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Introduction

Lower-limb exoskeletons are external mechanical structures that support and assist human2

users during locomotion. The earliest studies on exoskeletons date back to the 1960s, whereas
over the previous decade, research on powered lower-limb exoskeletons has substantially4

expanded [1]. Exoskeletons with different architectures have been developed to achieve different
goals. Typically, lower-limb exoskeletons can be classified into two broad categories based6

on their intended use: assisting people who have pathological gaits and augmenting able-
bodied users. The first type of exoskeleton is designed to provide assistance to individuals8

with neurological conditions, for example, stroke or spinal cord injury (SCI). With the help of
an exoskeleton, these people can complete different tasks that they cannot complete on their10

own. For example, the bilateral hip-knee exoskeletons ReWalk [2] and Ekso Bionics [3] enforce
pre-defined reference trajectories determined by a finite-state-machine (FSM) structure to assist12

individuals with SCI. The bilateral Wandercraft exoskeleton adopts a hybrid dynamics-based
controller to stabilize dynamically feasible periodic gaits for users with SCI while allowing14

them to actively control the exoskeleton speed through upper body posture [4].

The second type of exoskeleton is mainly used by able-bodied users for carrying heavy16

gear and operating cumbersome tools. The majority of these devices transmit force to the ground
while tracking a desired reference torque. The Berkeley Lower Extremity Exoskeleton (BLEEX)18

allows soldiers to carry heavy loads by using its actuators to minimize the interaction forces
between the device and the user [5]. The Sarcos-Raytheon “XOS” exoskeleton and the Human
Universal Load Carrier (HULC) exoskeletons are also military-based devices aimed at soldier2

performance enhancement [1]. The soft exosuits presented in [6] can reduce the net metabolic rate
for able-bodied subjects during walking by generating assistance through an off-board actuation4
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system and Bowden cables. With advancements in hardware and micro-controller design, an
increasing number of complex control algorithms are being realized in practice to promote the6

rapid development of powered lower-limb exoskeletons.

The majority of assistive exoskeletons are designed to rigidly track time-based kinematic8

patterns, which forces users to follow specific joint positions during walking. The ReWalk
and Ekso Bionics exoskeletons (as well as some other devices [7]–[12]) employ high-ratio10

transmissions, for example, ball screws or harmonic drives, to achieve the high torques required to
track lower-limb kinematics. These rigid actuators are ideal for position-based control methods,12

as human torques or external force perturbations cannot easily rotate these actuators. Despite
the fact that these systems have shown promising results in assisting individuals with SCI, their14

kinematic control approaches are limited to replicating the normative joint kinematics associated
with one specific task and user at a time [1]. These pre-defined trajectories cannot adjust to16

continuously varying activities or changes in user behavior associated with learning during gait
rehabilitation. This control approach must also recognize the user’s intent to transition from one18

task-specific controller to another [2], [13], which is hard to realize in practice [14]. Multiple
task-specific controllers also require more tuning time for each user [15], [16]. Moreover, rigid20

position control methods require little or no contribution from the human user [17]. This may
make sense for people with SCI but not for individuals who have partial or full volitional control22

of their limbs. For example, individuals post stroke should be allowed to adjust their joint
kinematics during the learning process based on corrections from the therapist. Unfortunately,24

high-ratio transmissions have high mechanical impedance, which prevents users from moving
their joints freely without help from the exoskeleton. Individuals with volitional control of26

their lower extremities require novel design and control methods for exoskeletons that are more
compatible with human interaction.28

A necessary requirement for assisting or augmenting volitional human motion is for the
exoskeleton joints to have low mechanical impedance (that is, backdrivable or “mechanically30

transparent”). An exoskeleton is said to be backdrivable if users can drive their joints without
a high resistive torque from the exoskeleton. This has been achieved in various ways in the32

past. Active force control attempts to zero the interaction forces measured by a load cell to
make the exoskeleton move with the human [5], but this approach has limited bandwidth34

that prevents more dynamic motions and cannot absorb impact forces [18], [19]. Although
the Indego exoskeleton was originally designed for persons with SCI [20], its backdrivable
electromechanical actuators have facilitated experiments with individuals post stroke by providing2

gravity compensation to the swing leg and user/task-specific feedforward movement assistance
[13]. The powered knee orthosis in [21] uses a hydraulic actuator to achieve great backdrivability4
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without sacrificing output torque, but electric motors tend to be several times more efficient than
hydraulic actuators [18], [22]. Devices with Series Elastic Actuators (SEAs) can realize active6

backdrivability by servoing the spring displacement to zero, but major limitations still exist such
as low output torque [23], [24], complex system architecture [25], [26], and limited force/torque8

control bandwidth [24], [27]. Soft exosuits [28] by design have low joint impedance, but the
control problem becomes substantially harder due to uncertainty in the actuation model from10

transferring forces to the body through soft, compliant material rather than a rigid structure.
Recently, the field of legged robots has started embracing direct-drive and quasi-direct-drive12

actuation systems (for example, [18], [19], [29]) to enable low-impedance actuation for highly
dynamic motions, compliance to impacts, and accurate torque control. We propose that this14

design philosophy can also be applied in rehabilitation robots to provide users with a cooperative
human-machine interface. Having low-impedance actuation also allows the implementation of16

novel human-interactive control strategies, making it possible for promoting user participation
and thus broadening the scope of application for these devices.18

Low-impedance actuation is necessary but not sufficient for designing human-interactive
exoskeletons, because traditional kinematic control methods can still command large torques that20

interfere with the volitional motion of the human. Traditional high-gain position control strategies
actively increase the overall impedance of the human and exoskeleton system in closed loop,22

defeating the purpose of the low-impedance actuator design. Therefore, the final requirement
concerns the control strategy, which must provide assistance without overly constraining the24

user’s joint kinematics. Instead of tracking reference kinematic patterns, kinetic goals (for
example, energy or force) can be enforced to provide a flexible learning environment and26

allow the user to choose their own kinematic patterns. In addition to training flexibility, the
control method should be task-invariant to provide consistent assistance that eliminates the need28

for detecting task transitions. Although some task-invariant controllers have been proposed for
amplifying human motion [5], [30] or compensating for exoskeleton mass/inertia [13], [31], these30

approaches assume that the user has the ability to produce the joint kinematics, which is not the
case with weakened limbs. Therefore, we focus on an energetic control approach that shapes the32

Lagrangian (that is, kinetic minus potential energy) of the human body and exoskeleton in closed
loop. This energetic control approach, known as energy shaping, controls the system energy to a34

specific analytical function of the system state in order to induce different dynamics via the Euler-
Lagrange equations [32]. By shaping potential energy, torques can be generated to counteract36

gravity in the vertical direction. This control action yields so-called body-weight support (BWS),
which offloads the perceived weight of the user’s lower extremities and center of mass (COM).2

Similarly, kinetic energy shaping can reduce the perceived mass and inertia of the human-robot
system to generate assistance in all directions of motion. Because this control method augments4
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the joint dynamics rather than tracking joint kinematics, the exoskeleton determines how the
joints should move instead of where they move. Therefore, the assistance is invariant of the task6

and the preferred kinematics of the user.

In this paper, we summarize our previous and ongoing work to demonstrate the design and8

control philosophy behind task-invariant exoskeletal assistance (see “Summary of the Paper”).
We applied the proposed design philosophy to build a powered ankle exoskeleton (Generation10

Zero) that served as a tethered engineering testbed for preliminary experiments [33]. We then
present the design of a mobile powered knee-ankle exoskeleton (Generation One) using a high12

torque-density electrical motor and a custom low-ratio transmission [34], which can achieve
high torque output without sacrificing intrinsic backdrivability or efficiency. To control these14

exoskeletons in a human-cooperative manner, we propose a complete theoretical framework for
underactuated energy shaping that incorporates both environmental and human interaction [35]–16

[37]. By explicitly modeling holonomic contact constraints in the dynamics, we transform the
conventional Lagrangian dynamics into the equivalent constrained dynamics (ECD) that have18

fewer (or possibly zero) unactuated degrees of freedom (DOFs). These constrained dynamics ease
the solving of the matching conditions, which determine what energetic properties of the human20

body can be shaped by the available actuators. This theoretical framework can accommodate
arbitrary degrees of underactuation and system dimensions, and the resulting control law can22

assist any task by augmenting body energetics rather than tracking reference trajectories.

The rest of the paper is organized as follows. In the following section, we introduce the24

design philosophy for highly backdrivable actuation systems and present the mechatronic and
electrical design for two generations of exoskeletons. Then we derive the generalized matching26

framework for energy shaping with environmental and human interaction. We show simulation
results for different shaping strategies on an 8-DOF human-like biped. Finally, able-bodied human28

subject experiments demonstrate the backdrivability of the powered knee-ankle exoskeleton and
validate the potential energy shaping control strategy across a variety of locomotor tasks.30

Design of Highly Backdrivable Exoskeletons

In this section, we present the mechatronic designs for two generations of powered32

exoskeletons shown in Figure 1. The required high torque output of these devices are achieved
by increasing the torque density of the electrical motor rather than the transmission ratio. The34

reflected inertia (or mechanical impedance) of these actuators is drastically reduced through the
use of a low-ratio transmission. This actuation design is capable of controlling the output torque2

without any torque sensing, because direct-drive and quasi-direct-drive actuation systems can be
modeled as linear systems [38]. These designs are also intrinsically backdrivable (without any4
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sensing or control), which is ideal for human interaction. Moreover, low-impedance actuators
have the potential for energy regeneration during periods of negative work [18], which helps to6

extend battery life or choose smaller batteries.

Generation Zero: Powered Ankle Exoskeleton8

As the first step in design, we built a powered ankle exoskeleton to validate the proposed
design philosophy [33]. The hardware design presented in this section was mainly conducted to10

achieve high torque output, accurate torque control performance, and low backdrive torque.

To obtain a sufficient torque output and a small torque ripple, we chose a high torque12

actuator with a permanent magnetic synchronous motor (PMSM) connected to a two-stage
planetary gear transmission (TPM 004X, Wittenstein, Inc., 2.4 kg, efficiency 94%). We used14

another transmission, a poly chain GT Carbon timing belt (8MGT 720, Gates Industry, Inc.,
efficiency between 92.8% and 97.8%), to further increase actuator output torque and move16

the heavy weight towards user’s COM, which minimizes the metabolic burden of added weight
during locomotion [39]. Given the combined transmission ratio (43.71:1), approximate efficiency18

(90%), and peak motor torque (1.29 Nm), the actuator’s peak torque and power were estimated
to be 50 Nm and 288 W, respectively. The CAD rendering of the ankle exoskeleton design is20

shown in Figure 2.

