Materials Science & Engineering C 85 (2018) 79-87

Contents lists available at ScienceDirect

MATERIALS

SCIENCE &

ENGINEERING
© s

Materials Science & Engineering C

journal homepage: www.elsevier.com/locate/msec

Biomimetic polyurethane/TiO, nanocomposite scaffolds capable of )

Check for

promoting biomineralization and mesenchymal stem cell proliferation el

Qingxia Zhu™", Xiaofei Li", Zhaobo Fan”, Yanyi Xu”, Hong Niu”, Chao Li", Yu Dang®,
Zheng Huang", Yun Wang", Jianjun Guan™"

@ Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
® Department of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 333001, China
€ Division of Periodontology, The Ohio State University, 305 W. 12th Avenue, Columbus, OH 43210, USA

ARTICLE INFO ABSTRACT

Keywords: Scaffolds with extracellular matrix-like fibrous morphology, suitable mechanical properties, biomineralization
Nanocomposite capability, and excellent cytocompatibility are desired for bone regeneration. In this work, fibrous and de-
Polyurethane gradable poly(ester urethane)urea (PEUU) scaffolds reinforced with titanium dioxide nanoparticles (nTiO,) were

TiO, nanoparticle
Mesenchymal stem cells
Biocompatibility

fabricated to possess these properties. To increase the interfacial interaction between PEUU and nTiO,, poly
(ester urethane) (PEU) was grafted onto the nTiO,. The scaffolds were fabricated by electrospinning and ex-
hibited fiber diameter of < 1 um. SEM and EDX mapping results demonstrated that the PEU modified nTiO, was
homogeneously distributed in the fibers. In contrast, severe agglomeration was found in the scaffolds with
unmodified nTiO,. PEU modified nTiO, significantly increased Young's modulus and tensile stress of the PEUU
scaffolds while unmodified nTiO, significantly decreased Young's modulus and tensile stress. The greatest re-
inforcement effect was observed for the scaffold with 1:1 ratio of PEUU and PEU modified nTiO,. When in-
cubating in the simulated body fluid over an 8-week period, biomineralization was occurred on the fibers. The
scaffolds with PEU modified nTiO, showed the highest Ca and P deposition than pure PEUU scaffold and PEUU
scaffold with unmodified nTiO,. To examine scaffold cytocompatibility, bone marrow-derived mesenchymal
stem cells were cultured on the scaffold. The PEUU scaffold with PEU modified nTiO, demonstrated significantly
higher cell proliferation compared to pure PEUU scaffold and PEUU scaffold with unmodified nTiO,. The above
results demonstrate that the developed fibrous nanocomposite scaffolds have potential for bone tissue re-
generation.

1. Introduction

Self-regeneration of critical size bone defects caused by trauma,
tumor removal, and infection remains challenging in clinical settings
[1-3]. Scaffolds have been widely used to aid the regeneration. A ty-
pical scaffold should have appropriate porosity to allow cell ingrowth,
be osteoconductive, and possess suitable mechanical properties [1-3].
Among different types of scaffolds, those mimicking the properties of
bone tissue extracellular matrix (ECM) have been considered as pro-
mising candidates [4-7]. These scaffolds can accelerate the regenera-
tion by preventing fibrous encapsulation, promoting osseointegration,
and stimulating cell infiltration, proliferation and osteogenic differ-
entiation [4-8].

