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ABSTRACT: Predicting crystal structure has always been a challenging problem for physical sciences. Recently, computational
methods have been built to predict crystal structure with success but have been limited in scope and computational time. In this paper,
we review computational methods such as density functional theory and machine learning methods used to predict crystal structure.
We also explored the breadth versus accuracy of building a model to predict across any crystal structure using machine learning. We
extracted 24,913 unique chemical formulae existing between 290 K and 310 K from the Pearson Crystal Database. Of these 24,913
formulae, there exists 10,711 unique crystal structures referred to as entry prototypes. Common entries might have hundreds of
chemical compositions while the vast majority of entry prototypes are represented by fewer than ten unique compositions. To include
all data in our predictions, entry prototypes that lacked a minimum number of representatives were relabeled as ‘Other’. By selecting
the minimum numbers to be 150, 100, 70, 40, 20, and 10, we explored how limiting class sizes affected performance. Using each
minimum number to reorganize the data, we looked at the classification performance metrics: accuracy, precision, and recall. Accu-
racy ranged from 97+2% to 85+2%, average precision ranged from 86+2% to 79+2%, while average recall ranged from 73+2% to
54+2% for minimum-class representatives from 150 to 10, respectively.

INTRODUCTION 38 as the Inorganic Crystal Structure Database (ICSD). In many

Scientific exploration into chemical whitespace has always 39 i{lstances_. some qfthe most gxcitingl and promising new mate-
been a challenging process due to the high risk, high reward 40 nalslhave beer.l discovered via for‘qu‘ry and lu(lsgw:. (31‘1t:|call1 engi-
nature of research into untested territory. Materials discovery 1 neerng maten.alsusuch as vulcamzec! rubber™, Teﬂon : 31113d
and characterization is a very time intensive process. Synthesis 42 synthetic pllfstlcs to evel.'yday luxurleissuch aﬂlﬁm?l dyes™,
of untested materials requires a large amount of trial and error super glue™, and synthetic sweeteners” were all discovered
to determine optimum synthesis conditions with some chemical though chance.

reactions taking days to weeks to perform. Many of these un-
tested materials use exotic elements or compounds which can
be expensive. In addition to the cost of reagents, samples must
then be characterized for crystal structure and microstructure.
Techniques such as diffraction, spectroscopy, and electron mi-
croscopy can be very time intensive.

45 This current approach to materials discovery and deployment is
46 far too slow and expensive to meet the demands that we face in
47 the 21% century. Instead. we need a rational and structured
48 method to explore chemical whitespace. This new method not
49 only needs to be economical but quick, precise, and accurate as
50 well.

Once a material is finally synthesized and characterized, its
properties can be evaluated in the engineering design process.
However, most applications require an optimization of multiple
properties which may be interrelated. If we look at the field of
thermoelectrics, for example, materials are compared to one an-
other using a figure of merit, zT = 5% k1T, where S is the

51 Consider The National Academy of Engineering’s Grand Chal-
52 lenges. These include such challenges as making solar energy
53 economical, providing access to clean water, or developing car-
54 bon capture and sequestration methods, among others.!® Solu-
55 tions to these challenges will undoubtedly require radically im-
Seebeck coefficient, ¢ is the electrical conductivity, x is the 36 proved mater}als tobe develpped s qu:kly as possible. To this
.. . . 57 end, the President of the United States implemented The Mate-

thermal conductivity, and T is temperature. The material prop- B S . .
" ds 1l interrelated. F le. electrical 58 rials Genome Initiative (MGI) in 2011 in order to deploy new
erhies g, ¥, and o are abl mierrefated. For exampre, eleCtliCal sg  aterials “twice as fast at a fraction of the cost.”'” The MGI

conducnvlty_ requlreslhlgh carrier concentration whergas See- 60 proposes to achieve this goal by enhancing collaboration be-
beck coefficient requires low carrier concentration to increase . . . S
i . . ; . . 61 tween experimental and computational materials scientists.
zT. In addition, thermal conductivity also increases with carrier -
. L. . 62 Computational resources can screen and reduce the total num-
concentration which in turn decreases zT. Therefore, optimiza- - ) : -
. . . ) ) 63 ber of experiments necessary rather than experimentally testing
tion of thermoelectric materials requires a compromise between ] - - :
- L ... 64 every composition. Although the MGI has only been in exist-
these properties. Some of the most significant advances in this - ] ) -
. g - ... 65 ence for a short time, we are already seeing key successes from
field have come from identifying new compounds which exhibit . ] . .. ]
better intrinsic bal 0 th ” 66 techniques rooted in MGI principles. For example, the Ford
a DEUEr INNNSIC balance 1 these properies. 67 Motor Company has employed an MGI-based approach known
68 as Integrated Computational Materials Engineering (ICME) to
69 reduce the time for deploying engine aluminum casting, saving
70 them a hundred million USD!. Other examples include
71 QuesTek Innovations using ICME to develop new aviation
72 components such as high strength steel for landing struts or hel-
73 icopter rotors'’; GE Aviation developing gas turbine compo-

The need to discover new materials is not unique to the field of
thermoelectrics. Similar challenges are seen across many mate-
rial science fields such as superconductivity®-2, lithium ion bat-
teries®*, solid oxide fuel cells ¢, catalysts’, high strength ma-
terials® ? and others. In these fields, a relatively small number
of materials are being actively investigated compared to the tens
of thousands of known potential compounds in databases such
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nents without rhenium to reduce cost?®; Ford and General Mo-133
tors researching materials to improve powertrain castings?!; amcl1 34
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Critical to most MGI-based techniques is knowing the mystall38
structure of a candidate material a priori and then using ‘rhis1 39
structure to calculate performance for a given property. I_ndeecl,1
understanding the specific relationships between crystal s1:1uc-1 a1
ture, processing, and materials properties such as electrical, P~ 42
tical, mechanical performance is at the heart of the materials 3
science discipline. However, predicting crystal structure itself} a1
for any given composition has been a surprisingly vexing chal-
lenge for materials scientists, chemists, and physicists for over