For the purpose of control implementation, we measured several features of the human’s22

walking gait (walking phase, ankle angle, and shank angle) using the following sensors. We
placed two force sensors (FlexiForce A301, Tekscan, Inc.) in a custom shoe insole (one under24

the heel and the other under the ball of the foot) to detect the heel strike, mid-stance, and
pre-swing phases of the gait. The insole, made from a rubber-like PolyJet photopolymer, was26

produced with a Connex 350 3D printer. We measured the ankle angle with an optical incremental
encoder (2048 CPR, US Digital, Inc.) and the global orientation of the shank with an inertial28

measurement unit (IMU) (3DM-GX4-25, LORD MicroStrain, Inc.) on the main structure.

Having designed and built the device, we conducted a torque step response test to verify30

the performance of the actuation system. We installed a reaction torque sensor (TPM 004+,
Wittenstein, Inc.) between the actuator case and main structure to measure the real torque output32

from the actuator. In this experiment, the actuator was locked in place while we completed a
medium torque test (20 Nm) and a high torque test (35 Nm). The results in Figure 3 have a short
response time and small steady error. The backdrivability of the device was then demonstrated2

by treadmill experiments with able-bodied subjects, who walked at various speeds with and
without closed-loop torque control [33]. However, the use of industrial components resulted in4
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an overall exoskeleton mass of about 4.5 kg, which was too heavy for a single joint exoskeleton
for mobile gait assistance. The tethered power supply and overall size also constrained the device6

to a stationary treadmill training environment. In the next iteration of our design philosophy,
we used custom components to create a next generation powered knee-ankle exoskeleton that is8

light enough for mobile gait assistance.

Generation One: Powered Knee-Ankle Exoskeleton10

In this section, we introduce our second exoskeleton prototype: the powered knee-ankle
exoskeleton [34] shown in Figure 4. The two actuator modules are attached to a knee-ankle-12

foot orthotic brace to drive the knee and ankle joints. Torque is transferred to the human ankle
through a carbon fiber shoe insert. Several sensors are installed on the brace and the actuator14

modules to monitor key variables of the gait cycle as shown in the block diagram of Figure 5.

Motors and Transmissions16

To reduce the weight and package factor, we used frameless high torque density PMSMs
(that is, AC servo motors) and a custom transmission to provide sufficient input torque and power18

to the user. By optimizing the motor winding configuration, the custom motor (MF0096008,
Allied Motion, Inc.) can produce 7.2 Nm peak torque and 200 W power. A distributed two-stage20

low-ratio transmission was designed for the actuator. We used a poly chain GT carbon timing
belt (3MR, Gates Industry, Inc., 4:1 ratio, efficiency between 92.8% and 97.8%) to amplify the22

motor torque and to move the actuator weight closer to the user’s COM. A custom 6:1 planetary
gear transmission (minimum efficiency of 90% [40]) was built inside the driven sprocket of the24

timing belt to minimize weight and size. The overall ratio of the two-stage transmission was
24:1 with an estimated efficiency between 83.5% and 88%. The schematic of the actuator is26

shown in Figure 6. In theory, the combination of the torque dense motor and the distributed
low-ratio transmission could produce over 150 Nm output torque. However, the motor’s torque28

was limited by a thermal condition, and the motor’s velocity output was limited by working
voltage. To balance the torque and velocity requirements, the actuation system was designed to30

provide 30 Nm continuous torque output with peak velocity at 80 RPM. The peak torque was
limited to 60 Nm by the mechanical structure and the maximum current (30 A) of the motor32

driver (G-TWI-25/100-SE, Elmo Motion Control, Ltd.).

Design of Mechanical and Electrical Systems

The frameless motor and custom transmission were integrated into the mechanical structure2

to further reduce the weight of the exoskeleton. For instance, the motor housing is part of the
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main structure of the exoskeleton, which was mainly manufactured with aluminum alloy. Several4

carbon fiber pieces were used to reduce heavy metal materials and strengthen the actuation
system. The final mass of each module (knee versus ankle) was about 2 kg with detailed6

specifications given in Table 1. Considering only actuator components, the torque density of
each actuator is about 50 Nm/kg. The total mass of this exoskeleton is similar to our first8

prototype (Generation Zero) but includes two actuators instead of only one at the ankle. The
package factor and mass characteristics were greatly improved by using frameless components.10

The electrical system of this exoskeleton has two main parts: a high-level gait control
system and a low-level actuator drive system. The gait control system monitors the key variables12

of the user’s gait to implement any given torque-based rehabilitation control algorithm. The
actuator drive system tracks torque commands from the gait control system as shown in the14

block diagram of Figure 7.

Torque Control System16

A common method for controlling torque is based on estimating the actuator’s output
torque through the motor phase currents, the transmission ratio ⇠, and efficiency ⌘. The actuator
output torque Ta and the electromagnetic motor torque Te are given by

Ta = Te⇠⌘ = (3P/2)�mIq⇠⌘, (1)

where P is the number of motor poles, �m is the motor flux linkage, Iq is the active current
in the d-q rotating reference frame calculated by the Clarke and Park transformations [41].18

Equation (1) determines the reference motor current to achieve the desired output torque, and
the motor driver regulates the motor current using a Proportional-Integral (PI) controller in the20

inner loop of Figure 8. This low-level current loop operates at a much higher sampling rate than
the gait control system (approximately 10 kHz versus 1 kHz, respectively), so their dynamics22

are separately controlled.

The accuracy of the torque output via equation (1) depends on a known transmission24

efficiency ⌘, which can vary during dynamic motion due to different factors such as asymmetric
friction loss [42]. A potential benefit of a low-ratio transmission is that the efficiency is higher and26

more constant (for example, fewer gears meshing [40], [43]) and thus improves the accuracy
of current-based torque control [18]. To demonstrate this by comparison, we implemented a28

second (outer) torque control loop to compensate the torque error measured by a reaction torque
sensor (M2210E, Sunrise Instruments Co., Ltd.) inline between the actuator and joint. Both loops
(inner current loop and outer torque loop) use PI control to enforce the torque commanded by2

the higher-level joint control strategy. The overall control schematic is shown in Figure 8.
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Benchtop Tests4

Before testing the exoskeleton on human subjects, we conducted benchtop tests to
characterize the actuator’s performance. We first measured the static backdrive torque, which6

is defined as the minimum torque required to overcome static friction to backdrive the actuator.
A torque was manually applied to the output shaft of the actuator and gradually increased until8

rotation began. At this point the actuator’s inline reaction torque sensor measured 1.5 Nm. The
backdrive torque during dynamic conditions will be reported through treadmill walking tests in10

the human subject experiments section.

We also conducted a high torque test to verify the actuator’s torque output and the12

related response time. The actuator was mounted to a testing platform and its output shaft
was mechanically fixed. Then, a low torque of 3 Nm was set to preload the actuator and ensure14

that any mechanical backlash would not interfere with the test. Finally, a torque of 50 Nm
was commanded, maintained for 5 seconds, and then set back to zero. The results of this test16

are plotted in Figure 9. Once the system had settled (t � 0.4 in Figure 9(a)), the steady state
error was less than 1.3%. These test results were imported into Matlab Control and Simulation18

Toolbox and used to generate a model of the system. This model suggests that the system’s
torque bandwidth is 10 Hz, which exceeds the required bandwidth for human walking (4-8 Hz20

[44]).

Summary22

This design philosophy successfully balances the core requirements of volitional gait
assistance: backdrivability, torque-based control, high torque density, and light weight. High24

output torque is achieved by increasing the torque density of the electrical motor rather than
increasing the transmission ratio. This low-ratio actuator design provides intrinsic backdrivability26

without the high cost and complexity of variable transmissions, clutches, and/or series elastic
components. Our second-generation powered knee exoskeleton (Figure 1, right) takes this design28

philosophy further with a lower transmission ratio (7:1 via one-stage planetary gears), which is
discussed in the future work section.30

Energy Shaping Control of Lower-Limb Exoskeletons

Conventional trajectory-based control tends to give the user the least amount of volitional2

control over the device, which limits its applicability to different patient populations [45]. Instead
of tracking kinematic trajectories, this section will introduce a task-invariant, energetic control4

approach for providing exoskeletal assistance known as energy shaping. Energy shaping has been
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applied to biped models to facilitate natural, efficient gaits [46]–[49] based on passive dynamics.6

Although promising results have been shown, these works have been limited to simple toy models
where the matching conditions (to be introduced later) are tractable. Similarly, these biped8

models have point feet or flat feet with a single contact model, often assuming full actuation.
Humans are not point-footed or flat-footed walkers. In human walking, contact varies from heel10

to toe resulting in multiple periods of underactuation, which cannot be captured by the existing
framework. It is also unknown how to incorporate human interaction. Therefore, in this section12

we propose a complete theoretical framework for underactuated energy shaping that incorporates
both environmental and human interaction.14

Energy Shaping: A Brief Review

Energy shaping is a control method that alters the dynamical characteristics of a mechanical16

system [50]–[54]. In this part we briefly review the traditional concept of energy shaping.
Consider a forced n-dimensional Euler-Lagrange system with configuration space Q (assume18

Rn for simplicity) and its tangent bundle TQ =
S

q2Q TqQ. We can describe the system by a
Lagrangian L(q, q̇) defined as20

L(q, q̇) = K(q, q̇)� P(q) =
1

2
q̇
T
M(q)q̇ � P(q), (2)

where the Lagrangian L(q, q̇) : TQ ! R is a smooth function, q 2 Q is the generalized
coordinates vector, and q̇ 2 TqQ is the velocity vector. The scalar function K(q, q̇) : TQ ! R is
the kinetic energy defined based on the positive-definite mass/inertia matrix M(q) 2 Rn⇥n, and
P(q) : Q ! R is the potential energy. The Lagrangian dynamics are given by

d

dt
@q̇L(q, q̇)� @qL(q, q̇) = ⌧, (3)

which can be further expressed as

M(q)q̈ + C(q, q̇)q̇ +N(q) = ⌧, (4)

where C(q, q̇) 2 Rn⇥n is the Coriolis/centrifugal matrix, N(q) = rqP(q) 2 Rn is the
gravitational forces vector, and ⌧ 2 Rn contains all external (nonconservative) forces. For the22

underactuated case, ⌧ = B(q)u where matrix B(q) 2 Rn⇥p maps the control input u 2 Rp to
the n-dimensional dynamics (n > p).24

Now consider an unforced Euler-Lagrange system defined by another Lagrangian L̃(q, q̇) :

TQ ! R described as2

L̃(q, q̇) = K̃(q, q̇)� P̃(q) =
1

2
q̇
T
M̃(q)q̇ � P̃(q) (5)
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with a new kinetic energy K̃(q, q̇) : TQ ! R and a new potential energy P̃(q) : Q ! R. The
resulting Lagrangian dynamics can be expressed as

d

dt
@q̇L̃(q, q̇)� @qL̃(q, q̇) = 0 (6)

which can be also expressed as

M̃(q)q̈ + C̃(q, q̇)q̇ + Ñ(q) = 0, (7)

where C̃(q, q̇) is the Coriolis/centrifugal matrix in closed loop, and Ñ(q) = rqP̃(q).