Bone is a hard tissue that also has high toughness and tensile
strength. To fabricate scaffolds with suitable toughness, flexible poly-
mers such as polyurethane and polycaprolactone can be used [9-44].
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The resulting scaffolds generally have higher toughness than those
based on stiffer polymers such as polylactide and polyglycolide. Bio-
degradable polyurethane is a class of polymer that has attracted great
attention in the biomaterials community due to its excellent bio-
compatibility and robust mechanical properties. Porous thermoplastic
and thermoset polyurethane scaffolds have been utilized for bone re-
generation in animal and preclinical studies [9-29]. The scaffolds with
tailored chemical and mechanical properties can promote osteogenic
cells to populate and differentiate within the scaffolds, thus stimulating
bone regeneration [25-29]. To further augment the regeneration,
growth factors such as BMP-2 and PDGF have been loaded into poly-
urethane scaffolds [28,45-47]. One of the limitations for biodegradable
polyurethane scaffolds is that their modulus and tensile strength are
much lower than those of the bone tissue. Increasing these properties is
expected to make polyurethane scaffolds more suitable for bone re-
generation. An effective approach is to use stiffer soft segment during
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the synthesis. For example, replacing polycaprolactone with poly-
hydroxybutyrate can largely increase polyurethane Young's modulus
and tensile strength [48-52]. However, this approach may simulta-
neously compromise toughness of the polymers.

Polyurethane composite scaffolds may retain toughness of the
polyurethane while increasing modulus and tensile strength.
Microspheres and nanoparticles can be incorporated into polyurethane
scaffolds during the fabrication, such as hydroxyapatite [14,53,54],
carbon nanotubes [55-57], and titanium dioxide (TiO,) [58,59]. These
inorganic materials are much stronger and stiffer than polymers.
Compared to microspheres, nanoparticles may better reinforce poly-
urethanes because of their higher surface area-to-volume ratio [60].
TiO, nanoparticles are attractive for polymer reinforcement especially
in dental applications [61-63]. These nanoparticles have good bio-
compatibility and antibacterial property [61-63]. In addition, they can
suppress immune response which commonly occurs after scaffold im-
plantation [64]. In this work, we took advantage of these properties to
fabricate TiO5 nanoparticles-reinforced polyurethane scaffolds. A major
limitation of using unmodified TiO, nanoparticles to reinforce polymers
is the uneven distribution, which compromises the reinforcement effect
[65]. In addition, the nanoparticles may readily leach out from the
scaffolds when their interactions with polymers are weak [65]. The
released nanoparticles may be intaken by cells causing potential da-
mage [66]. To address these limitations, approaches such as surface
modification of TiO, nanoparticles, [65] and increase of polymer po-
larity [67] have been developed to augment the physical interactions of
the nanoparticles and polymers. In this work, we hypothesized that
chemical conjugation of polymers to the TiO, nanoparticles can better
increase the interactions than simply modifying either the nanoparticles
or polymers, thus efficiently increasing scaffold modulus and tensile
strength, and decreasing nanoparticle release.

Bone tissue ECM is a nanocomposite consisting of collagen fibers
and hydroxyapatite nanoparticles. Thus, scaffolds with fibrous mor-
phology and biomineralization capability are desired for bone re-
generation. To fabricate scaffolds with fibrous morphology, commonly
used techniques include thermally induced phase separation [68-71],
and electrospinning [72-75]. Thermally induced phase separation
technique generates fibers with diameter ranging from few to 100 nm
depending on the phase separation temperature and solution con-
centration [68-71]. Electrospinning of polymer solution is a more
convenient approach to fabricate fibrous scaffolds. The resulting scaf-
folds typically have fiber diameters in the range of 10-1000 nm, within
the range of fibrous ECM [72-75]. A major advantage of electrospin-
ning is that reinforcement nanoparticles can be readily incorporated
into the fibers during fabrication by mixing with polymer solutions
[76]. In this work, we electrospun polyurethane scaffolds with TiO,
nanoparticles in the fibers. Previous study demonstrated that TiO,
surface with nanostructure has the ability to promote apatite formation
[8]. It is hypothesized that the TiO, nanoparticles impart the scaffolds
with biomineralization capability. We investigated the capability of
TiO, nanoparticles in improving scaffold mechanical properties, pro-
moting biomineralization, and supporting osteogenic cell proliferation.

