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Using data from over 14,000 student responses we create item response curves, fitted to the polytomous

item response theory model for nominal responses, to evaluate the relative “correctness” of various incorrect

responses to questions on the Force and Motion Conceptual Evaluation (FMCE). Based on this ranking of

incorrect responses, we examine individual students’ pairs of responses to FMCE questions, using transition

matrices and consistency plots, to show how student ideas develop over the span of an introductory mechanics

course. Using data from two different schools (N ≈ 200 each), we explore how these representations can show

student learning even when individuals do not choose the correct answer. Comparing response pairs provides a

rich picture of student learning that is unavailable in many traditional analyses.

I. INTRODUCTION

Research-based assessment instruments (RBAI), such as

the Force and Motion Conceptual Evaluation (FMCE)[1] and

the Force Concept Inventory (FCI)[2], have persisted as stan-

dard tools for measuring student learning gains during intro-

ductory physics courses [3]. Common practice for instructors

and researchers is to administer an RBAI at the beginning

and end of a course, determine which questions each student

answered correctly, and report a measure of growth (typically

normalized gain or effect size). This is a fairly quick and easy

way to measure student gains, which has been made even eas-

ier by PhysPort.org, which hosts many RBAIs and offers to

analyze student responses via its Data Explorer.

Unfortunately, all incorrect answers are treated equally in

typical analyses, and little to no attention is paid to why a

student would select a particular incorrect answer. These

concerns have been addressed by various researchers: Smith,

Wittmann, and Carter interpreted the most common incorrect

response to each FMCE question through a resources per-

spective and used Model Analysis to show shifts in modes

of student thinking [5, 6], Thornton identified several “stu-

dent views” based on interpretations of various incorrect re-

sponses on a small subset of FMCE questions [7], and more

recently Walter and Morris have ranked incorrect responses to

FCI questions (from most to least sophisticated) using Item

Response Curves (IRCs) and shown how students progress

TABLE I. Comparison of parameters from the 3PL IRT model. Av-

erage parameter values are reported with the standard error. FCI

results from Ref. [4]. Student’s t-test was used to compare the dis-

tributions; the associated p-values are reported along with Hedges’

g as a measure of effect size.

a b c

FCI 1.1± 0.1 0.1± 0.2 0.14± 0.01

FMCE 1.3± 0.2 0.3± 0.1 0.012± 0.004

p-value 0.03 0.23 < 0.001

effect size 0.3 0.2 0.5

through answer choices using transition matrices [8].

In this paper we present an initial ranking of incorrect re-

sponses to questions on the FMCE based on IRCs from over

14,000 student responses. We combine these rankings with

our previously reported use of consistency plots to produce

a rich picture of the dynamics of student thinking [9]. One

exciting and important feature of this analysis is the ability to

document a student’s growth and learning even if that student

never selects the correct answer to a question.

II. ITEM RESPONSE THEORY

Item response theory (IRT) assumes that student responses

to individual questions depend on a latent trait (often referred

to as “ability” or “proficiency”) [10]. Wang and Bao used the

three-parameter logistic (3PL) IRT model to examine student

responses to the FCI [4]. In the 3PL model the probability of

a student answering a question correctly is

P (θ) = c+
1− c

1 + e−1.7a(θ−b)
, (1)

where θ is the student parameter (or latent trait). The a pa-

rameter indicates the discrimination of the question, b repre-

sents the difficulty, and c is the probability of a student guess-

ing the correct answer.

Table I shows a comparison between the FCI results found

by Wang and Bao and our results on the FMCE. Data come

from over 7,000 students from multiple institutions. Follow-

ing standard practice in IRT analyses, pretest and post-test

data were combined, resulting in over 14,000 response sets

[11]. As shown in Table I, our discrimination (a) and diffi-

culty (b) parameters for the FMCE are fairly similar to those

found by Wang and Bao for the FCI: parameter distributions

overlap significantly, and effect sizes are small [12]. One may

also see that the guessing parameter (c) on the FMCE is sig-

nificantly lower than that on the FCI, with a moderate effect

size. This supports previous claims that the FMCE is more

difficult than the FCI for low-scoring students [13].
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a peak probability around s ≈ 20. The major difference in

Fig. 1(b) is the existence of a fourth prominent response (C)

whose PIRT fit has a distinctly negative slope at s = 0: this

suggests that C is a more naïve response than the common

incorrect answer (A). In fact, answer C is consistent with a

graph of the position of the object as it moves to the right

with a constant velocity. Answers A, C, and H have peak

probabilities at s = 7.3, −11.2, and 19.3, respectively; thus,

we rank these responses as, E>H>A>C.

IV. REPRESENTING STUDENT LEARNING

Rankings of incorrect responses allow us to examine stu-

dents’ answers on the pre- and post-tests to gauge how much

learning occurred during the semester. Walter and Morris

suggest using transition matrices that show the percentage of

students who gave each pre/post answer pair for a particular
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N = 168 Force Graphs: Question 14
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FIG. 2. Case 2 Consistency Plots for Schools 1 (a) and 2 (b).

TABLE III. Question 14 Transition Matrices: percentage of students

who gave each pre/post answer pair. The best (correct) answer is E,

and the worst answer is C.

