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Abstract— This paper offers a novel generalization of a
passivity-based, energy tracking controller for robust bipedal
walking. Past work has shown that a biped limit cycle with
a known, constant mechanical energy can be made robust to
uneven terrains and disturbances by actively driving energy to
that reference. However, the assumption of a known, constant
mechanical energy has limited application of this passivity-
based method to simple toy models (often passive walkers).
The method presented in this paper allows the passivity-based
controller to be used in combination with an arbitrary inner-
loop control that creates a limit cycle with a constant generalized
system energy. We also show that the proposed control method
accommodates arbitrary degrees of underactuation. Simula-
tions on a 7-link biped model demonstrate that the proposed
control scheme enlarges the basin of attraction, increases the
convergence rate to the limit cycle, and improves robustness to
ground slopes.

I. INTRODUCTION

An idea that is key to biped locomotion is underactuation.
During human gait, the foot rolls across the ground from heel
to toe, which does not represent a controlled interaction with
the environment [1]. This is characteristic of how most bipeds
interact with the environment, and it introduces a degree of
underactuation in the system. Some biped models (e.g., the
compass-gait model [2]) shortcut this challenge by combining
the stance foot and ankle together into a single point that
“sticks” to the ground until the other foot makes contact with
the ground. Other approaches embrace the underactuation
and design a controller that creates a stable periodic orbit in
the Hybrid Zero Dynamic (HZD) manifold as in [3]. This is
done by enforcing a set of time-invariant trajectories that are
obtained by an optimization procedure and using a feedback
controller to enforce asymptotic convergence to the zero
dynamics manifold. This methodology has enjoyed success
on a wide range of systems as demonstrated in [4]. However,
it lacks an inherent notion of utilizing the natural system
dynamics.

A particularly well-known phenomena in biped locomotion
is that of passive dynamic walking, as first reported by
McGeer et al. in [5], where an uncontrolled biped is able
to walk down a shallow slope simply under the power of
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gravity. In other words, a stable walking gait can naturally
emerge from the mass/geometry properties of the biped and
environment. During this process, the exchange of potential to
kinetic energy over the duration of a step is exactly canceled
by inelastic impacts with the ground. The mechanical energy
of the system remains constant and is conserved from step
to step. This stable walking can be characterized by a limit
cycle in the phase space of the biped as reported in [6].

Goswami et al. were the first to exploit these natural
dynamics and use passivity-based control (PBC) to explicitly
drive the energy of the biped to a constant value along its
natural limit cycle to induce stable walking [6]. Others have
since built on these ideas and demonstrated more sophisticated
examples of energy-tracking PBC that improve different
properties of the limit cycle such as increasing the basin
of attraction and increasing the convergence rate to the limit
cycle [7]. Separate methodologies such as Energy Shaping
[8]–[10], IDA-PBC [11], and the Control Lyapunov Function
(CLF) method [12] have also utilized these connections
between energy and limit cycles to create stable walking
gaits. However, some of these methods historically require
assumptions that limit their applicability. Energy shaping
relies on the system meeting a matching criteria that restricts
the degree of underactuation allowed [13]. Most passivity-
based energy methods rely on the existence of a limit
cycle with constant mechanical energy. This assumption
prevents application on high-dimensional biped models, which
typically require some external control action to inject and/or
dissipate energy in order to create a limit cycle. While the CLF
method has been shown to perform well on these systems
[14], it is not passive. There is a gap to be filled in the
realm of passivity-based control with applications to high
dimensional underactuated systems.

This paper presents a passivity-based controller based on a
generalized energy expression in the storage function, which
defines a novel passive output that accounts for the energy
stored and dissipated by an arbitrary inner-loop controller. It is
assumed that this inner-loop controller generates a stable limit
cycle for the biped on a given slope. The outer-loop PBC will
then increase the basin of attraction, improve the robustness
to the ground slope, and increase the rate of convergence back
to the stable limit cycle. The control method is also shown
to perform with an arbitrary degree of underactuation in the
system. The rest of the paper subscribes to the following
format: Section II introduces the dynamic model of the biped.
Section III offers a brief review of passivity and derive a PBC
from an energy based storage function. Finally, Section IV
demonstrates simulation results on a 7-link biped model that



utilizes a PD controller in the inner loop to create a stable
limit cycle.