2. Materials and methods
2.1. Materials

All chemicals were purchased from Sigma-Aldrich unless otherwise
stated. Hexamethylene diisocyanate (HMDI) was purified by vacuum
distillation. Polycaprolactone (PCL) diol with an average molecular
weight of 2000 g/mol, and dimethylolpropionic acid (DMPA) were
vacuum dried overnight at 60 °C before use. TiO, nanoparticles com-
prised of 50% anatase and 50% rutile crystal forms. The average par-
ticle size and purity were 21 nm and 99.9%, respectively. Anhydrous
toluene, dimethylformamide (DMF), and isopropanol were used as re-
ceived.
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Fig. 1. Synthesis of DMPA functionalized TiO, nanoparticles (DMPA-nTiO,).

2.2. Functionalization of TiO, nanoparticles with reactive hydroxyl groups

TiO, nanoparticles were reacted with DMPA to introduce hydroxyl
groups (Fig. 1) following a previous report [65]. DMPA was dissolved in
2-propanol. The nanoparticles were then dispersed in the DMPA solu-
tion. After ultrasonic agitation for 5 min, the mixture was reacted at
80 °C for 12 h under constant stirring with the protection of nitrogen
gas. The molar ratio of DMPA to nTiO, was controlled at 2.4. After
reaction, the nanoparticles were collected by centrifugation at
10000 rpm, and then washed with methanol for 3 times to remove the
unreacted DMPA.

2.3. Synthesis of poly(ester urethane) (PEU) grafted TiO,, and poly(ester
urethane)urea (PEUU)

The PEU grafted TiO, nanoparticles (PEU-g-nTiO,) were synthe-
sized by a two-step approach (Fig. 2). In the first step, HMDI and PCL
diol were dissolved in a mixture of DMF/toluene at 1:1 volume ratio.
The molar ratio of HMDI and PCL diol was 2:1. Stannous octoate was
then added. The reaction was conducted at 85°C for 2h with the
protection of nitrogen gas. In the second step, the DMPA functionalized
nTiO, was added to the above solution. The molar ratio of HMDI and
the functionalized nTiO, was 1:1. The reaction was conducted at 80 °C
for 4 h. The mixture was then centrifuged followed by washing with
DMF/toluene for 3 times. The PEU-g-nTiO, was finally vacuum dried at
40 °C. To confirm the conjugation of PEU, the material was character-
ized by FT-IR.

PEUU was synthesized using PCL as soft segment, and HMDI and
putrescine as hard segment following our established protocols [75,77].
The molar ratio of PCL diol, HMDI and putrescine was controlled at 1/
2/1. In brief, PCL diol was dissolved in DMSO to form a solution. HMDI
was then added under the protection of nitrogen gas. After addition of
stannous octoate, the reaction was conducted at 80 °C in an oil bath for
3 h to form prepolymer. The solution was cooled down to room tem-
perature. Putrescine solution in DMSO was then added dropwise to the
prepolymer solution for chain extension. The mixture was stirred at
room temperature overnight. The polymer solution was precipitated in
cold NaCl solution. After immersing in the DI water for 24 h, the
polymer was vacuum dried at 60 °C.

2.4. Fabrication of fibrous PEUU scaffolds reinforced with PEU-g-nTiO,

The fibrous scaffolds were fabricated by electrospinning. PEUU was
dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) to form a 6%
solution. PEU-g-TiO, was then added to the solution. The mixture was
sonicated to allow particles to uniformly distribute in the solution. The
ratio of PEUU and PEU-g-TiO, was controlled at 1/1, 1/2, and 2/1 wt%,
respectively. The mixture was charged at + 15 kV. The flow rate was
1 mL/h. The fibers were collected on a rotating mandrel with rotation
speed of 1000 rpm, and charged at — 10 kV. The resulting scaffolds
(abbreviated as PEU-g-TiO,/PEUU) had a thickness of ~100 pm. Pure
PEUU scaffold, and PEUU scaffold with unmodified TiO, nanoparticles
(ratio of 1:1, abbreviated as nTiO,/PEUU) were also fabricated to serve
as controls.
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Fig. 2. Synthesis of degradable polyurethane conjugated
with TiO, nanoparticles (PEU-g-nTiO).
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2.5. Characterization of PEUU scaffolds reinforced with PEU-g-nTiO,

