Showing the dynamics of student thinking as measured by the FMCE
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Using data from over 14,000 student responses we create item response curves, fitted to the polytomous
item response theory model for nominal responses, to evaluate the relative “correctness” of various incorrect
responses to questions on the Force and Motion Conceptual Evaluation (FMCE). Based on this ranking of
incorrect responses, we examine individual students’ pairs of responses to FMCE questions, using transition
matrices and consistency plots, to show how student ideas develop over the span of an introductory mechanics
course. Using data from two different schools (/N =~ 200 each), we explore how these representations can show
student learning even when individuals do not choose the correct answer. Comparing response pairs provides a
rich picture of student learning that is unavailable in many traditional analyses.

I. INTRODUCTION

Research-based assessment instruments (RBAI), such as
the Force and Motion Conceptual Evaluation (FMCE)[1] and
the Force Concept Inventory (FCI)[2], have persisted as stan-
dard tools for measuring student learning gains during intro-
ductory physics courses [3]. Common practice for instructors
and researchers is to administer an RBAI at the beginning
and end of a course, determine which questions each student
answered correctly, and report a measure of growth (typically
normalized gain or effect size). This is a fairly quick and easy
way to measure student gains, which has been made even eas-
ier by PhysPort.org, which hosts many RBAIs and offers to
analyze student responses via its Data Explorer.

Unfortunately, all incorrect answers are treated equally in
typical analyses, and little to no attention is paid to why a
student would select a particular incorrect answer. These
concerns have been addressed by various researchers: Smith,
Wittmann, and Carter interpreted the most common incorrect
response to each FMCE question through a resources per-
spective and used Model Analysis to show shifts in modes
of student thinking [5, 6], Thornton identified several “stu-
dent views” based on interpretations of various incorrect re-
sponses on a small subset of FMCE questions [7], and more
recently Walter and Morris have ranked incorrect responses to
FCI questions (from most to least sophisticated) using Item
Response Curves (IRCs) and shown how students progress

TABLE I. Comparison of parameters from the 3PL IRT model. Av-
erage parameter values are reported with the standard error. FCI
results from Ref. [4]. Student’s ¢-test was used to compare the dis-
tributions; the associated p-values are reported along with Hedges’
g as a measure of effect size.

through answer choices using transition matrices [8].

In this paper we present an initial ranking of incorrect re-
sponses to questions on the FMCE based on IRCs from over
14,000 student responses. We combine these rankings with
our previously reported use of consistency plots to produce
a rich picture of the dynamics of student thinking [9]. One
exciting and important feature of this analysis is the ability to
document a student’s growth and learning even if that student
never selects the correct answer to a question.

II. ITEM RESPONSE THEORY

Item response theory (IRT) assumes that student responses
to individual questions depend on a latent trait (often referred
to as “ability” or “proficiency”) [10]. Wang and Bao used the
three-parameter logistic (3PL) IRT model to examine student
responses to the FCI [4]. In the 3PL model the probability of
a student answering a question correctly is
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where 6 is the student parameter (or latent trait). The a pa-
rameter indicates the discrimination of the question, b repre-
sents the difficulty, and c is the probability of a student guess-
ing the correct answer.

Table I shows a comparison between the FCI results found
by Wang and Bao and our results on the FMCE. Data come
from over 7,000 students from multiple institutions. Follow-
ing standard practice in IRT analyses, pretest and post-test
data were combined, resulting in over 14,000 response sets
[11]. As shown in Table I, our discrimination (a) and diffi-
culty (b) parameters for the FMCE are fairly similar to those
found by Wang and Bao for the FCI: parameter distributions

7ol T i 01 01 jb: 03 01d i 501 overlap significantly, apd effect sizes are small [12]. On'e may
FMCE 13402 0.3+ 0.1 0.012 <+ 0.004 also see that the guessing parameter (c) on the FMCE is sig-
p-value 0.03 0.23 < 0.001 nificantly lower than that on the FCI, with a moderate effect

effect size 0.3 0.2 0.5 size. This supports previous claims that the FMCE is more
difficult than the FCI for low-scoring students [13].
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FIG. 1. IRC with PIRT fits for Questions 2 (a) and 14 (b). Total score
measured out of 33 points; the vertical coordinate is the conditional
probability of choosing a particular answer given that total score.

