

Dissolution of complex metal oxides from first-principles and thermodynamics: Cation removal from the (001) surface of Li(NiMnCo)O

Joseph Bennett, Diamond Jones, Xu Huang, Robert J Hamers, and Sara E. Mason

Environ. Sci. Technol., **Just Accepted Manuscript** • DOI: 10.1021/acs.est.8b00054 • Publication Date (Web): 13 Apr 2018

Downloaded from <http://pubs.acs.org> on April 17, 2018

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

ACS Publications

is published by the American Chemical Society, 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Dissolution of complex metal oxides from first-principles and thermodynamics: Cation removal from the (001) surface of $\text{Li}(\text{Ni}_{1/3}\text{Mn}_{1/3}\text{Co}_{1/3})\text{O}_2$

Joseph W. Bennett¹, Diamond Jones¹, Xu Huang¹, Robert J. Hamers² and Sara

E. Mason^{1**}

1: Department of Chemistry

University of Iowa, Iowa City, Iowa 52242;

2: Department of Chemistry

University of Wisconsin-Madison, Madison, WI 53706

E-mail: sara-mason@uiowa.edu

*To whom correspondence should be addressed

1 Abstract

2 The rapid increase in use of Li-ion batteries in portable electronics has created a pressing
3 need to understand the environmental impact and long-term fate of electronic waste (e-waste)
4 products such as heavy and/or reactive metals. The type of e-waste that we focus on here
5 are the complex metal oxide nanomaterials that compose Li-ion battery cathodes. While in
6 operation the complex metal oxides are in a hermetically sealed container. However, at the
7 end of life, improper disposal can cause structural transformations such as dissolution and
8 metal leaching, resulting in a significant exposure risk to the surrounding environment. The
9 transformations that occur between operational to environmental settings gives rise to a stark
10 knowledge gap between macroscopic design and molecular-level behavior. In this study we
11 use theory and modeling to describe and explain previously published experimental data for
12 cation release from $\text{Li}(\text{Ni}_{1/3}\text{Mn}_{1/3}\text{Co}_{1/3})\text{O}_2$ (NMC) nanoparticles in an aqueous environment
13 (*Chem. Mater.* **2016** (28) 1092-1100). To better understand the transformations that may
14 occur when this material is exposed to the environment, we compute the free energy of surface
15 dissolution, ΔG , from the complex metal oxide NMC for a range of surface terminations and
16 pH.

17 Introduction

18 Complex metal oxides (CMOs) have transformed the way in which technology is used worldwide,
19 with an extensive, ever-increasing number of applications being discovered on an almost daily ba-
20 sis (1). Nanoscale CMOs have been incorporated into energy production technologies, form the
21 basis of contaminant remedians (2, 3), and can be found in widespread commercially available
22 items such as sunscreen, or in electric vehicles, where they constitute a majority of the electroac-
23 tive components of a Li-ion battery (4–6). Recent studies have postulated that the large scale
24 industrial production and subsequent use of CMOs may lead to inadvertent releases of CMOs into
25 the environment, and that these exposures may be problematic in the immediate future (7). A key
26 example here is that there is no foreseeable economic benefit or globally regulated system in place

27 to recycle electronic waste ("e-waste") such as spent Li-ion batteries (8). Even though research has
28 shown that the toxicants associated with CMOs from discarded electronic devices can leach into
29 the environment and pose a serious risk to human health (9), there is no (inter)national infrastruc-
30 ture for recycling lithium-ion batteries. This is especially problematic for the developing countries
31 (with less stringent environmental regulations) to which a majority of our e-waste is shipped.

32 The environmental and biological impact of nanoscale CMOs are largely unknown (10–12),
33 and this has resulted in one of the grand challenges of modern chemistry. In response, investiga-
34 tions at the nano-bio interface have emerged, where "safe-by-design" research has focused on how
35 to optimize or maintain nanomaterial-based device performance while minimizing adverse biolog-
36 ical impact (13–15). To address the negative biological impacts that result from exposure, and to
37 align closely with the principles of green chemistry (16), the nano-bio community has called for
38 safer, sustainable design rules across all stages of the life cycle of the CMOs.