Morphology of the scaffolds was characterized by a LEO 1530
scanning electron microscopy (SEM). The bulk composition was ana-
lyzed using energy-dispersive x-ray spectroscopy (EDX) attached to the
SEM. FT-IR spectra were recorded on a Nicolet Magna-IR 750 spec-
trometer. To measure mechanical properties, dog bone-shaped die with
~20 mm gauge length and ~2 mm gauge width were used to cut 4-5
specimens from each scaffold. The specimens were immersed in 37 °C
water for 24 h before test. The tensile testing was performed on a
TestResources 1000R load frame (model 1322) equipped with a
222.4 N load cell and a 37 °C water bath [75,77]. A cross-head speed of
10 mm/min was used.

2.6. Biomineralization of PEUU scaffolds reinforced with PEU-g-nTiO,

PEUU, nTiO,/PEUU, and PEU-g-nTiO,/PEUU scaffolds were used
for the assessment of biomineralization property. The samples were
weighted and then immersed in a simulated body fluid (SBF) at 37 °C.
SBF was prepared by dissolving 10.806 g NaCl, 0.852g Na,COs,
1.008 g NaHCOs3;, 0.144 g Na,SO4, 0.450g KCl, 0.351 g K,HPO,,
0.622 g MgCly6H,0, 200 mL of 0.2 M NaOH solution, and 0.586 g
CaCl; and 34.784 g HEPES in 1 L of DI water [78]. The inorganic ion
concentrations in SBF were equal to those of human blood plasma [78].
After 1, 2, 4, and 8 weeks of incubation, samples (n = 5 for each
scaffold type at each time point) were collected, freeze dried, and
weighted. Weight change was then quantified. To confirm the biomi-
neralization, EDX was used to characterize the scaffolds.

2.7. Mesenchymal stem cell growth on PEUU scaffolds reinforced with PEU-
gnTiO,

To evaluate the ability of PEUU scaffolds reinforced with PEU-g-
nTiO, to support cell growth, rat bone marrow-derived mesenchymal
stem cells (MSCs) were seeded on the scaffolds. PEUU and nTiO,/PEUU
scaffolds were used as controls. MSCs were cultured in a T-175 flask
using Dulbecco's Modified Eagle Medium (DMEM) supplemented with
20% FBS, 2% 1-glutamine and 1% penicillin/streptomycin as culture

COO (TiO,)

),

O

medium [79,80]. The scaffolds were punched into 6 mm diameter disks.
After sterilizing under UV irradiation for 1 h in a laminar flow hood, the
disks were placed in a 96-well tissue culture plate. MSCs were seeded
onto each disk at a density of 2 x 10° cells/mL. After 1, 3, and 7 days of
culture under normal conditions (21% O,, 5% CO,), double-stranded
DNA (dsDNA) content of the live cells in each sample was measured
using PicoGreen assay (Invitrogen) [79,80].

2.8. Statistical analysis

One way ANOVA test was utilized for data analysis. Data were
presented as mean =+ standard deviation. Statistical significance was
defined asp < 0.05.

3. Results and discussion
3.1. Synthesis of PEU-g-nTiO,

TiO, nanoparticle was first functionalized with DMPA to introduce
hydroxyl groups onto the surface before grafting PEU. These hydroxyl
groups can readily react with isocyanate groups. The reaction of DMPA
and nTiO, is occurred between carboxyl groups of DMPA and Ti of
nTiO, by forming bidentate chelating type coordination bonding [81].
To graft PEU onto the functionalized TiO, nanoparticles, PEU pre-
polymer with isocyanate groups was first prepared by reacting PCL diol
with HMDI at a molar ratio of 1:2. The use of PCL allows the PEU to be
degradable. Successful synthesis of PEU-g-nTiO, was confirmed by FTIR
spectrum that exhibited characteristic peaks of PEU and TiO, (Fig. 3).
The absorption at 643 cm™! is from nTiO,. The carbonyl peak at
1725 cm™ ! is from urethane group. All of the isocyanate groups in the
prepolymer were reacted with hydroxyl groups introduced onto the
nTiO, surface since there is no isocyanate peak at 2265 cm™ . Con-
sistent with previous report, [65] the coordination bonding between
DMPA and nTiO, is not obvious in the spectrum, possibly because the
absorption level of Ti—-O-C coordination is significantly small compared
to that of the bonds in PEU.
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Fig. 3. FTIR spectrum of synthesized PEU-g-nTiO,.
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3.2. Fibrous nanocomposite scaffold fabrication