II. MODELING AND DYNAMICS

In this paper, we consider a 2D biped model with torque
only in the sagittal plane. For simplicity, we model the link
between the two hip joints as a single joint and omit a torso
link. Thus, together with a foot, shank, and thigh link for each
leg we have a 7-link biped model. We model it as a kinematic
chain with respect to an inertial reference frame (IRF) defined
at either the stance heel or stance toe, depending on the phase
of the single-support period (to be discussed in Section II-B).
A diagram of the biped is shown in Fig. 1.

The generalized coordinates of the biped model are defined
as q = (px, py, φ, θa, θk, θh, θsk, θsa)T ∈ R8×1, where px and
py represent the Cartesian position of the stance heel in the
inertial reference frame, and φ is the angle of the heel-to-
ankle vector with respect to the vertical axis. The subscript
i ∈ {a, k, h, sk, sa} (denoting the ankle, shank, hip, stance
knee, stance ankle, respectively) is used to describe the angles
θi between each link. The mass mj , length lj and inertia
Ij of the links are indexed by the subscript j ∈ {f, s, t, h}
which denotes the foot, shank, thigh, and hip, respectively.
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Fig. 1: Kinematic model of the biped. COP denotes the Center of
Pressure. The solid links denote the stance leg, the dashed links
denote the swing leg.

A. Continuous Lagrangian Dynamics

The dynamics are derived using the Lagrangian formulation
[15] to get the equation

M(q)q̈ + C(q, q̇)q̇ +N(q) +A(q)Tλ = τ, (1)

where M(q) ∈ R8×8 is the inertia matrix, C(q, q̇) ∈ R8×8

is the Coriolis/centrifugal matrix, and N(q) ∈ R8×1 is the
gravity force vector. The term A(q)Tλ models the interaction
between the biped’s foot and the ground, where the matrix
A(q) ∈ Rc×8 is defined as the gradient of the constraint

functions, and c is the number of contact constraints that may
change during different contact conditions. The Lagrange
multiplier λ ∈ Rc×1 is calculated using the method in [16],
[17] and satisfies the assumption that the ground reaction
forces do no work on the system. The torque vector is τ =
Buu+Bvv where Bu ∈ R8×d and Bv ∈ R8×m are mappings
of the outer-loop PBC torques u and arbitrary inner-loop
control torques v into the generalized coordinates, respectively.
The number of control inputs d and m do not need to be the
same and are addressed later.

B. Contact Constraints

Based on [18], [19], the single-support period can be
broken down into three sub-phases: heel contact, flat foot,
and toe contact, where holonomic contact constraints can
be properly defined. Following the convention in [16], we
express the holonomic contact constraints of the biped as
relations between the position variables of the form

a(q1, q2, ..., qc) = 0c×1, (2)

where qj denotes the j-th element of the configuration vector
q. There are c = 2 constraints for heel contact and toe contact
whereas flat foot has c = 3 constraints. The constraint matrix
can then be defined for all contact conditions as

Asub =
∂a(q)

∂q
= [Ic×c 0c×(8−c)], (3)

where sub ∈ {heel, flat, toe}. This form can be achieved by
defining the IRF at the stance heel during heel contact and
flat foot vs. the stance toe during toe contact.

C. Hybrid Dynamics

Biped locomotion can be modeled as a hybrid dynamical
system which includes continuous and discrete dynamics
[20]. The system follows a sequence of continuous dynamics
and their discrete transitions, i.e., it cycles through different
contact configurations defined in Sec. II-B during stance
period and encounters impacts when the swing heel hits the
ground or the flat foot slaps the ground. Following the same
assumption in [20], our model only allows an instantaneous
double-support phase and perfectly inelastic collisions. The
velocity of the biped changes instantaneously after each
impact while the position of the biped remains unchanged.

