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ABSTRACT
This study identifies a population of students who have an intermediate amount of relevant content
knowledge and skill for working with data, and characterizes their approach to interpreting a
challenging data-based visualization. Thirty-three undergraduate students enrolled in an
introductory environmental science course reasoned about salinity data as shown in map and
vertical profiles from the Mediterranean while thinking aloud and being eye-tracked. Students
reasoned about 2D and 3D interpretations in the context of two hypothesis arrays (a suite of
potential interpretations about a set of data). Findings suggest the students have some effective
strategies in reading data: They look at cartographic elements, correctly identify the image as a
salinity map, and draw inferences from the data. Common looking strategies include scanning
along the salinity gradient, comparing areas of interest, and aligning the color bar with the map.
Individual differences emerge in the interpretation of the data, with no interpretations being fully
aligned with the scientifically normative explanation. Post hoc analyses identify reasoning tasks and
spontaneous behaviors related to a construct we refer to as “data expertise,” which is intended to
capture the degree of conceptual sophistication and resourcefulness in reasoning about data. A
data expertise scale was developed, with scores ranging from zero (weak) to six (strong) that were
normally distributed. Our findings suggest that appropriately coordinating data with a model,
comparing and contrasting across data representations from different times or places, and
extracting 3D structure from 2D representations are associated with data expertise.
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Introduction

Benchmarks for Science Literacy (American Associa-
tion for the Advancement of Science, 2008), A Science
Framework for K–12 Science Education (National
Research Council [NRC], 2012), Next Generation Sci-
ence Standards (NGSS Lead States, 2013), and many
educators (Manduca & Mogk, 2002) emphasize stu-
dents’ direct engagement with data to develop scien-
tific habits of mind and practices. Working with real
data can improve students’ reasoning about uncer-
tainty and their quantitative skills (Creilson et al.,
2008). Although scientists often reason about small-
scale data sets from experiments and observations,
reasoning about multiple and large-scale data sets has
become increasingly important in science (National
Research Council, 2010; Wolkovich, Regetz, & O’Con-
nor, 2012). Having access to large-scale data sets
allows scientific breakthroughs that could not be
achieved from data collected by a single researcher,
and may allow students and early career researchers

to ask and answer bigger questions than would be
possible if they were limited to only data they had
collected themselves (Kastens, 2012; Linik, 2015;
National Research Council, 2010).

To effectively incorporate large, professionally col-
lected data into student activities, we need to better
understand how such data is read, analyzed, and inter-
preted by students at different levels of mastery. How-
ever, most science education research on students’
understanding of data involves small, student-collected
data sets, and findings from such studies may not carry
over to large, professionally collected datasets (Kastens,
Krumhansl, & Baker, 2015). When students collect their
own data, they develop an embodied understanding of
the setting, methods, and potential data issues such as
missing data and measurement error (Hug & McNeill,
2008), which they may lack with other-collected data
sets. Interpretation of professionally collected data sets
may also involve domain-specific knowledge of the refer-
ent systems and of specialized representational strategies.
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Reasoning about large, professionally collected data
can require the coordination of multiple sources of data
(which can be from different times and locations), as
well as an assortment of data-based visualizations and
conceptual process models (which provide candidate
explanations for the observed phenomena). Being able to
connect different scientific ideas to form a coherent
model is referred to as knowledge integration (e.g., Clark
& Linn, 2003/2009; Linn, 2000). Scientific knowledge
integration can be challenging for students, especially in
geoscience, which draws from such a range of disciplines
(Kastens & Manduca, 2012). An added difficulty is that
na€ıve conceptions are often robust to change (Chi,
2005). Openness to conceptual change depends on the
learner’s level of engagement, depth and organization of
background knowledge, motivation, disposition, willing-
ness to engage with complex messages, and perception of
the new content as understandable, coherent, plausible,
and compelling (Dole & Sinatra, 1998; Lombardi, Sina-
tra, & Nussbaum, 2013). To change one’s conceptual
model when faced with data that disagree with the model
is a sophisticated habit of mind that students often lack
(Chi, 2005).

As described above, reasoning about data involves a
host of different skills and knowledge. Consequently,
developing a construct for how and how well people rea-
son about data is challenging, because such reasoning is
multifaceted (Mandinach & Gummer, 2012). Defining
such an important construct is crucial, however, for
developing appropriate teaching materials as well as valid
and reliable assessments (Pellegrino, Wilson, Koenig, &
Beatty, 2014). There has been a recent focus on defining
data literacy versus data fluency (e.g., Greenberg &
Walsh, 2012; Mandinach & Gummer, 2012; Manduca &
Mogk, 2002). These terms imply empirically distinct
stages (i.e., achieving literacy and fluency); however, con-
ceptualizing one’s ability to reason about data as a con-
tinuum is aligned with the learning progression
framework presented by the National Research Council
(2007, 2014). The authors referred to such a continuum
as a data expertise continuum, and suggested that as per-
sons move along the data expertise continuum, they
develop increasing degrees of conceptual sophistication
and resourcefulness in reasoning about data. A person
with some experience working with data may be able to
reason about simple and complete data sets for well-
structured problems. As this person gains more experi-
ence, he or she would eventually be able to reason about
much more complex, novel, and ill-structured problems
based on incomplete data sets. We note that this
approach is not necessarily mutually exclusive from
approaches to learning progressions that include multi-
ple threads connecting different content domains (e.g.,

Wilson, 2005, 2009; for reviews of approaches to learning
progressions, see Salinas, 2009). Although data expertise
may be composed of a single continuum, it is also likely
intertwined with understanding specific scientific phe-
nomena and concepts.

Current study

In this observational study, we document student behav-
iors when reading a data-based visualization, such as
looking strategies and scientific reasoning. We are inter-
ested in students who have some experience with data;
they are no longer novices but not yet experts. The abili-
ties, behaviors, and strategies of this population of stu-
dent are less researched compared to complete novices
or even experts. However, this period likely plays a key
role in transitioning from novice to expert, and may rep-
resent a barrier or falling off point for many students. In
examining the knowledge and abilities of intermediate
data interpreters, we can also better understand the kind
of curriculum this population requires to support their
learning. In particular, the current study addresses the
following research questions:

1. What is the portfolio of students’ looking and
behavioral strategies when interpreting complex
data-based visualizations, and how common are
each of these strategies? This includes what infor-
mation they attend to, how they coordinate multi-
ple sources of information, and how they connect
their claims and interpretations with observations
through scientific or logical reasoning.

2. Within this portfolio, which looking and behav-
ioral strategies are associated with greater and
lesser levels of data expertise?

3. Do students who have higher levels of data exper-
tise perform better or differently than students
with lower levels of data expertise when completing
interpretations that are more challenging? For
example, here we examine a summative interpreta-
tive task that requires integrating 2D and 3D infor-
mation from multiple complex data visualizations
along with process models.

Criteria for selecting the task and stimuli

Because a main aim of this study was to document rea-
soning processes, behaviors, and strategies of students,
we used a task that went beyond simply decoding and
describing data, and required interpretation at the outer
limits of their data interpretation skill set. The selected
task (described in “Methods”) is modified from a class-
room activity that coauthor KK had used in teaching
undergraduate geoscience majors and nonmajors, which
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was known to be challenging but not completely out of
reach for this population.