39 One looming problem remains: there is still a large fundamental knowledge gap in design-
40 ing and developing sustainable nanotechnology, and that is the ability to predict the properties of
41 CMOs as a function of environmental changes. Nanoscale CMOs have a high surface to volume
42 ratio and exhibit reactivities that depend strongly upon their local chemical surroundings. It has
43 been demonstrated that properties such as (hetero)agglomeration can be controlled in aqueous me-
44 dia as a function of pH, ion species, and ionic strength (17, 18). This also implies that CMOs are
45 able to react to and transform rapidly with changes in their surroundings (19, 20), and that the fate,
46 transport and toxicology of transformed CMOs are most times unidentified. The lack of molecular
47 understanding of nanoscale CMOs transformations is noted as a weakness in nano Environmen-
48 tal Health and Safety (nanoEHS) (21), and there is a need to isolate the set(s) of parameters that
49 govern nanoscale CMO transformations.

50 First-principles DFT has already led to a revolutionary development of the CMO materials
51 that compose a Li-ion battery (22–33), specifically the cathode materials (34–38). The inter-
52 play of computable information (39–42) and experimental endeavors has resulted in a booming
53 industry (43, 44). While DFT-based research has broadly impacted materials design (45–49), the

54 complexity and heterogeneity of CMOs in the environment complicates the direct application of
55 electronic structure methods. However, by using DFT in conjunction with thermodynamic mod-
56eling, the effects of finite pressure and temperature conditions and macroscopic properties can be
57 taken into account to understand the nanoscale transformations of CMOs that accompany changes
58 in the chemical environment.

59 Analyses that combine DFT and thermodynamics can be used to elucidate how changes in
60 environmental conditions will result in changes in CMO surface structure, and hence reactivity. A
61 recent example of how this was applied to the CMO LiCoO_2 (LCO) demonstrated that comparing
62 the results of an atomistic thermodynamic surface free energy analysis to a general DFT + solvent
63 ion model based on Hess's Law (50) showed that two different surface terminations dominate the
64 experimentally/environmentally relevant portions of the LCO phase-diagram (51), either a Li or
65 H-terminated surface. Under ambient hydrated conditions, Li will exchange for H (from water)
66 to create surface OH bonds. The interpretation is that there is a thermodynamic driving force for
67 surface Li to dissolve, and ultimately be replaced by water products (H or OH abstracted from
68 an aqueous solution) on the surface. In showing that it was favorable for Li to dissolve from
69 LCO, the modeling agrees with the experimentally observed dissolution trend ($\text{Li} > \text{Co}$) of LCO
70 nanomaterials (52, 53) as determined by non-linear optical studies.

71 $\text{Li}(\text{Ni}_{1/3}\text{Mn}_{1/3}\text{Co}_{1/3})\text{O}_2$ (NMC) (54–58), a compositionally tuned variant of LCO, is a CMO
72 that is a likely candidate for large-scale commercialization and deployment in electric vehicles.
73 This makes it a candidate material for increased environmental exposure during its fabrication,
74 operation, and disposal. Recent work on biological-CMO interactions using NMC flakes (of 7
75 transition metal-oxide (TM-O) layer thickness) has shown that NMC has a negative impact; expo-
76 sure to 5 mg/L concentrations impaired *Shewanella oneidensis* MR-1 bacterial growth (59), and 1
77 mg/L concentrations interrupted the reproduction and survival of *Daphnia Magna* (60). Exposure
78 studies demonstrated that the toxicity can be related to the dissolution of Ni and Co cations from
79 NMC, and that the dissolution is time-dependent. Measurements of dissolved ion concentration
80 showed that much more Li and Ni dissolved out of NMC than Co and Mn for the entire range of

81 times investigated. Therefore, the trend in dissolution rates is Li > Ni > Co≈Mn (59, 61).

82 In this study we aim to elucidate the thermodynamic driving force behind the incongruent
83 dissolution of NMC, with an overarching goal of providing molecular-level insight and chemical
84 guidance to the redesign of CMOs with reduced biological impact. We adapt a combined DFT
85 + thermodynamics approach to compute the free energy (ΔG) of dissolution of *TM* from NMC.
86 We establish a correlation between our computed ΔG to the observed dissolution rate trends. Be-
87 yond establishing strong connections to, and interpretations of, experimental dissolution results,
88 we go on to provide information from our theoretical calculations to guide future experiments.
89 Specifically, we systematically vary surface lithiation and hydrogen coverage, and transition metal
90 vacancy densities to provide insight into how these variables affect or control dissolution. Our
91 NMC dissolution study provides computationally derived rules for CMO redesign to mitigate neg-
92 ative impact at the nano-bio interface.