Based on the method in [16], the hybrid dynamics and
impact maps during one step are computed in the following
sequence:

1. Mq̈ + T (q, q̇) +ATheelλ = τ if aflat 6= 0,

2. q̇+ = (I −X(AflatX)−1Aflat)q̇
− if aflat = 0,

3. Mq̈ + T (q, q̇) +ATflatλ = τ if |cp(q, q̇)| < lf ,

4. q̇+ = q̇−, (q(1)+, q(2)+)T = G if |cp(q, q̇)| = lf ,

5. Mq̈ + T (q, q̇) +ATtoeλ = τ if h(q) 6= 0,

6. (q+, q̇+) = Θ(q−, q̇−) if h(q) = 0,

where the superscripts “ − ” and “ + ” indicate the pre-
impact and the post-impact values, respectively. Also, X =
M−1ATflat, G = (lf cos(γ), lf sin(γ))T models the change in



inertial reference frame, cp is the trajectory of the COP, γ is
the ground slope angle, and lf is the foot length. The vector
T groups the Coriolis/centrifugal terms and potential forces
for brevity. The ground clearance of the swing heel is denoted
by h(q), and Θ denotes the swing heel ground-strike impact
map derived based on [20].

III. ENERGY AND PASSIVITY-BASED CONTROL

The passive compass-gait biped has no external force input
during its continuous dynamics, thus the only work done
on the system is by the discrete impacts with the ground.
On a passive limit cycle, the kinetic energy of the biped is
essentially reset after each impact, while the datum defining
the potential energy is shifted to reset the potential energy.
This gives rise to a constant generalized system energy [6]. A
similar phenomena exists for an n-link biped with a controller
that does work to cause the biped to follow a limit cycle.
During the continuous dynamics, the work done by the
controller exactly accounts for the change in the mechanical
energy. If the work is reset to zero after each impact (which
we can enforce by convention), then the generalized system
energy is still constant on the limit cycle [14].

As shown in [14], we can define the generalized system
energy as

E = K(q, q̇) + P (q)−W. (4)

The mechanical energy of the system is the kinetic energy
K plus the potential energy P of the biped, while the work
done by the inner loop controller is

W =

∫ t̃

0

q̇TBvv dt ,

which accounts for the energy stored, added, and dissipated
over time t̃ by the controller torque v.

We can then consider the following storage function from
[2] for the derivation of a passivity-based controller:

S =
1

2
(E − Eref )2 (5)

where Eref is the reference energy defined on a given limit
cycle. Taking the time derivative of S, we obtain

Ṡ = (E − Eref )(Ė − Ėref ).

If we only consider Ėref ≡ 0, then

Ė =
d(K + P )

dt
− dW

dt
.

From the definition of W , the application of the fundamental
theorem of calculus and the conservation of energy in a
mechanical system yields

Ė = (q̇TBuu+ q̇TBvv)− q̇TBvv = q̇TBuu.

The time derivative of the storage function becomes

Ṡ = (E − Eref )q̇TBuu

with passive output

yT = (E − Eref )q̇TBu ∈ R1×d.

If we feed back a scaled form of the passive output y, the
outer loop control law that we arrive at is

u = −Λy = −Λ(E − Eref )BTu q̇, (6)

where Λ is a positive definite diagonal gain matrix. By
substituting in the control law, we have

Ṡ =− (E − Eref )2q̇TBuΛBTu q̇

=− 2kS||q̇||2Ω,
where ||q̇||2Ω = q̇TBuΩBTu q̇ is the square of a weighted norm,
and Λ = kΩ. The variable k is a scaling factor which we can
treat as a gain, while Ω is a diagonal positive semi-definite
matrix that assigns relative weights in the norm. If we make
the assumption that ||q̇||2Ω ≥ η, then we arrive at a similar
result to [2] with

S(t) ≤ S(0)e−2kηt,

which proves the exponential convergence to the limit cycle.
By inspection we can see that the gain k provides a method of
directly influencing the bound on the convergence rate of the
storage function. The lower bound η on the norm is difficult
to determine over the general phase space, analytically or
computationally, since it varies with the system velocity.