This task was also chosen because it exercises habits of
mind that are particularly characteristic of geosciences
(Manduca & Kastens, 2012). Geoscience often involves
spatial thinking (Kastens & Ishikawa, 2006); the chosen
task requires grappling with Earth phenomena in three
spatial dimensions plus time. Geoscience is primarily an
observational rather than an experimental science; the
chosen task requires abductive reasoning, reasoning in
which the results are observed and the causative process
(es) must be inferred (Magnini, 2004; Oh, 2010). The
chosen task importantly includes color-coded data-based
visualizations of Earth processes. Visualizations are fre-
quently used for seeking patterns and trends in geosci-
ence data (e.g., Merwade & Ruddell, 2012; Ware, 2004),
and are known to present difficulties for students (e.g.,
Hegarty, Canham, & Fabrikant, 2010; Kastens, Shipley,
Boone, & Straccia, 2016; Swenson & Kastens, 2011). The
final criterion in selecting the task was that it should
require students to reason from models of Earth pro-
cesses as they interpret the data, coordinating between
model and data. In science, data are used to inform the
development of models, and then models are used to
shape the interpretation of data. The ability and habit of
mind of comparing the behavior of models with the
behavior of the Earth as captured in data, with the goal
of evaluating and improving models, is central to mod-
ern geosciences—and yet this process can often be invisi-
ble to students (Kastens, 2015).

Scaffolding students’ reasoning

Because we wanted to observe students as they inter-
preted complex data in terms of process models, we
needed to ensure that they had access to models from
which to reason. We used a series of hypothesis arrays
(Kastens, 2009; Kastens et al., 2015) to set up increasingly
complex problems. A hypothesis array provides a range
of candidate hypotheses or explanatory models, which
students can use to organize their data exploration, much
as alternative working hypotheses can help direct an
expert’s exploration of new data (Cleland, 2001). For
example, reasoning about the cause of an observed con-
centration gradient could be scaffolded by a hypothesis
array comprising (a) solute is being added at the high
concentration end, (b) solute is being removed at the low
concentration end, (c) solvent is being added at the
low concentration end, or (d) solvent is being removed at
the high concentration end. Hypothesis arrays can be ver-
bal, diagrammatic, or mathematical. They resemble mul-
tiple-choice questions, but they are distinct in that the
alternative response options are designed to guide

students’ thinking rather than assess their understanding.
Hypothesis arrays may scaffold students’ attempts to
organize their observations by laying out the pertinent
dimensions along which observations could profitably be
considered (Kastens, Agrawal, & Liben, 2009; Mayer,
Mautone, & Prothero, 2002). This structure may allow
for a visual alignment so that similarities and contrasts
are particularly salient, which is an underlying mecha-
nism of reasoning by analogy (Gentner, 1983). Hypothe-
sis arrays allow the student to have some immediate
success during the interview session, scaffolding them to
be able to continue to reason around a challenging data
set. A major benefit of this approach in the research con-
text is that complex reasoning can develop within one
interview session rather than taking all semester.

Methods

Study population and setting

Participants were enrolled in an introductory environ-
mental science course during the Fall 2012 semester at a
private women’s liberal arts college. In this course, the
students studied oceanographic processes in a local estu-
ary through both laboratory and field experiences. Thus,
all students had some experience engaging with oceano-
graphic data: They were no longer complete novices but
not yet experts. Their estuary unit included the following
concepts: (a) Estuaries are regions where salty water from
the ocean mixes with fresher water from inland, forming
a gradient; (b) water density varies depending on salinity
and temperature; (c) density contrast can drive move-
ments of water masses; and (d) dense salty water tends to
flow underneath lower density fresher water.

All of the students who attended class on the day the
study was launched participated in the in-class portion
of the study (95 students). The whole class was invited to
participate in the laboratory portion of the study, which
took place outside of class, with 33 students agreeing to
participate. Because the laboratory portion included rea-
soning about data-based visualizations that included
color, and eye movements were recorded, to participate
in the laboratory portion, participants were required to
not have epilepsy or color blindness, and to have normal
or corrected-to-normal vision. Participants who partici-
pated in the laboratory portion of the study were given a
$15 bookstore gift card.

Materials and equipment

Data-based visualizations
We had students reason about the two-dimensional dis-
tribution of salinity in a map of the Mediterranean Sea
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and adjacent areas, as well as the three-dimensional flow
of salty water, from three vertical profiles in combination
with the map. Students had learned about relevant pro-
cesses in class, but in a sufficiently different context that
they would have to reason from processes and not simply
remember what they had been taught.

Salinity map. The salinity map (Figure 1A) of the Medi-
terranean Sea and surrounding area showed a strong
east–west salinity gradient, from highest salinity in the
eastern Mediterranean Sea (39 parts per thousand [ppt])
to intermediate salinity in the western Mediterranean
Sea (37 ppt) and lowest salinity in the adjacent North
Atlantic (35 ppt). Salinity was shown using color, and a
color bar was underneath the map. Latitude and longi-
tude were shown on the western and southern edges of
the map. The image was created using the data viewer of
the International Research Institute for Climate and
Society (Blumenthal et al., 2014).

Data profiles. The data profiles consisted of three
north–south vertical data profiles of the water column,
successively farther west of Gibraltar (Figure 1D). Each
profile contains a high salinity lens depicted on the image
as a red-centered bull’s-eye. The peak salinity value at the
center of the bull’s-eye diminishes westward. Note that
the high salinity lens is at about 1000m water depth, not
at the seafloor or at the sea surface.

Hypothesis arrays
Students were presented with two kinds of hypothesis
arrays (verbal and diagrammatic), which provided scaf-
folding for reasoning about the salinity map and data
profiles. The verbal hypothesis array outlined four possi-
ble interpretations for the two-dimensional surface salin-
ity gradient across the Mediterranean Sea shown in the
salinity map (Figure 1B). The interpretations were writ-
ten descriptions of two relevant dimensions: if salt or
water is added or removed, and the location of that pro-
cess (e.g., eastern vs. western Mediterranean). The dia-
grammatic hypothesis array outlined four possible
interpretations for the three-dimensional movement of
salinity between the Mediterranean Sea and Atlantic
Ocean using diagrams (Figure 1C). The interpretations
were drawings that represent combinations of two rele-
vant dimensions: location of salinity in the water column
and the direction salinity moves.

Scientifically normative explanations of the hypothesis
arrays. The scientifically normative model within the
array of verbal hypotheses is that an excess of evapora-
tion over precipitation plus runoff in the dry climate of
the eastern Mediterranean causes a net removal of fresh

water in the east (option (b) in Figure 1B). As fresh water
evaporates, salt ions are concentrated in the water
remaining in the basin, and the salinity increases. The
scientifically normative model within the diagrammatic
hypothesis array is that water flowing out of the Mediter-
ranean is saltier than the surrounding Atlantic water,
which tends to makes it denser and inclined to sink, and
yet it is warmer than the Atlantic water, which prevents
it from being dense enough to sink all the way to the sea-
floor (option (c) in Figure 1C).

Video, audio, and eye tracking
Interviews were audio- and video-recorded. The video
camera was positioned to record the full screen, includ-
ing the mouse cursor, and could capture where partici-
pants were pointing. Participants’ eye movements were
also analyzed using a Tobii 2.2 eye tracker, paired with a
Dell Precision laptop. Participants sat 60 cm away from
the monitor. The eye tracker has a data rate of 60 Hz
(i.e., 60 gaze points per second are collected for each
eye). Visual fixations were quantified as duration of indi-
vidual periods of looking within each AOI using the
Tobii software.