a century. 146
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While some general rules have been identified which offer in-
sight, such as Pauling’s five rules for crystal structures?, there
are numerous exceptions to these rules and predicting the struc-
ture of some simple and most complex compounds still chal-
lenges scientists today**. Pauling’s rules are as follows: 1) The
radii ratio and radius sum rule for polyhedra formation, 2) The
electrostatic valence principle for electroneutrality related to the
coordination number of the cation, 3) The stability of the crystal
related to polyhedra sharing of corners, edges, and faces, 4) The
lack of sharing of polyhedra when multiple cations with large
valence and small coordination number are present in the crys-
tal, and 5) The multiplicity of constituents in the crystal will be
small. Later, in the early 1980’s, Pierre Villars built multiple 60
three-dimensional stability diagrams by the determination Of} 61
three specific atomic properties to help separate binary and ter-
nary alloys. By using the difference of Zunger’s pseudopoten—1 63
tial radii sums, a difference in Martynov-Bastsanov electroneg-
ativity, and the sum of the valence electrons, Villars was able to
build a predictive model to predict thousands of binary and ter-
nary compounds?2?®, Modem day prediction techniques now
rely heavily on computational materials science and take many
forms such as simulated annealing, genetic algorithms, and den-
. : s 169
sity functional theory=--".
170
In this paper, we have done a literature review of multiple a,lgo-}%
rithms with an overview of the basics of each algorithm, a briefw 3
focus on the history, key breakthroughs, and modern examples
of crystal structure prediction. We will then discuss new elp-rM
: e 175
proaches for crystal structure predictions based on machine
. . o . . 176
learning. This paper will give an overview of the promise and

challenges in using machine learning to predict structures. }3;

11 ENERGY BASED ALGORITHMS FOR!7?
PREDICTING CRYSTAL STRUCTURE 150

Density functional theory (DFT), simulated annealing, and ge-181
netic algorithms all require a crystal structure suggestion or a]82
randomly generated atomic configuration as a starting point to183
begin calculations from first principles®®. The algorithms then]84
search for the lowest energy structure using energetic potentials185
unique to each algorithm?. The lowest energy states are as-186
sumed to be the ground energy states and thus a compound’s187
most likely thermodynamically stable crystal structure. It’s im-188
portant to note that due to these algorithms focus on energy min-189
imization, only ground state structures can be calculated. These]190
algorithms can’t be used to determine metastable states or struc-191
tures that require external temperature or pressure to remain sta-192
ble. 193

165

1.1.1 Density Functional Theory

Density functional theory is the most well-known predictive al-
gorithm currently used by material scientists and researchers.
Density functional calculations investigate the electronic struc-
ture of many-body systems at the ground state. Rather than sim-
ulating the interaction between every subatomic particle it uses
approximations. These approximations are nucleonic potentials
for atoms and use an electron density rather than calculating
each individual electron interaction. DFT achieves relatively
high accuracy though the quantum mechanical modeling of the
spatially dependent electron density in a system. Modern DFT
is based on non-interacting electrons moving in a system-wide
electronic potential. The potential is constructed using the struc-
ture and elemental composition of the system with their inter-
electronic interactions. The potential is evaluated to determine
the energy cost for each state, or configuration, of the system.
The correct ground state electron density is determined when
the energy of the system has been minimized. DFT requires
knowing a candidate crystal structure before making a calcula-
tion. Therefore, researchers will create a list of possible struc-
tures and then use DFT quantum calculations to determine each
structure’s energy at zero kelvin®!. The lowest energy is then
determined to be the most stable, and thus most likely struc-
ture®. Therefore, this is a zero-kelvin approximation and does
not work for high temperatures which can include room tem-
perature®?. Researchers have merged different techniques, such
as molecular dynamics®, to overcome this issue.

The pioneer of DFT was Douglas Rayner Hartree when he cre-
ated a self-consistent field for electrons to solve for the wave
function using the field around the nucleus®. This was ex-
panded by two of his graduate students, Fock and Slater, in 1930
by replacing the equation with a determinant®®. This became
the Hartree-Fock equation and Slater determinants. Earlier, in
1927, Thomas and Fermi developed a model to calculate atomic
properties®®. This used a local density (LD) approximation for
kinetic energy’®. This set the foundation for solving the wave
equation for atoms using density functionals. In 1964, Hohen-
berg and Kohn introduced a variational principle for energy,
which showed a relationship between the ground state density
of electrons and the wave function®®. This was a huge accom-
plishment and the start of modern DFT. Formalism and refine-
ment of the densities helped refine the algorithm. Yet, ac-
ceptance of this algorithm didn’t occur until around 1990 due
to wariness within the field of chemistry*’. The creation of sim-
ple to use software packages greatly improved DFT acceptance
and use®. Between 1990 and 2015 there has been over 160,000
publications in the field of chemistry alone®.

Yet, DFT is not without its shortcomings. Computational costs
remain a large issue for each DFT calculation while numerous
tests must be run to determine the proper energy functional as
different approximations will affect the outcome®®. DFT also
struggles with highly correlated electron systems, large scale
systems, modeling weak or Van Der Waals forces, time-de-
pendent dynamics and properties that are not observable at the
ground state such as excited states or room temperature bandgap
energy*?. Critically, DFT also cannot calculate disordered struc-
tures necessary for many unique material properties (partial cat-
ion occupancy, oxygen vacancies, etc). Recently, better pro-
grammed algorithms and approximations coupled with the in-
troduction of machine learning has helped offset the computa-

tional cost and time requirement limitations®% 3,
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Density functional theory has had many successes in material253
property predictions ranging from batteries’ 3, capacitors®’.254
thermoelectrics®**?, superconductors* 42, photovoltaics®*” 4,255
and catalysts**. DFT calculations continue to improve accuracy256

and upwards of 15,000 density functional theory papers are257

published every year®. 258

259
1.1.2 FORCE FIELD MODELS 260
Another method to calculate the energy of atomic conﬁgura-ggé

tions are empirical force field models. These simulate intera-
tomic interactions in unique ways depending on the model* 47263
These models are used when the system grows in complexi‘ry264
where ab initio calculations become too computationally de-265
manding *. These models are considered critical for namopa.l‘ti-2

cle structure predictions to reduce computational time due to the267
large size of each predicted system*® 47, 268
However, the accuracy of the calculation is heavily dependent269
on which model is used as well as the accuracy of the model’s270
approximations®. Swamy ef al.* used two separate force field?71
models to predict all known polymorphs of TiO2 with 1.«'311'yi11g2—"2
success depending on the specific polymorph. It was shown that? /3
one model could predict low pressure polymorphs accurately274
but struggled with high pressure polymorphs while the other? 73
model could predict high pressure polymorphs accurately bu%;g

had difficulty with low pressure polymorphs. .