93 Materials and Methods

94 Periodic DFT calculations (62, 63) of bulk and surface structures are performed using the open
95 source Quantum Espresso software package (64). Each atom is represented using ultrasoft GBRV-
96 type pseudopotentials (65, 66). All calculations use a plane-wave cutoff of 40 Ry for the wave-
97 function and 320 Ry for the charge density. All atoms are allowed to relax during structural opti-
98 mizations, and the convergence criteria for the self-consistent relaxation was a maximum residual
99 force of 5 meV/ per atom. Calculations are performed at the GGA level (67), unless otherwise
100 noted.

101 The bulk NMC cell is a $(\sqrt{3} \times \sqrt{3})R30^\circ \times 2$ modification of a hexagonal LCO primitive cell.
102 LCO belongs to the NaFeO₂-Delafoelite structure type, and is described in previous studies (28,
103 51). The bulk NMC cell contains 6 transition metal oxide layers (O-TM-O). To create NMC
104 from LCO, a substitution of 1/3 of the Co³⁺ for Ni²⁺ and 1/3 of the Co³⁺ for Mn⁴⁺ is made in
105 a perfectly alternating manner that adheres to the trigonal symmetries of the delafoselite structure

¹⁰⁶ type and maintains charge neutrality. The transition metal (*TM*) ordering in each layer is shown
¹⁰⁷ on the left hand-side of Figure 1, and a condensed version of the vertical direction is shown on the
¹⁰⁸ right-hand side of Figure 1. A $6 \times 6 \times 1$ *k*-point grid (68) is used for calculations of the bulk NMC
¹⁰⁹ structure.

¹¹⁰ The bulk NMC cell is used to generate surface slabs. Prior experimental work (59) described
¹¹¹ the NMC as nanosheets with at least 7 (O-*TM*-O) layers, which would be computationally expen-
¹¹² sive using DFT methods. Therefore, the surface slabs generated here have 4 total transition metal
¹¹³ oxide layers, of which the 2 exterior and 2 interior are related by inversion symmetry, respectively.
¹¹⁴ Each layer contains 3 *TM* sites. To create supercells of these slabs one can multiply cell dimension
¹¹⁵ *a* by integers *n*=2,3, etc. Here, the surface slabs are multiplied by 2 to obtain reference slabs; $2\sqrt{3}$
¹¹⁶ $\times \sqrt{3}$ supercell slabs are able to support 1/2 coverage of either Li or H, denoted as $\text{NMC}_{\text{h-Li}}$, and
¹¹⁷ $\text{NMC}_{\text{h-H}}$, respectively. Each contains 6 total *TM* sites per layer so removal of 1 *TM* from these
¹¹⁸ slabs results in a *TM* vacancy density of 16.67%. These half-coverages, shown in Figure 2, are
¹¹⁹ charge neutral, and for the $\text{NMC}_{\text{h-Li}}$ and $\text{NMC}_{\text{h-H}}$ slabs, a $3 \times 6 \times 1$ *k*-point grid is employed for
¹²⁰ all calculations.

¹²¹ To obtain dissolution data for lower *TM* vacancy densities (of $\approx 11\%$), the cell dimension *a*
¹²² is multiplied by 3 to obtain 9 total *TM* sites within each of the 4 (O-*TM*-O) layers in the slab.
¹²³ For this $3\sqrt{3} \times \sqrt{3}$ slab, a $2 \times 6 \times 1$ *k*-point grid (68) is used for all calculations. Each *TM* vacancy
¹²⁴ calculation employs a top-down dissolution model, where the atoms in the layers above the *TM* are
¹²⁵ dissolved (removed) in addition to the *TM*. For example, to compute the free energy of dissolution
¹²⁶ of Ni from a hydrated surface, a surface HO above the Ni is removed in addition to the Ni.

¹²⁷ A DFT + Solvent Ion method based on Hess's Law (50, 69) employed in previous work on
¹²⁸ LCO (51), is used to compute the change in free energy of dissolution, ΔG . In this method, the
¹²⁹ computed energies of the reactants and products (ΔG_1) are combined with experimental data (ΔG_2)
¹³⁰ to obtain the overall ΔG . $\Delta G_1 = E_{\text{products}} - E_{\text{reactants}}$, and zero-point energy (ZPE) correction terms
¹³¹ are added to the DFT total energies of NMC slabs as detailed previously (51). Based on the Nernst
¹³² equation, $\Delta G_2 = \Delta G_{\text{SHE}}^0 - n_e e U_{\text{SHE}} - 2.303 n_{\text{H}^+} kT \text{ pH} + kT \ln a(\text{H}_x \text{AO}_y)^{z^-}$, where ΔG_{SHE}^0 is the