III. RANKING FMCE RESPONSES

Morris et al. went beyond the correct/incorrect binary by
creating Item Response Curves (IRCs) showing the condi-
tional probability that a student earning a particular total score
on the FCI will choose each answer to a specific question
[14]. Given the strong correlation between the student param-
eter and the total score on the FCI [4], Morris et al. use the
total score as the independent variable rather than estimations
of a latent trait. Walter and Morris expanded on this work by
using IRCs to rank incorrect responses on the FCI from more
to less sophisticated [8]. Their main claim is that an incorrect
response that is more popular among higher-scoring students
represents a higher level of understanding than a response that
is most popular among lower-scoring students.

Following the methods of Morris et al. we created IRCs
for each question on the FMCE by plotting the percentage of
students who selected each answer based on their total score
on the FMCE. We determined students’ total scores out of
33 possible points based on typical scoring recommendations
for the first 43 questions of the FMCE [13]. Unfortunately,
we were unable to use the method described by Walter and
Morris to rank incorrect responses to FMCE questions [8].
The inclusion of up to four additional answer choices (nine
on some FMCE questions compared to the FCI’s five) made
it impossible to distinguish between many of the options. To
overcome this challenge we fitted the IRCs using the poly-
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tomous IRT (PIRT) model for nominal responses. The PIRT
model provides the conditional probability that a student with
total score s will choose answer k on a particular question:
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where aj, and by, are parameters for each answer choice curve,
and N is the number of possible answer choices [15]. We
used the NMinimize function in Wolfram Mathematica to
perform a global fit for all N curves to determine the 2N
parameters for each question. As an illustrative example, Fig.
1 shows the IRCs and PIRT fits for questions 2 and 14. Both
questions ask students about an object moving to the right at a
steady (constant) velocity, which we define as Case 2 [9, 16].
All answer choices were included in PIRT analyses, but only
responses with three data points above 10% are displayed.
As expected, Fig. 1(a) shows that the probability of choos-
ing the correct answer (D, no net force) increases with higher
scores; and the probability of choosing the most common in-
correct response (B, constant velocity requires constant force
[5]) is highest at the lowest scores. The really interesting fea-
ture of this plot is the curve for answer C (constant veloc-
ity requires decreasing force in the direction of motion); this
curve has a peak around a score of 20, indicating that moder-
ate to high scoring students are more likely to choose C than
low-scoring students. This suggests that answer C may be a
more sophisticated choice than answer B. We rank the answer
choices based on the location (score) at which the PIRT curve
reaches its maximum value. The B curve peaks at s = —2.6,
and the C curve at s = 19.6; therefore, D>C>B. This nega-
tive peak score indicates that the probability of choosing re-
sponse B gets continually larger as total score gets lower.
Figure 1(b) shows another example of IRCs with PIRT
fits. Unlike question 2, question 14 asks students to choose
a graph of force vs. time that is associated with this mo-
tion. One can certainly see similarities between Figs. 1(a)
and 1(b): the correct answer (E) monatonically increases, the
most common incorrect answer (A) is most probable at low
scores, and the answer suggesting that a constant velocity re-
quires a decreasing force in the direction of motion (H) has
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TABLE II. Question 2 Transition Matrices: percentage of students
who gave each pre/post answer pair. The best (correct) answer is
D, and the worst answer is B. Bold numbers indicate students who
chose a better response on the post-test, and italicized numbers indi-
cate students who chose a worse response. Data come from algebra-
based introductory mechanics courses at two different schools.

School 1 School 2

Post-test Post-test
D C B D C B
g D 2.3 0.5 0.0 g D 5.7 0.0 1.6
o C 0.5 1.4 14 o C 1.6 0.0 0.5
~ B 200 42 693 ~ B 464 4.7 349
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a peak probability around s ~ 20. The major difference in
Fig. 1(b) is the existence of a fourth prominent response (C)
whose PIRT fit has a distinctly negative slope at s = 0: this
suggests that C is a more naive response than the common
incorrect answer (A). In fact, answer C is consistent with a
graph of the position of the object as it moves to the right
with a constant velocity. Answers A, C, and H have peak
probabilities at s = 7.3, —11.2, and 19.3, respectively; thus,
we rank these responses as, E>H>A>C.