1.1.3 GLOBAL OPTIMIZATION;;g

ALGORITHMS 81

Simulated annealing is a computational approach that is basedggz
on the process of physical annealing wherein a material isyg3
heated to modify its crystal or microstructure. Modifying theygy
crystal and microstructure requires atomic mobility by over-g5
coming energy barriers. This is made possible by increasing the; g
temperature. These atoms then seftle into their lowest energy,g~
state in the crystal at the given temperature. This allows the at-yg¢
oms to move and adjust the crystal structure to reach the mini-;gg
mization of the Gibbs function assuming constant temperature, g,
and volume. In simulated annealing, the same concept is ap-5g;
plied. We allow these atoms to seftle into their lowest energysg,
state as their simulated energy. commonly labeled temperature,;93
is slowly decreased in the model. It is important to note that thisy g,
temperature is an arbitrary energy unit and not related to actual,ygg
temperatures*’. Minimum energy is found by randomizing thesgg
motion of simulated atoms using either Monte Carlo statistics.5g7
molecular dynamics. or other techniques?. The initial tempera-59g
ture is selected so that the kinetic energy of each atom is high,gg
enough to allow the system to overcome local energy barriersy g
so global minima can be found”. Simulated annealing has had

success in predicting inorganic structures and can make predic-31
tions of partially disordered materials- something DFT cannot3(?
do?4-49.50 303

ENERGY

First introduced by Kirkpatrick in 1983, a relation of physicellgg;1
annealing and statistical mechanic relations lead him to intro-3(¢
duce the algorithm®. By using the algorithm he showed pre-3q7
dictions for the classic traveling salesman problem to the phys-34g
ical determination of wiring and cooling within a computer’. 309
The algorithm was quickly adopted due to its robust nature ands |
ease of use” 2. The algorithm was expanded upon with news;
techniques to increase the accuracy of the algorithm such as au-
tomated assembly of secondary building units and a hybridz>
method using Monte Carlo basin hopping®. 313
314
315

However, simulated annealing is computationally intensive,
which led to many researchers developing workarounds such as
parallelization processing techniques®. The most concerning
problems with simulated annealing are: slow energy landscape
exploration, the inability to focus on specific problems of inter-
est due to the randomization of atomic placement, and compu-
tational limitations®® 3. In theory, simulated annealing can ex-
plore the entire energy landscape and find the energy minimum
regardless of starting position but the time and computational
resources required for this complete exploration can be exces-
sive®*. The algorithm must start in a specific point and it could
miss low energy regions as the algorithm reduces temperature.
To offset this limitation, many simulated annealing runs are
done sequentially and different starting spots are selected to bet-
ter explore the energy landscape®.

Genetic algorithms are another energy-based technique used by
researchers to predict crystal structures. Created by John Hol-
land in 1975, genetic algorithms are a subset of evolutionary
algorithms™®. These algorithms are based on the concept of evo-
lution where the strong can procreate offspring while the
weaker will not. An initial population of structures is generated
with constrained but randomized atomic placement, or prear-
ranged atomic configurations®. The algorithm then selects par-
ents from the population to exchange crystallographic infor-
mation. This is done using a random selection code, such as
tournaments or a roulette wheel, where the percentage chance
of selection is dependent on how well it meets certain criteria
specified by the algorithm, referred to as a fitness function®.
The parent structures share information in either a random pat-
tern or by mixingtogether, which results in an offspring struc-
ture®. This process repeats until the desired number of offspring
is achieved. Mutations can be introduced to add diversity to the
population by changing random properties of the crystal struc-
tures. Mutations and offspring then have their individual ener-
gies minimized and are added to a new dataset called a genera-
tion. This new dataset also includes the samples of the dataset
that are lower in energy than the new offspring and mutants.
The old generation is replaced and the process is continued until
the energy converges to some final criteria or by reducing the
training set at each generation until only a single crystallo-
graphic structure remains®® >, The practice of applying genetic
algorithms to material science has been growing rapidly in the
last few years®>%. After their initial introduction, multiple var-
iations of genetic algorithms have been introduced such as
adaptive genetic algorithm®®. Specific examples for crystal
structure predictions exists such as global space-group optimi-
zation known as GSGO”’, and the genetic algorithm for struc-
ture and phase prediction also known as GASP%.

A popular technique for the creation of offspring structures is
the ‘cut and splice” method®. This method creates a new gener-
ation by splitting a chosen structure at an arbitrary plane. Mem-
bers of the generation can be sliced and combined to form a new
randomized structure, or offspring. The cut and splice method
can also be used to generate mutations by rotating a section of
the given structure at an arbitrary angle. These new structures
have their energy minimized and are added to the new genera-
tion®!. Repeating this process allows us to optimize the crystal
structure with each new generation eventually reaching a mini-
mum.

