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This work introduces a generalizable approach for estimating the field-scale agricultural yield
losses due to soil salinization. When integrated with regional data on crop yields and prices, this
model provides high-resolution estimates for revenue losses over large agricultural regions. These
methods account for the uncertainty inherent in model inputs derived from satellites,
experimental field data, and interpreted model results. We apply this method to estimate the
effect of soil salinity on agricultural outputs in California, performing the analysis with both
high-resolution (i.e. field scale) and low-resolution (i.e. county-scale) data sources to highlight
the importance of spatial resolution in agricultural analysis. We estimate that soil salinity reduced
agricultural revenues by $3.7 billion ($1.7-$7.0 billion) in 2014, amounting to 8.0 million tons of
lost production relative to soil salinities below the crop-specific thresholds. When using low-
resolution data sources, we find that the costs of salinization are underestimated by a factor of
three. These results highlight the need for high-resolution data in agro-environmental assessment
as well as the challenges associated with their integration.

1. Introduction

Maintenance and intensification of agricultural prac-
tices will be critical to meeting the nutritional demands
of the world’s growing population. One widely
practiced method of intensification, crop irrigation,
can also lead to unintentional soil degradation and
reduced crop yield when the total dissolved solids (TDS)
concentration of the irrigation water is high or a
substantial fraction of water is lost to direct evaporation
[1, 2]. Quantifying the economic and social costs of soil
salinization is critical to assessing conditions under
which technology or policy intervention is necessary to
correct market inefficiencies [3].

Soil salinization, the process by which dissolved
solids in the irrigation water accumulate in the root zone
as irrigation water evaporates or transpires, is problem-
atic in arid regions, in regions dependent on
groundwater, in regions that have adopted water-
conserving irrigation practices, and in regions with
shallow, impermeable soil layers [4]. In the last case, the
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applied water forms a perched water table, from which
salts can be transported back to the surface through
capillary action [5]. Once salinized, agricultural soils
become less productive due to the combination of
osmotic and ionic stress exerted on the plant [6, 7].
Growers may choose to fallow salinized land, leading to
land use change [8] and greenhouse gas emissions [9,
10], or continue to cultivate less productive salinized
land by switching crops and/or adjusting management
practices, leading to reduced revenues and intensifica-
tion of agricultural inputs (e.g. water).

Best management practices for mitigating the effects
of soil salinization in high-risk agricultural areas have
largely been derived from laboratory and field-scale
experiments that elucidate the mechanisms by which
soil salinization diminishes crop yield. These studies
have probed the relationship between irrigation water
quality and soil salinity, have provided yield reduction
models that relate expected yield to soil salinity for a
specific crop [7, 11-13], and have evaluated the efficacy
of various remediation strategies. The most prevalent
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remediation strategy is salinity leaching, or the excess
application of irrigation water to drain soils of existing
salt content. Field experiments over a range of soil and
crop types have been used to identify leaching fractions
capable of maintaining soil salinity at moderate levels,
but these leaching guidelines may not be implemented
due to practical constraints on water availability or
environmental discharge [14-17].

In addition to the work seeking to identify best
practices for managing saline soils at the farm-scale, a
separate body of literature has quantified the regional
extent of soil salinization. Combining local inventories
of affected land area with expert judgment, the UN
Global Assessment of Human-induced Soil Degrada-
tion (GLASOD) program estimated that 76 million
hectares, an area larger than France, were affected by
human-induced salinization in 1991 [1]. More recent
data compilation efforts suggest that China, Australia,
and Pakistan are all experiencing the negative impacts
of agricultural soil salinization [5, 18, 19]. Beyond land
inventories, hydrological models have estimated the
rate of salt flux over large areas [20] and informed
predictions about future salt accumulation under
current management practices.

These regional assessments of soil salinity also
serve as the basis for work quantifying the future social
and economic impacts of soil salinization. Typically
formulated as an optimization problem in which
individual agents maximize their profits given con-
straints and costs of the inputs to production, these
studies estimate changes in the economic output of a
region relative to a baseline year. Examples include
estimated revenue losses due to inefficient manage-
ment of 14.5% in the Tungabhadra project in western
India [21]; additional profit losses of $1.8 to $3.6
billion annually by 2030 over 2008 levels in the Central
Valley of California [22]; and annual profit losses of
44%-87% in the Murray—Darling Basin due to the
combined effects of climate change and salinity [23].
Each of these approaches quantifies losses relative to a
baseline scenario, rather than the total current losses
incurred, making it difficult to assess the full value of
soil remediation efforts.

These loss estimation approaches typically rely on
aggregated data for either crop or soil parameters,
while yields are determined by field-scale processes.
Unfortunately, using aggregated data can introduce
bias into the estimate, as demonstrated in the climate
adaptation and downscaling literature [24]. Similarly,
the characteristic resolution of data can have large
impacts on the final output of the analysis [25, 26].
While these effects have seldom been studied with
regards to agricultural optimization models employed
to assess soil salinization, there are examples of these
effects within agricultural models generally [27].

The present work makes three contributions. First,
we develop a novel method for quantifying the
absolute yield and revenue losses attributable to soil
salinization. Integrating high-resolution satellite data,
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interpolated ground measurements, and county level
yields and prices, we extend grower models tradition-
ally applied to field-scale processes to understand
regional-scale trends in the productivity of critical
agricultural regions. Salinity and crop data are
analyzed at the pixel scale (30 m by 30 m resolution),
allowing precise modeling of specific soil conditions
and avoiding the use of regional averages for spatially
sensitive parameters. Second, we incorporate techni-
ques to remove bias from our satellite-based estimates
using coarse resolution validation data as a basis for
quantifying classifier accuracy. This step is important
in achieving correct results, and is documented in
appendices B and D. Finally, we compare the model
output to results from an analogous model using
coarser resolution data to assess the influence of data
resolution on the magnitude of the estimated salinity
impacts. We apply these models to estimate 2014 yield
and revenue losses from soil salinization in the state of
California and to study the effects of spatial
aggregation in model estimation.

2. Methods

We assess the costs of salinization by analyzing high
resolution pixel-level data. These costs are quantified
by calculating yield and revenue losses relative to a
hypothesized non-salinized baseline state. After
analyzing the model with high-resolution data sources,
we apply the same approach to data aggregated at the
regional level. We then assess the advantages of using
the computationally intensive disaggregated data in
comparison with more aggregated data sources.