133 free energy of formation at standard state, relative to the standard hydrogen electrode, eU_{SHE} is the
134 applied potential, relative to the standard hydrogen electrode, and $a_{H_xAO_y}^{z-}$ are the concentrations of
135 the dissolved constituent ions (assumed to be $1 \times 10^{-6} \text{ M}$). n_e and n_{H^+} are the number of electrons
136 and protons involved in the chemical reactions required for surface dissolution, and are located in
137 Table S1 of the Supplemental Material. Values of ΔG_{SHE}^0 are taken from Ref. (70). At conditions of
138 $eU_{\text{SHE}} = 0$ and $a = 1 \times 10^{-6} \text{ M}$, DFT-calculable Pourbaix diagrams (71) show that $\text{Ni}_{(\text{aq})}^{2+}$ will be the
139 preferred state of Ni in solution until $\approx \text{pH} = 9.5$ when $\text{NiO}_{(\text{s})}$ will form, $\text{Mn}_{(\text{aq})}^{2+}$ will be dominant
140 until $\approx \text{pH} = 10$, when $\text{Mn}_2\text{O}_{3(\text{s})}$ or $\text{Mn}_3\text{O}_{4(\text{s})}$ will form, and $\text{Co}_{(\text{aq})}^{2+}$ will be dominant until $\text{pH} = 7$,
141 where $\text{HCoO}_{2(\text{aq})}^{-1}$ becomes the preferred aqueous species. One of the main objectives of this work
142 is to investigate the dissolution of NMC battery material for a range of environmentally relevant
143 conditions, and choosing a pH range from 1 to 9 will allow for dissolution comparisons of the
144 divalent *TM* cation species Ni^{2+} , Mn^{2+} , Co^{2+} . Example calculations of ΔG for dissolution from
145 NMC_{h-Li} and NMC_{h-H} slabs are presented in Section S1 of the Supplemental Materials.

146 The electronic band structure and projected density of states (PDOS) of the bulk material and
147 each surface slab are computed to obtain metrics on how varying surface stoichiometry will affect
148 the behavior of the *TM*. NMC is a redox active material and changes to the surface states will affect
149 the oxidation state and bond lengths of each species. Also investigated are the effects of applying
150 a range of Hubbard *U* (72–75) to the *TM* to determine how the addition of this on-site corrective
151 term affects the dissolution properties of a CMO material such as NMC. These comparisons can
152 be found in Section S2 of the Supplemental Materials.

153 Results and Discussion

154 Bulk and Surface Models

155 Figure 1 shows a top view of a (O-TM-O layer) in bulk NMC $\sqrt{3} \times \sqrt{3} \text{ R}30^0 \times 2$ cell (left hand
156 side), and a side view of the layer ordering in the primitive cell (right hand side). Each *TM* is
157 octahedrally bound in a perfectly alternating manner, and each octahedral unit is edge-sharing;

158 this connectivity forms a rigid O-TM-O layer, and Li is found in the space between these rigid
159 layers. The DFT relaxed bulk NMC has lattice constants $a=2.883$ Å, $c=14.232$ Å, close to the
160 reported bulk lattice constants of $a=2.86$ Å (+0.80%), $c=14.227$ Å (+0.04%) from neutron and x-
161 ray refinement data (76, 77), and in line with previous DFT-GGA studies (41). Also shown in the
162 right hand side of Figure 1 are $d1$ and $d2$, which describe vertical O-TM-O and O-Li-O distances.
163 In DFT-relaxed bulk NMC, these are 2.12 and 2.62 Å respectively, and these bulk values will be
164 compared to surface bond distances later on in the manuscript.