Like all optimization techniques, the selection of algorithm pa-
rameters will affect performance. For example, convergence to
a global minimum can be discovered if the initial population
size is large enough, the creation of the offspring population is
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set at an appropriate rate to explore space but not to over satu-377
rate a local minimum, and a mutation rate is significant enough378
to shift the algorithm out of local minimums. However, this379
leads to large computational times. Thus, a promising region380
should be determined with a small population size to reduce381
computational time, if selected incorrectly, this can lead to find-382

ing only a local minimum?®. 383
384
There are many simulation software packages available for3gs

these algorithms mentioned above. The most common software386
package used for DFT in crystal structure predictions is the Vi-387
enna Ab Initio Simulation Package, or VASP for short. Histor-388
ically, it has had success in crystal structure predictions’!- 336389
386263 As mentioned above, DFT needs a starting structure t0390
calculate energy. To generate this starting structure for DFT391
there are multiple methods and algorithms available. USPEX392
(Universal Structure Predictor: Evolutionary crystallography)393
has been used to determine high pressure phases of CaC03%,394
while CALYPSO (Crystal Structure Analysis by Particle395
Swarm Optimization) is another software package that recently396
has been used to determine structures of noble gases at high397
pressure®, and finally the ATRSS (Ab Initio Random Structure
Searching) method which has been used for determining the398
crystal structure for lithium based crystal structures®: % 399
400
1.2 MACHINE LEARNING ALGORITHMS FOR401

PREDICTING CRYSTAL STRUCTURE 402
All the previous techniques involve calculating and compa.ringjgi

energies for crystal structures to make predictions about which
crystal structures are most thermodynamically stable. This sta-
bility is with respect to certain given conditions, defined by ei-
ther the algorithm or user, such as constant entropy or constant
volume. A fundamentally different approach exists which re-
lies on machine learning. Machine learning is a heavily data-
centric technique where large amounts of data are collected and
analyzed. A predictive model is then trained on this large col-
lection of data. This model can then be fed inputs similar to the
collected data to predict probabilistic results. These inputs can
be categorical as well as numerical. Thus, all supervised learn-
ing algorithms can be characterized as classification or regres-
sion problems. This ability to segregate crystal structure data of
all types is key for allowing us to predict crystal structure.

Companies such as Amazon and Netflix already collect an enor-
mous amount of data related to consumer interest, browsing
habits, viewing history etc. and are already incorporating ma-
chine learning into their websites as highly efficient ways to
recommend products or entertainment options to consumers.
These algorithms do not need to know exactly why the con-
sumer is interested, it only needs to predict the probabilistic 105
likelihood of a consumer being interested. The mechanistic de-
tails of the relationships, which are essential to a technique suchy g
as DFT, are not even necessarily known in machine learning,7
algorithms. Instead. only the probabilistic determination of a4gg
given outcome from input data matters. Yet. these algorithmsgg
should be viewed as tools to assist rather then to replacey
experimental and computational materials scientists.q1
Ultimately, the algorithm will only make predictions and some412
of these could be correspond to completely unstable or evengi3
physically impossible compounds. Therefore, chemicalyqy
intuition will still need to be utilized to determine what isyq5
valuable and what to ignore.

416
Machine learning algorithms rely on building predictive models, 7

from empirical data or calculated data®"- . The data used for

supervised machine learning is organized in tables referred to
as training datasets. Each row describes a single entity or obser-
vation, and each column represents a commonly shared feature
or attribute. We label these columns as features. These com-
monly shared features include a column which contains the key
property you are attempting to predict, such as crystal structure.
The column features can be numerical or categorical. A sample
of features used to predict crystal structure could include com-
positional thresholds, bond character, or average number of va-
lence electrons among many others. For data to be useful in ma-
chine learning, each row needs a value for the features that will
be included in the model. When features are missing too many
values, they are generally discarded, although there are methods
to estimate the missing values. For example, imputation is the
procedure of replacing empty values in a data set%:. Imputation
is typically handled by filling empty cells with the mean for
continuous numerical data, the mode for categorical number
data, or the most common string for written categorical data.
There are also more sophisticated procedures which involve
building nested predictive models to fill in the missing attrib-
utes®.

Like the energy-based algorithms mentioned above, multiple
machine learning algorithms exist such as random forest algo-
rithms, support vector machines, and artificial neural networks.
They all share the ability to use a collection of data to build a
predictive algorithm. Each of these algorithms build prediction
models in different ways and the data requirements, such as size
and formatting, differ per algorithm.

Branches

Leaf Leaf

Figure 1: Graphical description of a decision free with the root,
node, and leaf sections labeled. The data is passed from one sec-
tion to another along branches.

A popular machine learning technique used for predictive
model building is the random forest algorithm®. The random
forest algorithm utilizes many independent decision trees
trained from collected data. Training is the process of using the
input data to create a criteria-based prediction model that has
predictive power. A decision tree is trained by using a subset of
features from the data. The training process compares feature
values for all inputs and attempts to segregate the input data.
The features separate the input data at different feature values
creating successively more homogeneous groups®.

As discussed above, there are two types of commonly used de-
cision trees: Classification, and Regression’. Classification de-
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cision trees create predictions that attempt to classify categori-481
cal data, an example being crystal structure such as fluorite, spi-482
nel, etc. Regression decision trees predict continuous numerical
outputs, such as thermal conductivity. In the random forest al-
gorithm, all the trees in the “forest™ have different structure be-
cause they sample different data and random features™. The
trees are composed of unique nodes and branches. The nodes
are a way to represent splitting points in the data. The initial
node is referred to the root of the tree. Feature values from the
data are used to separate an input data group. The groups that
result from separation are called branches. Each subsequent
node receives an input group from the branch above it. That
separation is output to nodes below it until all the groups are
homogeneous. These final nodes are referred to as leaves. The
tree structures that are built to separate the experimental data
can then be used as a model for separating future data®, an ex-
ample is shown in Figure 1.