We say the systems (4) and (7) match if (7) is a possible closed-loop system of (4),
that is, there exists a control law u such that (4) becomes (7). Equivalently, standard results in
[52] shows that these two system match if and only if there exists a full-rank left annihilator
B(q)? 2 R(n�p)⇥n of B(q), that is, B(q)?B(q) = 0 and rank(B(q)?) = n � p, 8q 2 Q, such
that

B
?(q)[C(q, q̇)q̇ +N(q)�M(q)M̃(q)�1(C̃(q, q̇)q̇ + Ñ(q))] = 0. (8)

Equation (8) is the so-called matching condition, which is a nonlinear partial differential equation
that determines the achievable closed-loop energy. Assuming (8) is satisfied, one can obtain that

B(q)u = M(q)q̈ + C(q, q̇)q̇ +N(q)� (M̃(q)q̈ + C̃(q, q̇)q̇ + Ñ(q)). (9)

Solving (7) for q̈, one can obtain the expression as

q̈ = �M̃(q)�1(C̃(q, q̇)q̇ + Ñ(q)). (10)

Substituting (10) into (9) and multiplying the left-pseudo inverse of B(q) (equivalent to matrix
inverse for n = p) on both sides of (9), one obtains the control law as [32]

u = (B(q)TB(q))�1
B(q)T [C(q, q̇)q̇ +N(q)�M(q)M̃(q)�1(C̃(q, q̇)q̇ + Ñ(q))]. (11)

Interacting with the Environment4

The matching condition (8) is trivially satisfied for all M̃(q) and P̃(q) if n = p, that is,
if the system is fully-actuated [32]. When the system is underactuated (n > p), solutions of the6

matching condition become quite difficult to obtain [55]. Contact constraints affect the number of
unactuated coordinates and therefore must be considered when deriving energy-shaping control8

laws. In this part, we present generalized dynamics with contact constraints and derive the
corresponding matching conditions. To begin, we model a planar biped that combines the human
body and exoskeleton(s). For simplicity we lump the torso and hip together as a single mass2

(that is, only one hip joint), but the following framework can also be used with more human-like
models.4
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Modeling the Biped

The biped is modeled as a kinematic chain with respect to an inertial reference frame (IRF,
to be specified later) shown in Figure 10. Depending on whether the exoskeleton is unilateral or
bilateral, we choose to model the stance and swing legs separately (unilateral case [35], [36]) or
the entire lower body as a kinematic chain from the stance foot to the swing foot (bilateral case
[37]). By explicitly modeling contact constraints in the dynamics, the EOM can be expressed as

M(q)q̈ + C(q, q̇)q̇ +N(q) + A(q)T� = ⌧, (12)

where M(q) 2 Rn⇥n, C(q, q̇) 2 Rn⇥n, and N(q) 2 Rn⇥1 are defined similar to the terms in
(4). The configuration vector is given as q = (✓x, ✓y, ✓ab, qTs )

T 2 Rn, where ✓x and ✓y are the
Cartesian coordinates with respect to the IRF, ✓ab is an absolute angle defined with respect to
the vertical axis, and the shape vector qs 2 Rn�3 contains joint angles based on the biped model
(to be specified in the simulation section). The matrix A(q)T 2 Rn⇥c is the constraint matrix
defined as the gradient of the holonomic constraint functions (see next section), and c is the
number of contact constraints depending on the contact condition. The Lagrange multiplier � is
calculated using the method in [15], [56] as

� = �̂+ �̄⌧,where (13)

�̂ = W (q)(Ȧ(q)q̇ � A(q)M(q)�1
C(q, q̇)q̇ � A(q)M(q)�1

N(q)),

�̄ = W (q)A(q)M(q)�1
,where

W (q) = (A(q)M(q)�1
A(q)T )�1

.

Because we are lumping the human body and exoskeleton together, the torque ⌧ = ⌧hum + ⌧exo6

at the right-hand side of (12) comprises the human input terms ⌧hum = B(q)v + J(q)TF and
the exoskeleton input ⌧exo = B(q)u. The mapping matrix B(q) 2 Rn⇥p maps both the human8

muscular torques v 2 Rp and the exoskeleton actuator torques u 2 Rp into the dynamics.
Without loss of generality, we assume B(q) takes the form of [0p⇥(n�p), Ip⇥p]T . The force10

vector F = (Fx, Fy,Mz)T 2 R3⇥1 in ⌧hum denotes the interaction forces between the stance
model and the swing leg model, where (Fx, Fy)T and Mz indicate the two linear forces and a12

moment in the sagittal plane, respectively. The forces F are mapped into the dynamics by the
body Jacobian matrix J(q)T 2 Rn⇥3. Note that for bilateral exoskeleton models, the interaction14

forces F are internal to the dynamics of the complete kinematic chain and hence will not show
up as an external input (that is, F = 0).2

Holonomic Contact Constraints

In the previous section, we explicitly modeled contact in the dynamics without specifying
the choice of contact constraints. In this section, we define the general form of holonomic contact
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constraints encountered during the single-support period of human walking, which are expressed
as relations between the position variables:

a(q1, q2, ..., qc) = 0c⇥1, (14)

where qi denotes the i-th element of the configuration vector q. The single-support period can
be separated into heel contact, flat foot, and toe contact phases, based on which appropriate
holonomic contact constraints can be defined as in Figure 11. There are c = 2 constraints for
heel contact and toe contact whereas flat foot has c = 3. We will later show that the proposed
framework is able to accommodate arbitrary numbers of contact constraints. In this paper, we
assume the constraint matrix A(q) has the constant form

A(q) = rqa(q1, q2, ..., qc) = [Ic⇥c 0c⇥(n�c)]. (15)

This constant form (that is, Ȧ = 0) can be achieved by defining the IRF at the stance toe during4

toe contact and the stance heel during heel and flat foot contact.

Equivalent Constrained Dynamics6

The classical matching condition (8) and control law (11) in the previous subsection cannot
be directly applied to the generalized dynamics (12). Although a dynamical system in the form8

of (4) could be separately modeled for each phase by dropping constrained coordinates from
the generalized coordinate vector, this would require a clever change of coordinates for some10

constraints (for example, rolling contact [57]). The dimension and degree of underactuation of
the resulting hybrid system also changes between phases, requiring different models for control12

law (11). Switching between control models in real time requires precise estimates of gait cycle
phase, which can be difficult to achieve in practice [14].14

Instead of modeling a different dynamical system for each phase, we will extend the results
of the previous sections to a single generalized system (12) to obtain a shaping framework which
can accommodate any holonomic contact constraints (and the resulting unactuated DOFs) that
could occur during various locomotor tasks. This generalized framework shows what terms
can and cannot be shaped with each contact constraint. We start the proposed approach by
plugging expressions for A(q) and � into (12) to obtain the form of (4), which is denoted as the
equivalent constrained dynamics that have fewer (possibly zero) unactuated DOFs compared
to the generalized dynamics (12) without constraints. From now on, we omit q and q̇ in
the dynamical terms to abbreviate notations. Following the procedure in [37], the equivalent

12



constrained form of (12) is expressed as

M�q̈ + C�q̇ +N� = B�v + J
T
� F + B�u, (16)

where M� = M,

C� = (I � A
T
WAM

�1)C +
XXXXA

T
WȦ,

N� = (I � A
T
WAM

�1)N,

B� = (I � A
T
WAM

�1)B,

J
T
� = (I � A

T
WAM

�1)JT
. (17)

Given the open-loop dynamics (16), we define the desired closed-loop ECD as

M̃�q̈ + C̃�q̇ + Ñ� = ⌧̃hum, (18)

where M̃� = M̃ is the mass/inertia matrix in the closed-loop ECD and is assumed to be positive-
definite. The remaining terms in (18) are given by

C̃� = (I � A
T
W̃AM̃

�1)C̃ +
XXXXA

T
W̃ Ȧ,

Ñ� = (I � A
T
W̃AM̃

�1)Ñ ,

B̃� = (I � A
T
W̃AM̃

�1)B̃,

J̃
T
� = (I � A

T
W̃AM̃

�1)J̃T
,

W̃ = (AM̃�1
A

T )�1
, (19)

where C̃ and Ñ are the dynamics terms of (12) in closed loop. We denote the closed-loop human
input vector as ⌧̃hum = B̃�v + J̃

T
� F but make no assumptions on the human inputs v and F .2

Instead, we assume these two terms are mapped into the closed-loop dynamics by B̃� and J̃
T
�

with specific choices of B̃ and J̃
T to be defined next.4

Matching Based on Equivalent Constrained Dynamics

We begin this part by introducing the generalized matching condition based on ECD. Given
(16) and (18), we follow the procedure from (4) to (8) to derive the matching condition for the
ECD as

B
?
� [M�M̃

�1
� (B̃�v + J̃

T
� F � C̃�q̇ � Ñ�) + C�q̇ +N� � B�v � J

T
� F ] = 0, (20)

which can be separated into sub-matching conditions that correspond to matching for kinetic
energy, potential energy, and human inputs, respectively:

B
?
� (C�q̇ �M�M̃

�1
� C̃�q̇) = 0, (21)

B
?
� (N� �M�M̃

�1
� Ñ�) = 0, (22)

B
?
� [B�v + J

T
� F �M�M̃

�1
� (B̃�v + J̃

T
� F )] = 0. (23)
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Matching for Kinetic Energy

Prior research showed that the bottom-right submatrix of a mass matrix is the mass matrix
of a lower-dimensional mechanical system [58]. This motivates us to shape the bottom-right part
in M�, which may render matching conditions that are easier to satisfy. Following the procedure
in [35], [36], we decompose M� into matrices blocks, that is,

M =

"
M1 M2

M
T
2 M4

#
= M�, (24)

where M1 2 Rc⇥c, M2 2 Rc⇥(n�c). We want the bottom-right part to be shaped via control,
hence we define the closed-loop inertia matrix as

M̃ =

"
M1 M2

M
T
2 M̃4

#
= M̃�, (25)

where the choice of M̃4 will be specified in the following sections.2

Note from [32], [55] that we have the relationship between C and M as

Cq̇ = Dq(Mq̇)q̇ � 1

2
@q(q̇

T
Mq̇), (26)

where Dx(y) is the Jacobian matrix of partial derivatives of vector y with respect to vector x.
Because the first c DOFs are constrained, their time-derivatives equal zero so that (26) reduces
to

Cq̇ = Dq

"
M2q̇c+1,n

M4q̇c+1,n

#"
0

q̇c+1,n

#
� 1

2
@q(q̇

T
c+1,nM4q̇c+1,n),

where the subscript (i, j) indicates rows i through j of a matrix. Note that the submatrix M4

does not depend on q1,c based on the recursively cyclic property in [58], yielding simplified
expressions for Cq̇ and C̃q̇ as

Cq̇ =

"
@qc+1,n(M2q̇c+1,n)q̇c+1,n

 

#
, (27)

C̃q̇ =

"
@qc+1,n(M2q̇c+1,n)q̇c+1,n

 ̃

#
, (28)

where

 :=
1

2
@qc+1,n(q̇

T
c+1,nM4q̇c+1,n) 2 R(n�c)⇥1

,  ̃ :=
1

2
@qc+1,n(q̇

T
c+1,nM̃4q̇c+1,n) 2 R(n�c)⇥1

.