School 1 School 2

Post-test Post-test

E H A C E H A C

P
re

te
st

E 1.4 0.0 0.9 0.0

P
re

te
st

E 6.3 0.0 0.5 0.0

H 0.9 0.5 0.5 0.0 H 0.5 0.0 0.0 0.0

A 20.0 1.4 57.7 5.5 A 55.6 2.1 18.5 1.6

C 1.4 0.0 3.2 1.4 C 6.3 0.0 1.6 1.1

question [8]. Tables II and III show the transition matrices

from two different data sets (from different schools) for ques-

tions 2 and 14, respectively. The row indicates the pretest

response, and the column indicates the post-test response. In

order to match other representations we have modified the

format of the transition matrices: the correct answers are in

the top row and left column, students who choose a better an-

swer on the post-test are shown in bold, and those who choose

a worse answer are shown in italics.

Table II shows that about 20% of students at School 1 and

48% of students at School 2 improve to the correct answer on

question 2 after instruction. We can also see that about 4–5%

of students at each school improve from answer B to answer

C, indicating that these students are learning, just not as much

as one might hope. Table III shows similar results with about

23% (School 1) and 62% (School 2) of students improving to

the correct answer on question 14; and again, 3–5% of stu-

dents choose a better incorrect response after instruction at

each school. Table III also shows that no students at either

school who chose either E (correct) or H on the pretest se-

lected C on the post-test for question 14; this supports our

claim that H is a more sophisticated response than A or C.

We use consistency plots to simultaneously show students’

transitions on both questions (see Fig. 2(a) and 2(b)) [17]. In

this representation the row indicates a response to question

2, the column is a response to question 14, the location of a

circle represents a given response pair on the pretest, and a

triangle shows a response pair on the post-test. Lines connect

circles with triangles to form transition arrows from a partic-

ular pretest response pair to a post-test response pair. The

numbers indicate the percentage of students in a given class

who made that particular transition. Squares show percent-

ages of students who gave the same response pair on both

the pre- and post-tests. As with our transition matrices, the

correct responses are in the top row and left column, and the

worst responses are in the bottom row and right column.

Many of the observable trends from the transition matrices

are visually apparent on the consistency plots: most students

at School 1 do not change responses (squares Fig. 2(a)), the

most dominant transition at School 2 is becoming correct on

both questions (Fig. 2(b)), and getting better is more com-

mon than getting worse (more/thicker arrows up and left than

down and right on both plots). Consistency plots also make

many trends more salient. Carefully examining the transition
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matrices from School 2 reveals that more students increased

to correct on question 14 than question 2; this is readily ap-

parent in Fig. 2(b) with a large 13% arrow going left from cell

BA, but only a small 2% arrow going up from the same start-

ing cell. As mentioned above, 20% of students at School 1

transitioned from the most common incorrect answer to cor-

rect on each question, but Fig. 2(a) shows that only 12% did

so on both questions; one can also see that students at School

1 are about equally likely to become correct on either ques-

tion 2 or question 14. Figure 2(a) also shows one of the most

important features of consistency plots: a cycle in the lower

right corner involving 8% of students in which half of them go

from C to A on question 14, and half of them make the exact

opposite transition. The dynamics of student understanding

visible on these consistency plots provide a rich picture of

student learning that is unavailable in other representations,

and utilizing the rankings from the IRCs ensures that “mo-

tion” left and/or up always indicates improvement.

V. SUMMARY AND FUTURE DIRECTIONS

Results from the 3PL IRT model show that the discrimina-

tion (a) and difficulty (b) parameters on FMCE questions are

similar to those reported for the FCI, but the guessing param-

eter (c) is notably lower on the FMCE, supporting previous

claims that the FMCE is more difficult than the FCI for low-

scoring students [4, 13]. Creating IRCs and fitting the data

to the PIRT model allows us to uniquely rank incorrect re-

sponses to each FMCE question based on the location of the

peak probability [14, 15]. Considering pairs of responses pro-

vides a rich picture of how individuals change over a course

either on a single question (transition matrices [8]) or on

matched question pairs (consistency plots [17]). These rep-

resentations allow us to quickly examine dominant transition

patterns. This goes beyond the typical correct/incorrect bi-

nary and allows us to show that student learning is occurring

even if students do not select the correct answer.

We still have two open questions: 1) How can we con-

sider student transitions on more than two questions simul-

taneously? We have previously defined question cases that

are each comprised of one question from each of the Force

Sled, Force Graphs, and Acceleration Graphs question clus-

ters (e.g., questions 2, 14, and 26 are defined as Case 2

[9, 16]), but consistency plots can only show two of these at

a time. Latent transition analysis (LTA) may be used to cre-

ate transition matrices showing the probabilities of students

changing from a particular answer triad on the pretest to an-

other triad on the post-test [18]. Preliminary results of LTA

show that the dominant transitions are consistent with those

identified by our consistency plots. 2) What makes one in-

correct response “better” than another? We have described

one way to answer our second question based on identifying

the score at which the probability of choosing each answer is

maximized. Another method for ranking incorrect responses

could involve using the opinions of expert physics educators

and physics education researchers. A third method could ex-

amine the likelihood that students would transition to the cor-

rect answer after choosing each of the incorrect answers (as

suggested in Ref. [7]). A combination of these may be re-

quired to determine a robust ranking for each question, which

is necessary for the claim of being able to show student learn-

ing and improvement without selecting the correct response.
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