Random forest has already been used as a high-throughput ma-

terial screening process for thermal conductivity or energeti-

cally favorable compositions™ ™. For example, Oliynyk et al.”

built a model that predicted whether 21 ternary compositions

were either full-Heusler, inverse Heusler, or not Heusler. Of

these 21, 19 were confirmed though experimental results. The

challenge with differentiating these classes is that they all look 483
nearly indistinguishable via powder diffraction and single crys-4g4
tals are difficult to grow and therefore rarely used to character-4g5
ize structure. Even with these difficulties, the algorithm had anygg
accuracy of 94%. Balachandran ef al. also used decision trees,g7
as well as support vector machines, which we will discuss be-4gg
low, to predict wide band gap binary structures as well as tran-

sition metal intermetallic compounds. These algorithms had ac-4g9
curacies ranging from 86.7% to 96.7% for the decision trees and49(
86.7% to 93.3% for the support vector machines™. 491
A support vector machine (SVM) is another machine leamjngjg§
algorithm based on the segregation of data. SVMs can segregate 94
regression or classification data like the random forest modelygs
discussed above. SVMs accomplish this task by plotting theg¢
data into an n-dimensional space. The algorithm then attempts 497
to create a hyperplane to segregate the data. This hyperplane is;gg
determined by maximizing the vector normal to the hyperplane,

usually labeled W, and the closest data point to create the larg-499
est gap possible”. By graphing the data with respect to differentsgg
physical properties, the algorithm can compare the hyperplanesg1
separation with respect to physical properties. The hyperplanesg2
with the largest split is the defining feature relative to the phys-503
ical properties and thus the most important feature to segregatesgo4
the data. To help with this process, an error function can be in-505
troduced to allow the algorithm to ignore a few data points to506
plot the hyperplane. The distance of this separation can be used

as a method to optimize the algorithm™. A graphical example is507
shown in Figure 2. The strength of SVM algorithms is the abil-508
ity to optimize itself by adjusting its kernel function and thus509
adjusting the dimensionality of the problem to help with segre-510
gation””- "%, The kernel function is a symmetric and continuous511
function were, if the restrictions of Mercer’s theorem is met,512
can define the dot product in a specific space™. This allows the513
program to increase dimensionality without calculating the dot514
product continuously, allowing the algorithm to expand its di-515
mensionality without impacting computational time. Yet, this516
leads to the major disadvantage of SVMs. The choice of the517
kernel function is a critical and challenging process and unlike518
certain other machine learning techniques, SVMs can still be

computationally demanding depending on the dimensionality of

the problem with respect to other machine learning algo-
rithms”.

X

2

1
Figure 2: Graphical example of support vector machine. The data
is being separated by the hyperplane that maximizes the vector W.

SVMs have been used in the prediction of protein sequences®,

residue-position importance®!, domain boundaries in protein
structures®?, microstructure imaging®?, and atmospheric corro-
sion of materials®. SVMs have also been used in crystal predic-

tions of binary and intermetallic compounds with success’™.

With regards to predicting crystal structure specifically, Oli-
ynyk et al. has built a support vector machine to predict the
crystal structure of binary compounds as well as ternary com-
pounds. The binary algorithm achieved an accuracy of 93.2%
with a training set of 706 compounds. The authors provided fur-
ther experimental validation by synthesizing one compound,
rthodium cadmium, which was predicted to have the cesium
chloride structure, and confirming via X-ray diffraction that the
predicted structure was correct’”’. The termnary algorithm
achieved an accuracy of 96.9% with 1556 unique compounds®.

Artificial neural networks (ANNs) are another machine learn-
ing method used in material informatics. ANNs are capable of
modeling essentially any complex relationship given enough
data®®. ANN’s tend to perform well for large amounts of data,
experiencing performance saturation later than other machine
learning models. They are particularly capable of dealing with
data that must do with spatial and temporal relations, such as
images and text processing.

Artificial neural networks are based on a collection of con-
nected units called neurons. Neural networks rely on layering
of neurons to allow for processing of complex patterns. Most
ANN models consist of an input layer, hidden neuron layers,
and an output layer. ANN models work by processing input val-
ues though massive connected networks called hidden layers.
Each connection in the network is called a synapse, and it trans-
mits information to the neurons downstream. Information is
passed starting from the input layer until the output neurons are
reached. The neurons derive value from the synapse connec-
tions while also converting the data into non-linear space if
needed. ANN models are trained by adjusting the weights of
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each synapse until the output of the network is close to the out-554
put of the training data®’. A graphical example is shown in Fig-555
ure 3.
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Figure 3: Graphical definitions of Artificial Neural Networks
with the input layer, the hidden layer, and the output layer. Each
layer connects fo each other layer though multiple path called

synapse.

As of the writing of this work, neural networks are not used in
crystal structure determination. There have been a few prelimi-
nary classifications related to structure such as protein second-
ary structure investigations during folding®® **. When it comes
to inorganic crystal structures, neural networks mainly focus on
data interpretation and categorizing. Recently, Timoshenko et
al. built an artificial neural network to decipher metallic nano-
particle structures from experimental data®. Due to the large
requirement of information required for artificial neural net-
works, they created a dataset of simulations that were verified 5
against experimental data. The accuracy of artificial neural net-g o
works allowed them to predict an average coordination number
up to the fourth coordination shell, and thus the size and shapes.f,8
of the nanoparticle. 579

580
581
582
583

Regardless of the type of machine learning algorithm utilized,
success is measured by the ability to forecast and predict accu-
rately. There are many different and unique ways to test the ac-
curacy of a machine leaming algorithm. One of the most com-
mon and simple methods is the k-fold cross-validation. The idea,
behind k-fold validation is the separation of the training data
into k equal datasets. The algorithm is trained on k — 1 datasets 537
and is used to predict the dataset that wasn’t used in the training. 533
The actual values are compared to the predicted values. For a
real valued property, root mean squared error is the commonly
reported error metric.

590
591
n "i_ ; 2
Root Mean Squared Error = —Z“l(y yi) 592
n 593
594

Where ¥, is the observed value, y; is the predicted value, and n595
is the total amount of predictions performed by the algorithm.596
A quick way to examine your algorithm is a by comparing the597
results to a random guessing algorithm. If the probability of the598
algorithm is the same or worse than a random selection of each

class, then rebuilding the algorithms, focusing on features or
shifting to a different type of algorithm, is required.

When model predictions are categorical as opposed to real val-
ued, a more useful accuracy evaluation tool is the confusion ma-
trix. The confusion matrix compares the known values from the
training set and the predicted values from the algorithm. From
this you can compare how often the algorithm classifies the data
correctly to determine its accuracy, in-class precision, recall,
and false positives/negatives. The overall model accuracy is the
ratio of the total number of correct predictions versus the total
predictions. In class precision is the accuracy of a specific pre-
diction in the model. In class recall is the number of times a
class was predicted correct over the total number of instances
of that class. A false positive or negative is when the algorithm
is wrong in its prediction. We can define these equations of ac-
curacy, in class recall, and in class precision as seen below. For
clarity we will define True Positive as TP, True Negative as TN,
False Positive as FP, and False Negative as FN.