Following the same procedure in [36], we calculate [I � A
T
WAM

�1] in (16) using the
blockwise inversion of M and define [I � A

T
W̃AM̃

�1] accordingly as2

[I � A
T
WAM

�1] =

"
0c⇥c Y

0(n�c)⇥c I(n�c)⇥(n�c)

#
, (29)
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[I � A
T
W̃AM̃

�1] =

"
0c⇥c Ỹ

0(n�c)⇥c I(n�c)⇥(n�c)

#
, (30)

where Y = M2M
�1
4 and Ỹ = M2M̃

�1
4 . Multiplying (29) with (27) and (30) with (28), we obtain

C�q̇ =

"
Y 

 

#
, C̃�q̇ =

"
Ỹ  ̃

 ̃

#
. (31)

To simplify the multiplication between M� and M̃
�1
� , we apply the blockwise inversion method

again to obtain

M�M̃
�1
� =

"
Ic⇥c 0c⇥(n�c)

⌦1 ⌦2

#
, (32)

where ⌦1 = (I �M4M̃
�1
4 )MT

2 (M1 �M2M̃
�1
4 M

T
2 )

�1 2 R(n�c)⇥c and ⌦2 = �⌦1Ỹ +M4M̃
�1
4 2

R(n�c)⇥(n�c). The matrix B� is calculated from (17) and its annihilator B?
� can be chosen as

B� =

"
Y Bc+1,n

Bc+1,n

#
, B

?
� =

"
Ic⇥c �Y

0(n�p�c)⇥c S

#
, (33)

where S = [I(n�p�c)⇥(n�p�c), 0(n�p�c)⇥p]. When the system is fully-constrained, that is, n =

p+ c, the second block row of the annihilator disappears. It can be verified that B?
� 2 R(n�p)⇥n,

rank(B?
� ) = n� p, and B

?
� B� = 0(n�p)⇥p. Plugging B

?
� , (32), and (31) into (21), the left-hand

side of the matching condition becomes

B
?
� [C�q̇ �M�M̃

�1
� C̃�q̇] =

"
Ic⇥c �Y

0(n�p�c)⇥c S

#"
Y � Ỹ  ̃

 � ⌦1Ỹ  ̃� ⌦2 ̃

#
. (34)

The first c rows of (34) can be simplified as

[Ic⇥c � Y ]

"
Y � Ỹ  ̃

 � ⌦1Ỹ  ̃� ⌦2 ̃

#

= (�Ỹ + Y ⌦1Ỹ + Y ⌦2) ̃ = (�Ỹ + YM4M̃
�1
4 ) ̃

= (�Ỹ +M2M̃
�1
4 ) ̃ = 0c⇥1. (35)

For contacts (for example, heel or toe contact) that result in underactuation (n > p+c), additional
analysis is needed to fully satisfy the matching condition (21), that is, the bottom (n � p � c)2

rows of (34) must also be satisfied.

Note that during underactuated cases, M4 cannot be shaped arbitrarily. We propose
satisfying the matching condition by shaping only the bottom-right p ⇥ p part of M4, which
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is associated with the p actuated coordinates. To show this, we first decompose and shape M4

in a similar manner to (25) as

M4 =

"
M41 M42

M
T
42 M44

#
, M̃4 =

"
M41 M42

M
T
42 M̃44

#
,

where M41 2 R(n�p�c)⇥(n�p�c), M42 2 R(n�p�c)⇥p, and M44, M̃44 2 Rp⇥p. Similar to (32), the
top-left element of M4M̃

�1
4 will be I(n�p�c)⇥(n�p�c). Subtracting M4M̃

�1
4 from I(n�c)⇥(n�c), the

first (n� p� c) rows of ⌦1 will become zeroes. As a consequence, the first (n� p� c) rows of
⌦2 become [I(n�p�c)⇥(n�p�c), 0(n�p�c)⇥p]. Leveraging these properties of ⌦1 and ⌦2, the bottom
(n� p� c) rows of (34) become

h
0(n�p�c)⇥c S

i "
Y � Ỹ  ̃

 � ⌦1Ỹ  ̃� ⌦2 ̃

#
=

1

2
@qc+1,n�p(q̇

T
c+1,n(M4 � M̃4)q̇c+1,n). (36)

From [58], we know @M44/@qc+1,n�p = 0, that is, qc+1,n�p is cyclic in M44 2 Rp⇥p, hence (36)4

equals 0(n�p�c)⇥1 and the matching condition (21) is satisfied.

Matching for Potential Energy6

The constrained potential forces vectors are obtained from (17) and (19) as

N� =

"
Y Nc+1,n

Nc+1,n

#
, Ñ� =

"
Ỹ Ñc+1,n

Ñc+1,n

#
. (37)

The choices of desired gravitational forces vector Ñc+1,n will be specified later. Similar to the
matching proof for kinetic energy, plugging B

?
� , (32), and (37) into (22), the first c rows of the

matching condition are derived as
h
Ic⇥c �Y

i
[N� �M�M̃

�1
� Ñ�]

=
h
Ic⇥c �Y

i "
Y Nc+1,n � Ỹ Ñc+1,n

Nc+1,n � ⌦1Ỹ Ñc+1,n � ⌦2Ñc+1,n

#

= (�Ỹ + Y ⌦1Ỹ + Y ⌦2)Ñc+1,n = 0c⇥1, (38)

which can be verified based on (35). Again, (38) serves as the matching condition (22) for the
fully-actuated conditions. For underactuated cases, we need to check the additional (n� p� c)

rows of the matching condition, which can be expressed as
h
0(n�p�c)⇥c S

i
[N� �M�M̃

�1
� Ñ�]

= S · (Nc+1,n � ⌦1Ỹ Ñc+1,n � ⌦2Ñc+1,n)

= Nc+1,n�p � Ñc+1,n�p, (39)
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where we again leveraged the properties of ⌦1 and ⌦2 in (32). As in [35] this matching condition
can be satisfied by assuming Nc+1,n�p = Ñc+1,n�p, which are the rows that correspond to the2

unactuated DOFs that are unconstrained. We will make the same assumption here to satisfy the
matching condition (22).4

Matching for Human Inputs

Because the human joint input v and the interaction forces F are not easily measured in
practice, we choose the closed-loop mappings B̃ and J̃

T such that v and F disappear from the
exoskeleton control law and the matching condition (23) is satisfied. In particular, we solve the
equations B?

� (B� �M�M̃
�1
� B̃�) = 0 and B

?
� (J

T
� �M�M̃

�1
� J̃

T
� ) = 0 for

B̃c+1,n = M̃4M
�1
4 Bc+1,n, (40)

J̃
T
c+1,n = M̃4M

�1
4 J

T
c+1,n. (41)

These terms immediately satisfy the matching condition (23) and alter the way that the human
joint inputs v and interaction forces F enter the closed-loop system dynamics. Given (40) and
(41), the control law that brings (16) into (18) becomes

u = (BT
�B�)

�1
B

T
� [C�q̇ +N� �M�M̃

�1
� (C̃�q̇ + Ñ�)]. (42)

Energy Shaping Strategies: Compensating Inertia and Body Weight6

The main mechanical tasks that require energy during human walking are (i) supporting the
body’s weight during stance, (ii) driving the body’s COM against inertia, (iii) swinging the legs,8

and (iv) maintaining balance. A percentage of the subject’s weight is typically offloaded using
an overhead BWS harness during gait rehabilitation to reduce the muscular force required for10

the first task. While the harness can offload the human weight that needs to be supported by the
stance leg, there is no straightforward way to offload the human swing leg’s weight. Not being12

able to compensate for swing leg mass can have consequences such as the foot drop phenomenon
in individuals post stroke. A second limitation of the conventional BWS strategy is that COM14

and leg inertia compensation is not possible. Braking forces at heel strike decelerate the COM,
which again needs to be accelerated during the drive phase. A study of the independent effects16

of weight and mass on the metabolic cost of walking [59] found that driving the COM against
inertia accounts for up to 50% of the total metabolic cost. Kinetic energy-shaping assistance
from an exoskeleton could potentially reduce this metabolic cost, and prior work [31] indicates2

that inertia compensation can counteract the side effects of the exoskeleton inertia on human
legs during walking.4

17



These facts motivate us to compensate the limb inertia and body weight in the shapeable
parts of ECD. To this end, we choose M̃4 and Ñ by scaling the limb moments of inertia in
M4 2 Rp⇥p and the gravity constant in the shapeable part of N :

M̃4 = MD +  ·MI , (43)

Ñ = [NT
1,n�p, Ñ

T
n�p+1,n]

T = [NT
1,n�p, µN

T
n�p+1,n]

T
, (44)

where MD 2 Rp⇥p and MI 2 Rp⇥p are matrices that respectively correspond to the translational
and rotational portions of M4 [60]. Note that matrix MI is constant and only contains limb6

moments of inertia. The non-negative scaling factor  is chosen less than one to compensate
limb inertia (M̃4 < M4, i.e., M̃4�M4 is negative definite) or greater than one to add virtual limb8

inertia (M̃4 > M4, i.e., M̃4 �M4 is positive definite) in closed loop. However, it is important
to ensure that M̃4 remains positive-definite during inertia compensation to avoid singularities in10

the control law. Finally, we choose the positive scaling factor µ to be less than one for positive
BWS (g̃ < g) or greater than one for negative BWS (g̃ > g), where g = 9.81m/s2 is the gravity12

constant in the gravitational forces vector N .