IV. REPRESENTING STUDENT LEARNING

Rankings of incorrect responses allow us to examine stu-
dents’ answers on the pre- and post-tests to gauge how much
learning occurred during the semester. Walter and Morris
suggest using transition matrices that show the percentage of
students who gave each pre/post answer pair for a particular
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FIG. 2. Case 2 Consistency Plots for Schools 1 (a) and 2 (b).
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TABLE III. Question 14 Transition Matrices: percentage of students
who gave each pre/post answer pair. The best (correct) answer is E,
and the worst answer is C.

School 1 School 2

Post-test Post-test
| E H A C | E H A C
_E[ 14 00 09 00 _E| 63 00 05 00
SH| 09 05 05 00 SH| 05 00 00 00
£A|l 200 14 577 55 E£A| 556 21 185 16
C|l 14 00 32 14 C| 63 00 16 1.1

question [8]. Tables II and III show the transition matrices
from two different data sets (from different schools) for ques-
tions 2 and 14, respectively. The row indicates the pretest
response, and the column indicates the post-test response. In
order to match other representations we have modified the
format of the transition matrices: the correct answers are in
the top row and left column, students who choose a better an-
swer on the post-test are shown in bold, and those who choose
a worse answer are shown in italics.

Table II shows that about 20% of students at School 1 and
48% of students at School 2 improve to the correct answer on
question 2 after instruction. We can also see that about 4—5%
of students at each school improve from answer B to answer
C, indicating that these students are learning, just not as much
as one might hope. Table III shows similar results with about
23% (School 1) and 62% (School 2) of students improving to
the correct answer on question 14; and again, 3-5% of stu-
dents choose a better incorrect response after instruction at
each school. Table III also shows that no students at either
school who chose either E (correct) or H on the pretest se-
lected C on the post-test for question 14; this supports our
claim that H is a more sophisticated response than A or C.

We use consistency plots to simultaneously show students’
transitions on both questions (see Fig. 2(a) and 2(b)) [17]. In
this representation the row indicates a response to question
2, the column is a response to question 14, the location of a
circle represents a given response pair on the pretest, and a
triangle shows a response pair on the post-test. Lines connect
circles with triangles to form transition arrows from a partic-
ular pretest response pair to a post-test response pair. The
numbers indicate the percentage of students in a given class
who made that particular transition. Squares show percent-
ages of students who gave the same response pair on both
the pre- and post-tests. As with our transition matrices, the
correct responses are in the top row and left column, and the
worst responses are in the bottom row and right column.

Many of the observable trends from the transition matrices
are visually apparent on the consistency plots: most students
at School 1 do not change responses (squares Fig. 2(a)), the
most dominant transition at School 2 is becoming correct on
both questions (Fig. 2(b)), and getting better is more com-
mon than getting worse (more/thicker arrows up and left than
down and right on both plots). Consistency plots also make
many trends more salient. Carefully examining the transition



matrices from School 2 reveals that more students increased
to correct on question 14 than question 2; this is readily ap-
parent in Fig. 2(b) with a large 13% arrow going left from cell
BA, but only a small 2% arrow going up from the same start-
ing cell. As mentioned above, 20% of students at School 1
transitioned from the most common incorrect answer to cor-
rect on each question, but Fig. 2(a) shows that only 12% did
so on both questions; one can also see that students at School
1 are about equally likely to become correct on either ques-
tion 2 or question 14. Figure 2(a) also shows one of the most
important features of consistency plots: a cycle in the lower
right corner involving 8% of students in which half of them go
from C to A on question 14, and half of them make the exact
opposite transition. The dynamics of student understanding
visible on these consistency plots provide a rich picture of
student learning that is unavailable in other representations,
and utilizing the rankings from the IRCs ensures that “mo-
tion” left and/or up always indicates improvement.

V. SUMMARY AND FUTURE DIRECTIONS

Results from the 3PL IRT model show that the discrimina-
tion (a) and difficulty (b) parameters on FMCE questions are
similar to those reported for the FCI, but the guessing param-
eter (c) is notably lower on the FMCE, supporting previous
claims that the FMCE is more difficult than the FCI for low-
scoring students [4, 13]. Creating IRCs and fitting the data
to the PIRT model allows us to uniquely rank incorrect re-
sponses to each FMCE question based on the location of the
peak probability [14, 15]. Considering pairs of responses pro-
vides a rich picture of how individuals change over a course
either on a single question (transition matrices [8]) or on
matched question pairs (consistency plots [17]). These rep-
resentations allow us to quickly examine dominant transition
patterns. This goes beyond the typical correct/incorrect bi-

nary and allows us to show that student learning is occurring
even if students do not select the correct answer.

