t) for each (m, r) and to use them to

calculate fragility surfaces. A stochastic reduced-order model ~AðtÞ for A(t) is a stochastic

process with ~N samples faiðtÞ; i ¼ 1; . . .; ~Ng of A(t). Usually the samples of ~AðtÞ are not

equally likely and are weighed by some probabilities p ¼ fpi � 0; i ¼ 1; . . .; ~Ng such that
P ~N

i¼1 pi ¼ 1. The pairs of samples and their probabilities ðaiðtÞ; piÞ define completely the

probability law of ~AðtÞ.
To construct ~AðtÞ we select sets of ~N samples of A(t) and calculate their corresponding

probabilities pi; i ¼ 1; . . .; ~N such that the discrepancy between the probability laws of A(t)

and ~AðtÞ is minimized. Consider the metric

uðpÞ ¼ w1u1ðpÞ þ w2u2ðpÞ þ w3u3ðpÞ; ð7Þ

where u1; u2; and u3 are functions which account for the differences between the marginal

distributions, the moments and the correlation functions of A(t) and ~AðtÞ. The weights

fwi [ 0; i ¼ 1; 2; 3g can be used to focus on certain properties of the two processes. For

each set of ~N samples we calculate an optimal probability vector popt of p by minimizing
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Fig. 9 Evolution of fragility surfaces using MC, with increasing demand: a xcr ¼ 0:5 cm, b xcr ¼ 1 cm,
c xcr ¼ 2 cm
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uðpÞ, such that p
opt
i � 0; i ¼ 1; . . .; ~N and

P ~N
i¼1 p

opt
i ¼ 1. Functions ukðpÞ; k ¼ 1; 2; 3 have

the expressions

u1ðpÞ ¼
Z 1

�1

Z tf

0

~Fðx; tÞ � Fðx; tÞ
� �2

dtdx; ð8Þ

u2ðpÞ ¼
Xnq

q¼1

Z tf

0

~lðt; qÞ � lðt; qÞð Þ2
dt; ð9Þ

u3ðpÞ ¼
Z tf

0

Z tf

0

~cðt; sÞ � cðt; sÞð Þ2
dtds; ð10Þ

where ~Fðx; tÞ; Fðx; tÞ are marginal distribution functions, ~lðx; tÞ; lðx; tÞ are moments and

~cðt; sÞ; cðt; sÞ are correlation functions for ~AðtÞ and A(t), respectively, and nq is the order of

the highest moment considered. Functions Fðx; tÞ; lðx; tÞ and c(t, s) can be calculated

directly from the distribution of A(t), or from its samples if the distribution of A(t) was

unknown. Properties for the SROM ~AðtÞ are calculated as follows

~Fðx; tÞ ¼ Pf~AðtÞ� xg ¼
X~N

i¼1

pi1faiðtÞ� xg ð11Þ

~lðt; qÞ ¼ E ~AðtÞq
� �

¼
X~N

i¼1

piaiðtÞq ð12Þ

~cðt; sÞ ¼ E ~AðtÞ~AðsÞ
� �

¼
X~N

i¼1

piaiðtÞaiðsÞ; ð13Þ

under the zero-mean assumption of A(t).

The set of ~N samples which provides the minimum value for the metric uðpoptÞ defines

the SROM ~AðtÞ. The range of ~AðtÞ is sub-optimal because we use a fixed, relatively small

number of distinct sets of ~N samples of A(t) to select the samples for the SROM.

Pf ðm; rÞ ¼
1

~N

X~N

i¼1

pi1 max
0� t� tf

j ~xiðtÞj[ xcr

� �
ð14Þ

Figure 10a, b shows fragility surfaces calculated by Monte Carlo and SROM for the

Bouc–Wen system in Eq. (4) subjected to the stochastic process A(t) for xcr ¼ 2 cm, for

N ¼ 1000 and ~N ¼ 20 samples for each value of (m, r) in the fragility surface, respec-

tively. The approximate surfaces are satisfactory good by comparing them with the MC

surfaces, with errors below 5%.