Passivity and Stability14

Energy shaping is intimately related to the notion of passivity [50]–[53], through which
safe interactions between the exoskeleton and the human user can be guaranteed (see “Passivity16

and Stability Properties” for more details). Input-output passivity implies that the change in
some storage quantity (often energy) is bounded by the “energy” injected through the input.18

That is, the system cannot generate “energy” on its own. We have shown in [36] that the
human-exoskeleton system is passive from the human inputs to joint velocity after shaping20

potential energy (Figure 12). This implies that energy growth is controlled by the human and
thus interaction with the exoskeleton should be safe. In particular, it is possible to establish22

Lyapunov stability results for commonly assumed human control policies [36]. This passivity
result also holds for the case of total energy shaping, which is left to future work.24

Simulations of Energy-Shaping Control on a Human-Like Biped

Now that we have designed controllers for the exoskeleton we wish to study it during26

simulated walking with the full biped model in Figure 10. This requires us to consider the
coupled dynamics of the two legs [15]. The full biped is modeled as a kinematic chain with
respect to the IRF defined at the stance heel with the configuration vector q = (✓x, ✓y, ✓ab, qTs )

T =2

(px, py,�, ✓a, ✓k, ✓h, ✓sk, ✓sa)T 2 R8. We pick (✓x, ✓y)T = (px, py)T as the Cartesian coordinates
of the stance heel and ✓ab = � as the stance heel angle defined with respect to the vertical axis.4

In the shape vector qs = (✓a, ✓k, ✓h, ✓sk, ✓sa)T , ✓a and ✓sa are the angles of the stance and swing

18



ankle, ✓k and ✓sk are angles of the stance and swing knee, and ✓h is the hip angle between the6

stance and swing thighs. In this part we simulate the full biped model assuming it is wearing
a bilateral exoskeleton with three different shaping strategies: potential energy shaping, kinetic8

energy shaping, and total energy shaping.

Impedance Control for Human Inputs10

In order to predict the effects of the proposed control approach, we must first construct a
human-like, stable walking gait in simulation. According to the results in [61], a simulated 7-link
biped can converge to a stable, natural-looking gait using joint impedance control. The control
torque of each joint can be constructed from a spring-damper coupled with phase-dependent
equilibrium points [62]. We adopt this control paradigm to generate dynamic walking gaits that
preserve the ballistic swing motion [63] and the energetic efficiency down slopes [64], which
are characteristic of human locomotion. We assume that the human has input torques at the
ankle, knee and hip joints. For simplicity, we keep the human impedance parameters constant
instead of having a different set of parameters with respect to each phase of stance as in [62].
The human input vector ⌧hum for the full biped model is given as

⌧hum = [01⇥3, va, vk, vh, vsk, vsa]
T 2 R8⇥1

, (45)

where vj is the human torque for joint j 2 {a, k, h, sk, sa} and is given as

vj = �Kpj(qj � q̄j)�Kdj q̇j, (46)

where Kpj , Kdj , qj , q̄j respectively correspond to the stiffness, viscosity, actual angle, and
equilibrium angle of joint j.12

Hybrid Dynamics and Stability

Biped locomotion can be modeled as a hybrid dynamical system which includes continuous
and discrete dynamics. Impacts happen when the swing heel contacts the ground and subsequently
when the flat foot impacts the ground. The corresponding impact equations map the state of the
biped at the instant before impact to the state at the instant after impact. Note that no impact
occurs when switching between the flat foot and toe contact configurations, but the location of
the IRF does change from heel to toe in order to maintain a constant constraint matrix A. Based
on the method in [15], the hybrid dynamics and impact maps during one step are computed in
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the following sequence:

1. Mq̈ + Cq̇ +N + A
T
heel� = ⌧exo + ⌧hum if aflat 6= 0,

2. q̇
+ = (I �M

�1
A

T
flat(AflatM

�1
A

T
flat)

�1
Aflat)q̇

� if aflat = 0,

3. Mq̈ + Cq̇ +N + A
T
flat� = ⌧exo + ⌧hum if |cp(q, q̇)| < lf ,

4. q̇
+ = q̇

�
, (q(1)+, q(2)+)T = G if |cp(q, q̇)| = lf ,

5. Mq̈ + Cq̇ +N + A
T
toe� = ⌧exo + ⌧hum if h(q) 6= 0,

6. (q+, q̇+) = T (q�, q̇�) if h(q) = 0,

where M 2 R8⇥8, C 2 R8⇥8, and N 2 R8 are the dynamics terms of the full biped model.
The terms Aheel, Aflat and Atoe denote the constraint matrices for the heel contact, flat foot, and2

toe contact conditions depicted in Figure 11, and the superscripts “-” and “+” indicate values
before and after each impact. The term G = (lf cos(�), lf sin(�))T models the change in IRF for4

foot length lf . The vector cp(q, q̇) is the COP defined with respect to the heel IRF calculated
using the conservation law of momentum. The ground clearance of the swing heel is denoted6

by h(q), and T denotes the swing heel ground-strike impact map derived based on [65]. The
aforementioned sequence of continuous and discrete dynamics repeats after a complete step, that8

is, phase 6 switches back to phase 1 for the next step.

The combination of nonlinear differential equations and discontinuous events makes10

stability difficult to prove analytically for hybrid systems in general. Fortunately, the method
of Poincaré sections [66] provides analytical conditions for local stability that can be checked12

numerically by simulation. Letting x = (qT , q̇T )T be the state vector of the full biped, a walking
gait corresponds to a periodic solution curve x̄(t) of the hybrid system such that x̄(t) = x̄(t+T ),14

for all t � 0 and some minimal T > 0. The set of states occupied by the periodic solution defines
a periodic orbit O := {x|x = x̄(t) for some t} in the state space. The step-to-step evolution of a16

solution curve can be modeled with the Poincaré map P : G ! G, where G = {x|h(q) = 0} is
the switching surface indicating initial heel contact [15]. The intersection of a periodic orbit with18

the switching surface is a fixed point x⇤ = P(x⇤) = O\G with standard assumptions in [66]. If
x
⇤ is a locally exponentially stable fixed point of the discrete system x(k+1) = P(x(k)), then20

O is a locally exponentially stable periodic orbit of the hybrid system defining the Poincaré map
P : G ! G. Therefore, the periodic orbit O is locally exponentially stable if the eigenvalues of22

the Jacobian rxP(x⇤) are within the unit circle.

The Jacobian eigenvalues can be numerically calculated through a perturbation analysis as24

described in [67], [68]. In fact, a similar analysis using normal kinematic variability instead of
explicit perturbations has shown that human walking is orbitally stable [69]. The simulations of
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the next section will show that the energy shaping controller maintains the orbital stability of a2

nominal walking gait, which suggests that human walking will remain orbitally stable with an
exoskeleton utilizing this control strategy.4

Simulation Results and Discussion

To find a stable limit cycle of the biped, we chose the model parameters of Table 2 to6

consist of average values from adult males reported in [70], with the trunk masses grouped at
the hip as in [15]. The foot length was set to 0.2 m to provide reasonable amounts of time in8

both the flat foot and toe contact conditions. We first tuned the human joint impedance gains
by trial and error to find a stable nominal gait, where the final gains are given in Table 2. Once10

the stable nominal gait was found, these impedance parameters were kept constant to isolate
the effects of different energy shaping controllers. The knee and ankle trajectories over four12

steady-state strides are shown in Figure 13 (top), and the periodic orbit of the biped during one
steady step is shown in the phase portrait of Figure 13 (bottom). We will next implement energy14

shaping controllers with different shaping strategies on this biped model to study their effects.

Phase Portraits and Gait Characteristics16

Here, we show simulation results with three different shaping strategies. To do this, we
plugged in (43) and (44) into (11) to obtain the control law for our simulation. Then, we set18

µ = 1 so that Ñ = N and progressively changed  to study the effects of kinetic energy
shaping on the biped. Then, we fixed  = 1 and altered µ to see the independent effects of20

potential energy shaping. Finally, we increased or decreased both terms concurrently to observe
the effects of total energy shaping. For each specific combination of  and µ, we allowed the22

biped to converge to a steady gait before recording data. For notational purposes, 0   < 1

indicates we are providing (1�) · 100% support for compensating limb inertia, whereas  > 124

indicates we are adding (�1)·100% virtual limb inertia in closed loop. Analogously, 0 < µ < 1

indicates the exoskeleton is providing (1 � µ) · 100% BWS (g̃ < g), while µ > 1 indicates the26

exoskeleton is providing (µ� 1) · 100% negative BWS (g̃ > g).

For a joint-level perspective, Figure 14 compares the phase portraits of the passive gait28

and the shaped gaits with different shaping strategies. Wider orbits for all joints correspond to
longer steps and taller orbits for all joints correspond to faster steps. For the case of kinetic30

energy shaping (left column), maximum limb inertia compensation ( = 0) provides greater
range of motion and faster joint velocities. The opposite effect is observed for most joints32

(except the hip) when virtually adding limb inertia ( = 1.2). The potential energy shaping case
(center column) provides the opposite trend: positive BWS (0 < µ < 1) contracts the phase
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portraits whereas negative BWS (µ > 1) expands them. This verifies the observation in [36]2

that decreasing potential energy tends to slow down the biped and constrict its range of motion,
which has the benefit of greater swing foot clearance to compensate for drop foot. Decreasing4

(or increasing) both kinetic and potential energy through total energy shaping (right column)
renders even greater differences than the potential shaping case (as found in [37]).6

To further compare the changes in gait characteristics, we show the step length, step linear
velocity, and step time periods recorded during simulation with different shaping strategies in8

Table 3. From this table, we can see that compensating body mass and/or limb inertia in the
shapeable dynamics with potential energy shaping and/or total energy shaping decreases the10

step length as well as the step linear velocity but increases the time periods spent for each step.
In contrast, adding virtual body mass and/or limb inertia increases step length and step linear12

velocity but reduces time interval for each step. Although some of the joint orbits in Figure
14 expanded when compensating limb inertia with kinetic energy shaping only ( = 0), step14

length and walking speed decreased because of a contraction in the hip orbit (that is, reduced hip
extension causes a shorter step [71]). A similar observation holds for the case of  = 1.2. These16

simulation results indicate that different shaping strategies can be chosen based on training goals
to promote different gait characteristics.18

Metabolic Cost

A key metric for evaluating an exoskeleton is whether it reduces the human user’s metabolic
cost of walking [72]. The integral of electromyography (EMG) squared readings from the Soleus
and Vastus Lateralis muscles are a good representation of total metabolic cost [73]. Assuming
EMG activation is directly related to joint torque production, the authors of [74] proposed a
simulation-based metric for metabolic cost

↵
2
j =

R T

0 v
2
j (t)dt

T (mgl)2
⇡

PNT

i=1v
2
j (i)�t

T (mgl)2
, (47)

where T is the step time period, NT is the number of timesteps in the simulation, vj is the joint20

moment, m is the overall mass of the biped, and l is the length of the biped leg. Therefore, we
computed the sum of all human joint costs (47) to estimate the effects of energy shaping on the22

metabolic cost of walking, where several different conditions are shown in Figure 15.