165 The bulk NMC cell includes magnetic interactions that can be described as ferrimagnetic spin
166 coupling. Low spin Co³⁺ (d^6) has no net spin, but Ni²⁺ (d^8) and Mn⁴⁺ (d^3) have 2 and 3 unpaired
167 electrons, respectively, that are antiferromagnetically coupled. In this work, Ni²⁺ is spin down
168 and Mn⁴⁺ is spin up, which leaves an unpaired spin up electron per formula unit of NMC. The
169 left hand side of Figure 3 shows the spin character within the PDOS for each of the TM in bulk
170 NMC. The PDOS shows that the highest occupied molecular orbital (HOMO) is composed of
171 bonding states that contain significant contributions from spin-down 3d states of Ni (and Co) and
172 the LUMO is composed of anti-bonding states that contain significant contributions from spin-
173 down Mn, the empty 3d-states of Mn⁴⁺. The identity and location of 3d orbitals in the PDOS
174 supports the proposed order of oxidation of redox active transition metals in NMC under standard
175 battery operating conditions. As reported in Ref (41), the lithiation state (x_{Li}) of NMC dictates
176 the oxidation state of the TM: as Li de-intercalates from between the rigid O-TM-O layers, the
177 successive oxidation steps are approximately as follows a) Ni²⁺ \rightarrow Ni³⁺ ($0.67 < x_{\text{Li}} < 1$) before
178 b) Ni³⁺ \rightarrow Ni⁴⁺ ($0.33 < x_{\text{Li}} < 0.67$) before c) Co³⁺ \rightarrow Co⁴⁺ ($0.33 < x_{\text{Li}} < 0$). Mn⁴⁺ remains
179 mostly redox inactive for the range of $0 < x_{\text{Li}} < 1$.

180 The PDOS of the transition metals on the left hand side of Figure 3 is compared to the full
181 electronic band structure of bulk NMC (right hand side of Figure 3). The computed (indirect) band
182 gap (E_{gap}) of NMC is 1.2 eV, close to the value of 1.4 eV reported for LCO (51). Inspection of the
183 electronic band structure also shows that both the HOMO and LUMO have minimal dispersion,
184 indicative of the delocalized charge density of redox active transition metals in an edge-sharing

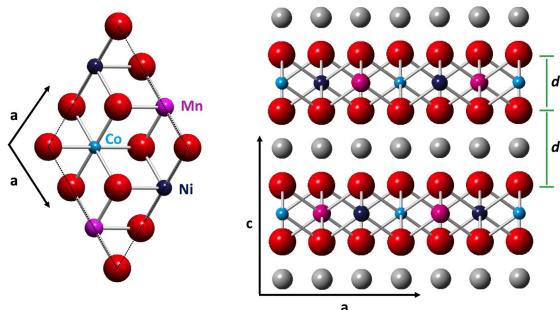


Figure 1: (Left) Top view of a transition metal oxide layer of the $\sqrt{3} \times \sqrt{3}$ R30° bulk NMC cell. (Right) Side view of the layer ordering in NMC, with layer spacings d_1 (O-TM-O) and d_2 (O-Li-O). The TM are depicted as follows: Ni is dark blue, Co is cyan, and Mn is magenta. Li is depicted as gray and O is red.

185 scheme.

186 Given that experimental syntheses of nanoscale NMC materials shows the formation of nanosheets (59)
 187 that expose primarily (001) faces, and that one of the most thermodynamically stable surfaces for
 188 related materials (LCO) is the polar (001) surface (42, 51), the focus of the following work will be
 189 on the (001) surface of NMC.

190 Shown in Figure 2 are side and top views of the NMC_{h-Li} and NMC_{h-H} surfaces. Li resides
 191 above a three-fold hollow site on the (001) surface, which is a continuation site where it would
 192 appear in the bulk structure. H, however, is directly above an O atom. This is different from the
 193 location of surface Li and creates an OH surface bond. To fully understand how surface termina-
 194 tions dictate dissolution trends, the effects of Li and H surface coverages ranging from 0 (oxide
 195 terminated) to 2/3 are investigated. This range of non-stoichiometric surface terminations may
 196 be present under a variety of variable environmental conditions, and away from ultrahigh vacuum
 197 conditions surfaces terminated with water products are expected to be dominant.

198 Table 1 presents bond distances for the relaxed supercell slabs surface structures in this study.
 199 The bond distance for O-TM – O (d_1), for the range of Li and H-terminated (001) surfaces from
 200 0 to 2/3, increases from 1.98 to 2.12 Å with an increase in surface coverage of either H or Li. The
 201 value of d_1 at higher coverage, 2.12 Å is the same as the bulk value. This indicates that for lower
 202 surface coverages it is more likely that the TMs are oxidized relative to full Li occupancy