2.1. Disaggregated approach for estimating yield and
revenue losses from soil salinization
We quantify current losses due to soil salinization in
terms of yield (tons) and revenue (dollars). Yield loss
at each pixel is calculated using (1),

M
YE=" Peox(1— F, )%, (1)

where Y; is the yield lost (Y*) due to salinity at pixel p.
P . is the probability that given the satellite based
crop classifier indicates that a pixel contains a
particular crop ¢*, the pixel actually contains crop c.
This term is used in order to remove bias from the
estimate; a procedure further discussed in appendix B.
F, . is the fraction of maximum yield achieved given
existing levels of salinity and choice of crop, estimated
in (2). ?iw is the theoretical maximum yield, or the
estimated crop-specific yield in the absence of soil
salinity, and is estimated in (3).

_ S
Py =1-b(SS—a,) 2)
1 -1
Vev,. <_ ZFP‘C> (3)
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Equation (2) models the crop salt tolerance response,
as originally developed in Maas and Hoffman [12]
where S; is the soil salinity at a particular pixel and a,
and b, represent the crop-specific threshold and slope
response. The function is piecewise linear, with F

equaling 1 until Sg reaches a, then linearly decreasing
at rate b, until reaching 0. In (3) the theoretical
maximum yield, 7?4, is calculated by dividing
observed regional data on yields (Y, ) by regionally
averaged F,  values, where n represents the number of
pixels in region r. This results in a single estimate of
average maximum yield Yiw for each crop in each
region, which captures differences in soil fertility,
climate, and technology between regions.

Following this method, we estimate total area wide
yield losses Y (tons) using (4), where kis a coefficient
that converts the intensity of yield from acre™' to
pixel .

Y= "kxy} (4)

P

Similarly, revenue loss RIL) is obtained by estimating the
fraction of theoretical maximum revenue RM that is
realized given the salinity impacted yields (equatlons 5
and 6). The formulation for revenue loss parallels that
of yield lost in (1), with the addition of regional prices
P, to convert maximum yield to maximum revenue.
Rﬁ is translated into total revenues lost R'' by
summing over all pixels in the study and multiplying
by the correction factor k.

RE=Y"P., (1 —F, )+RM. (5)
c
M
Ri)V,Ic = R]r\,/Ic - pr,cYc (6)

2.2. Aggregated approach for estimating yield and
revenue losses from soil salinization
The aggregated approach mimics the disaggregated
approach, but substitutes regionally aggregated esti-
mates in place of pixel-level crop acreage estimates and
salinity values. First, regional salinity values S° are
calculated by averaging pixel level salinity values across
the region. Next, the fraction of maximum yield
achieved is estimated (7). Regional yield losses are
calculated by estimating the theoretical maximum
yield YM (8) and assessing the impact of salinity S° on
yields and revenues (9, 10). Lastly, estimates of total
yields lost Y’ and revenues lost R'" are obtained by
multiplying the per acre revenue and yield losses (Yr o
m) by regional crop acreages (A.,) and summing
over all crops and regions.

Fr,c =1- bc(Sf - aC) (7)
YY =Y. (Fo) (8)
Yf,r = (1 - Fr,c)*chv[ (9)
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Rf.,r = (1 -

=D D YixA, (11)
c r

Fr,c)*pr,c*yicw (10)

ZZRL *Ac (12)

2.3. Case study: California yield and revenue losses
from soil salinization

We apply these methods to assess the effects of soil
salinization on vyields and revenues in the state of
California. California is the highest grossing agricul-
tural state in the United States, with 2013 cash
receipts of $46.4 billion, or 12% of US agricultural
totals [28]. Growers in the arid Central Valley of
California are dependent on irrigation to sustain
agricultural output and have long been plagued with
soil salinization issues. Reduced yields from soil
salinity are likely to be exacerbated during periods of
drought, when application of leaching water is
curtailed.

We combine statewide agricultural statistics from
the California Department of Water Resources (DWR)
with national statistics from the National Agricultural
Statistics  Service (NASS) to populate the vyield
reduction model, with county-level data serving as
regions. We use the top 20 most profitable (highest
gross revenues) crops in California for participation in
the study (table Al). When combined, these crops
account for over 95% of the non-livestock agricultural
cash receipts in the state [29]. In addition to these
twenty crops we account for fallowed land, bringing
the total crop categories to 21. Crop data are released
as 30 m square pixels, which define the characteristic
resolution of the case study.

The data is sourced from a variety of agencies that
publish on intermittent intervals, requiring the
combination of data from 2013 and 2014 in the loss
analysis. The two driving data sources, crop patterns
and salinity, are both for 2014. Prices and yields are for
2013, but have low year-to-year variation. We thus
consider the year of analysis to be 2014. Full detail on
data sources is given in appendix A.

2.4. Statistical analysis

We perform a statistical analysis to determine the
magnitude of the linear correlation between salinity
and four parameters: crop marginal value, crop salt
tolerance, estimated yield reduction, and estimated
revenue losses per acre (table G1). To perform the
regression, we use the vector salinity data and
aggregate the four parameters up to the same scale
using zonal averages. The regression is estimated using
a generalized additive model (GAM) to control for
latitude and longitude using a thin plate spline
regression. See appendix G for additional detail.



I0P Publishing

Environ. Res. Lett. 12 (2017) 094010

W Letters

Salinity
T [dS/m]

D

Revenue Lost
[$/acre]

I Fallow
I °

| ]o-1,000

| ] 1,000-3,000
B > 3.000

and (d) revenue lost by county using aggregated data.

Figure 1. Spatially resolved estimates of (a) soil salinity, (b) relative yield, (c) revenue lost per acre calculated with disaggregated data,
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3. Results

This method provides the first quantitative estimate of
lost yields and revenues due to soil salinity at a
sufficiently high resolution (30 m) for both field and
region-level decision making. We demonstrate the
value of these methods using the state of California as a
case study.