TP

In Class Precision = ———
n Class Precision = 00

TP

In Class Recall = TPTFN

TP+TN
TP+TN+FP+FN

Accuracy =

To help illustrate the idea of a confusion matrix, let us consider
an algorithm that predicts if the crystal structure will be cesium
chloride type structure (CsCl) or another category we shall label
‘Other’ (See Figure 4). For false positives/negatives, we will
define that the CsCl type structure outcome is positive, and the
‘Other’ outcome is negative. Out of 200 compounds, let us have
55 CsCl type structures compounds and 145 Other’ compounds
in our training set. Let us assume the algorithm predicts 60 CsC1
type structure compounds and 140 ‘Other’ compounds. The ac-
curacy of this algorithm would be the sum of the number of
times it guessed correctly over the total training set. That would
be 50 correct CsCl type structure compounds plus 135 correct
‘Other’ compounds divided by the total training set of 200 to
give us 92.5% accuracy. The in-class precision for CsCl type
structure would be 50 divided by 60 or 83.33%. In-class recall
for CsCl type structure would be 50 divided by 55 or 90.91%.
CsCl type structure would have a false positive of 10 while
‘Other’ would have a false negative of 5.

1.3 SYNERGY VS COMPETITION IN ENERGY-
BASED VS MACHINE LEARNING APPROACHES

Researchers have started using machine learning techniques to
explore chemical whitespace focused on crystal structure with
success’l> 739192 The databases of information online, such as
the International Crystal Structure Database or the Pearson’s
Crystal Database, give large amounts of physical parameters
that can be used to build training datasets. These can then be
used to build a prediction algorithm. This is very attractive to



599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614

615

616
617

618
619
620
621
622
623
624
625
626

researchers for high throughput material exploration. Yet, prob-627

lems still exist within physical sciences with machine learning
algorithms because large and diverse training sets are required

628

as well as knowledge of coding and algorithm deployment. The, 3

building of training sets requires a large amount of time and ef-

fort while energy-based algorithms still struggle with calcula-6

tion time and cost. It’s not surprising then that most researchers

do a combination of each technique to offset the weakness ofg

each type of algorithm. Using machine learning, researchers can

32

34

search chemical whitespace quickly and single out 1'11‘reresting6 36
or promising materials. These are then fed into energy-basedﬁ_,}?
functionals or calculations to create a more refined predictiongz o
of the material properties and characterisitics® * ***. Others, 3
use these energy-based algorithms such as DFT to generate d::l-6 "

tasets for unknown or ill-defined chemical compounds to trai116 a1

their machine learning dataset upon®®?7.
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Figure 4: a) Example of a confiision matrix with CsCl defined as
posifive outcome and ‘Other’ as a negative outcome. b) example
of predicted probability of a specific data point from the algo-
rithm. Due to CsCl type structure having the larger percentage,
the algorithm would categorize this data point as CsCl type

structure. 650
As described earlier with Heusler and basic binary structure pre-ggé

dictions, machine learning has been used for a very select few

specific crystal structure predictions. However, a general, uni-633

versal structure type prediction algorithm has never been de-
ployed using machine learning. Therefore, in this paper we ex-
tend previous efforts to determine the extent to which machine
learning could predict any crystal structure type. We accom-

654

656
657

plish this by training off all crystal structure data available in®38
Pearson’s Crystal Database to predict the structure for any com-ggg

position.

661
662
663

2. METHODS

In this work, we use a machine learning algorithm from the
open source program H20 FLOW. A database of 24,215 unique
formulae, and associated entry prototype (EP), Pearson symbol,
space group number, phase prototype, etc. was assembled from
the original 24,913 entries obtained from the Pearson Crystal
Database. This was the result of removing formula with exotic
elements such as Polonium, Astatine, Protactinium, etc. These
exotic elements lacked sufficient elemental properties for our
machine learning method. These were organized into identifi-
cation numbers in order of decreasing size. A graphical repre-
sentation of the specific entry to the number of representatives
per entry is shown in Figure 5. This was then screened for ma-
terials near room temperature (290-310K) with duplicates re-
moved. The chemical formula for each entry was then separated
into composition-weighted elemental and atomic properties to
allow the model to explore any chemical composition as all fea-
tures were elementally based. These formulae-based features
were then uploaded into H20 FLOW and were then used as a
training set in the random forest machine learning model. This
model was selected due to its ease of use and scalability for the
size of the data. Error metrics were calculated in accordance to
the k-fold validation methods discussed above.
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Figure 5: Histogram of enfry size versus eniry profotype, Pear-
son’s symbol, and space group. The size of each category drops
quickly with the majority of each category having only a few en-
tries.

To make a given structure prediction there must be multiple ex-
ample compositions or instances having that structure type to
correlate composition to a structure type. In our dataset, there
were 10,711 unique entry prototypes and 97.5% of the entry
prototypes had fewer than 10 instances. However, a mere 2.5%
of the entry prototypes, those most common structures such as
perovskite or spinel, encompassed 28.5% of the data. This led
us to question at what point, in terms of number of prototype
entries, can we build accurate models. Moreover, since machine
learning model accuracy generally increases with number of in-
stances per class type, up to a point, we can study the expected
tradeoff between model breadth and model accuracy. Specifi-
cally, to handle the uneven distribution of entry prototypes, a



664
665
666
667
668
669
670
671
672

673

674

minimum number of instances was set at an arbitrary cutoff.
This cutoff was then varied for different models. Entry proto-
types with fewer than the required number of instances were
categorized into a single class named ‘Other’. When the mini-
mum cutoff value was varied between 150 and 10 the ‘Other’
class encompassed between 92.5% and 64.1% of the input data,
respectively. The database was prepared multiple times with
separate cutoff values with minimum-bin size of: 150, 100, 70,
40, 20, and 10.
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Figure 6: Model error with respect to cutoff size. Each point is a
specific cutoff with guidelines inserted between points. As cufoff’
size increases, the model’s overall accuracy increases as ex-
pected. Error bars (2%) are smaller than marker size.
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Figure 7: Graphical representation of the algorithms probabili-
ties for entry prototype. With GdFeOs having the largest proba-
bility, it will be selected as the algorithms entry profotype predic-
tion.