Spatial reasoning assessments
All students were assessed on two separate measures
of spatial reasoning: the water-level test (Inhedler &
Piaget, 1964) and the geologic model block test
(Ormand, Manudca, et al., 2014, 2014b). The water-
level test assesses perceptual frames of reference
(Uttal et al., 2013). It is untimed and is composed of
six drawings of straight-sided bottles oriented 30�,
45�, and 60� to the right and left of upright. Partici-
pants indicate where the water would be if the bottle
were about half full, with the correct response always
being a horizontal line. The geologic model block test
assesses a type of spatial visualization referred to as
penetrative thinking (Kali & Orion, 1996; Ormand,
Manudca, et al., 2014; Ormand, Shipley, et al., 2014)
or volumetric thinking (Shipley & Tikoff, 2016). It is
composed of block diagrams showing different geo-
logically possible formations (e.g., a fold) and a verti-
cal slice through the block. Participants identify
which of four candidate cross sections is correct for
that vertical slice. Although items and cross sections
have a geologic foundation, the task is possible to
complete without any geologic knowledge by integrat-
ing the geometric information presented on the dif-
ferent faces. The current study used a shortened
version of the geologic block test; students had
5 minutes to complete eight items that ranged in
difficulty.
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Procedure

In-class portion
An investigator attended a lecture session during the sec-
ond week of the semester to describe the goals and pro-
cedures of the study, obtain informed consent, and
administer the in-class portion. The in-class portion con-
sisted of two pencil-and-paper spatial reasoning meas-
ures: water-level test (Inhedler & Piaget, 1964) and
geologic model block test (Ormand, Manudca, et al.,
2014, 2014b). Spatial assessments were given to assess

the relation between data expertise and spatial reasoning
(part of Research Question 2), as well as assess if the vol-
unteers were representative of the classroom as a whole
(i.e., did volunteers and nonvolunteers have similar levels
of spatial reasoning).

Laboratory portion
Students electing to participate in the out-of-class por-
tion of the study were interviewed and eye tracked indi-
vidually. They were released from 30 minutes of the

• 20 seconds of free exploration
• Describe image.
• What is image of? 
• Where is image?
• What process(es) led to pattern of salinity?

A. Participants saw a salinity map of the Mediterranean Sea

C. All participants were presented with a diagrammatic hypothesis array

B. Then HALF of the participants were presented with a verbal hypothesis array

• Options presented simultaneously
• Participant read options aloud.
• Which is correct? Why?

• Options were presented one at a time: 
A, B, C, then D

• Experimenter described each option
• Which is correct? Why?

D. All participants were presented with data and the diagrammatic hypothesis  array

• Diagrammatic hypothesis array options 
remained on screen 
• Data profiles were presented one at a time: 

10.5°W, 14.5°W, then 18.5°W
• Participant described data profiles.

Summative task:
• Which is correct? Why?

(a) fresh water is being added 
in the western Mediterranean.

(b) fresh water is being removed 
in the eastern Mediterranean.

(c) salt is being added in the 
western Mediterranean.

(d) salt is being added in the 
eastern Mediterranean.

Figure 1. Interview protocol.
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laboratory portion of the class, and interviewed in a quiet
room. The interview protocol was designed to move stu-
dents from relatively simple interpretations (e.g., identifi-
cation of what the data represented) to more complex
reasoning (e.g., inferring 3D structure and processes).
Participants made interpretations while thinking aloud
in response to a series of guiding questions. The guiding
questions, which included the two hypothesis arrays,
scaffolded participants’ observations, allowing for
increasingly complex reasoning about a challenging data
set. (See Figure 1 for a summary of the interview.

Participants began by looking at the salinity map
(Figure 1A) for 20 seconds so that we could capture look-
ing patterns during undirected exploration of a novel
data display. After the initial 20 seconds, participants
were asked a series of questions to examine participant
conceptions about what the image represented: They
were asked to identify what the image showed and where
it was located, and to describe the image to a person in
another building who could not see the image. After the
participant’s description, the investigator identified the
image as a map of salinity data in the Mediterranean Sea
and surrounding area, and explained key features
required to read the map (e.g., less salty areas are shown
in blue and green); this allowed all participants to be able
to make relevant interpretations going forward.

Next, students were asked to hypothesize about the
Earth process(es) responsible for the observed map pat-
tern. This task required the participants to make inter-
pretations from the salinity map plus their knowledge of
Earth processes (Figure 1A), without any interpretive
aids. Half of the participants were then provided with
the verbal hypothesis array and asked to pick the correct
interpretation (Figure 1B).

The next section of the study examined students’ abil-
ity to detect and interpret the tongue of salty water that
emerges from the Straits of Gibraltar and flows in the
middle of the water column westward into the Atlantic.
This task is a three-dimensional reasoning task, requiring
students to coordinate information from the surface
salinity map, hypothesis array options, and vertical data
profiles. Students were initially provided with the salinity
map and diagrammatic hypothesis array (Figure 1C).
They were then asked to identify the correct interpreta-
tion by selecting one of the four diagrams. However, the
data provided are insufficient to distinguish between the
hypothesis array options, because the hypotheses pertain
to subsurface processes and the map data are from the
sea surface only. Students were asked what type of data
they would collect and where they would collect them, as
a prelude to reasoning about the data profiles. The data
profiles were then provided, giving the participants
enough information to complete this task.

Finally, the students completed a summative task.
At this point, the students had progressed through
the interview, which provided scaffolding with the
verbal and diagrammatic hypothesis arrays and pro-
vided all required information and data to determine
the location and direction of the salt tongue. On the
summative task, students were asked for a second
time to select one of the four diagrams that best
depicted the salt tongue, and to explain why they pre-
ferred the selected option.

Analysis of data

Reliability of open-ended data
One cognitive scientist and one geoscientist double-
coded the open-ended portions of the interview. The
cognitive scientist was an expert in analyzing quanti-
tative and qualitative measures of human behavior,
and the geoscientist experienced at scoring student
performance on geoscience tasks. Intercoder reliability
was initially 88%. The two coders discussed the
remaining 12% until 100% intercoder reliability was
reached. This indicates a high degree of reliability in
our coding schemes designed to capture different ele-
ments of students’ reasoning about data.

Analysis of eye movement patterns
To analyze eye movement patterns, the image was
divided into “areas of interest” (AOIs; Figure 2). The
map was divided into three AOIs based on contrasts
of the salinity data: the Atlantic, Western Mediterra-
nean, and Eastern Mediterranean. The map color bar
was similarly divided into three equal sections that
roughly corresponded to the salinity distribution
across the three AOIs in the map: low, medium, and
high. Map latitude and longitude scales, each hypoth-
esis array option, and each vertical data profile were
defined as separate AOIs. The color bar for the data
profiles was divided into AOIs in the same way as
the map color bar.

Analysis of data expertise
Transcripts and gaze records were analyzed post hoc
for observable manifestations of data expertise in
action. A single scale was created from those items
that had sufficient variability to discriminate between
participants, as well as high internal reliability and
strong correlations. The relationships between the
resulting data expertise scale and performance on a
summative data reasoning task and spatial thinking
tasks were assessed.
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Results

In-class portion: Performance on spatial reasoning
measures

All students were assessed in class on two spatial reason-
ing measures: water-level and a modified version of the
geologic block model test. Students represented the
water-level within 5 degrees of horizontal (the correct
orientation) for 56.67% (SD D 33.33%) of the items, and
were within 10 degrees of horizontal for 75.83% (SD D
24.17%) of the items. The mean score on the modified
geologic block test was 49.13% correct (SD D 17.25%).
Participants in the laboratory portion did not differ sig-
nificantly from the students who took only the in-class
portion on either spatial thinking measure (p > .05).
This suggests that the sample who volunteered for the
laboratory portion is not qualitatively different from the
overall class.