3.1. Results of adopting a disaggregated approach
for estimating yield and revenue losses from soil
salinization in California

We find that higher salinity soils in California (figure 1
(a)) are spatially correlated with low crop yield (figure
1(b); r=—0.84), high revenue losses (figure 1(c);
r=0.33), the cultivation of salt tolerant crops (figure
E1(b); r=0.26), and the cultivation of lower revenue




I0P Publishing

Environ. Res. Lett. 12 (2017) 094010

P Letters
A Revenue Loss- [$/acre] B Relative Yield - [%] C Revenue Loss- [$, millions]
0 2000 4000 6000 8000 10000 60 65 70 75 8 8 90 95 100 0 200 400 600 800 1000 1200
0 8.1 Cotton Cotton
Wheat Wheat
0.8 6.5 Cherries Cherries
2 » Oranges Oranges
2 //, g Lemons Lemons
a 06 48 ©  \alnuts Walnuts
2 3 Rice Rice
® 04 32 & Pistachios Pistachios
E / 3 Tomatoes Tomatoes
5 02 16 OHUC OHUC
' : Alfalfa Alfalfa
Grapes Grapes
0.0 0.0 Strawberries Strawberries
0 20 40 60 80 100 Almonds Almonds
Relative Yield - [%]
Figure 2. Aggregate and per crop relative yield and revenue losses. (a) Cumulative density function of revenue lost per acre and
relative yield. (b) Relative yield by crop. (c) Total revenue lost by crop. Other high uncertainty crops (OHUC) include those crops that
cannot be consistently estimated (see figure D1) using remote sensing. These include broccoli, carrots, celery, corn, lettuce, peaches
and peppers.

crops (r=—0.30). When regressing each of these four
parameters of interest on salinity, we observe a
statistically significant response for each variable’s
coefficient (see table G1). We find that salinity is
correlated with lower relative yields (8 = —5.38),
higher revenue losses (B = 364.9), higher crop
tolerance (B = 0.034), and lower crop revenues
(B = —304.46). Each of these coefficients are signifi-
cant at the p < 0.001 level.

Salinity values are highest in the Imperial Valley
(located in southeast California along the border with
Mexico) and the southern Central Valley. Relative yield
is driven by two parameters: soil salinity and crop salt
sensitivity (table Al). Although we observe that
growers compensate for elevated levels of soil salinity
by planting salt tolerant crops on salinity-impaired
fields (figure 1(a)), relative yield remains lowest where
salinity values are highest.

The spatially resolved data from figure 1(b) is re-
plotted in figure 2(a) as a cumulative density function
(CDF) which relates the fraction of agricultural land in
California to the percentage of relative yield. Accord-
ing to the Cropland Data Layer published by USDA,
approximately 1.7 million acres of California farmland
are fallowed and produce no agricultural output,
encoded with a relative yield of zero. Another 1.6
million acres have reduced agricultural yield, reporting
salinity in excess of the tolerance threshold of the
current crop mix. The existing salinity levels on the
final 4.8 million acres of agricultural land are unlikely
to affect yield for the current crop mix. Aggregating
across all agricultural farmland in California, we
estimate that soil salinization reduces crop yields by
8.0 million tons annually.

Reduced agricultural yields result in lost revenue.
Revenue losses (figure 1(c)) are highest in the western
San Joaquin Valley, with losses as high as $3000 per
acre on select fields. While yield losses are higher in the
Imperial Valley, revenue losses are less substantial as
growers are primarily planting lower revenue crops,
such as alfalfa. The CDF of revenue lost per acre is

reported in figure 2(a). At the state level, we estimate
that soil salinization reduced grower revenues by $3.7
billion, or 7.9% of California agricultural output, in
2014. We find that this value likely ranges between $1.4
billion and $7.0 billion and that nearly all the
uncertainty in our data can be attributed to
uncertainty in the salinity measurements (figure
D1). A similar analysis is conducted analyzing the
lost calorie production in appendix E

Lost yield and lost revenue for individual crops are
plotted in figure 2. The other high uncertainty crops
(OHUCQC) category is an amalgamation of the seven
crops that could not reliably be identified using remote
sensing techniques as described in appendix D (figure
D1). Together, almonds, strawberries, grapes, and
alfalfa account for approximately half (49.5%) of the
total $3.7 billion in annual revenue loss. Revenue lost
is a function of soil salinity, crop sensitivity, crop
marginal revenue, and total crop acreage. While these
four crops account for a large percentage of total
acreage, they also experience higher yield reductions
on a per acre basis. Relative yield averages 85% for
these crops, compared to a 94% average yield for all
other crops.

3.2. Results of adopting an aggregated approach to
estimating yield and revenue losses from soil
salinization in California

A similar approach is applied using regional data.
Cropping data comes from county-level statistics (see
appendix C for detail) and salinity data are aggregated
to the county level (figure 1(d)).

There are several prominent differences between
results from the aggregate and disaggregate analyses.
The first is that all of the estimated lost revenues occur in
just 10 counties, compared with the 40 counties with
estimated revenue loss using the disaggregated ap-
proach. Ofthe 10 counties with lost revenues, 97% of the
losses occur in three counties (Imperial, Kings, and
Merced). This contrasts with the wider distribution of
losses that are estimated by the disaggregated model.
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Two effects are driving the differences between the
aggregated and disaggregated approaches. The first is
that salt-sensitive, high revenue crops are not likely to
be grown on soils with salinity levels equal to the
county average. Indeed, the spatially resolved satellite
data shows a negative relationship between salinity and
crop marginal revenue and a positive relationship
between salinity and salt tolerance (appendix E). This
causes an upward bias in loss estimates.

The second effect is that if elevated salinity is
confined to a small geographic area within the county,
then the average salinity for the county may be low.
While models based on disaggregated data estimate
damages in the area with elevated salinity, models
based on aggregated data inherently smooth over
variability in field-level soil salinity. As a result, these
aggregated modeling approaches may miss salinity
losses if the county average salinity is below the
threshold for the cultivated crops. This effect will cause
a downward bias in the final estimate.

At the state level, the aggregated model estimates
annual revenue losses of $1.0 billion, compared with
the $3.7 billion estimated in the disaggregated
approach. This number lies outside the $1.7-$7.0
billion uncertainty analysis in appendix C.

The differences in the two estimates may result
from either the different crop data sources (i.e. satellite
vs regional surveys) or the spatial resolution of the
analysis. To eliminate the effect of the differing crop
data sources, we perform a third analysis where we run
the aggregated model using pixel-level satellite data
that has been aggregated at the county level to estimate
regional crop acreage. When we perform this analysis,
we find that the aggregated satellite data results in
similar cumulative damages ($1.2 billion) to the those
estimated using regional cropping data ($1.0 billion)
and leaves figure 1(d) unchanged. Thus, the lower
yield and revenue loss estimates stem directly from
performing the analysis at the county, rather than
pixel, scale.

Lastly, in appendix H, we analyze the effect of
using higher resolution salinity data sourced from
satellite mesaurements which are available for a subset
of California [47, 48]. We find even higher damage
estimates when using these data, supporting our
conclusion that lower resolution data may underesti-
mate revenue loss.