4.3 Parametric model for fragility surfaces

Similar to the common approach of using a log-normal cumulative distribution function as

a model for fragility curves, a bi-variate log-normal cumulative distribution function is

proposed as a parametric model for fragility surfaces. This model can be easily calibrated

to data, which allows for efficient development of fragility surfaces.
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The bi-variate log-normal distribution function FLNðm; r; l1; r1; l2; r2; qÞ is completely

defined by five parameters fl1; r1; l2; r2; qg and has the following form

FLNðm; r; l1; r1; l2; r2; qÞ ¼
Z m

0

Z r

0

fLNðn; g; l1; r1; l2; r2; qÞdndg; ð15Þ

where

fLNðm; rÞ ¼
1

2pr1r2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � q2

p
mr

exp � f 0

2ð1 � q2Þ

	 


f 0 ¼ lnm� l1

r1

	 
2

�2q
lnm� l1

r1

	 

ln r � l2

r2

	 


þ ln r � l2

r2

	 
2

;

ð16Þ

is the the probability density function for the bi-variate log-normal distribution.

We use the fragility surface calculated in Eqs. (6) and (14) to estimate the values of the

bi-variate log-normal distribution’s parameters. These parameters will define the para-

metric model in Eq. (15) for the fragility surface for any m and r. Figure 10c shows the

parametric models for the fragility surfaces calculated for the Bouc–Wen calculated by MC

and SROM methods shown in Fig. 10a, b, respectively. The parameters of the bi-variate

parametric model for the fragility surface estimated are l1 ¼ 1:803, r1 ¼ 0:054,

l2 ¼ 4:978, r2 ¼ 0:107 and q ¼ �0:977, for the data obtained by Monte Carlo; and

l1 ¼ 1:809, r1 ¼ 0:046, l2 ¼ 5:003, r2 ¼ 0:122 and q ¼ �0:962, for the data obtained by

SROM.
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Fig. 10 Fragility surface obtained by a MC with N ¼ 1000, b SROM with ~N ¼ 20, and c parametric bi-
variate log-normal model fit
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5 Discussion

This paper proposes a novel, improved bi-variate intensity measure in the form of the

vector (m, r), where m and r are the moment magnitude and the source-to-site distance

characterizing the seismic ground motion. It has been shown that m and r (together with

other secondary parameters, which, for simplicity’s sake, are disregarded here) control the

frequency content of the seismic ground motion. The main advantage of using (m, r) rather

than the traditional intensity measures PGA and PSA is the accuracy of the estimates of the

response statistics. It has been shown in Sect. 3 that the ground motion is well defined by

(m, r) for motions that are otherwise indistinguishable with respect to the traditional scalar

measures.

Thus seismic fragility is still used as a measure of the seismic performance of structures,

but they are expressed in (m, r) coordinates. The differences between the fragility curves as

functions of PSA and fragility surfaces as functions of (m, r) are discussed. It has been

shown why the representation of seismic fragility in (m, r) coordinates is more accurate.

For a more appropriate comparison between fragility curves and surfaces, two methods for

calculating equivalent fragility curves from fragility surfaces are suggested. Since a one-to-

one transformation between (M, R) and PSA is not possible, we can use either (1) samples

of the conditional random variable PSA|(M, R) or (2) statistics of PSA|(M, R), in this case,

its mode. Note that (M, R) denotes the random vector with coordinates moment magnitude

M and source-to-site distance R. In the first attempt to represent fragility surfaces as

fragility curves by using samples of PSA|(M, R), the value of the probability of failure

Pf ðm; rÞ, uniquely defined by (m, r) in Eq. (6), is assigned for various samples of

PSA|(M, R). Figure 11 shows in dots the values of Pf ðm; rÞ, for N ¼ 1000 samples of

PSA|(M, R), for each value of (m, r) used in the representation of the fragility surfaces in

Fig. 9, in each of the three cases with different thresholds of the critical displacement xcr.