The benefit of this formulation is that the PBC is capable
of improving the storage function convergence regardless of
the degree of underactuation, if the system operates far away
from any stable equilibrium points in the actuated phase space.
This requirement ensures that η = 0 is transient condition,
and the storage function can be bounded by a new exponential
function after passing through this state in the phase space.
Any initial condition in the basin of attraction of a limit cycle
satisfy’s this requirement.

One of the beneficial properties of PBC is that it is easy
and natural to extend these results to the case of an actuator
with saturation. If we consider a saturated version of the
control

u = sat(−Λ(E − Eref )BTu q̇)

such that

Ṡ = −yΛsat(y) ≤ 0,

the resulting system is still passive because the function
output preserves the sign of the input, similar to the results
in [21].

Throughout this derivation, the form and properties of the
inner loop control law v were left unspecified. This seems
to indicate that an additional benefit of the proposed PBC
approach is the potential to work with arbitrary inner loop
controllers that generates a stable limit cycle, due to the form
of the system energy (4) and storage function (5). In this
paper we choose to use a PD controller to establish a stable
limit cycle for the biped as in [16], [22], for simplicity. The
control is defined as

v = −Kp(qm − δ)−Kd ˙qm,

where qm is the actuated coordinates vector, δ is the
equilibrium vector, and the control gain matrices are denoted
as Kp,Kd ∈ R5×5.



IV. SIMULATION RESULTS AND DISCUSSION

To study the possible benefits of the proposed PBC, we
conducted series of simulations on the 7-link biped model
introduced in Section II, where the model parameters were
chosen from [16, Table I]. We begin by finding a nominal
limit cycle walking on a slope α = 0.095 rad under the
influence of the PD control solely, which is used as the
baseline comparison for the rest of this section. We then
discuss the effects of the PBC on the rate of convergence and
basin of attraction of the limit cycle. Afterwards, we move
on to the results of varying the walking slope. Finally, we
demonstrate the effects of PBC saturation and underactuation
on the biped’s limit cycle.

The biped has three contact configurations and impacts,
which causes the limit cycle to transition between 3 different
constant system energies, Eref1 → Eref2 → Eref3. This
can be seen in the periodic, constant jumps in Fig. 2, which
correspond to transitions in contact configurations (starting
with heel contact). The y-axis is the generalized system energy
E = K + P −W , and these constant values are used as the
phase-specific reference energies in the PBC throughout the
section.

The simulations in Section IV-A,B are fully actuated in the
outer loop during the flat foot phase and are underactuated
with degree one during heel and toe contact. The constant
parameters used are Ω = [0, 0, 0, 8, 3, 0.01, 3, 8]I8×8. The
first three entries in the diagonal vector that are zero
correspond to (px, py, φ), which are contact constrained
variables over the course of a step. The gains are chosen so
that a joint does not experience an instantaneous switch in
its control gain when switching from stance to swing. The
numerical parameters for the biped and the PD controller can
be found in [16].

A. Rate of Convergence and Basin of Attraction

Typically, the basins of attraction of passive biped limit
cycles are quite small and sensitive to perturbations. The
initial positions and velocities of the system must be close
to the limit cycle, which can be difficult for a human to
manually achieve by positioning and pushing a physical biped
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Fig. 2: System energy of the biped and PD controller while traversing
the limit cycle. There are three constant energy levels with discrete
jumps between them.

[5]. However, the basin of attraction can be significantly
enhanced by the addition of the PBC in the outer loop.

When the system is solely under the influence of the
PD controller, the storage function S and system energy E
(mechanical energy minus the work done by the PD controller)
remain constant during the continuous dynamics, and are only
changed by the discrete impacts as demonstrated in Fig. 2
and 3. These impacts dissipate energy and cause the biped to
converge toward the limit cycle. However, as shown in Fig. 3,
implementing the PBC on top of the PD controller causes the
storage function to decrease during the continuous dynamics
as well. The convergence appears to be exponential, with
different rates for each contact condition. Based on the control
law derivation and storage function analysis from the previous
section, we can conclude that the changes in convergence rate
across impact events are due to the instantaneous changes in
the norm of the joint velocities (i.e., the bound η changes).