Laboratory portion: Opportunities to reason
about data

The following section is organized by research question.
First, we document students’ looking and behavioral
strategies (research question 1) by characterizing looking
patterns from the initial 20 seconds of free exploration
and then analyzing students’ performance, verbal
responses, and spontaneous behaviors, in the order of

presentation in the investigator protocol (Figure 1).
Then, we examine how observed looking and behavioral
strategies relate to one another to form a data expertise
continuum (research question 2). Finally, we assess how
the data expertise continuum is related to performance
and behaviors during a summative task (research ques-
tion 3).

Research question 1: What is the portfolio
of students’ looking and behavioral strategies
when interpreting complex data-based
visualizations, and how common are each
of these strategies?

Characterization of looking patterns in the initial 20
seconds of free exploration
To begin the study, participants were presented with
just the salinity map of the Mediterranean Sea and
adjacent areas and given 20 seconds to freely explore
the image. In order to assess looking patterns, we
considered the gaze sequences of each participant. To
visualize these sequences, we plotted where each par-
ticipant was looking (defined by the AOIs) along the
y-axis and time along the x-axis using Excel, referred
to here as a strategy diagram (Figure 3). Patterns
were identified by reasoning about what looking
behaviors we thought would be useful based on our
own experience as data interpreters and by looking

Diagramma�c 
hypothesis array 

op�on A

Diagramma�c 
hypothesis array 

op�on B

Diagramma�c 
hypothesis array 

op�on C

Diagramma�c 
hypothesis array 

op�on D

Data profile 10.5wData profile 18.5w Data profile 14.5w

Eastern 
Mediterranean

Color bar: 
high salinity

Color bar: 
medium salinity

Color bar: 
low salinity

Atlan�c Western 
Mediterranean

Color bar: 
high salinity

Color bar: 
medium salinity

Color bar: 
low salinity

Figure 2. Screen divided into areas of interest on summative task.
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behaviors evident in the strategy diagrams. Using this
approach, we identified four looking strategies (coor-
dination, comparison, scanning, and lingering) that
were widespread among the participants (Figure 4). A
majority of participants also examined cartographic
elements. These looking patterns are described below
(see Table 1 for a summary of looking pattern fre-
quencies). It is important to note, however, that given
the high degree of freedom of this bottom-up-
approach, there may be additional patterns that were
not identified.

Coordination of the map and color bar. All but one par-
ticipant coordinated the map with the color bar, which is
defined as looking between specific sections of the color
bar and the corresponding area of the map (Figure 4A).
For example, a participant would be categorized as coor-
dinating the map and the color bar if he or she looked
from the high salinity in the color bar to the high salinity
in the eastern Mediterranean. There was not a significant
difference in direction of coordination: map to color bar
vs. color bar to map (p > .05). Such coordination
between corresponding sections of the map and color
bar is significantly more frequent than looking between
noncorresponding sections of the map and color bar
(e.g., looking from the high salinity section of the color
bar to the Atlantic, which has low salinity), even when
controlling for the distances between the map and the
color bar (ts(32) > 4.08, ps < .05).

We hypothesize that participants who rarely coordi-
nate the color bar with the map may have a poor under-
standing of the map’s contents because they did not have
the opportunity to integrate the important pieces of infor-
mation; these participants may not have enough map/

data skills to know that coordination is a useful strategy.
At the other extreme, participants who coordinate the
map and color bar many times may be having a hard time
understanding, and therefore continue to coordinate the
map and color bar in an attempt to figure something out.
Participants who coordinate the map and color bar some-
where in between these extremes may have a good under-
standing; they coordinated the map and color bar once,
understood, and so there was no reason to go back and
coordinate again. It would take a minimum of coordinat-
ing the map and color bar three times to coordinate each
section once, and six times to coordinate each section
twice, thus providing a framework for cutoff scores. Seven
participants coordinated the map and color bar less than
three times, seven coordinated more than six times (a
total of 14 participants with poor coordination strategies),
and the remaining 19 participants coordinated between
three and six times, exhibiting what we considered to be a
good coordination strategy.

Comparison of any areas of interest (AOIs). A majority
(25 of 33) of participants compared areas of the image
(Figure 4B). Comparison is defined as looking at a place
in the image, moving to a second area, back to the origi-
nal area, and finally returning again to the second area.
To note, participants could compare the map and the
color bar in addition to coordinating these areas by look-
ing back and forth between the respective areas of inter-
est the required number of times.

Scanning along the salinity gradient. All participants
scanned along the salinity gradient, which is defined as
looking at an area with low salinity, then medium salinity,
and finally high salinity, or vice versa (Figure 4C).

Figure 3. Example of a strategy diagram: our methodology to identify eye movement patterns. This example is taken from a portion of
the protocol when only the map is visible. The dots show how the participant’s gaze moved from AOI to AOI (vertical axis) across time
(horizontal axis). Although presented as continuous data, it is important to note that the AOIs listed along the vertical axis is actually dis-
crete data; thus, the line passing over a listed AOI does not imply the participants’ gaze correspondingly traversed passed that AOI.
Rather, the participant’s gaze moved directly from dot to dot. Characteristic gaze patterns are labeled: A D coordination, B D lingering,
C D scanning gradient, D D comparison.

62 I. RESNICK ET AL.



Scanning along the gradient was the most common look-
ing pattern, making up 15.6% (west to east) and 14.6%
(east to west) of total observed looking patterns. Partici-
pants did not scan primarily in one direction (e.g., west to
east vs. east to west); they were equally likely to scan in
either direction (p > .05). Participants were not as likely
to follow a discontinuous sequence, such as looking from

high to low salinity and then to medium salinity, which
would reflect looking at the same information but not fol-
lowing along the gradient.

Lingering. Lingering is defined as more than three suc-
cessive fixations in a given location. All but two partici-
pants lingered.

Figure 4. Gaze plots depicting examples of commonly observed looking patterns during participant examination of the map. Each circle
represents a fixation; the larger the circle the longer the fixation. The number within each circle shows the order of the fixations, and the
line between circles shows the eye movement path. A. Coordinating between the map and the color bar. B. Comparing between two
areas of interest. C. Scanning along the gradient.
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Cartographic elements. During the initial 20 seconds of
free exploration of the image, all 33 of the participants
looked at one or more cartographic element, with 33
looking at the color bar, 29 looking at latitude scale, and
31 looking at longitude scale. This finding stands in con-
trast to a companion study of a college population who
were complete novices in Earth science data interpreta-
tion (Kastens et al., 2016); fewer than 38% of those novi-
ces looked at the latitude or longitude scales on maps of
geoscience data.

Analysis of students’ performance and verbal
responses

What is the image?. To begin the study, participants
were shown an image of a salinity map of the Mediterra-
nean and surrounding areas (Figure 1A). After 20 sec-
onds of free exploration, they were asked what the image

is. Thirty-one of the participants correctly identified the
image as a salinity map (although they did not necessar-
ily specify where). The two remaining participants stated
they did not know what the image was.

How do you know what the image is?. After the partici-
pants were asked to identify the image, they are asked
how they knew what the image was. Twenty-nine partici-
pants identified at least one aspect from the image to
explain how they knew what the image was of (e.g., the
salinity label in the color bar). One participant was
unable to provide evidence from the image to support
her response, because she was uncertain what the image
was. The other participant stated, “I just guessed based
on the fact with salinity and I guess we’ve been studying
salinity in water recently.” There was one participant
who initially did not identify the image as a salinity map,
but during her response to this question realized the

Table 1. All elements identified in interview protocol, their frequency, and how they were included in the data expertise scale.