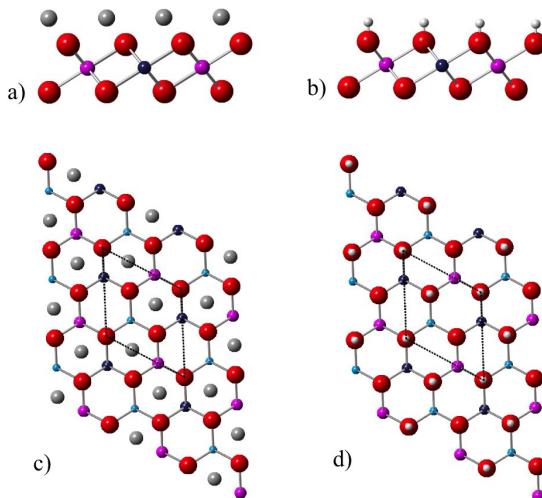


Figure 2: Comparison of the side (and top) views of the surface layer of NMC for a) (c) $\text{NMC}_{h-\text{Li}}$ and b) (d) $\text{NMC}_{h-\text{H}}$. Li is above a three-fold hollow surface site and H is directly above an O in the surface layer, forming an OH bond.

203 of the ground state. Given the TM redox step behavior of NMC presented earlier in the Results
 204 section, the most likely species to oxidize will be Ni^{2+} ; Co^{3+} and Mn^{4+} are likely to remain redox
 205 inactive for the range of surface terminations investigated here.

206 For surfaces with 1/3 to 2/3 Li-coverage, there is an increase in Li-O bond distance from 0.83
 207 to 1.00 Å, as Li coverage increases. Compared to one-half of the bulk distance $d2$, 1.31 Å, these
 208 values are significantly shorter, indicating that surface Li are held more tightly to the surface than
 209 in the bulk. This decrease in Li-O bonds for different Li-coverage is opposed to H-terminated
 210 surfaces between 1/3 and 2/3 coverage, where OH bonds are uniformly 1.00 Å. These results in-
 211 dicate that the tunability of chemical environment via surface terminations has a direct impact on
 212 the bond lengths and oxidation state of the surface transition metals, and for the range of termina-
 213 tions investigated here, yield demonstrable changes in bond length that should be experimentally
 214 verifiable.

215 The change in O-TM-O bond lengths as a function of surface termination can be correlated to
 216 changes in the electronic structure. In Figure 4, the PDOS of the $3d$ -orbitals of Ni in the surface
 217 layer of NMC shift with changes in surface termination. The bare oxide surface has a large peak
 218 at the Fermi level (E_F), that decreases at 1/3 H-coverage, and then is eventually absent at 2/3 H-

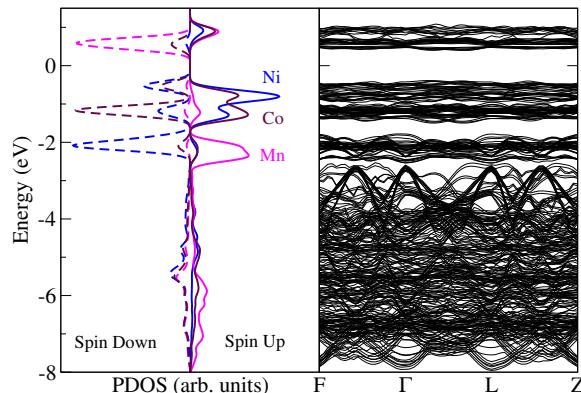


Figure 3: Projected density of states (PDOS, left-hand side) of the TM 3d-states in bulk NMC and the full electronic band structure (right hand side) of bulk NMC. The HOMO is localized on bonding states that contain significant contributions from Ni and Co and the LUMO is localized on anti-bonding states that contain significant contributions from Mn. E_F is set to zero for both plots.

219 coverage. The peaks shifts are indicative of the transition between a metallic Ni^{3+} , with partial
 220 electron occupancy both above and below E_F , to an insulating Ni^{2+} with full occupancy only below
 221 E_F . A change in chemical environment, via surface coverage, causes the reduction of Ni^{3+} to Ni^{2+}
 222 in the surface layer of NMC.