Fibrous scaffolds based on PEUU and PEU-g-nTiO, were fabricated
by electrospinning. The PEUU was synthesized using the same soft
segment and diisocyanate as PEU. Our previous study demonstrated
that this polymer supported the growth of cardiosphere-derived cells
[75]. HFIP was used as a solvent for PEUU. The benefit of using this
high polarity solvent is that it allowed PEU-g-nTiO, to evenly and stably
suspend in the PEUU solution, thus facilitating the fabrication of fibers
with uniform distribution of nTiO,.

The fabricated PEUU scaffold without nTiO, or PEU-g-nTiO, as-
sumed smooth fibers with a diameter < 1 pm (Fig. 4a). The scaffolds
based on unmodified nTiO, and PEUU (nTiO,/PEUU) exhibited both
fibers and beads (Fig. 4b). EDX analysis was performed to determine the
distribution of nTiO,. Fig. 5 demonstrated that nanoparticles were not
uniformly distributed in the scaffolds, and beads were nanoparticle
aggregation. It is likely that unmodified nTiO, aggregated during the
fabrication due to poor interactions between nTiO, and PEUU. The

O\
5100um SUB000'5 OKV'8 3mm x10 0k SE(UL)

1000

82

500

modification of nTiO, with PEU (PEU-g-nTiO,) increased the interfacial
interaction of the nanoparticles and PEUU. This allowed nanoparticles
to stably suspend in the solution during scaffold fabrication. As a result,
the scaffolds contained only fibers without beads (Fig. 4d-e). EDX
analysis confirmed that nanoparticles were evenly distributed in the
scaffolds (Fig. 5). Scaffold fiber morphology was dependent on the ratio
of PEU-g-nTiO, to PEUU. When the ratio was 1:2, the fibers were
smooth. The increase of the ratio to 1:1 and 2:1 led to forming more
rough fibers (Fig. 4e).

3.3. Scaffold mechanical properties

One of the purposes in using nTiO, is to reinforce the PEUU scaf-
folds thus increasing both Young's modulus and tensile strength for
improved performance during bone regeneration. The pure PEUU
scaffold had Young's modulus and tensile strength of 31.8 = 2.3 and
34.3 = 0.9, respectively. Simply mixing unmodified nTiO, and PEUU
(nTiO,/PEUU scaffold) did not show reinforcement effect. Instead, both

Fig. 4. Morphology of the electrospun scaffolds.
(A) PEUU; (B) nTiO,/PEUU; (C) PEU-g-nTiO,/
PEUU = 1:2; (D) PEU-g-nTiO,/PEUU = 1:1; and
(E) PEU-g-nTiO,/PEUU = 2:1.

S
5,00um
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(B)

(D)

Young's modulus and tensile strength were significantly decreased
compared with PEUU scaffold (p < 0.001). This is likely due to the low
interfacial interaction between nTiO, and PEUU. It led to the ag-
gregation of nTiO, in the solution during the scaffold fabrication pro-
cess. The scaffolds therefore had nTiO, aggregates attached to the fibers
(Fig. 4b and Fig. 5a), which cannot efficiently dissipate external force.
For those nanoparticles that are in the fibers, even they can dispense
uniformly, the weak interfacial interaction between PEUU cannot ef-
fectively reinforce the scaffold.