How element was included in data expertise scale

Individual elements from
interview protocol

Percentage of
participants

exhibited a strong
understanding

Not included because a majority of participants
either demonstrated a poor understanding
or did not explicitly demonstrate their

understanding

Not included because a
majority of participants
demonstrated a strong

understanding

Included because
participants

exhibited a range of
responses

Characterization of looking patterns in the initial 20 seconds of free exploration
Coordination of the map

and color bar
58 x

Comparison of any areas of
interest (AOIs)

76a x
Scanning along the salinity

gradient
100a x

Lingering 94a Ranking could not be established because lingering may reflect both strong and weak understandings.
Cartographic elements 100a x

Analysis of students’ performance and verbal responses
What is the image? 94 x
How do you know what

image is?
88 x

Where is image? 27 x
Representation of land in

the salinity map
49 x

2D salinity gradient model
aligned with data

55 x
Characterization of

reasoning about 2D
salinity gradient model

See Figure 5 for
groupings of shared

ideas

Ranking could not be established because all responses included plausibly relevant observations but were
nonnormative explanations.

Verbal hypothesis array
performance

6 x
Initial diagrammatic

hypothesis array
performance

9 x

Where to collect data 42 x
Verbally compared data

profile(s)
85 x

Representation of seafloor in
the data profile(s)

15a x
Cumulative scientific

argumentation score
36 x

Switched diagrammatic
hypothesis array choice
after data

85b x

Note: aPercentage of participants who exhibited behavior; b64% of students did not discuss the representation of seafloor in data profile; cthree participants
appropriately did not switch from their initially correct answer.
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image was a salinity map and thus was able to provide
evidence.

Where is image?. Participants were asked where the
image is located. Although all participants at this point
had identified the image as a salinity map, 20 partici-
pants were unable to identify the map’s location. Nine
participants correctly identified at least one location
within the image. For example, they might have refer-
enced Italy, Spain, or the Mediterranean Sea. Three par-
ticipants did not respond.

Representation of land in the salinity map. In the salin-
ity map, the color black represented land. Although 31 of
33 participants correctly identified the image as a salinity
map, nine held a misconception about what the black
represented. Four participants inverted the black and
color representations, identifying color as representing
land and black representing water. One participant
believed black represented areas with no salinity data but
did not recognize the black as representing land, two
could not identify what black represented, and two did
not understand what any of the colors represented.

2D salinity gradient model. Participants were presented
with the salinity map (Figure 1), and were asked what
process they thought led to the observed pattern. A
majority (28 of 33) described plausibly relevant observa-
tions and/or Earth processes to explain the observed
salinity gradient, whereas five did not respond. These
arguments were analyzed in two ways: is the 2D salinity
gradient model aligned with data, and characterization
of reasoning about 2D salinity gradient model.

Participant responses were coded for whether their
model of the salinity gradient was compatible with the
data (2D salinity gradient model aligned with data). For
example, one participant suggested, “Maybe it [salt] got
trapped in there because it’s [Mediterranean] really
closed off but still part of the ocean.” Although this
response may account for increased salinity in the Medi-
terranean as a whole, it does not explain the gradient
across the Mediterranean Sea. Eleven participants pro-
duced models that did not account for all available data.

Participant responses with shared ideas were grouped
together (characterization of reasoning about 2D salinity
gradient model). Figure 5 presents the resulting catego-
ries of process ideas in the context of the full set of plau-
sible hypotheses identified by the researchers. Figure 5
hierarchically structures how these claims about process
could be substantiated by certain observations and
reasoning.

One of the most frequent claims argued that salt is
trapped in the Mediterranean Sea, such as in the example

provided above (n D 7). However, this claim does not
attach a mechanism to the claim. The other most fre-
quent claim suggested that salt is being increased in the
east relative to the other areas (n D 7). Here, participants
identified runoff from the land as the mechanism, citing
either natural sources or human activity.

Five participants noted there is less movement of
water in the Mediterranean Sea compared to the Atlantic
Ocean, and three participants noted there is less space,
both hypothesizing these factors cause the salinity gradi-
ent. It is interesting to note that less movement is an
inference and less space is actually an observation rather
than a process or mechanism; a further reasoning step
would be required to convert these ideas into a process
capable of causing the observed salinity gradient.

Four participants hypothesized that the water in the
western Mediterranean has been diluted by rain. The
remaining participant responses combined the ideas
described above (n D 4) or presented a unique model
(n D 4).

Although none of these proposed explanations (or
“process ideas”) exactly matches the scientifically norma-
tive explanation, they are all grounded in the observa-
tions and all call upon legitimate Earth processes to
explain the observations.

Verbal hypothesis array performance. Half of the par-
ticipants received a verbal array, outlining four po-
ssible hypotheses, describing the two-dimensional
surface salinity gradient across the Mediterranean Sea
(Figure 1B). Three of the response options were com-
patible with the direction of the salinity gradient
observed in the data, whereas one response option was
not: “Salt was added to the western Mediterranean”
(salt added to the western Mediterranean would have
resulted in a gradient from saltier in the west to less
salty in the east, the opposite of the empirical observa-
tions). Although a majority of the participants chose
an incorrect response option, none chose the response
option that was incompatible with the data (option C).
This suggests the participants were able to construct
or recognize a basic interpretation of what is possible
given what the data represent. Nine participants indi-
cated that salt was being added to the eastern Mediter-
ranean (option D), five indicated that fresh water was
being added to the western Mediterranean (option A),
and two correctly indicated that fresh water is being
removed from the eastern Mediterranean (option B).

Initial diagrammatic hypothesis array performance. All
participants were asked to choose a diagrammatic
hypothesis array response option, which had four
hypotheses describing the three-dimensional movement
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of salinity across the Atlantic and Mediterranean Sea
(Figure 1C). Participants then saw and described three
vertical data profiles (Figure 1D), and were asked once
again to choose a diagrammatic hypothesis array option.
Figure 6 summarizes response patterns before and after
the presentation of data profiles. Notably, 24 participants
initially chose a response option in which salinity trav-
eled along the ocean floor (options A or B), with 16 of
these participants expressing their reasoning that salt
water is heavier than fresh water. This reasoning is
aligned with what the participants were learning about
in class regarding the flow of salty and fresh water in
estuaries, but this happens not to be true for the more
complex case of the Mediterranean. The most frequent
first response (n D 19) was incorrect response option B,
which depicts salt flowing from the Atlantic into the
Mediterranean Sea along the seafloor.

Where to collect data. After reasoning about the first
diagrammatic array, participants were asked where they

would collect data to help them choose the correct
response option. A scientifically normative response
would indicate that samples should be taken at multiple
depths and at multiple locations along an east–west tran-
sect. Fourteen participants correctly identified locations
within both the vertical water column (e.g., middle of
water column) and horizontal dimension. For example,
one participant stated, “You would want to collect the
salinity and the correlation of salinity and depth; that
will narrow it down and then. I don’t really know how
you can test direction. I guess you can measure it at dif-
ferent data points that are west versus east.” Eighteen
participants identified only one location within the verti-
cal water column (e.g., the seafloor). One participant did
not respond.

Verbally compared data profiles. Participants were
sequentially presented with three data profiles, and asked
to describe each data profile. When describing the sec-
ond and third data profile, 28 participants made explicit

Salt is abundant in 
the east

Salt is added in the 
east

Runoff (from natural 
sources OR human 

ac�vity)

Dissolu�on from salt 
deposits below 

seafloor

Freshwater is added 
in the ocean/west

Rain dilutes 
ocean/west

Freshwater is 
removed in the east Evapora�on

Hot weather (through 
experience or 

knowledge of the 
Mediterranean OR 

through observa�on of 
la�tude)

water is surrounded 
by land 

(e.g., closed off)

Salt gets trapped

Less movement

Less space

*counts do not sum to the 
total number of par�cipants 

because four par�cipants gave 
a combina�on of responses

n=7

n=0

n=5

n=2

n=7

n=5

n=3

Unstated

Figure 5. 2D salinity gradient model concept flow chart. Shows potential reasoning from an observation (first column), to reasoning
(second column), to claim (third column). n represents the number of participant responses that include that response.
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verbal comparisons between data profiles. For example,
one stated, “It [the second data profile] is basically very
similar to the other graph except the red spot is less pro-
nounced. It is a bit more faded which means that there is
less salinity in that area.”