Table 1: Surface oxide bond distances for the structures studied here. Shown here are the bond distances for the O-TM-O in both the Li and H-terminated surfaces, the Li-O bonds in Li-terminated surfaces, and the H-O bonds in H-terminated surfaces.

surface coverage	O-TM-O H-term	O-TM-O Li-term	O-Li	O-H
0	1.98	1.98	-	-
1/3	2.02	2.08	0.83	1.00
1/2	2.05	2.10	0.93	1.00
2/3	2.12	2.12	1.00	1.00

223 Dissolution From NMC_{h-Li}

224 To model dissolution of TM from the (001) surface of NMC_{h-Li} , a top-down removal model is
 225 considered. Depicted in Figure 5 is a simplified illustration of a possible pathway to removing
 226 transition metals from the NMC surface. While the figure shows the step-wise removal of a) Li, b)
 227 O, and c) TM , this may not be the dissolution pathway taken by these materials. This is why the

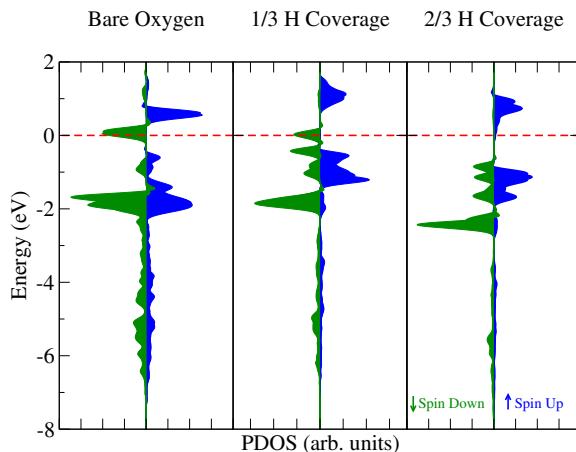


Figure 4: PDOS of the 3d states of Ni in the surface layer of NMC, for different H-coverages. The majority spin (down) is green, the minority spin (up) is blue, and the E_F is a dashed red line. The shift in the PDOS indicates a change in oxidation state of Ni as surface coverage changes; Ni^{3+} reduces to Ni^{2+} from 0 to 2/3 H-coverage.

228 Hess's Law approach described in the Methodology section is crucial; the model only requires the
 229 DFT total energies of the initial and final state since ΔG of dissolution is path independent.

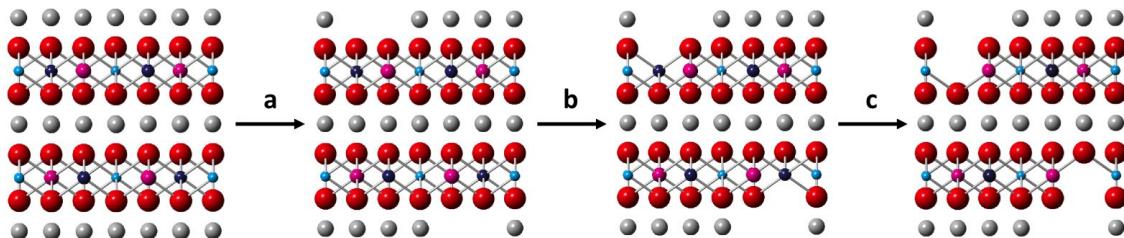


Figure 5: Shown here is an example of the top down mechanism of atom removal employed in the present study. In this depiction, dissolution is from a Li-terminated surface; it requires successive removal of Li, O, and TM from the NMC surface.

230 Dissolution of TM from $\text{NMC}_{\text{h-Li}}$ requires removal of a surface Li, one of the three O that it
 231 is connected to in the hollow site, and then a surface TM (Figure 5). For the $\text{NMC}_{\text{h-Li}}$ supercell
 232 slab, removal of 1 out of 6 surface TMs creates a surface TM vacancy density of 16.6%, and the
 233 resulting structure is denoted as $\text{NMC}_{\text{Li-vac}}$. This dissolution pathway is expressed through the
 234 chemical reaction: $\text{NMC}_{\text{h-Li}} \rightarrow \text{NMC}_{\text{Li-vac}} + 2\text{TM}^{2+} + 2\text{Li}^+ + 2\text{O}^{2-}$, which yields an overall
 235 expression for ΔG :

236 $\Delta G = [\text{E}_{\text{Li-vac}} + 2\text{E}_{\text{TM}^{2+}} + 2\text{E}_{\text{Li}^+} + 2\text{E}_{\text{O}^{2-}}] - \text{E}_{\text{h-Li}} + 2\Delta G_2^{\text{TM}^{2+}} + 2\Delta G_2^{\text{O}^{2-}} + 2\Delta G_2^{\text{Li}^+}$. Here, reported

237 values are divided by 2 to be per surface, and are reported in Table 2.