4. Discussion

In analyzing agricultural systems there has historically
been a tradeoff between the scale of the analysis and its
resolution. Field measurements are highly accurate,
but can be costly to collect at sufficient density over
large regions. Regional estimates provide data at
broader scales, but are typically limited in their
ability to describe a variable’s spread and correlation
with other variables, factors which are of critical

W Letters

importance in assessing spatially distributed processes
such as salinization. Recent improvements in remote
sensing, combined with modern data storage and
processing, are helping to circumvent the scale/
resolution tradeoff. By continuously collecting meas-
urements with both high spatial and temporal
resolution, orbital sensors are capable of describing
a variable’s entire distribution as well as its spatial
correlation with other covariates. As the accuracy and
availability of remotely sensed data increase, effectively
integrating this information with more traditional,
regional data sources offers significant promise for
improving the accuracy of regional level agricultural
policy analysis.

In this study, we present a novel method that
integrates high-resolution satellite data, interpolated
ground measurements, and county-level yields and
prices to estimate the regional effects of soil
salinization on agricultural productivity. The estimates
are performed at the field-scale, allowing the model to
capture the local variation inherent in agricultural
systems. The method has broad applicability for
testing alternative management practices and policies
at the regional level. Moreover, the generalized
approach may serve as a template for integrating
multi-modal data to assess the economic effects of soil
degradation on agriculture at high resolution over
regional scales.

While the general approach to estimating the
revenue impacts of soil salinization is valid, the
proposed methods are limited by their inability to
predict crop switching, as well as their continued
reliance on regional averages for a number of the
inputs. The model quantifies losses based on current
cropping patterns and does not account for how
producers might adjust their production practices
given changes in resource availability, soil quality, or
other factors. For example, as salinity levels decrease,
growers are likely to switch from lower value, salt
tolerant species to higher value, salt sensitive crops.
The current analysis does not account for the
theoretical gain of revenue that growers would accrue
due to switching crops, meaning the current model is
likely to underestimate the revenue losses from soil
salinity. In order to address this limitation, we would
need to expand to a spatially resolved, multi-year data
set. Applying panel data methods to such data would
allow for the estimation of switching costs, and
accounting for these costs could provide an avenue for
estimating the likely change in crop mix as salinity
levels decrease.

Second, the model is limited by the available data.
The salinity data is sourced from interpolated ground
measurements which are smoothed through time and
space, increasing the probability that reported values
deviate from actual field conditions. Emerging
techniques for remotely collecting soil salinity data,
which rely on either airborne electromagnetic surveys
or salinity estimates from orbital sensors [34-36], will



I0P Publishing

Environ. Res. Lett. 12 (2017) 094010

further enhance the resolution of soil salinity estimates
and reduce uncertainty in yield reduction analyses.

Lastly, the formulas approximating the relation-
ship between leaching fraction, soil salinity, and crop
yield represent average responses of each crop class.
They do not account for variation in other soil
parameters or management practices that influence
yield in specific fields, including irrigation practices,
soil organic carbon and micronutrient concentrations,
or the use of salt tolerant cultivars. To account for this
underlying variability, we perform extensive uncer-
tainty analysis on the yield response function as
described in appendix C. Future improvements in the
remote sensing of soil quality parameters and crop
yield may enable stronger statistical prediction of yield
response. If successful, revised yield response func-
tions would be easily incorporated into this analysis
framework.

The limitations of the method are critical for
interpreting the results of the case study. The estimated
yield and revenue losses for California are calculated
directly from current cropping patterns and do not
account for crop switching. Accounting for crop
switching is likely to increase the estimated revenue
losses, though the effect on relative yield is less clear.
The effect of incorporating local estimates for salinity,
yield, and water use in place of regional ones is also
uncertain, and depends on underlying correlations
between the data. For instance, it is possible that
theoretical maximum vyield is correlated within region
to areas with either lower or higher salinity levels, an
effect that would cause our results to be biased
upwards or downwards, respectively. Directly measur-
ing these correlations and accounting for their effects
is a significant motivation for seeking higher resolu-
tion data.

Despite these limitations, multi-modal models for
estimating the effects of soil salinization on agricul-
tural productivity offer valuable insight into the
magnitude of yield and revenue losses in vulnerable
regions. The estimated 2014 losses of 8.0 million tons
of yield and $3.7 billion in 2014 are a significant
fraction of state agricultural outputs of 69 million tons
with a combined worth $46 billion. To put this in
perspective, these estimates suggest that the yearly
economic damages due to soil salinization are of
comparable scale to the yearly damages associated with
the California drought in 2014 and 2015 [37, 38].
While the uncertainty analysis (appendix C) accounts
for multiple years of data, the results presented are for
2014 and may differ under non-drought conditions.

We have shown that salinity has large impacts on
Californian agriculture. Leaching, the primary strategy
for managing soil salinity, is likely to be further
constrained in California as a result of the high
selenium content of this agricultural drainage dis-
charge [39]. At the same time, drought and reduced
snowpack water storage is expected to limit the water
supply critical to leaching practices. Alternatives to
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salinity leaching include land fallowing or the
application of lower salinity irrigation water, leading
to climate impacts [9, 10] or the need for costly water
treatment systems [3, 40]. In short, salinization is
likely to remain a significant societal and technological
challenge in arid regions such as California. Successful
management will rely on accurate monitoring and
assessment coupled with impact analyses that are
performed at a spatial scale that captures the
underlying mechanisms of yield loss.

Appendix A: Data for case study

A.l. Study area
A map is provided in figure A1 as a spatial reference for
various geographic features of interest in California.

A.2. NASS county commissioner data

Table A1 reports the crops assessed in this study. These
20 crops correspond to those crops with highest
revenues as outlined in the statewide 2013 crop report
[28]. Together, they correspond to over 95% of the
revenues generated by the non-livestock agricultural
sector.

Yields and prices are obtained from the NASS
County Agricultural Commissioner’s Data [29]. These
data are published yearly and report statewide crop
yields and prices at county-level resolution. In table
A2, the crop names used in this study are paired with
their corresponding NASS names and commodity
codes. If multiple NASS crops are listed for a single
study crop, we calculate the weighted average of the
yields and prices.

If no yield or price data was available for a
particular crop in a particular county, the values
reported for ‘sum of others’ was used in its stead. For a
single crop (walnuts) no values were available for ‘sum
of others, and instead we substituted state averages. All
reported values are for 2013.