We present phase portraits of the mechanical energy of the
biped versus a phase variable that monotonically increases
during each step [23]. This allows meaningful information
to be conveyed using a two dimensional graph. The specific
phase variable used in these plots is the global hip angle,
which is defined from the vertical axis to the vector that
connects the stance ankle to the hip. The mechanical energy
over our phase variable represents a dimensionality reduction
of the phase space onto a 2D plane.

Fig. 4 shows a comparison of the system behavior with
and without the PBC when starting from an initial condition
that is significantly distant from the limit cycle. With the
PBC, the system converges back to the limit cycle in the left
plot; the right plot without PBC does not converge and in fact
falls over after just two steps. This comparison demonstrates
that the basin of attraction of the limit cycle is increased by
the PBC.

B. Slope Robustness and New Limit Cycles

In addition to being sensitive to initial conditions, passive
biped walkers are also sensitive to ground slope [24]. In [2],
a passivity-based energy shaping approach was used to render
the hybrid dynamics of a compass-gait robot invariant with
respect to the ground slope, which, in effect, simply shifted
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Fig. 3: A comparison of the perturbed system storage function with
and without PBC. The PBC trajectory has k = 0.1.



-0.2 -0.1 0 0.1 0.2 0.3 0.4
Phase Variable

450

500

550

600

M
ec
h
a
n
ic
a
l
E
n
er
g
y
(J
o
u
le
s) Limit Cycle

Perturbed Trajectory

-0.2 -0.1 0 0.1 0.2 0.3 0.4
Phase Variable

450

500

550

600

M
ec
h
a
n
ic
a
l
E
n
er
g
y
(J
o
u
le
s) Limit Cycle

Perturbed Trajectory

Fig. 4: The biped’s phase portraits with (left) and without (right) the PBC under perturbations. Mechanical energy is plotted over a phase
variable for the sake of visualizing the limit cycle in two dimensions..

the limit cycle in the phase plane. In contrast, the PBC in
this paper causes a quite different effect.

In our simulation, the biped was initialized with its state
on the nominal limit cycle for a slope on α = 0.095 rad.
The initial slope was changed to α = 0.12 rad and was held
constant while the biped converged with the PBC gain k = 1
to the new limit cycle, displayed in the left plot of Fig. 5.
The PBC was then turned off, and as a result the biped fell
over after 5 steps as shown in the right plot. This indicates
that after applying the PBC, the biped has become robust to
a wider range of slopes.

By inspection, we can see that the new limit cycle at k = 1
is not simply a shifted version of the nominal limit cycle. It is
an emergent new limit cycle created by the PBC, which can
be seen by comparing the limit cycles for k = 1 and k = 0.25
for α = 0.12 rad in Fig. 5. Here the biped was allowed to
converge to the new limit cycle on the slope α = 0.12 rad
with gain k = 1. The gain was then changed to k = 0.25,
and as a result the biped converges to a new limit cycle. This
suggests that the PBC is doing more than simply stabilizing
an unstable limit cycle.

C. Underactuated PBC with Saturation

This section shows a simulation example that is reasonable
to implement in a physical system. A minimal amount of
motors is often desirable from the perspective of mechanical
design, and real motors experience torque saturation. Since
the ankle joint provides most of the power injection in
bipedal systems [25], this motivates a case study that
restricts the actuation to just these joints. For the purpose
of maintaining symmetry, we have actuation at both ankles
with Ω = [0, 0, 0, 1, 0, 0, 0, 1]I8×8. Thus, the total degree of
underactuation of the outer-loop due to the joint actuators
and contact configuration is 6 during the heel and toe contact
and 5 during flat foot.

The initial conditions and slope used for the saturated and
underactuated simulation were the same as the full actuation
case on the nominal slope. The control with ankle actuation
alone is still capable of enhancing the basin of attraction of
the limit cycle as indicated in Fig. 6. However, one can see

that the number of cycles or steps necessary to reach the limit
cycle has increased from three steps in the left plot in Fig.
4 to five steps in Fig. 6. This indicates that the convergence
rate of the storage function has decreased due to the drop in
the number of actuators.