Representation of seafloor in the data profile(s). In the
data profiles the seafloor and sub-seafloor were repre-
sented by the color white. In their description of the data
profiles, 12 participants explicitly demonstrate either an
understanding (five) or a misconception (seven) of what
the white color represented. An example of a misconcep-
tion includes one participant’s response: “The very bot-
tom is white, and I’m guessing that that means that it is
either data hasn;t been collected or it’s just not salty at
all.” The remaining 21 participants did not discuss the
white color or mention a white form in their response.

Cumulative scientific argumentation score. Participants
were asked to hypothesize why a salinity gradient was
present in the map, as well as to provide an initial
hypothesis for the direction and location in the water
column in which salinity is distributed (steps 1A and 1C
of Figure 1). In each case, participants provided reason-
ing to explain their hypotheses. Strong scientific argu-
mentation is categorized as having a claim, evidence, and
reasoning that links the claim with the evidence through

a scientific principle or model, and potentially a rebuttal
for alternative explanations (McNeil & Krajcik, 2012).

Participants’ responses were coded for the presence of
a claim, evidence, reasoning, and rebuttal, as defined by
(McNeil & Krajcik, 2012). A claim is defined as a state-
ment of conclusion that answers an original question or
problem. Evidence is defined as empirical observations
or data that supports the claim. The data/information
needs to be relevant, accurate, and sufficient to support
the claim. Whereas (McNeil & Krajcik, 2012) identified
one type of reasoning, we differentiate between two types
of reasoning. The lower-level reasoning invokes a mech-
anism, process, principle, or model as defense for the
claim. More sophisticated reasoning explains how the
mechanism, process, principle, or model serves to logi-
cally connect or link data/evidence with the claim. For
example, lower-level reasoning about the vertical data
profiles might include a statement that saltier water is
moving along the middle of the water column (claim),
the observation that the saltier water in the vertical pro-
files is in the middle of the water column (evidence), and
a relevant process statement that saltier water is heavier
than fresher water. Higher-level reasoning would further
explain that because saltier water is heavier than fresher
water it would therefore sink within the water column.
Rebuttal is defined as recognizing, rejecting, and provid-
ing reasoning for rejecting an alternative explanation. A
rebuttal would include spontaneously identifying that

5 9

1

3

1

3

Flow Direc�on
E -> W

Flow Direc�on
W -> E

Hugs Sea Floor

Middle of 
Water Column

18

1

1

Figure 6. Pattern of responses before and after the presentation of data on the diagrammatic hypothesis array. Arrows represent move-
ment from initial response to response after the presentation of data. Circles represent participants who did not change their response.
Numbers indicate how many participants exhibited each pattern. The red box marks the correct answer.
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saltier water would not be towards the top of the water
column because saltier water is heavier than fresh water
(rebuttal).

Responses were scored on a 0–5 point scale: having no
claim (0); having a claim (1); having claim plus evidence
(2); having claim, evidence, plus reasoning that states a
relevant principle/model/ mechanism/process (3); hav-
ing claim, evidence, plus reasoning that provides a logical
linkage (4); and having a claim, evidence, reasoning with
linkage, plus rebuttal (5). If a response had some ele-
ments, but not all, of a given score, the participant was
assigned the lowest score for what he or she provided.
For example, a response containing a claim, evidence,
and reasoning would be scored as a 3. However, if the
response only contained a claim and reasoning, but no
evidence, it would be scored as a 1 (claim only). This
occurred on 10% of responses. Twelve participants had
scores of 3 or higher, indicating they had strong scientific
reasoning, whereas the remaining 21 participants had
scores of 0 to 2, indicating they did not have strong sci-
entific reasoning. Note that the scientific argumentation
score did not include responses to the summative task.

Switched diagrammatic hypothesis array choice after
data. After the presentation of the three data profiles,
participants were asked to choose from the diagrammatic
hypothesis array response options for a second time.
Three participants correctly kept the correct response
option (C), two kept their incorrect response, and 28
switched their response choice. This suggests these par-
ticipants are willing to change their mental model to fit
new data. Notably, 26 of 28 switched to a better response
(from bottom to middle of water column, from W!E to
E!W direction of flow, or both). Of those participants
who initially chose response option B, eight switched to
correct answer C (salinity flows from Mediterranean to
Atlantic in middle of water column), whereas nine
switched to incorrect response option D (salinity flows
from Atlantic to Mediterranean along seafloor).

Research Question 2: Within this portfolio, which
looking and behavioral strategies are associated
with greater and lesser levels of data expertise?

Data expertise continuum
Emergent in the interview was the opportunity to explore
a new construct: data expertise. Students progressed
through the interview, ending in a summative task, a
final question in which they were asked to choose a dia-
grammatic hypothesis array option and justify that
choice for a second time after seeing the three data pro-
files. Each of the behaviors and understandings exhibited
throughout the interview could have contributed to

competence on this summative task. Thus, instances of
reasoning about data were identified throughout the
interview (excluding performance on, and behaviors dur-
ing, the summative task), and examined for how well
they fit together as a single scale (Table 1).

Development of data expertise scale. Two elements were
not considered for inclusion in the data expertise scale
because it was not clear if the behavior reflected a strong
versus weak understanding: lingering in AOIs and char-
acterization of reasoning about 2D salinity gradient
model. Lingering in an AOI could reflect the student was
having trouble understanding, was having higher-level
thoughts about that AOI, or the mind wandered alto-
gether. In the characterization of reasoning about 2D
salinity gradient model, we were unable to rank the accu-
racy of responses, because they all included plausibly rel-
evant outcomes and were nonnormative scientific
explanations. We note, however, most of the participants
exhibited these behaviors, suggesting their inclusion in
the scale might not have added useful information.

A number of elements were not included in the data
expertise scale because of their limited variability. For
the following elements, a large majority of participants
demonstrated a strong understanding (e.g., over 94%
were able to correctly identify the image as a salinity
map): what is the image, how do you know what the
image is, switched diagrammatic hypothesis array choice
after data, and compared data profiles. For the following
elements, a large majority of participants demonstrated a
weak understanding (e.g., only three chose the correct
response option for the initial diagrammatic hypothesis
array) or a majority did not explicitly demonstrate their
level of understanding: diagrammatic hypothesis array
choice, verbal hypothesis array choice, and representation
of the seafloor in the data profile.

Between these two extremes, however, there were six
elements of data expertise that had sufficient variability
to discriminate among participants. These were coordi-
nation of the map and color bar, representation of land in
salinity map, 2D salinity gradient model aligned with
data, where to collect data, scientific argumentation, and
where the image is. For these elements, participants were
scored either a 0 to indicate they did not understand/did
not do well on that element or a 1 to indicate they did
understand and did well (as defined above). See Table 2
for the distribution of performance on these six elements.

A Rasch analysis (Rasch, 1960/1980) was conducted
to assess the appropriateness of summing these individ-
ual elements into a single data expertise scale. The six
items had an internal reliability of 0.82, which suggests
that they are consistent in measuring the same construct
(above 0.7 is acceptable). The test statistic (infit zstd),
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which can be interpreted as a z-score, was 0.8. This
means that the items were within 0.8 standard deviations
from the model, suggesting a strong fit (an infit zstd
between –2.0 and 2.0 is acceptable).