Although 97.5% the entry prototypes exist below the cutoff
limit of 10, we still find the classification of ‘Other’ to be useful
information. With a cutoff limit of 10 entry prototypes, a pre-
diction of ‘Other’ leads to a rare crystal structure with less than
10 known similar compounds listed within the Pearson’s Crys-
tal Database. If a researcher is looking for a very rare crystal
structure for a specific property, that crystal structure most
likely will exist within the ‘Other’ category. Moreover, the
model is able to make accurate predictions with moderate recall
for the most common crystal structure types.

The prepared datasets were all analyzed with a distributed ran-
dom forest algorithm. All the algorithms had a limitation of 150
trees with a maximum depth of 40. Each prepared dataset re-
sulted in a unique model. Error metrics were calculated using
5-fold cross-validation in accordance to the k-fold validation
methods discussed above. Predictions were plotted as a confu-
sion matrix.

For error analysis, each cutoff model was built with five differ-
ent random seeds. The error metric we compared is the mean
per class error. Mean class error is defined as one minus recall
as seen in Figure 6. The difference between the largest and
smallest metric is calculated to determine error range.

3. RESULTS AND DISCUSSION

Before describing model accuracy, we first remark on the model
speed. As described in the introduction, one of the key ad-
vantages of machine learning is the speed of prediction. In this
model, we trained our algorithm on 25,000 different entries with
90 columns of metadata each. Therefore, our overall dataset ex-
ceeded 2.2 million data values. Nevertheless, training the model
on 25,000 entry prototypes only took up to 2 hours depending
on the minimum bin size. Once the model was trained, 15,000
entry prototypes were predicted in under 10 seconds on a laptop
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(Intel-I7, 2.6GHz processor 16GB RAM, 64-bit Windows771
10). These composition-based predictions included the as-772
signed entry prototype (structure with highest probability) and773
a breakdown of the probabilities for each other entry proto-774
type. The most probable class is selected as the final prediction.775
For example, the model output for Cro.12RuossSrOs, which has776
the entry prototype GdFeOs type structure, would have a distri-777
bution across all possible entry prototypes. GdFeOs type struc-
ture has the highest probability so it would be selected as the778
entry prototype. The graphical representation of this data can be779
seen in Figure 7. For compounds with multiple crystal struc-780
tures possible, the model predicts the most common structure at781
room temperature due to the model and training set having been782
built at room temperature. 783
784
To determine the error range of the model, each cutoff model785
was built with a different random seed five separate times. The786
range was determined by the difference in the largest and small-
est error. This difference ranged from 0.5% for accuracy, 2%
for recall, and 1.8% for precision. To be conservative with the
error range, the largest error was adopted for all our percentage
errors discussed below.

As expected, as the minimum cutoff size was reduced for each
entry prototype, from 150 to 10, fewer data were available and
the mean in class error increased slowly. This mean class error
ranged from 27+2% to 46+2% for a minimum-bin size ranging
from 150 to 10, respectively. In comparison, random guessing
mean-class error ranged from 99.8% to 83.3%. If the algorithm
only selected the ‘Other’ category, its mean class error ranged
99.9% to 86.7%. We can see that regardless of cutoff, all
showed an overall error far lower than random guessing or only
selecting ‘Other’. Although mean in-class accuracy describes
the overall performance of the model, the reliability of a predic-
tion is better understood by evaluating the accuracy for predict-
ing individual entry prototypes. For the 150-cutoff section, the
largest class error of the entry prototypes was CaTiOs type
structure at 52% while others are much more accurate such as
CeALGa; type structure and MgAL Oy type structure with clas-
sification errors of only 14% and 19%, respectively. To clarify,
when we discuss classification errors, we are describing the per-
cent of the time the algorithm categorized a prediction in the
wrong category. For example, if the algorithm predicts a
CaTiOs type structure prediction as a GdFeOs type structure that
would be a classification error. An alternative metric used is
precision, or one minus the classification error. Overall the in-
class error is surprisingly low even when we only include as few
as 10 entry prototypes in training data with classes such as
BaNiO:s type structure with only six entries has 100% precision.
However, some specific classes with only one or two entry pro-
totypes predictions have zero precision. In other words, we see
evidence that when the model thinks a composition belongs to
a given class it will predict it with very good precision but in a
significant number of cases where only one or two data points
exist it will just call it ‘Other’.

Some entry prototype predictions are more consistently correct
than others. When these high-accuracy prototypes are pre-
dicted, we can have high confidence that the prediction is cor-
rect. If we consider the entry prototype cutoff of 10 we can see
examples of these high-accuracy entry prototypes including
CeALGaz type structure, MgCuAL type structure, and CeNiSiz
type structure which all perform at a precision above 90%
which is 20% above the average model precision. Similarly, we
can express doubt for predictions involving entry prototypes

that are frequently predicted incorrect in the model. Low-accu-
racy entry prototypes are rarely valuable as predictions, some
examples include TiNiSi type structure, ThsPs type structure,
and BiFs type structure which scored 20% below the model’s
average precision. Some classes with very few entries have pre-
cisions of 20% or lower. Further confirming the benefit of larger
amounts of representatives in data sets.

Although the average precision was stable, the average recall
dropped off steadily with smaller cutoff sizes. The average re-
call ranged from 73+2% to 54+2% showing that as the number
of classes increased, the algorithms ability to classify the known
training data diminished. This is due to certain classes having
only one or two entries after the removal of exotic elements.
These are usually categorized as ‘Other’ again showing the ne-
cessity of classes with many entries. An outline of the errors is
shown in Figure 6.
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Figure 8: Confiision matrix of algorithm with a cutoff size of 100. A perfect confiision matrix would have all non-diagonal sections zero.