From this figure, we can see that adding 20% virtual limb inertia (KE,  = 1.2) has24

minor effects on the metabolic cost compared to the passive gait, whereas compensating all the
limb inertia (KE,  = 0) reduces the metabolic cost. Similarly for the case of potential energy26

shaping, negative BWS (PE, µ = 1.1) increases the biped’s metabolic cost, whereas positive
BWS (PE, µ = 0.9) reduces the overall metabolic cost compared to the passive gait. This meets

22



our expectation that offloading the weight of a patient makes it easier to practice walking. For2

total energy shaping,  = 1.2 and µ = 1.1 made the biped consume more metabolic energy than
only shaping kinetic energy with  = 1.2 or potential energy with µ = 1.1. When compensating4

limb inertia in addition to gravity by total energy shaping ( = 0, µ = 0.9), the biped consumed
the least amount of energy compared to all the other cases in Figure 15. These results suggest6

that the energy shaping approach could provide meaningful assistance during gait rehabilitation,
where a clinician can adjust the scaling factors to actively manipulate human effort.8

Froude Number

Froude number quantifies the optimal exchange between kinetic and potential energy during10

dynamic locomotion [75] and has been used to predict the effect of different gravity constants
on walking gaits [76]. Two “geometrically similar” bodies that make use of the exchange12

between kinetic and potential energy to move (for example, pendular motion) will behave in a
“dynamically similar” manner if they are associated with the same Froude’s number Fr = ṡ

2
/gl,14

where ṡ is the velocity of progression [75], l is leg length, and g is the gravity constant. Assuming
Fr remains constant, the effect of gravity on walking speed was predicted by ˙̃s = ṡ

p
(g̃/g) in16

[76]. Therefore, varying gravity g̃ will affect the optimal walking speed ˙̃s such that increased
gravity will result in higher velocity and vice versa [77]. To determine whether our simulation18

results were in agreement with this trend, we calculated predicted velocities ˙̃s with different
values of g̃, where ṡ was taken as the velocity at µ = 1 (passive gait). Our results in Table 420

show that the trend predicted by Froude number was maintained in the simulation.

Human Subject Experiments with Powered Knee-Ankle Exoskeleton22

Having demonstrated simulation results on a human-like biped, we wish to implement the
energy-shaping control approach on the powered knee-ankle exoskeleton to validate the proposed24

design and control philosophy. This unilateral device was designed to assist individuals post
stroke, who usually have impairments on one side of their body such as diminished leg muscle26

strength or the inability to generate voluntary muscle contractions with normative magnitude [78].
In this section, we first verify that the device is sufficiently backdrivable during the dynamic28

conditions of locomotion. Then, we implement a potential energy shaping controller to provide
BWS and demonstrate experimental results with an able-bodied subject performing three different30

activities of daily living. The human subject experiments followed a protocol approved by the
Institutional Review Board of the University of Texas at Dallas. During these experiments the32

subject had the ability to deactivate the exoskeleton by releasing a hand-held safety switch.
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Dynamic Backdrive Torque Test

During dynamic conditions backdrive torques must be large enough to overcome the2

reflected inertia and reflected damping of the actuator, which scale with the gear ratio squared
[18]. The low-ratio actuator design of the powered knee-ankle exoskeleton aimed to minimize4

the reflected inertia and damping for improved dynamic backdrivability. We studied this by
monitoring the reaction torque sensors inline with the actuators during dynamic walking6

conditions with the command torque of both joints set to zero. An able-bodied human subject
began this test with active torque compensation enabled, that is, using the outer torque loop in8

Figure 8. After several steps, the user released the safety button to deactivate the actuator and
walked without active torque compensation.10

The absolute backdrive torques (averaged over 10 steps) with and without compensation
are shown in Figure 16. We see that the peak dynamic backdrive torque is less than 8 Nm at12

the knee and 5 Nm at the ankle during uncompensated fast walking (1.207 m/s). The peak for
the knee occurs at the start of swing phase, where accelerations are highest. The peak for the14

ankle occurs at initial stance primarily due to acceleration associated with the heel striking the
ground. The knee torque is higher than the ankle because of the knee’s higher acceleration.16

With closed-loop torque control, the peak backdrive torque drops to less than 3 Nm. The mean
value of the absolute torque is reduced by 22.9% for the ankle and 63.13% for the knee. The18

peak backdrive torque is reduced by 57.87% for the ankle and 63.56% for the knee [34]. These
backdrive torques are an order of magnitude smaller than normative human joint torques [44] and20

would likely be even smaller in a clinical application, where slower walking speeds are expected.
Improved alignment of the exoskeleton brace with the anatomical joint axes of rotation could22

further reduce the backdrive torques.

Underactuated Potential Energy Shaping for a Unilateral Exoskeleton24

Gait rehabilitation after a stroke often involves locomotor training while a fraction of the
patient’s body weight is offloaded by a harness [79]. This inspires us to implement potential26

energy shaping on the unilateral powered knee-ankle exoskeleton to provide BWS on the affected
side. This part reports the implementation and preliminary experiments with an able-bodied28

human subject.

Controller Implementation30

To implement the potential energy shaping controller, we first set M� = M̃� in (42), that
is, not shaping the kinetic energy. Because we are interested in controlling a unilateral knee-
ankle exoskeleton using only feedback local to its leg, we separate the dynamical models of the
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stance and swing legs for the purpose of control derivation. The configuration vectors for both
the stance and swing models are given as

qst = (px, py,�, ✓a, ✓k)
T 2 R5

, qsw = (hx, hy, ✓th, ✓sk, ✓sa)
T 2 R5

.

The subscripts “st” and “sw” indicate stance and swing, and the stance leg configuration qst is
defined similar to the full biped model configuration vector q. We choose the hip as a floating
base for the swing leg’s kinematic chain, where (hx, hy)T are the Cartesian positions of the
hip, and ✓th is the absolute angle from the vertical axis to the swing thigh. Derivations in [36]
demonstrate that the proposed matching framework yields a uniform stance control law ust

(equivalent across stance contact conditions) and swing control law usw as

ust = (1� µ)Nst(4,5), usw = (1� µ)Nsw(4,5). (48)

These control laws only require position feedback, where joint angles are measured by joint
encoders and global orientation is measured by the IMU. Moreover, the control laws do not2

prescribe joint kinematics and thus are able to provide task-invariant assistance. Instead of
recognizing the user’s intention to switch between numerous controllers in a finite-state machine4

[13], [80]–[82], the control law (48) switches only between stance and swing. The model
parameters used in these two control laws are given in Table 5. The following experiments with6

potential energy shaping did not utilize the outer torque loop in Figure 8 because the previously
reported dynamic backdrive torques were acceptably small without active torque compensation8

(and it would be desirable to remove expensive torque sensors in future designs).

Treadmill Walking Test10

The first experimental task with potential energy shaping was walking on a treadmill
(Figure 17, top left). A safety harness was used to prevent potential falls. Before recording data,12

the subject was given time to acclimate to the unpowered exoskeleton and find a natural walking
gait. Then the subject was asked to stand straight while the exoskeleton’s sensors were initialized.14

After activating the controller with positive or negative BWS, the subject started walking on the
treadmill at a constant speed of 0.894 m/s. Data was recorded for twelve strides after the subject16

achieved a steady gait.

During the positive BWS walking test, the exoskeleton applied 10% BWS during stance18

and 20% BWS during swing. A larger BWS ratio was used during the swing phase to increase
the torque amplitude. Figures 18(a)-18(b) show the commanded and measured torques (averaged20

over 12 strides) in comparison to the normative human joint torques [44] scaled by the BWS
ratio. The ankle actuator generated positive (dorsiflexion) torque during early stance and negative22

(plantarflexion) torque during late stance to help the subject with weight acceptance and push
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off, respectively. The knee actuator generated positive (extension) torque during most of stance
to offload body weight from the subject’s knee joint. The subject reported feeling assistance and2

was able to walk comfortably.

The second test added virtual weight to the subject with �5% BWS during stance and4

�10% BWS during swing. The resulting torques are shown in Figures 18(c) and 18(d). Instead of
assisting the subject, both the knee and ankle actuators generated flexion torques during stance to6

prevent the subject from extending his joints. The subject reported having to expend more effort
to continue walking at 0.894 m/s under the added virtual weight. In this test the signs of the8

actuator torques tended to be the opposite of the able-bodied references (providing resistance),
whereas the signs tended to be aligned during the positive BWS test (providing assistance). In10

both cases, the torque outputs tracked the reference torques reasonably well during the stance
period but not as well during the faster motions of the swing period, where the actuator’s reflected12

inertia has more influence. This could be addressed in the future by utilizing the outer torque
loop or further reducing the transmission ratio, as discussed later.14

Sit-to-Stand-to-Sit Test

To study the effects of the energy shaping controller during sit-stand transitions, we asked16

the subject to stand up from a sitting posture and then immediately sit back down (Figure 17,
bottom left). This cycle was repeated 5 times with a 1 to 2 second break each time. The safety18

harness could not be used in the sitting posture, so we set the BWS ratio to 5% and did not
attempt negative BWS in order to minimize the risk of falling. Figures 19(a) and 19(b) shows that20

both the knee and ankle actuators provided extension torques to offload the user’s body weight
while standing up and sitting down. As a consequence, the standing motion was accelerated22

while the sitting motion was slowed, so the standing motion accounts for only 35% of the cycle.
The subject reported feeling that the sit-to-stand cycle was easier with the assistance.24

Stair Climbing Test

The stair climbing test (Figure 17, right) was performed on an indoor staircase with26

handrails. We began data recording from the first step until the subject reached the end of
the stairs (a total of 7 steps). Once the subject finished climbing, we asked him to turn around28

and walk downstairs. For safety reasons, we only provided the subject with 10% BWS going
up and down the stairs, and negative BWS was not attempted. The recorded data for upstairs30

and downstairs are shown in Figures 19(c) to 19(f). The ankle actuator provided plantarflexion
torque and the knee actuator provided extension torque during stance to offload body weight,32

reducing the user’s effort to propel their COM up the stairs or decelerate their COM during stair
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descent. The subject was able to walk stably and reported feeling comfortable and confident
during both locomotor tasks without holding the handrail.2

Limitations and Future Research

Although these simulation and experimental results demonstrate the potential of the4

proposed design and control philosophy, some limitations still remain to be overcome. First and
foremost, kinetic energy shaping needs to be implemented in hardware. The control law (42)6

depends on M� and M̃�, which include mass/inertia parameters of the exoskeleton and human
limbs. The exoskeleton parameters can be estimated using standard system identification methods8

[5], and human parameters can be estimated from the user’s weight and limb lengths based on
formulas from cadaver studies [70]. Parametric errors will result in slightly different closed-loop10

system parameters than anticipated, but the overall effect of inertia and/or weight compensation
will still be achieved. In other words, the actuator torques will still provide assistance/resistance12

but will be in different magnitudes due to parameter uncertainties.