Points were summed to yield a data expertise scale
(0–6). See Table 2 for the distribution of data expertise
across participants. Scores were converted to percentages,
so instances in which participants did not explicitly
demonstrate their level of understanding did not

influence their score. Importantly, participant scores
had a normal distribution, ranging from 0% (demon-
strated a weak understanding on all elements) to
100% (demonstrated a strong understanding on all
elements; Figure 7). Neither spatial thinking task was
predictive of data expertise.

Research Question 3: Do students who have higher
levels of data expertise perform better or differently
than students with lower levels of data expertise
when completing interpretations that are more
challenging?

As noted previously, the data expertise scale was developed
by examining instances throughout the interview, which
led to a summative task. The summative task was to iden-
tify the correct diagrammatic hypothesis array option after
viewing all available data and information. Recall that 19
participants initially chose diagrammatic response option
B, with eight switching to the correct option C and nine
switching to incorrect option D. Of these participants who
initially chose B and then switched, participants with a

Table 2. Distribution of participant responses for each element considered for inclusive in the data expertise scale.

ID
Coordination of the
map and color bar

Representation of land
in the salinity map

2D salinity gradient
model aligned with data

Where to
collect data

Cumulative scientific
argumentation score

Where is
image?

Raw data
expertise score

9 1 1 1 1 1 1 6
20 1 1 1 1 1 1 6
17 1 1 1 1 1 5
30 0 1 1 1 0 1 4
32 1 1 1 1 0 4
19 1 1 1 1 0 0 4
31 1 1 0 1 1 0 4
33 1 1 0 0 1 1 4
6 1 0 1 1 1 0 4
1 1 1 0 0 1 3
3 0 1 1 1 3
11 0 1 0 1 0 1 3
13 1 1 0 0 1 3
15 0 1 1 1 0 0 3
24 1 1 0 0 0 1 3
2 1 1 0 0 1 3
18 0 0 1 0 1 0 2
23 0 1 1 0 0 0 2
4 1 1 0 0 0 0 2
8 0 0 1 1 0 0 2
14 1 0 1 0 0 2
16 0 0 1 0 1 0 2
25 0 1 0 0 0 1 2
26 1 1 0 0 0 2
29 0 1 1 0 0 2
12 0 1 1 0 2
22 0 0 0 0 1 0 1
7 1 0 0 0 0 1
21 1 0 0 1
10 1 0 0 0 0 1
28 1 0 0 0 0 0 1
5 0 0 0 0 0
27 0 0 0 0 0 0 0

Note: Each column represents a potential element of data expertise. Each row represents an individual participant. Dark gray (score of 1) indicates the participant
demonstrated strong understanding within that element. Light gray (score of 0) indicates the participant demonstrated a weak understanding within that ele-
ment. White (no score) indicates where participants’ understanding was not explicitly demonstrated. The participant with the highest data expertise score is
located in the top row and extending downward to the participant with the lowest expertise score in the bottom row.
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Figure 7. Distribution of participants on data expertise scale.
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high data expertise score were significantly more likely to
switch to the correct response option compared to those
with a low data expertise score (t(15) D 2.99, p D .009).
For this analysis, high and low data expertise was deter-
mined using a median split.

Data expertise is inversely correlated with how long it
took to respond to the summative task, choosing a dia-
grammatic hypothesis array option after being presented
with all available data (r D .35, p D .04); as data expertise
increases, the length of time to respond decreases. This
correlation is true of both how long it took participants
to begin speaking and how long after they began speak-
ing until they chose a response option (Table 3). Partici-
pants with lower data expertise took on average four
times longer to begin speaking and nine times longer to
choose a response after beginning to speak.

There was also a difference in looking patterns on the
summative task between participants with low data exper-
tise and high data expertise. High data expertise is corre-
lated with increased looking time at the data when
choosing a diagrammatic response option after seeing the
vertical profiles (r D .45, p < .01) and decreased looking
time at the color bar (mean time (r D .36, p D .02) com-
pared to low data expertise. Table 4 shows mean looking
times and illustrates this overall pattern with data from
two participants as examples, both of whom ultimately
chose response option C, but one with high and one with
low data expertise. The two example “heat maps” show
the accumulated fixation duration relative to the total
viewing time (referred to as “relative duration”). This
accounts for the different overall looking times of individ-
ual participants. No normalization filters were used.
Overall, there is a tendency for participants with high
data expertise to spend more time looking at data and for
participants with low data expertise to spend more time
looking at the color bar. Neither spatial thinking task was
predictive of behaviors during the summative task.

Discussion

The current study provides a richly nuanced portrait
of students’ reasoning about simple and more complex

tasks using a data-based visualization from profes-
sionally collected data (research question 1). Many of
these students seem to be in an interesting transitional
state. They are successfully decoding and describing
data, successfully accessing relevant bits of knowledge
about the Earth systems, successfully recognizing sig-
nificant patterns in the visually available data, and suc-
cessfully generating some claims/evidence/reasoning
(e.g., Figure 5). Yet they are not necessarily pulling all
of these elements together to generate scientifically
normative explanations. In terms of scientific knowl-
edge integration, these students have many of the
ingredients, but they are not necessarily successfully
combining them.

This population of students is no longer complete
novices; they have substantial knowledge about how to
read scientific visualizations and reason about relevant
processes, and are willing to change their mental
model in light of new data (Figure 6). This is in stark
contrast to other studies examining novices’ ability to
read data-based visualizations. For example, many
novices are unable to successfully identify what a data-
based visualization represents (Cid, Lopez, & Lazarus,
2009; Swanson & Kastens, 2011), do not look at
important cartographic elements and labels (Kastens
et al., 2016), and focus on irrelevant but perceptually
salient aspects of visualizations (Lowe, 1999) such as
objects included for scale (Coyan, Busch, & Reynolds,
2010; Morton, 2010). Additionally, many students are
unwilling to accept the scientifically normative model
when they already have a na€ıve explanation of the phe-
nomenon (Chi, 2005).

Data expertise continuum

Conceptualizing skill in reasoning and interacting with
data along a data expertise continuum is important both
theoretically, in characterizing a progression from novice
to expert, and practically, in developing teaching and
assessment materials. The current study identified six
looking and behavioral strategies within our interview
sessions that may be related to a data expertise scale
(research question 2). From the six elements that
emerged in this study, we suggest the following broader
habits of mind that may generalize across a wider range
of data tasks: (a) coordinate data with a diagrammatic
model, (b) compare and contrast across data representa-
tions from different times or places, and (c) extract 3D
structure from multiple 2D representations. Such skills
may be thought of as being a part of representational
competence, which is the set of skills required to use
external representations for problem solving (Kozma &
Russell, 1997; Nathan, Stephens, Masarik, Alibali, &

Table 3. Mean time to respond to diagrammatic hypothesis array
after data based on a median split.

Time to begin
speaking(s)

Time after
speaking to pick a
response option(s)

Total time from
question to
response(s)

High data
expertise
score

3.8 4.4 8.2

Low data
expertise
score

16.2 39.2 55.4
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Table 4. Average looking times for participants with high vs. low data expertise during summative task, with examples from one high
and one low data expertise individual.