V. CONCLUSION

This paper enhances the usefulness of passivity-based
control for biped walkers and the stabilization of their limit
cycles by generalizing both the expression used for the
system energy and the control method to arbitrary degrees
of underactuation. This underactuation can be enforced by
physical properties of a system model such as rolling foot
contact, or a result of actuator placement in the system.
We show that with these changes the system still enjoys
improved properties such as an increase in the basin of
attraction, robustness to changes in slope, and increases in
convergence rate. The immediate goals of the authors are to
perform similar simulations with a variety of more complex
inner loop controllers that are commonly applied on legged
robots (e.g., Feedback Linearization [26] or HZD [4]). In
addition, the ideas presented could have significant impact
in the application on powered prostheses. Passivity-based
methods are speculated to have good properties for human-
machine interaction [16], and this paper specifically addresses
the issues of underactuation and saturation that powered
prosthetic devices inevitably face.

REFERENCES

[1] D. Rodriguez and R. Ramirez, “An Underactuated Model of Bipedal
Gait Based on a Biomechanical Analysis,” 22nd International Congress
of Mechanical Engineering, pp. 3502–3508, 2013.

[2] M. Spong, J. Holm, and D. Lee, “Passivity-Based Control of Bipedal
Locomotion,” IEEE Rob. Autom. Mag., vol. 14, no. June, pp. 30–40,
2007.

[3] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and
B. Morris, “Feedback Control of Dynamic Bipedal Robot Locomotion,”
Crc Press, p. 528, 2007.

[4] J. W. Grizzle, C. Chevallereau, R. W. Sinnet, and A. D. Ames, “Models,
feedback control, and open problems of 3D bipedal robotic walking,”
Automatica, vol. 50, no. 8, pp. 1955–1988, 2014.

[5] T. McGeer et al., “Passive dynamic walking,” I. J. Robotic Res., vol. 9,
no. 2, pp. 62–82, 1990.



-0.2 -0.1 0 0.1 0.2 0.3 0.4
Phase Variable

450

500

550

600

M
ec
h
a
n
ic
a
l
E
n
er
g
y
(J
o
u
le
s) α = 0.095, k = 1

α = 0.12, k = 0.25
α = 0.12, k = 1

-0.2 0 0.2 0.4
Phase Variable

450

500

550

600

M
ec
h
a
n
ic
a
l
E
n
er
g
y
(J
o
u
le
s) α = 0.095

α = 0.12

Fig. 5: Biped limit cycle with slope α = 0.12 rad compared with the nominal slope α = 0.095 rad. The left figure shows the change in
biped’s phase portrait when varying slope and gain using the PBC. The right figure shows the biped’s phase portrait without the PBC.

-0.2 -0.1 0 0.1 0.2 0.3 0.4
Phase Variable

450

500

550

600

M
ec
h
a
n
ic
a
l
E
n
er
g
y
(J
o
u
le
s)

Limit Cycle 
PerturbedTrajectory

Fig. 6: Phase portrait of the biped with actuation at both ankle joints
(saturated at 100Nm).

[6] A. Goswami, B. Espiau, and A. Keramane, “Limit cycles in a passive
compass gait biped and passivity-mimicking control laws,” Autonomous
Robots, vol. 4, no. 3, pp. 273–286, 1997.

[7] M. W. Spong and G. Bhatia, “Further results on control of the compass
gait biped,” in IEEE Conference on Intelligent Robots and Systems,
vol. 2, 2003, pp. 1933–1938.

[8] J. K. Holm and M. W. Spong, “Kinetic energy shaping for gait regula-
tion of underactuated bipeds,” Proceedings of the IEEE International
Conference on Control Applications, no. 1, pp. 1232–1238, 2008.

[9] M. W. Spong and F. Bullo, “Controlled symmetries and passive walking,”
IEEE Trans. Autom. Control, vol. 50, no. 7, pp. 1025–1031, 2005.

[10] R. D. Gregg and M. W. Spong, “Reduction-based control of three-
dimensional bipedal walking robots,” Int. J. Rob. Res., vol. 29, no. 6,
pp. 680–702, 2010.
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