Alongside the crop in table Al we display the
threshold and slope parameters for the yield reduction
model (4). These parameters are collected from a
number of studies carried out in the mid-twentieth
century that were first summarized in Maas and
Hoftfman [12] and subsequently updated and repub-
lished. While presented in numerous publications in
varying degrees of completeness, we found no
discrepancies between the values reported in the
different articles and reports [7, 11, 12, 41]. Where
possible, we use values in more recent publications.
For three crops (walnuts, pistachios, and oranges), no
direct threshold and slope parameters were given.
Rather, they were categorized into one of several
tolerance groupings (sensitive, moderately sensitive,
moderately tolerant, and tolerant). For each of these
categories, a representative threshold and slope
parameter were chosen based on graphical representa-
tions reported in Hoffman [41] and other publications.
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Figure Al. Cropped area in the Central Valley of California (A) and major relevant hydrologic regions in California (B).

Table Al. Crop salt tolerance parameters.

Crop Threshold Slope Source
Almonds 1.5 19.0 Hoffman 2010
Grapes 1.5 9.6 Hoffman 2010
Strawberries 1.0 33.0 Maas 1993
Walnuts® 1.5 15.4 Hoffman 2010
Lettuce 1.3 13.0 Maas 1993
Alfalfa 2.0 7.3 Hoffman 2010
Tomatoes 2.5 9.9 Hoffman 2010
Pistachios” 3.0 7.7 Maas 1993
Broccoli 2.8 9.2 Maas 1993
Rice 3.0 12.0 Maas 1993
Oranges" 1.7 16.0 Maas 1993
Cotton 7.7 52 Maas 1993
Carrots 1.0 14.0 Maas 1993
Celery 1.8 6.2 Maas 1984
Peppers 1.5 14.0 Maas 1993
Lemons 1.5 12.8 Maas 1993
Peaches 1.7 21.0 Maas 1993
Wheat 6.0 7.1 Hoffman 2010
Cherries” 1.5 15.4 Maas 1993
Corn 1.7 12.0 Hoffman 2010

“Indicates that no direct data was available. Instead category level
data (tolerant, moderately tolerant, moderately sensitive,
sensitive) were translated to values using graphical
representations in Hoffman [41].

In order to use the agricultural county commis-
sioner’s data, we first match the 20 study crops with
NASS commodities codes [29]. The crops corre-
sponded to NASS commodities with a ‘one-to-many’
relationship. Table A2 reports the mapping used in this
study. Once mapped, we develop county and state level
datasets containing information on yield, prices, and
revenue per acre. These datasets inform key param-
eters in our study.

A.3. NASS cropland data layer

NASS produces the Cropland Data Layer (CDL)
satellite-based crop classifier [42]. The CDL dis-
tinguishes between 132 distinct crops with an overall

accuracy rating of 84.9%. Table D1 relates crops in
this study to CDL object identifiers and provides the
producer and user accuracy for each crop. Producer
accuracy represents the number of ground-truth
points accurately classified in generating the map,
representing the likelihood that a random crop will
be correctly rendered. User accuracy represents the
likelihood that a given pixel on the map is actually
what is found in the field. These ground-truth
points are used to remove bias from the estimates,
as discussed previously. All reported values are
for 2014.

A4. Gridded soil survey geographic (gSSURGO)
database

SSURGO is a nationwide dataset developed from the
National Cooperative Soil Survey (NCSS). NCSS is a
collaboration between federal, state, and private
institutions with the goal of disseminating informa-
tion about the state of soils across the country led by
the US Department of Agriculture and the National
Resource Conservation Service. SSURGO map scale
is between 1:12000 and 1:63 360 and is the most
detailed soil survey product available from the
program [43].

The FY2015 gSSURGO database is a December 1,
2014, snapshot of the soil data mart database released
in the Environmental Systems Research Institute, Inc.
(ESRI) file geodatabase format at the state level. Vector
data are released as map units, including the 456 249
map units spanning California that have a median area
of 0.12 km?* and average area of 0.92 km”. Vector data
is converted to raster format to improve computa-
tional performance.

Electrical conductivity (EC) is measured at the
‘component’ level, a unit of soil classification smaller
than map units. No spatial data are available for
components, and so to connect the EC measurements
to a specific geographic location each component is
first referenced to the map unit in which it is
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Table A2. Mapping between study crops and NASS commodity data.
Study: Name  NASS: Name NASS: 2013 State 2013 2013
Commodity code average yield  Prices Revenue
per acre [$ton”']  per acre
[tons] [$acre ']
Alfalfa Hay alfalfa, Seed alfalfa 181999, 172119 3.85 227.29 875.07
Almonds Almonds all 261999 1.12 5681.86 6363.68
Broccoli Brocceoli food service, Broccoli fresh market, Broccoli 307189, 307199, 7.29 813.91 5929.33
processing, Broccoli unspecified 307299, 307919
Carrots Carrots food service, Carrots fresh market, Carrots 313189, 313199, 23.8 250.00 5957.50
processing, Carrots unspecified 313299, 313999
Celery Celery food service, Celery fresh market, Celery 316189, 316199, 36.6 433.93 15886.18
unspecified 316999
Cherries Cherries sweet 213199 2.6 3817.60  10002.11
Corn Corn grain, Corn popcorn, Corn silage, Corn sweet all 111991, 192999, 11.0 66.64 731.71
111992, 323999
Cotton Cotton lint pima, Cotton lint unspecified, Cotton lint 121229, 121299, 0.9 2709.14 2411.13
upland 121219
Grapes Grapes raisin, Grapes table, Grapes wine 216399, 216199, 11.2 896.62  10060.08
216299
Lemons Lemons all 204999 16.5 758.06 12492.83
Lettuce Lettuce head, Lettuce leaf, Lettuce romaine, Lettuce 340999, 342999, 17.3 480.05 8314.47
unspecified 341999, 339999
Oranges Oranges navel, Oranges unspecified, Oranges valencia 201119, 201999, 15.6 556.67 8689.62
201519
Peaches Peaches clingstone, Peaches freestone, Peaches unspecified 212399, 212199, 12.8 620.84 7928.13
212999
Peppers Peppers bell, Peppers chili hot 363999, 364999 18.0 73528  13205.63
Pistachios Pistachios 268079 1.2 4695.91 5822.93
Rice Rice milling, Rice seed, Rice wild 106199, 171069, 3.2 418.69 1331.43
198199
Strawberries  Berries strawberries fresh market, Berries strawberries 237199, 237299, 29.8 1867.59  55728.89
processing, Berries strawberries unspecified 237999
Tomatoes Tomatoes fresh market, Tomatoes processing, Tomatoes 378199, 378299, 36.4 96.90 3528.13
unspecified 378999
Walnuts Walnuts english 263999 1.9 3432.90 6316.54
Wheat Wheat all, Wheat seed 101999, 171019 2.4 264.11 639.15

contained. Next, the map unit EC value is calculated
by taking the weighted average (weights determined by
area) of the component level data, then calculating a
second weighted average through the A and B soil
horizons.