Mean looking
time in seconds

(standard
deviation)

Data expertise
score

Data
section

Color
bar Example of looking patterns

High data
expertise

23.62
(5.46)

9.08
(5.15)

Low data
expertise

17.31
(2.34)

14.24
(2.43)

Note: Duration in heat map is represented as a scale from green (relatively shorter duration) to red (relatively longer duration). Although both participants looked
along the salinity gradient and chose the same correct response, the participant with high data expertise spent a greater proportion of time looking at the data
and the participant with low data expertise spent a greater proportion of time looking at the color bars.
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Koedinger, 2002; Wu, Krajcik, & Soloway, 2001). Such
tasks are by no means limited to this particular data set,
and may represent a subset of the metrics that may be
useful in developing a general data expertise scale. Addi-
tionally, certain data reasoning tasks and skills may be
diagnostic only at limited locations on the data expertise
continuum. For example, in the current study, most par-
ticipants switched their response after seeing additional
data, most compared the data profiles, and all looked at
cartographic elements. Because there was little to no var-
iation, these particular behaviors were not diagnostic for
this intermediate population. However, these behaviors
might have been diagnostic for students lower on the
data expertise continuum.

Our final research question examined how the data
expertise continuum scale related to performance and
behaviors on a summative task (research question 3).
Higher data expertise was related to switching to the nor-
mative scientific explanation on the summative task, pro-
viding validity to the data expertise scale. Participants
with weaker data expertise took longer to begin and to
complete their response on the summative task. Partici-
pants with weaker data expertise also spent relatively
more time looking at the color bar, whereas participants
with higher data expertise spent relatively more time
looking at the data. Taken together, this suggests that
participants with stronger data expertise may possess
better and more efficient strategies for reasoning.

Limitations of the study

While the participants reasoned about the data-based
visualizations, their eye-movements were recorded.
This eye-tracking methodology was useful in identify-
ing common looking patterns and strategies. How-
ever, there were also a number of limitations. Where
a participant looks is likely influenced by task
demands (e.g., What has the participant been asked
to do, and what are they talking about?). Where par-
ticipants loos may also not correspond to what they
are thinking about in that moment. For example, we
noticed that participants spent a lot of time fixating
on the middle of the screen (which was straight
ahead), perhaps drifting into a series of thoughts or
no thoughts at all. Thus, researchers using eye-track-
ing methodologies should take care not to place theo-
retically important AOIs in the middle of the screen.

The aim of the hypothesis array is to scaffold student
thinking around relevant dimensions. Researchers and
educators interested in using hypothesis arrays should
consider how the structure of the hypothesis array may
influence students’ reasoning. For example, the verbal
hypothesis array used in the current study included three

response options that suggested something was added
and only one response option that suggested something
was taken away. This could have led students to engage
in a test-taking strategy (do not chose the option that is
different from all the rest) rather than reasoning about
the data. Finally, the current study included only female
students in one class at one institution. Thus, it is possi-
ble that different findings would emerge among a
broader student sample.

Educational implications

In guiding students from complete novice to expert, it is
essential to know what skills they bring to bear as they
progress along this continuum. In this way, instructors
and curriculum developers can prepare appropriate and
meaningful lessons for targeted skill levels. The current
study identified an intermediate population of students
and characterized their reasoning.

One area of difficulty these students faced was being
able to think about something that was not there. For
example, in the verbal hypothesis array, only two partici-
pants chose the response option that something was
removed; the majority of participants chose response
options that indicated that either fresh water or salt was
added. Additionally, 25% to 30% of the participants did
not understand that the black in the salinity map and the
white in the data profiles, respectively, represented an
absence of data. Having difficulty reasoning about the
absence of something is consistent with findings from
the field of perception, showing it is easier to locate an
object based on the presence of a feature rather than its
absence (Treisman & Gormican, 1988; Treisman &
Souther, 1985). People similarly reason differently about
missing versus present concepts and actions (Spranca,
Minsk, & Baron, 1991). Thus, it may be particularly use-
ful to explicitly identify absences of phenomena within a
given data set, and actively scaffold student reasoning
around the reason for its absence.

Another stumbling block for these students arose
when the available data were not sufficient to adequately
constrain the interpretation. In the current study, all of
the participants chose and defended a response option
when they were first shown the diagrammatic hypothesis
array, despite the fact that they had not yet been pro-
vided with enough information to determine the correct
answer. The participants did not recognize that the data
they had at the time of this question was ambiguous. A
better response would have been to say there was not
enough information available to answer the question,
but no student did so. Students may have been habitu-
ated to expect that all school questions should be answer-
able. Future research should examine the utility of first
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asking students if a question can be answered given the
data in hand. Such an approach may promote thinking
about what kind of data is required to reason about sci-
entific processes, and could be incorporated into other
similar approaches. For example, the knowledge integra-
tion approach advocates for scaffolding students to eval-
uate evidence, articulate their thinking, and connect
ideas (e.g., Clark & Linn, 2003/2009; Linn, 2000; Linn,
Clark, & Slotta, 2003), and the backward fading scaffold-
ing approach explicitly scaffolds students to identify
alignments and misalignments between evidence and
claim (Slater, Slater, & Lyons, 2010; Slater, Slater, & Sha-
ner, 2008).

Ability to generate explanatory models, to compare
the behavior of a model with the behavior of the Earth
as captured in data, and to evaluate the veracity of com-
peting models is an essential skill for a geoscientist—but
it is difficult to teach or assess. Although the students in
the current study did not produce scientifically norma-
tive models, the course professor noted that they never-
theless generated substantially more sophisticated
reasoning and models of Earth processes than was typi-
cal. We believe our use of hypothesis arrays as part of
our experimental design facilitated and scaffolded
deeper reasoning than students could otherwise have
produced. Whereas we used the hypothesis array in a
research study, the same technique can be used in cur-
riculum design and instruction (Kastens et al., 2015;
Mayer et al., 2002).

Directions for further research

We have identified a broad portfolio of behaviors and
strategies that were exhibited by students working at the
outer limits of their data interpretation expertise, and
have quantified which of these were more or less com-
mon and which were more or less strongly associated
with data expertise. Some of these behaviors and strate-
gies are presumably idiosyncratic to our particular stim-
uli and tasks. It would be valuable to do a similar
analysis for other data types and parts of the Earth sys-
tem. By comparing across studies, we could then deduce
which are of broad or universal importance, and could
craft instructional strategies to nurture the most valuable.

Future research should examine if a single data
expertise scale is generalizable to multiple fields, or if
there are multiple threads within different content
domains (Wilson, 2005, 2009). If one achieves data
expertise in one domain (e.g., geology), does the
ability to reason about data transfer to other fields
(e.g., biology, economics)? If not, are there specific
data reasoning skills that transfer to other disciplines,
and would they transfer only at specific points on the

data expertise continuum? For example, there may be
basic data-reading skills that transfer (e.g., reading
labels), whereas more complex practices do not.
Finally, is data expertise a stable construct within a
field but across different kinds of data representation?

When a geoscientist looks at the diagrammatic models,
such as those in Figure 1D with a static image showing
process, the expert is likely to visualize (or otherwise men-
tally represent) the motion or change. The expert has the
ability and the habit of mind of turning a static represen-
tation into a dynamic model, of “running” a conceptual
model in his or her head, and then comparing the behav-
ior of themodel with the behavior of the Earth as captured
in data. This is what we hoped the students were doing.
Certainly, they were engaging with the alternative models,
contrasting the models with one another, comparing the
models with the data. However, the current study does
not tell us whether they actually reached the point of cre-
ating and using runnable mental models. If students were
generating and running models to compare to data, this
would be a significant step toward developing the habit of
changing one’s conceptual model when faced with data
that disagree with the model. Developing research proto-
cols and then classroom assessments to detect when stu-
dents are using runnable mental models remains a
challenge for another day.
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