Precision and recall have been rounded to three decimal places.

A confusion matrix was generated for each model. The confu-824
sion matrix for the algorithm with a cutoff of 100 is shown in825
Figure 8. The error matrix for each class was trained with entry826
prototype imbalances in mind. This was done by normalizing827
the predicted value by the total number of predictions in the828
class. In this paper, we will focus on the confusion matrix with829
a bin size of 100 due to the large confusion matrix generated for830
smaller bin sizes. The algorithm with a cutoff of 100 showed a831
mean precision of 85+2% with a mean recall of 68+2%. In other832
words, the average ability for the algorithm to correctly predict833
a certain structure was 85+2% while the average ability for the834
algorithm to predict a true positive rate was 68+2%. To clarify835
further the idea behind recall and precision, let us look at836
CaTiOs type structure in the entry prototype dataset with a cut-837
off of 150. Out of 162 guesses, the algorithm classified CaTi103838
type structures correctly 123 times. This gives the precision of
123/162 or 76%. The recall is the amount of times actual
CaTiOs type structures was classified correctly. For example,
out of 255 known CaTiOs; entry prototypes only 123 were cor-
rectly classified giving a recall of 123/255 or 48%.

To further understand the misclassification issues, we have
compared CaTiOs, LaAlOs, and GdFeOs which are shown in
Figure 9. All lattices show remarkable structural similarities.
While they are all variations of the standard cubic structure of
perovskites, CaTiOs and GdFeOs are distorted orthorhombic
structures while LaAlOs is a trigonal structure. The essential
structures are similar in terms of polyhedra, bond distances, and
polyhedral connectivity but vary in terms of polyhedral tilting
or rotation. CaTiO; and GdFeOs experience this tilting of the
octahedra due to calcium and gadolinium being too small to
form the cubic structure. GdFeOs also shows more distortion
along the c axis for gadolinium then CaTiOs does with calcium.
LaAlOs deviates from the ideal cubic structure by experiencing
a rotation of the octahedra due to the length of the aluminum
oxygen bond®®,

Future work would be to take individual structures that are quite
similar and group them by “family”” which would increase the

size of representative entries per family while reducing ‘Other’
category percentage. This would help spread the data across
multiple classes and create a more balanced training set. We be-
lieve this would help increase recall in the algorithm. Other pos-
sible future work would be to extend this approach to identify
what synthetic routes would result in different structure types.
Finding specific information on synthesis methods can be a dif-
ficult proposal due to the vast amount of research papers using
different methods to achieve the same goal. However, Kim ef
al. recently published a machine learning paper to collect and
organize this data as an interesting approach to overcoming this
challenge®. However, their work only covered select oxide ma-
terials and required 640,000 papers to build a learning model.
Some materials of interest may not have sufficiently established
literature publications.
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Figure 9: Comparison of misclassification of GdFeOs; with
CaTiOs and LaAlOs. Calcium, gadolinium, and lanthanum are
represented in green. Titanium, iron, and aluminum are repre-

sented as blue. Oxygen is represented as red. 901

902

4. CONCLUSION
903

The ability to predict crystal structures remains a challenging

problem. The capability to engineer specific materials with cer-204
tain properties will require the ability to predict crystal struc-203
tures. Currently, characterization techniques such as diffraction”V®
or spectroscopy are the standard for assessing a compomld‘sgm
crystal structure, but these require pre-made physical sample 0908
measure. First principle calculations to predict crystal structure,

on the other hand, could be used to screen materials prior to209
synthesis. These approaches have grown in recent years but are910
hindered by long computational times, limited scope, and cost.gq |
Machine learning offers a fundamentally new approach that cang, 5
operate in concert with the experimental and first principle ap-

proaches mentioned earlier by rapidly offering probabilistic 13

predictions of crystal structure rather than calculations. 914
915
Previous publications have introduced the possibility of ma-g . o

chine learning-based crystal structure predictions but have been

very limited in scope. For example, previous publications dealt®17
only with a range from 3 to 208 specific crystal structures.918
These were limited to binary structures, ternary structures, orgj9
Heusler/inverse Heusler compounds™: ™ 7% Moreover, previ-920
ous work-built machine learning models which only incorpo-

rated training and validation sets limited from 55 to 1948 entries” 2!
73.74.77.83 n contrast, consider that large inorganic material da-922
tabases such as PCD or ICSD feature around a quarter of a mil-923
lion entries dispersed over more than 10.000 unique crystalg, 4
structures at room temperature alone. Therefore, in this contri-

bution we have built machine learning models that not only ex-925
tend far beyond previous work but also begin to address what926
are the limitations and trade-offs in predicting any arbitrary927
crystal structure. To do so. we have incorporated 24.215 of thegsg
24,913 structure entries we obtained from the Pearson Crystal

Database. The 24,215 entries were the result of simplifying fea-
ture development aspects of the machine learning process and
included over 10,000 unique entry prototypes. With these mod-
els, we explored the implication of massively imbalanced entry
prototype distributions and quantify the model performance as-
sociated with compromising model breadth for accuracy. The
most notable trade-off is recall, which dropped quickly with a
range from 73+2% to 544+2% for minimum-class sizes ranging
from 150 to 10, respectively. These values drastically outper-
form simple metrics such as random guessing, which has a
mean-class error ranged from 83.3% to 99.8% and fixing the
prediction to the dominant class ‘Other’, which results in a
mean-class error from 86.7% to 99.9%. Reducing the scope of
the model had little effect on average precision or accuracy,
which was consistent across all the algorithms with a range of
86+2% to 79+2% and from 97+2% to 85+2%, respectively. Alt-
hough the model struggled to exhaustively capture all members
of a crystal structure, particularly with decreasing class size, the
consistently high prediction accuracy is notable.

Successful performance in predicting crystal structure validates
this machine learning approach for the exploration of chemical
whitespace. We have created a tool that rapidly and efficiently
predicts one of the critical factors for physical phenomenon in
a material. The output of our machine learning based model is
useful to influence or validate other crystal structure ap-
proaches. We see particular value when used synergistically
with other machine learning algorithms based around physical
property prediction.
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