In order to arrive at the EC estimate for the
component, SSURGO aggregates many local measure-
ments. While the individual measurements are not
released, a reported representative value is accompa-
nied by the top and bottom of the observed range,
allowing us to account for uncertainty in the salinity
estimate (figure C1).

The SSURGO dataset is derived from field
measurements and is continuously updated to
reflect changing soil conditions. The labor intensity
of measuring soil quality parameters and spatial
extent of the dataset limit the frequency of
resurveying, with most measurements occurring
in regions with the greatest rate of soil quality
change. To account for uncertainty in soil
quality estimates, we vary the SSURGO data in a
sensitivity analysis in appendix C.

A.5. Computing

The total analysis was performed in 20 h of processing
time using a combination of Python 2.7.11, ESRI
ArcGIS 10.2.2 accessed through ArcPy, NumPy 1.10.1
[30], and IPython 4.0.1 [31]. All plots were made using
Matplotlib 1.5.0 [32]. Regression analyses were per-
formed in R 3.1.1 using mgcv package 1.8.0 [33]. The
analysis was run on a desktop computer with an Intel i7
3.4 GHz processor with 16GB of installed RAM.

Appendix B: Bias removal

The approaches taken in both models utilized in the
main paper make use of field-scale estimates of crop
type sourced from a satellite-based crop classifier and
combines this estimated crop type with soil maps of
salinity and region-level information on management
practices, crop water-use, yields, and prices. Small
differences in classifier accuracy between different crop
types can introduce a large bias into the estimate, even
if the classifier on aggregate produces highly accurate
results [44]. This bias can be systematically removed
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using accurate, though sparse, ground measurements
to correct widely available, though biased, satellite
classification. While several approaches for removing
bias have been discussed in the literature, in this study
we make use of a direct estimator due its straightfor-
ward implementation and relative efficiency [45].

To remove bias, a confusion matrix is constructed
from ground truth data that indicates both the
probability that a pixel is correctly classified and the
probability that a pixel is misclassified as each of the
other possible categories. From this, an arbitrary value
Z, calculated using crop-specific information is
compiled into a pixel estimate of the same quantity Z,
by using the following transformation:

Zy= PeucZpe (B.1)

where the subscript ¢ indicates crop, the subscript p
indexes the pixel, and P . is the probability that given
the classifier indicates that a pixel contains a particular
crop ¢*, the pixel actually contains crop c.

Appendix: C: Uncertainty analysis

The key parameter in our study is the total revenues
lost due to salinity, calculated at $3.7 billion annually.
There are key uncertainties in this calculation which
should be tested in order to assess the robustness of
our estimate. First, the spatially resolved 30 m pixel
salinity data generated by the SSURGO project
contains considerable smoothing. A single point
estimate of soil electrical conductivity is generated
for each ‘map unit. Map units have a median area of
0.12km? meaning that this median map unit is
comprised of 4000 pixels each reporting the same
value of salinity. Since salinity as a process can vary in
relatively short distances, this smoothing introduces
uncertainty into our estimate.

SSURGO reports a low and high value for each
parameter alongside the representative value. We
assess the uncertainty parametrically by repeating the
analysis using ‘low, ‘medium, and ‘high’ salinity
values. The medium salinity value scenario is identical
to the analysis in the main paper, while for the low and
high analyses we apply the low and high electrical
conductivity values respectively.

Additional uncertainty arises from county level
estimates of prices and yields. While likely very
accurate for the 2013 crop year, it is possible that this
crop year was an anomaly in either yields or prices for
some of the crops in the study. To assess the likelihood
of anomalies driving our result, we collect ten years of
crop data (2004-2013) and calculate the standard
error on the trendline [29]. Specifically, we calculate
the following regressions for each crop:

pi =By + By~ Year; +¢; (C.1)
Yi= Byt By~ Year; +¢; (C.2)
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Figure C1. Revenue losses under low, medium, and high
scenario cases for each parameter used in this study. For each
line, the other variables are held at their best guess, with the
exception of the ‘All’ line, in which each parameter is set at
low, medium, and high.

where each observation i corresponds to a single year’s
data. The dependent variables, p; and y,, are state
average prices and yields. The standard error of prices
and yields is calculated by taking the root mean
squared error of the residual.

As with salinity, we calculate a ‘low’, ‘medium’, and
‘high’ scenario with both prices and vyields. The
medium scenario is calculated as in the main paper,
while the low and high scenarios are calculated by
subtracting and adding the de-trended standard error
to the 2013 estimates, respectively.

In addition to rerunning the analysis with each
individual parameter set at its low, medium, and high
values, we perform a final analysis with all parameters
set at their low, medium, and high values. While
setting all values simultaneously low or high is likely to
be unduly pessimistic or optimistic, it is a useful step in
understanding if total uncertainty is driven primarily
by a single parameter or by the combination of
parameters.

In figure C1, the low, medium, and high scenarios
are reported. The year to year variation of prices and
yields makes little impact on the final analysis, as
indicated by the relatively similar estimates of revenue
loss. Uncertainty in the salinity data, on the other
hand, drives a relatively large variation. The low and
high scenarios for salinity correspond to estimates of
revenue lost of $1.5 and $6.7 billion, making up the
majority of the $1.7-$7.0 billion range.

Appendix D: Performance of crop classifier

The USGS conducts an internal assessment of its crop
classifier by collecting ground truth estimates of actual
cropping patterns and comparing them to predictions
from the crop classifier. The accuracy can be quantified
by using producer and consumer accuracy. User
accuracy is the likelihood that, given a crop is classified
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Table D1. Accuracy of remotely sensed land use data.
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Crop CDL crop name Producer’s accuracy User’s accuracy

Alfalfa Alfalfa 94.1% 90.7%
Almonds Almonds 88.5% 90.7%
Broccoli Broccoli 30.0% 61.8%
Carrots Carrots 52.6% 72.6%
Celery Celery 0% NA
Cherries Cherries 32.8% 54.3%
Corn Corn, Sweet corn 85.2%/44.1% 86.8%/43.0%
Cotton Cotton 96.9% 92.5%
Grapes Grapes 92.0% 86.4%
Lemons Citrus 88.7% 90.9%
Lettuce Lettuce 54.2% 58.1%
Oranges Oranges 78.7% 81.3%
Peaches Peaches 84.2% 45.2%
Peppers Peppers 33.0% 62.9%
Pistachios Pistachios 72.1% 85.3%
Rice Rice 99.3% 99.3%
Strawberries Strawberries 39.1% 56.6%
Tomatoes Tomatoes 90.5% 87.7%
Walnuts Walnuts 83.4% 84.2%
Wheat Durum wheat, Spring wheat, Winter wheat 83.49%/67.5%173.6% 81.7%1/75.9%1/75.9%
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Almonds
Broccoli
Carrots
Celery
Cherries
Corn
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Strawberries

in a pixel as ¢ it is actually ¢ in the field. Producer
accuracy is the likelihood that, given a crop is actually ¢
in the field, it is classified correctly as ¢ in the
prediction. Producer and consumer accuracies for the
2014 CDL for California are reported in table DI.
Most crops have relatively high accuracies, though,
vegetable and fruit crops (e.g. broccoli, lettuce,
strawberries) are identified less consistently than the
field and tree crops. Celery in particular, is never
selected by the classifier, and is thus omitted from this
analysis.