Future work for control design includes shaping not only the limb inertias but also the14

mass terms in the inertia matrix. The main challenge is to ensure the positive definiteness of
the shaped mass/inertia matrix so the control law remains well-defined. Future work could also16

attempt to avoid the algebraic simplifications used to solve the matching conditions (that is,
shaping only the actuated coordinates), which could provide more effective shaping strategies18

for human assistance. Ultimately, we will investigate how the choice of M̃ promotes different
gait characteristics in both able-bodied human subjects and individuals post stroke.20

Although the powered knee-ankle exoskeleton provided adequate backdrivability and torque
density, significant improvements can still be made. It would be desirable to further reduce the22

dynamic backdrive torque and improve torque tracking (without a torque sensor) through the
use of an even lower transmission ratio. The presented prototype is also cumbersome to don and24

doff for the user. Therefore, ongoing work includes the design and testing of our next-generation
powered knee orthosis (Generation Two, Figure 1(c)). This device has a custom PMSM motor26

with greater torque density to allow the use of a 7:1 one-stage planetary gearbox, which has
about 1/10 the reflected inertia of the Generation One actuator. This design aims to assist elderly28

individuals and enhance the capabilities of fully able-bodied users, and it will be tested in both
unilateral and bilateral configurations depending on user needs.30
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Conclusion

In this paper, we summarized our past and ongoing work to present our design and2

control philosophy for highly-backdrivable lower-limb exoskeletons. By combining torque-
dense electrical motors and low-ratio custom transmissions, high torque output and intrin-4

sic backdrivability were achieved simultaneously with minimal production cost. To provide
human-cooperative exoskeletal assistance, we proposed a complete theoretical framework for6

underactuated total energy shaping that incorporates both environmental and human interaction.
This general matching framework yields task-invariant, trajectory-free control laws that can8

accommodate different activities of daily living. Next, we simulated different energy shaping
strategies on a human-like 8-DOF biped to study their possible effects and benefits for human10

assistance. Finally, we implemented the potential energy shaping strategy on the designed knee-
ankle exoskeleton and conducted experiments with an able-bodied subject. The subject was free12

to move his joints with minimal resistance from the exoskeleton actuators, and the potential
energy shaping controller provided the subject with consistent assistance during positive BWS14

tests or resistance during negative BWS tests. Future work will further refine this design/control
philosophy and study clinical outcomes for different patient populations.16
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TABLE 1. Mass specifications of the powered knee-ankle exoskeleton. Note that the knee and
ankle modules include the mass of onboard electronics and cabling.

Components Mass [kg]

Knee module (thigh) 2.106
Ankle module (shank) 1.843

Shoe insert 0.356
Thigh attachment 0.632
Shank attachment 0.471

Total mass 5.41
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TABLE 2. Model and simulation parameters of the biped model in Figure 10. The physical
parameters represent average values of male adults, and impedance parameters were kept constant
during simulation. This table is reproduced from [36].

Parameter Variable Value

Hip mass mh 31.73 [kg]
Thigh mass mt 9.457 [kg]
Shank mass ms 4.053 [kg]
Foot mass mf 1 [kg]
Thigh moment of inertia It 0.1995 [kg·m2]
Shank moment of inertia Is 0.0369 [kg·m2]
Full biped shank length ls 0.428 [m]
Full biped thigh length lt 0.428 [m]
Full biped heel length la 0.07 [m]
Full biped foot length lf 0.2 [m]
Slope angle � 0.095 [rad]
Hip equilibrium angle ✓̄h �0.5 [rad]
Hip proportional gain Kph 182.258 [Nm/rad]
Hip derivative gain Kdh 35.1 [Nm·s/rad]
Swing knee equilibrium angle ✓̄sk 0.2 [rad]
Swing knee proportional gain Kpsk 182.258 [Nm/rad]
Swing knee derivative gain Kdsk 18.908 [Nm·s/rad]
Swing ankle equilibrium angle ✓̄sa �0.25 [rad]
Swing ankle proportional gain Kpsa 182.258 [Nm/rad]
Swing ankle derivative gain Kdsa 0.802 [Nm·s/rad]
Stance ankle equilibrium angle ✓̄a 0.01 /rad]
Stance ankle proportional gain Kpa 546.774 [Nm/rad]
Stance ankle derivative gain Kda 21.257 [Nm·s/rad]
Stance knee equilibrium angle ✓̄k �0.05 [rad]
Stance knee proportional gain Kpk 546.774 [Nm/rad]
Stance knee derivative gain Kdk 21.257 [Nm·s/rad]
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TABLE 3. Step length, step linear velocity, and step time periods recorded in simulation with
different shaping strategies.

Control strategies Step length [m] Step linear velocity [m/s] Step time periods [s]

Passive (µ =  = 1) 0.5259 1.0113 0.5256
PE (µ = 1.1) 0.5379 1.1049 0.4868
PE (µ = 1.05) 0.5352 1.0554 0.5071
PE (µ = 0.95) 0.5281 0.9740 0.5421
PE (µ = 0.9) 0.5264 0.9492 0.5546
KE ( = 2) 0.5677 1.2598 0.4506
KE ( = 1.2) 0.5368 1.0286 0.5219
KE ( = 0.8) 0.5259 0.9996 0.5261
KE ( = 0) 0.5114 0.9807 0.5214
Total ( = 1.2, µ = 1.2) 0.5424 1.2044 0.4504
Total ( = 0.85, µ = 0.85) 0.5197 0.9335 0.5567
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TABLE 4. Analysis of Froude number. The first column contains different values of µ used in
the simulation. The second column contains the step linear velocities observed in simulations
with the corresponding µ, where each data point was recorded once steady walking had been
achieved. The third column contains the predicted linear velocities ˙̃s calculated by multiplying
the passive gait’s velocity ṡ = 1.011m/s with p

µ =
p
g̃/9.81.

Control strategies Step velocity [m/s] Predicted velocity ˙̃s [m/s]

PE (µ = 0.9) 0.949 0.959
PE (µ = 0.95) 0.974 0.985
Passive (µ = 1) 1.011 1.011
PE (µ = 1.05) 1.055 1.036
PE (µ = 1.1) 1.105 1.060
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TABLE 5. Model parameters for the potential energy shaping controller implemented on the
knee-ankle exoskeleton for human subject experiments. The segment masses of the subject were
calculated based on [44]. The lengths of the subject’s limbs and the exoskeleton masses were
measured. The exoskeleton and human masses were combined in the control law calculation to
provide weight support for both the human and exoskeleton.

Parameter Variable Value

Hip and upper body mass mh 54.835 [kg]
Thigh mass mt 11.228 [kg]
Shank mass ms 6.582 [kg]
Foot mass mf 1.745 [kg]
Knee exoskeleton mass mk 2.106 [kg]
Ankle exoskeleton mass ma 1.843 [kg]
Shoe insert mass msh 0.356 [kg]
Shank length ls 0.41 [m]
Thigh length lt 0.44 [m]
Foot length lf 0.2736 [m]
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(a) Generation Zero (b) Generation One (c) Generation Two

Figure 1. Three generations of exoskeleton prototypes: the Powered Ankle Exoskeleton (left,
Generation Zero, image reproduced from [33]), the Powered Knee-Ankle Exoskeleton (center,
Generation One), and the Powered Knee Exoskeleton (right, Generation Two). All prototypes
are designed with a combination of high-torque motors and low-ratio transmissions.
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Figure 2. The powered ankle exoskeleton (Generation Zero). This is a single joint exoskeleton
that provides an increased output torque to the ankle joint with small torque ripple. This is
achieved by combining a permanent magnetic synchronous motor (PMSM) and a two-stage
planetary gear transmission with a poly chain GT Carbon timing belt. This figure is reproduced
from [33].
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Figure 3. Step response results of the ankle exoskeleton’s actuator. The dashed line indicates the
step reference and the solid red line indicates the actual torque output. This test was conducted
with a 35 Nm and 20 Nm step reference, respectively. This figure is reproduced from [33].
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Knee 
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Ankle 
Actuator 

Shoe 
Insert 

Figure 4. The powered knee-ankle exoskeleton (left) and its rendering (right). Two modular
actuators are attached to a knee brace and provide torque to the knee and ankle joints of the
affected leg. Torque is transferred to the ankle with the use of a small shoe insert that also
houses two small pressure sensors along the Center of Pressure (COP) to aid the control system.
This figure is reproduced from [34].
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Figure 5. Schematic of the powered knee-ankle exoskeleton system. A servo motor generates
a torque, which is then amplified by a timing belt and a planetary gear transmission. Sensor
data are fed into a myRIO controller for information processing and commanding the motor
controller. This figure is reproduced from [34].
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Motor Encoder 