We still have two open questions: 1) How can we con-
sider student transitions on more than two questions simul-
taneously? We have previously defined question cases that
are each comprised of one question from each of the Force
Sled, Force Graphs, and Acceleration Graphs question clus-
ters (e.g., questions 2, 14, and 26 are defined as Case 2
[9, 16]), but consistency plots can only show two of these at
a time. Latent transition analysis (LTA) may be used to cre-
ate transition matrices showing the probabilities of students
changing from a particular answer triad on the pretest to an-
other triad on the post-test [18]. Preliminary results of LTA
show that the dominant transitions are consistent with those
identified by our consistency plots. 2) What makes one in-
correct response “better” than another? We have described
one way to answer our second question based on identifying
the score at which the probability of choosing each answer is
maximized. Another method for ranking incorrect responses
could involve using the opinions of expert physics educators
and physics education researchers. A third method could ex-
amine the likelihood that students would transition to the cor-
rect answer after choosing each of the incorrect answers (as
suggested in Ref. [7]). A combination of these may be re-
quired to determine a robust ranking for each question, which
is necessary for the claim of being able to show student learn-
ing and improvement without selecting the correct response.

ACKNOWLEDGMENTS

We are deeply indebted to Sam McKagan and Ellie Sayre
for creating the PhysPort Data Explorer and allowing us ac-
cess to over 6,000 anonymous students’ FMCE responses.
This project was partially supported by the National Science
Foundation through a PhysTEC comprehensive site grant.

[1] R. K. Thornton and D. R. Sokoloff, Am. J. Phys. 66, 338
(1998).

[2] D. Hestenes, M. Wells, and G. Swackhamer, Phys. Teach. 30,
141 (1992).

[3] A.Madsen, S. B. McKagan, and E. C. Sayre, Am. J. Phys. 85,
245 (2017).

[4] J. Wang and L. Bao, Am. J. Phys. 78, 1064 (2010).

[5] T. I. Smith and M. C. Wittmann, Phys. Rev. ST Phys. Educ.
Res. 4, 020101 (2008).

[6] T. I. Smith, M. C. Wittmann, and T. Carter, Phys. Rev. ST
Phys. Educ. Res. 10, 020102 (2014).

[7] R. K. Thornton, AIP Conf. Proc. 399, 241 (1997).

[8] P.J. Walter and G. Morris, in 2016 PERC Proc., edited by D. L.
Jones, L. Ding, and A. Traxler (2016) p. 376.

[9] L. T. Griffin, K. J. Louis, R. Moyer, N. J. Wright, and T. L.
Smith, in 2016 PERC Proc., edited by D. L. Jones, L. Ding,
and A. Traxler (2016) p. 132.

[10] F. B. Baker, The Basics of Item Response Theory (ERIC Clear-
inghouse on Assessment and Evaluation, 2001).

383

[11] To compare our findings to those of Wang and Bao, we adjusted
our parameters to align with student scores having an average
value of zero and a standard deviation of unity.

[12] The p < 0.05 for a does not seem meaningful in context.

[13] R. K. Thornton, D. Kuhl, K. Cummings, and J. Marx, Phys.
Rev. ST Phys. Educ. Res. 5, 010105 (2009).

[14] G. A. Morris, N. Harshman, L. Branum-Martin, E. Mazur,
T. Mzoughi, and S. D. Baker, Am. J. Phys. 80, 825 (2012).

[15] D. Thissen, L. Cai, and R. D. Bock, in Handbook of polyto-
mous item response theory models, edited by M. L. Nering and
R. Ostini (Routledge, New York, 2010) p. 43.

[16] T. I. Smith, in 2015 PERC Proc., edited by A. D. Churukian,
D. L. Jones, and L. Ding (2015) p. 315.

[17] M. C. Wittmann and K. E. Black, Phys. Rev. ST Phys. Educ.
Res. 10, 010114 (2014).

[18] G. Davenport, Detecting Conceptual Change with Latent Tran-
sition Analysis, Ph.D. thesis, University of Connecticut (2016).



	Showing the dynamics of student thinking as measured by the FMCE
	Abstract
	Introduction
	Item Response Theory
	Ranking FMCE responses
	Representing Student Learning
	Summary and future directions
	Acknowledgments
	References