All estimates in the study are unbiased using
information from table D1 as discussed in Methods.
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Figure D1. Ratio of the acres predicted by the crop classifier compared with acres reported in NASS agricultural commissioner’s data.
Values above one indicate that the classifier is over-predicting crop representation, while values below one indicate the classifier is
under-predicting crop representation. All values are unbiased using crop assessment reported in table D1.
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In order to test the performance of the USGS crop
classifier, we compare unbiased land estimates from
the crop classifier with the land estimates from the
NASS county commissioner data (figure D1). If the
ratio of these two values is above 1.0, the crop classifier
is likely overestimating the representation of a
particular crop, while if below 1.0 it is likely
underestimating its representation. Even after remov-
ing bias, seven crops are not estimated within 30% of
their true value. These crops are broccoli, carrots,
celery, corn, lettuce, peaches and peppers. Comparing
with table DI, these crops generally report lower
accuracies than those crops more accurately identified.
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Figure E1. (a) Location of areas with a shallow groundwater table, (b) salt tolerance values, (¢) and extant salinity levels. Salt tolerance
is quantified as Y50, or the salinity at which yield is expected to be reduced to 50%.
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Figure E2. (a) Salt tolerance vs average salinity for each crop and (b) salt tolerance values vs marginal revenue for each crop. Average
salinity represents the mean salinity value across all pixels for each crop in the study. Marginal revenues are state averages.

We aggregate these crops into a single category, other
high uncertainty crops (OHUC), when reporting their
values in the main manuscript. Further detail on
OHUC crops is available in appendix D.

Important to note is the CDL is developed for crop
year 2014 while the NASS data corresponds to 2013,
meaning that some of the variation noted in figure D1
may be due to temporal mismatch.

Appendix E: Grower adaptation

We observe that growers are likely modifying their
crop choices in accordance with extant salinity values.
In figure E1(b), crop salt tolerance is plotted spatially.
It is quantified as Yso, or the salinity value at which

yields are expected to be 50% of maximum levels.
Figure E1(b) shows that in the Central Valley, crop salt
tolerance is qualitatively higher in the southern and
western regions where salinity is elevated, suggesting
that salinity may be a factor in crop selection. In the
northern and southern extremes of the state crop
salinity tolerance values are also high, driven largely by
the large amounts of alfalfa grown in these regions.

We observe that the average soil salinity by crop
and salt tolerance levels are positively correlated, while
crop salt tolerance levels and marginal revenues are
negatively correlated (figure E2). These two facts
illustrate the tradeoft experienced by agricultural
producers; they can either produce lower value, high
tolerance crops with high yields or high value, low
tolerance crops with reduced yields.

12
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Table G1. Regression results.

Marginal revenue Salt tolerance Relative yield Revenue losses
Salinity coefficient —304.46""" (3.87) 0.034™ (0.0012) —5.38"" (0.0048) 364.9" (1.81)
Intercept 6245.44"* (10.14) 7477 (0.0031) 10127 (0.0126) —25.32°** (4.76)
Observations 296987 296987 296987 296987
Adjusted R 0.53 0.55 0.853 0.186

Appendix F: Estimating calorie losses
associated with soil salinization in
California

While caloric losses are not of primary interest in the
specialty crop dominated Californian agriculture
system, we demonstrate here that the methods applied
in the main paper can be used to analyze the loss in
human nutrition as a result of land degradation.

Caloric losses were determined by multiplying the
estimates of lost yield at the pixel level by the energy
density in calories per ton for each crop. Energy
density estimates were sourced from the FAO report
on Food Composition for International Use [46].
Certain crops, such as alfalfa and cotton, are not
typically consumed and are therefore assigned a caloric
density of 0 calories g~ ' even though, in the case of
alfalfa, the crop may contribute indirectly to human
caloric intake.

We find that the majority of the calories lost are
associated almonds and rice, due to a combination of
their high acreage and high caloric density (figure F1).
The OHUC category also features prominently, driven
primarily by the inclusion of corn. Aggregate losses
across all crops total 6.0 million person-years,
assuming a 2000 calorie day ' requirement.

We find that different crops are driving aggregate
caloric losses than those that are driving aggregate
revenue losses. Figure F'1(a) makes this difference clear
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by plotting losses for each crop. Those crops towards
the lower right quadrant have high calorie losses but
low revenue losses (e.g. rice) while those in the upper
left quadrant (e.g. strawberries) have relatively higher
revenue losses in comparison with their calorie losses.
Almonds, due largely to their large gross acreage, lead
in both metrics.

Appendix G: Statistical analysis

We performed a brief statistical analysis in order to
determine the correlation between salinity and four
parameters—crop marginal value, crop salt tolerance,
estimated vyield reduction, and estimated revenue
losses per acre (table G1). The goal of the analysis was
to assess the relative magnitude of the correlation
between salinity and the parameters of interest as well
as test the correlation for significance.

The salinity data used in other parts of this study is
stored in raster format to speed computation. It is,
however, originally released as a vector file, with 456 249
individual polygons spanning California. In this section
we revert to the polygon format so as to avoid artificially
inflating our sample size. Our four parameters of
interest are each spatially averaged within the polygon
to construct the dependent variable. After removing
those polygons with no crops, we are left with a sample
size of 296 987 data points.
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Spatial data often violate the independent and
identically distributed (IID) assumption of ordinary
least squares (OLS) due to correlation in the error
term. While the estimated OLS coefficients remain
unbiased, inference testing becomes inappropriate as
the standard errors are downward biased. Common
approaches for handling this issue (e.g. generalized
least squares, spatial lag model, spatial error model,
spatial durbin model) typically require the estimation
of the correlation structure codified in a spatial weights
matrix Wj;. This matrix, if stored in a dense format, has
size n X n where n is the number of data points. While
size constraints can be lessened by imposing cutoffs
based on distance and storing data in a sparse format,
we found it difficult to construct a weighting matrix
with a reasonable structure given our large sample size.