PMSM Housing Motor Rotor 

Ring Gear Motor Stator 

Planetary  Gear Sun Gear 

Actuator Driver Driven Sprocket 

Figure 6. Schematic of the modular actuator of the powered knee-ankle exoskeleton. A frameless
electrical motor is integrated with the mechanical structure of the exoskeleton. A timing belt
connects the output shaft of the motor to the sun gear. A planetary gear set is built inside the
driven sprocket yielding a lightweight, power dense actuator. This figure is reproduced from
[34].
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Figure 7. Block diagram of the electrical system of the powered knee-ankle exoskeleton: the
gait control system receives feedback related to the user’s gait and sends torque commands.
The two actuator drive systems control and drive the knee and ankle actuators. A buck DC-DC
converter provides power to the gait control system. This figure is reproduced from [34].
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Figure 8. Torque control system schematic, where qj represents joint angles, F1 and F2 are
ground reaction forces, Tr is the reference torque, Tf is the measured output torque, Ir is the
reference current, and Iq is the motor’s active current [41]. The phase selector switches between
the stance and swing controllers, which produce the torque references. The actuator drive system
contains two PI control loops. The inner loop is the current PI controller which regulates the
motor’s current. The outer loop is the torque PI controller to compensate for the actuator’s torque
tracking error. This figure is reproduced from [34].
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(b) 50 Nm step response test: falling edge

Figure 9. Results from static torque test. The top and bottom figures show the rising and falling
edges of a 50 Nm torque step response. Note that the rising edge started from a pretension of
3 Nm.
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Figure 10. Kinematic model of the human body and the exoskeleton(s). The stance leg is
shown in solid black and the swing leg (just before impact) in dashed black. For controlling
a unilateral exoskeleton, we separately model the stance and swing legs. The stance leg is
modeled as a kinematic chain from the inertia reference frame (IRF), which is defined at the
stance heel during heel and flat foot contact versus the stance toe during toe contact. As for
the swing leg, we choose the hip as a floating base for the swing leg’s kinematic chain. The
forces F = (Fx, Fy,Mz)T 2 R3⇥1 are the interaction forces between the hip of the stance model
and the swing thigh. For modeling a human wearing a bilateral exoskeleton, we combine the
stance and swing leg models (full biped model) and the forces F are implicitly modeled in the
equations of motion (EOM) of the complete kinematic chain. For simulations of the full biped
model, the angle ✓h is defined as the hip angle between the stance and swing thighs, and the
red arcs indicate the human muscle inputs.
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A1: Incorporating Contact Constraints
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Figure 11. Heel contact configuration (left), flat foot configuration (center), toe contact
configuration (right) during the single-support period of human locomotion. For simulation
purposes, we assume the biped is walking on a slope with angle �. To have a constant constraint
matrix A, the inertial reference frame (IRF) can be moved to the toe during toe contact, that is,
(tx, ty)T = (px � lf cos(�), py � lf sin(�))T = (0, 0)T , where (tx, ty)T denotes the position of
the toe.
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Figure 12. Feedback loops and passive mappings of a human leg wearing an energy-shaping
exoskeleton, where ⌧hum is the total human input, ⌧exo is the exoskeleton input, ⌧ = ⌧exo + ⌧hum

is the combined human-exoskeleton input, and (q, q̇) contain the joint angles and velocities of
the leg. This figure is reproduced from [36].
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Figure 13. Knee and ankle trajectories of one leg over four steady-state strides of the nominal
“human” gait (top), and phase portrait of the biped during one steady step (bottom). This figure
is reproduced from [36].
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Figure 14. Phase portraits of the passive gait and the shaped gaits. The left column corresponds to
the case of kinetic energy shaping, the center column corresponds to the case of potential energy
shaping, and the right column corresponds to the case of total energy shaping. Each column
shares the same legend shown in the last figure. The rows (from top to bottom) correspond to
�, stance hip, swing knee, and stance ankle joints respectively. Each data point on these curves
was recorded once steady walking had been achieved.
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Figure 15. The estimated metabolic costs with different shaping strategies. The numbers on
top of each bar denote the sum of (47) for all actuated human joints given the shaping strategy
indicated on the x-axis.
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Figure 16. Measured backdrive torque during passive walking: average absolute values and
error bars (±1 standard deviation shown in shaded regions) of 10 steady steps. This figure is
reproduced from [34].
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Figure 17. Photos of multiple task experiments. Top left: treadmill test, bottom left: sit-to-stand-
to-sit test, right: stair ascent/descent tests.
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(a) Positive BWS walking: Ankle torque.
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(b) Positive BWS walking: Knee torque.
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(c) Negative BWS walking: Ankle torque.
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(d) Negative BWS walking: Knee torque.

Figure 18. Measured torque from walking tests (averaged over 12 strides). For the knee torque,
positive indicates extension while negative indicates flexion. For the ankle torque, positive
indicates dorsiflexion while negative indicates plantarflexion. For positive BWS walking test,
we set the BWS ratio to be (BWSst, BWSsw) = (10%, 20%), whereas the negative BWS
walking test had (BWSst, BWSsw) = (-5%, -10%). Winter’s able-bodied torque is obtained by
multiplying the normalized torque data from [44] with the subject mass and BWS ratio.
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(a) Sit-to-stand-to-sit: Ankle torque.
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(b) Sit-to-stand-to-sit: Knee torque.
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(c) Stair ascent: Ankle torque.
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(d) Stair ascent: Knee torque.
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(e) Stair descent: Ankle torque.
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(f) Stair descent: Knee torque.

Figure 19. Measured torque from the sit-to-stand-to-sit test (averaged over 5 cycles) and the
stair ascent/descent tests (each averaged over 7 strides). The direction of torques align with the
ones in Figures 18(a) to 18(d). For the sit-to-stand-to-sit test we set the BWS ratio to 5%. For
both stair ascent and descent tests, we set the BWS ratio to 10% for both the stance and swing
controllers.
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Sidebar: Summary of the Paper

The majority of assistive exoskeletons are designed to rigidly track time-based kinematic2

patterns using highly geared actuators, which prevents users from moving their joints freely
without help from the exoskeleton. Individuals with partial or full volitional control of their4

lower extremities require novel design and control methods for exoskeletons that are more
compatible with human interaction. In order to assist or augment volitional human motion,6

exoskeleton joints must be backdrivable and the control strategy must be invariant to the user’s
joint kinematics. This paper presents the design philosophy behind two generations of highly8

backdrivable exoskeletons, which utilize torque-dense motors with low-ratio transmissions. To
leverage these designs, a torque-based control framework is presented that shapes the human10

body’s kinetic and potential energies to provide trajectory-free assistance. Simulations with a
human-like biped demonstrate the effects of different energy shaping control strategies, and12

experiments with a powered knee-ankle exoskeleton demonstrate the user-cooperative and task-
invariant nature of the control approach. These results demonstrate potential value for gait14

assistance and augmentation without being constrained to a clinical environment like traditional
treadmill training devices. To achieve the control design and implementation, one would need16

knowledge of linear algebra, robot dynamics, state-space control, and LabVIEW programming.
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Sidebar: Passivity and Stability Properties

Consider a n-link robot described by the following equations of motion

M(q)q̈ + C(q, q̇)q̇ +N(q) = ⌧, (S1)

where q 2 Rn is the configuration vector, and q̇ 2 Rn is the velocity vector. The positive-definite2

matrix M(q) 2 Rn⇥n is the mass/inertia matrix, C(q, q̇) 2 Rn⇥n is the Coriolis/centrifugal
matrix, N(q) 2 Rn is the gravitational forces vector defined as the gradient of the robot’s4

potential energy, and ⌧ 2 Rn is the torque input vector.

Let S(x) : Rn ! R be a continuously differentiable non-negative scalar function, then
the system (S1) is said to be passive from input ⌧ to output y with storage function S(x) if
Ṡ(x)  y

T
⌧ . Passivity indicates that the change in the robot’s energy is bounded by the “energy”

injected through the input ⌧ . In other words, the robot cannot generate “energy” on its own. For
robots with dynamics of the form (S1), input-output passivity can be shown by choosing y = q̇

T

and the robot’s total energy H(q, q̇) as the storage function:

H(q, q̇) =
1

2
q̇
T
M(q)q̇ + P (q). (S2)

Taking the time derivative of H(q, q̇) yields

Ḣ = q̇
T
M(q)q̈ +

1

2
q̇
T
Ṁ(q)q̇ + q̇

T
N(q)

= q̇
T (⌧ � C(q, q̇)q̇ �N(q)) +

1

2
q̇
T
Ṁ(q)q̇ + q̇

T
N(q),

where M(q)q̈ has been substituted using the equations of motion (S1). Canceling out q̇TN(q)

and collecting terms yields

Ḣ = q̇
T
⌧ +

1

2
q̇
T (Ṁ(q)� 2C(q, q̇))q̇

= q̇
T
⌧, (S3)

where the second equality holds true based on the skew-symmetry property between M(q) and6

C(q, q̇), that is, Ṁ(q)� 2C(q, q̇) = �(Ṁ(q)� 2C(q, q̇))T [S1].

Input-output passivity enables several stability results through passivity-based control. For8

example, negative feedback of the output through the input guarantees asymptotic convergence
of the output to zero [S1]. We first leverage a standard result for passive systems to state the10

following [S2]:

Proposition 1: Consider the passive system (S1) with input ⌧ and output y = q̇. Given12

output feedback control ⌧ = �(y), where � is any continuous function satisfying y
T
�(y)  0,

then limt!1 y(t) ! 0 and the origin (q, q̇) = (0, 0) is stable in the sense of Lyapunov.14
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Here we highlight one possible stability result from [S3] for the case of potential energy
shaping. In [S3] we proved that potential energy shaping preserves the passive mapping from
the human input ⌧hum to output y = q̇

T in closed loop. This proof relies on the closed-loop total
energy H̃ as the storage function:

H̃(q, q̇) =
1

2
q̇
T
M(q)q̇ + P̃ (q), (S4)

where P̃ (q) :=
R q

0

Pn
i=1Ñ(i)(s) ds is the closed-loop potential energy.

It is well established that human motor control effectively modulates joint impedance, that
is, the stiffness and viscosity of a joint [S5], [S6]. Therefore, in [S3] we assume the human input
takes the form of an impedance controller (which we used for our simulations in this paper)
given by ⌧hum = �Kpe � Kdė, where Kp and Kd are two positive-definite diagonal matrices,
e := q� q̄ is the difference between q and the fixed equilibria vector q̄, and ė = q̇ = y. To utilize
Lyapunov stability analysis, we define a Lyapunov function

V (q, q̇) = H̃(q, q̇) +
1

2
e
T
Kpe. (S5)

It is clear that adding a quadratic term 1
2e

T
Kpe to the positive-definite H̃(q, q̇) produces a

positive-definite function. Taking the time derivative of V (q, q̇) yields

V̇ (q, q̇) = y
T
⌧hum + ė

T
Kpe

= y
T (�Kpe�Kdė+Kpe)

= �y
T
Kdy  0, (S6)

implying that the shaped human leg is Lyapunov stable [S4].2
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