Modification of nTiO, with PEU (PEU-g-nTiO») can increase its in-
terfacial interaction with PEUU because of the strong hydrogen bonding
between urethane groups and urethane-urea groups in both polymers.
This resulted in the reinforcement effect. Fig. 6 demonstrated that
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Fig. 5. SEM images (A, C) and corresponding EDX analysis of Ti
distribution in the scaffolds (B, D). (A, B) nTiO,/PEUU; (C, D)
PEU-g-nTiO,/PEUU = 2/1. Scale bar = 5 pm.

adding PEU-g-nTiO, into the PEUU scaffolds significantly increased
Young's modulus compared to the pure PEUU scaffold when the ratio of
PEU-g-nTiO, and PEUU was ranged from 1:2 to 2:1 (p < 0.01). The
highest Young's modulus was for the scaffold with the ratio of 1:1 where
it was 48.8 = 3.2 MPa, a 53.5% of increase over pure PEUU scaffold.
For the tensile strength, the scaffolds with PEU-g-nTiO,/PEUU ratios of
1:2 and 1:1 were significantly higher than pure PEUU scaffold
(p < 0.05) while the scaffold with the ratio of 2:1 showed similar
value. The decrease of Young's modulus and tensile strength when the
PEU-g-nTiO5/PEUU ratio was increased from 1:1 to 2:1 is probably
attributed to the decrease of interfacial interaction between PEUU and
PEU when the content of PEU-g-nTiO, is higher than PEUU. It is also
possible that PEU-g-nTiO, cannot efficiently distribute in the PEUU

Fig. 6. Mechanical properties of electrospun scaffolds with
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fibers when its content is high. Similar trend was found for collagen
scaffolds reinforced with carbon nanotubes [82].

3.4. Scaffold biomineralization

Biomineralization is critical during bone regeneration. Scaffolds
capable of stimulating biomineralization may be able to promote the
regeneration [8]. The developed fibrous scaffolds have high surface-
area-to-volume ratio, thus may facilitate the biomineralization. To in-
vestigate the biomineralization capability of TiO, nanoparticles re-
inforced PEUU scaffold, PEU-g-nTiO,/PEUU = 1:1 was used since it
had the highest Young's modulus. The scaffold was incubated in SBF for
8 weeks. Controls were PEUU and nTiO,/PEUU scaffolds. All scaffolds
showed slight weight loss after 1 week of incubation (p > 0.05 for
each scaffold). It is possible that PEUU degradation-induced weight loss
is greater than biomineralization-induced weight gaining during this
period. The PEUU scaffold exhibited continuous weight loss for
4 weeks. Significant net weight gaining was observed only after 8 weeks
(p < 0.05, week 4 vs. week 8), indicating that biomineralization was
dominated for PEUU after 4 weeks. The nTiO,/PEUU scaffold demon-
strated net weight gaining after 4 weeks, earlier than PEUU scaffold.
After 8 weeks of incubation, the scaffold gained ~13% of weight, sig-
nificantly greater than the original weight (p < 0.05, week 0 vs. week
8). These results suggest that TiO, nanoparticles in the scaffold ac-
celerated the biomineralization. This is consistent with previous studies
where TiO, containing materials promoted the absorption of Ca®> * and
PO,%~ [83].

The PEU-g-nTiO,/PEUU scaffold showed net weight gaining only
after 2 weeks of incubation, sooner than nTiO,/PEUU scaffold. After
8 weeks, the net weight gaining was 10% (p < 0.05 for weight of week
0 vs. weight of week 8). The Ca and P containing ions were deposited
uniformly in the PEU-g-nTiO,/PEUU scaffold (Fig. 8), attributing to the
even distribution of TiO, nanoparticles (Fig. 5). Elemental content of Ca
and P analyzed from EDX mapping is listed in Table 1. Consistent with
weight change results in Fig. 7, the PEU-g-nTiO,/PEUU scaffold had the
highest Ca and P deposition. In addition, the nTiO,/PEUU scaffold
demonstrated greater Ca and P deposition than PEUU scaffold. The
above results suggest that PEU modification stimulated nTiO, biomi-
neralization. The PEU grafted onto the nanoparticles is based on poly-
caprolactone and HMDI. The chain length of PEU should be shorter
than that of PEUU as no chain extension reaction was performed for it.
Therefore, PEU possibly degraded faster than PEUU. The hydrolysis of
PCL chain may leave -COOH groups on the nTiO, surface, which then
attract cationic species like Ca®* to deposit.