Instead, we fit a GAM in an effort to control for
spatial location. GAMs are non-parametric models
that are used to estimate the effect of linearly
independent covariates on a dependent variable. Since
GAMs avoid specifying the parametric form of the
regressors they are able capture complex nonlinear
behavior.

We perform four regressions, each fitting on the
four parameters of interest while controlling for
location. Latitude and longitude are smoothed
together using a thin plate spline regression, the
parameters of which are fitted using generalized cross
validation. The general form is given in (G.1), where y;
represents a single observation i of one of the four
parameters of interest and S is soil salinity.

y; = By + B.S; + f(Lat, Lon) + &; (G.1)

We find that both the S, and the 8, parameter in each
of the four regressions are highly significant. While we
are primarily interested in the magnitude and
significance of the effect of salinity (8,), the intercept
(By) 1s also informative since it can be interpreted as
the estimated value of the parameter when there is no
salinity present in the soils.

Regressing marginal revenue [$acre '] on soil
salinity [dSm™'] results in a positive intercept of
$6245.44 and a negative slope of —$304.46. Marginal
revenue is calculated as simply the observed price per
ton multiplied by the observed yield per acre, both
resolved at the county level. The intercept indicates
that crops being grown at locations with zero salinity
have an expected value of $6245.44, and that with each
increasing unit salinity, the marginal value decreases
by $304.46. This effect is likely due to the observed
trend that crops with higher marginal revenues exhibit
lower salt tolerance (figure E2(b)).

Salt tolerance is calculated by solving for the
salinity value at which crop yields would be reduced
50%. Regressing salt tolerance [dSm™'] on salinity
[dSm™'] results in an intercept of 7.47 and a slope of
0.034. The positive slope indicates that, as salinity
increases, farmers are observed planting more salt
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Figure H1. Geographic range of satellite salinity dataset.

tolerant crop species. While the effect is statistically
significant the slope is low in magnitude.

Relative yield and revenue losses are both
estimated (not observed) parameters that take salinity
as direct inputs (equations 2 and 6), making it
unsurprising that the regressions report statistically
significant correlations. The slope in the relative yield
[%] equation is negative, indicating that for each unit
increase in soil salinity relative yield decreases by 5.38
percentage points. Revenue losses increase with soil
salinity, registering a $364.90 increase per unit increase
in soil salinity. The intercepts of both regressions
indicate a slight misspecification, with zero salinity
registering 101.2% yield and —$25.32 revenue losses.
This misspecification is likely a result of the truncated
nature of salinity response in equation (2), and is
relatively small in magnitude.

Appendix H: Estimating damages from
satellite salinity measurements

In this analysis, we estimate how salinization damages
may differ given higher-resolution satellite salinity
data. The salinity data is estimated using Landsat 7
surface reflectance data [47, 48]. The size of each
satellite salinity pixel is less than 1% the median size of
the SSURGO polygons used in the main analysis,
allowing us to further test the effect of resolution on
the outcome damage estimates. The satellite salinity
dataset only covers a subset of California (see figure
H1), so the comparative analysis presented in this
appendix is limited to regions in California where both
satellite salinity and SSURGO salinity measurements
are available.

The procedure is to first compute the annual
revenue loss predicted by satellite salinity data using
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Figure H2. (a) Annual revenue loss predicted by satellite salinity data, (b) and SSURGO salinity data.

Table HI. Revenue loss under low, best guess, and high
scenarios.

Satellite SSURGO
Low $277 million $147 million
Medium $675 million $486 million
High $2292 million $1356 million

the disaggregated approach depicted in the main
paper, and then compare the output with the loss
predicted by polygon salinity data in the same area.
Apart from using best guess salinity values, an
uncertainty analysis was carried out by creating a
revenue loss range estimated by low and high salinity
scenarios for both datasets. For SSURGO polygon
data, the high and low salinity ranges are the same as
presented in appendix C. For satellite raster data, the
high and low ranges are computed by adding and
subtracting the mean average error (2.90dSm™')
computed in Scudiero et al [48] from the reported
values, respectively.

Side-by-side maps provide a visual comparison of
the salinization cost distribution. According to the
results shown in figure H2, satellite revenue loss is
distributed evenly, while the SSURGO polygon
revenue losses are more clustered. The regularity seen
in the SSURGO salinity data can be attributed to the
coarser spatial resolution of the polygon salinity data.

We present the revenue losses under the high, best
guess, and low scenarios in table H1. Under the best
guess salinity scenario, satellite prediction yields a loss
that is almost 50% higher than the cost estimation
using the SSURGO polygon dataset. This result can be
ascribed to two separate factors. First, the mid-level of
salinity is higher in the satellite dataset, resulting in
greater salinization cost when predicted by satellite
data. And second, satellite salinity has a finer spatial
resolution. In contrast, SSURGO dataset carries
unique salinity values in shapes of polygons whose
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median size is more than 100 times the size of a
satellite unit pixel. Consequently, the salinity varia-
tions within each polygon are smoothed out, leading
to underestimated total revenue losses when predicted
by SSURGO polygon data.

Uncertainty range of salinization cost under high
and low scenarios is large for both salinity datasets,
thus lowering the preciseness of best estimate for
revenue loss. Looking ahead, improvements in remote
sensing technologies to measure soil parameters
including salinity in agriculturally significant range
as well as crop cover type are likely to reduce the bias in
predicting crop yield response. With enhanced
accuracy in soil property investigation, researchers
and policy makers will be able to estimate damages due
to soil salinization more precisely.

Appendix I: Symbols

Z: Example parameter [unitless]

P: Probability that classifier is correct [unitless]
Y?: Yield losses [tonsacre™]

F: Fraction of maximum yield [unitless]

YM: Theoretical maximum yield [tons acre” ']
b: Crop salt tolerance slope parameter [dSm™']
$S: Soil salinity [dSm™']

a: Crop salt tolerance threshold parameter [dSm™']
YTE: Total yield losses [tons]

k: Acre to pixel conversion factor [acre pixel ']
RL: Revenue losses [$acre™]

p: Prices [$ton ']

RTL: Total revenue losses [$]

A: Crop acreage [acres]

c*: Predicted crop

¢: Observed crop

p: Pixel-scale measurement

r: Region-scale measurement

0: Initial value
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