In other words, Fig. 11 should be regarded as a mapping of the fragility surfaces in Fig. 9 to

fragility curves, i.e., each discrete point on the vertical axis represents the probability

Pf ðm; rÞ for a given value of ðM;RÞ ¼ ðm; rÞ, while the points on the horizontal axis, for a

given Pf ðm; rÞ, represent the N ¼ 1000 sampled of PSAjðM;RÞ ¼ ðm; rÞ. Additionally,

log-normal parametric models of fragility curves are fitted to the data from the fragility

surfaces and are shown in Fig. 11 as the solid lines. Analysing the ranges of PSA values for

fixed values of Pf ðm; rÞ, it can be clearly seen that the fragility surfaces are able to capture

the large uncertainties in the ground motions, unlike fragility curves, and therefore they are

more desirable for uncertainty quantification in the structural response.

In the second attempt to represent fragility surfaces in Fig. 9 as curves using statistics of

PSA|(M, R), the values of Pf ðM;RÞ for the mode of PSA|(M, R), for each value of (m, r),

are represented by the circles in Fig. 12. As before, the fragility curves in Fig. 12 can be

regarded as the mapping of the fragility surfaces in Fig. 9 to curves. As in the first attempt,

fragility curves are fitted to this data obtained from the fragility surfaces. Visually com-

paring the curves in Figs. 11 and 12, we notice that using the mode of PSA|(M, R) alone,

rather than the entire distribution of PSA|(M, R), overestimates the probability of failure.

Fragility curves obtained using the entire distribution of PSAjðM;RÞ ¼ ðm; rÞ, through its

samples, resemble more the fragility curves calculated empirically using the same data and

shown in Fig. 13.

The empirical fragility curves in Fig. 13 have been calculated using the same response

data used to calculate the fragility surfaces, i.e., all N ¼ 1000 samples of ground motion

A(t) simulated for each (m, r). The motions were grouped in bins with similar values of
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PSA, for which probabilities Pf ðPSAÞ were calculated. The slight deviation from the curves

estimated from the fragility surfaces at high values of PSA may be explained by the smaller

number of events simulated in that range.

The discussion of fragility analysis using surfaces in (m, r) coordinates rather than

fragility curves can be concluded with the observation that fragility surfaces provide

important advantages over fragility curves, among which the most important are (1) the

uniqueness of the probability of failure for a given (m, r), and (2) the superior quantifi-

cation of the uncertainty in the ground motion. It is also important to note that the com-

prehensive characterization of the ground motion by (m, r) allows for an easy

transformation of the fragility surfaces to the traditional curves expressed as functions of

PSA, the reverse not being possible.

6 Conclusion

This paper analyses critically the currently used intensity measures, i.e., the peak ground

acceleration (PGA) and the pseudo-spectral acceleration (PSA), showing that they are

inadequate for the representation of seismic fragility for complex non-linear systems. The

response of the structures is sensitive to the frequency content of the ground motions, and

seismic ground motions with significantly different frequency content may have similar or

identical intensity measures. As an alternative to these traditional scalar intensity measures,

Fig. 11 Fragility curves (solid lines) obtained from fragility surface data Pf ðm; rÞ for all samples of

PSA|(M, R) (dots), for increasing demand: a xcr ¼ 0:5 cm, b xcr ¼ 1 cm, c xcr ¼ 2 cm
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the current study proposes a bi-variate intensity measure with coordinates moment mag-

nitude m and source-to-site distance r, which define almost completely the frequency

content of the seismic ground motion. Seismic fragilities expressed in the (m, r) space are

called fragility surfaces and they are calculated using synthetic ground-motion records,

using Monte Carlo simulations, which may be computationally challenging when dealing

with complex systems. An efficient method for calculating fragility surfaces using

stochastic reduced-order models (SROM), as well as a parametric model for fragility
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Fig. 12 Fragility curves (solid lines) obtained from fragility surface data Pf ðm; rÞ for the modes of

PSA|(M, R) (circles), for increasing demand: a xcr ¼ 0:5 cm, b xcr ¼ 1 cm, c xcr ¼ 2 cm
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and b empirically
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surfaces, are proposed to overcome the computational issue. Finally, fragility surfaces

expressed in (m, r) coordinates are translated into fragility curves expressed in PSA and

compared with empirical fragility curves. It is shown that fragility surfaces capture better

the uncertainty in the ground motion and that they are unique with respect to (m, r), which

makes them desirable for seismic fragility analysis.
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