3.5. Mesenchymal stem cell growth on scaffolds

Scaffolds for bone regeneration can be implanted alone to allow
endogenous cells including osteoblasts and stem cells to induce re-
generation. They can also be transplanted together with osteogenic cells
to direct the regeneration. In both approaches, it is necessary for the
scaffolds to support cell proliferation. To investigate the capability of
PEU-g-nTiO,/PEUU scaffold to supporting cell growth, bone marrow-
derived MSCs were seeded on the scaffold of PEU-g-nTiO,/PEUU = 1:1
since it had the highest Young's modulus. PEUU and nTiO,/PEUU
scaffolds were used as controls. Bone marrow-derived MSCs are known
for their ability to promote bone regeneration. Cell dsDNA (for live
cells) content was monitored during the culture. Fig. 9 demonstrated

Table 1
EDX analysis of Ca and P content in the scaffolds after 8 weeks of incubation in SBF.

Element (%) PEUU nTiO,/PEUU PEU-g-TiO,/PEUU
Ca 0.039 0.103 0.203
P 0.143 0.327 1.270
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Fig. 7. Weight change of scaffolds incubated in the 37 °C simulated body fluid for
8 weeks.

that MSC dsDNA content was increased on all 3 scaffolds during the 7-
day culture period. The highest increase was found for PEU-g-nTiO,/
PEUU scaffold where dsDNA content was 2.5 and 9.9 folds of day 1 at
days 3 and 7, respectively (p < 0.01 for day 3 vs. day 1, and day 7 vs.
day 3). The nTiO,/PEUU scaffold and PEUU scaffold exhibited similar
levels of dsDNA increase atday 7 (p < 0.05 for day 7 vs. day 1 for both
scaffolds). The above results demonstrate that incorporation of PEU
modified TiO, nanoparticles into PEUU scaffold improved MSC pro-
liferation while incorporation of unmodified TiO, nanoparticles did
not. It is possible that PEU on the nanoparticle surface augmented its
hydrophilicity, thus increasing its interaction with cells. Our future
work will explore how scaffold properties such as TiO, content, fiber
diameter, and single fiber modulus can be tuned to induce the differ-
entiation of MSCs into osteogenic phenotype.

One of the concerns for using TiO, nanoparticles is that the released
nanoparticles may be toxic to bone cells [66]. For example, TiO, na-
noparticles with size of 15 nm have been shown to impair SOD1 and
SOD2 secretion and promote ROS generation after intaking by osteo-
blasts [84]. TiO, nanoparticles can also change the ultrastructure of
cells [84]. In this work, the PEU modified TiO, nanoparticles may not
be readily released from the PEUU fibers due to increased interaction
between the nanoparticles and PEUU. In addition, the PEU modified
TiO, nanoparticles may not be easily intaken by the cells even after PEU
and PEUU are degraded. Biomineralization study demonstrated that the
modified nanoparticles promoted mineral deposition, which can in-
crease the size of the nanoparticles to an extent that cells cannot readily
intake.

4. Conclusion

Fibrous PEUU scaffolds reinforced with TiO, nanoparticles were
fabricated for bone regeneration. Unmodified TiO, nanoparticles
cannot uniformly distribute in the fibers, and did not show reinforce-
ment effect. The PEU modified nanoparticles can evenly distribute in
the fibers, and significantly increased scaffold Young's modulus and
tensile strength. The scaffolds based on modified TiO, nanoparticles
and PEUU exhibited greater biomineralization capability than PEUU
scaffold. In addition, these scaffolds better promoted MSC growth than
pure PEUU scaffold and PEUU scaffold with unmodified TiO, nano-
particles. These scaffolds alone or combined with osteogenic cells have
the potential for bone regeneration.
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Fig. 9. Mesenchymal stem cell growth on the scaffolds with and without reinforcement
with PEU-gnTiO,.
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