238 Li removal is pH independent since it does not require removal of either an O or H, but con-
 239 cerned removal of Li-O-TM is pH dependent. This is shown in Figure 6, where ΔG_{Li} is -1.82 eV
 240 for the entire range of pH, and ΔG of Ni, Co, and Mn increases as pH increases from 1 to 9. The
 241 exception here is the discontinuity of Co at pH=7, where the stable aqueous Co species switches
 242 from Co^{2+} to HCoO_2^- . ΔG values show that dissolution of Li and Ni from a Li-terminated surface
 243 will occur for the full range of pH, while Mn^{2+} will not, since ΔG of Mn^{2+} dissolution is positive
 244 for the full range of pH. Co^{2+} dissolution is predicted to occur only at low pH values (below pH =
 245 3.78) while HCoO_2^- dissolution may occur at pH > 7.

246 The predicted dissolution trend here is Li > Ni > Co > Mn, but for the range of $3.8 < \text{pH} < 7$,
 247 only Li and Ni are predicted to dissolve. This correlates to prior experiments, where the majority
 248 of initial dissolution products from NMC were Li and Ni, and dissolution of Co and Mn increased
 249 at a later point in the expe

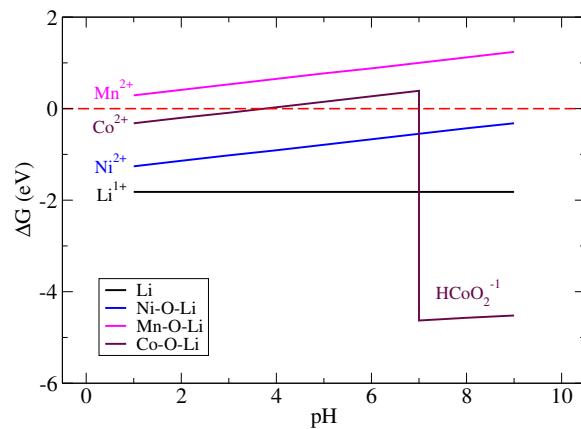


Figure 6: ΔG of dissolution from a the $\text{NMC}_{\text{h-Li}}$ surface for pH 1 to 9. ΔG of Li is depicted as a solid black line, Ni is dark blue, Co is maroon, and Mn is magenta. A dashed red line is at $\Delta G=0$ for the pH range. Above pH = 7, Co is stable as HCoO_2^- (aq.) and not Co^{2+} (aq.).

250 Dissolution From $\text{NMC}_{\text{h-H}}$

251 After immersion in aqueous media, it is likely that surface lithium will exchange with water prod-
 252 ucts to yield a hydroxylated (001) surface since the dissolution of Li is thermodynamically fa-

253 favorable from the (001) surface of NMC. It is of note that exchange of cations on the (001) NMC
254 surface is not necessarily guaranteed a 1:1 exchange, which is why DFT modeling efforts presented
255 here focus on a range of H-terminations from 1/3 to 2/3 H-coverage.

256 *TM* removal from a hydroxylated (001) surface may be energetically favorable when compared
257 to the lithiated surface because Li dissolution and OH bond formation are exothermic processes.
258 The dissolution process then becomes a two-step reaction: Li and H exchange occurs before HO-
259 *TM* removal. The example below is for exchange between NMC surfaces, $\text{NMC}_{\text{h}-\text{Li}}$ and NMC_{h} ,
260 before *TM* removal.

261 Step 1: $\text{NMC}_{\text{h}-\text{Li}} + 6\text{H}^+ \rightarrow \text{NMC}_{\text{h}-\text{H}} + 6\text{Li}^+$

262 Step 2: $\text{NMC}_{\text{h}-\text{H}} \rightarrow \text{NMC}_{\text{h}-\text{vac}} + 2\text{TM}^{2+} + 2\text{H}^+ + 2\text{O}^{2-}$, where

263 $\Delta G = [\text{E}_{\text{h-vac}} - \text{E}_{\text{h-Li}}] + 2\text{E}_{\text{TM}^{2+}} - 4\text{E}_{\text{H}^+} + 2\text{E}_{\text{O}^{2-}} + 6\text{E}_{\text{Li}^+} + 2\Delta G_2^{\text{TM}^{2+}} - 4\Delta G_2^{\text{H}^+} + 2\Delta G_2^{\text{O}^{2-}} + 6\Delta G_2^{\text{Li}^+}$,
264 and ΔG is divided by 2 to yield the dissolution per side, as described in the previous example.

265 The thermodynamic driving force for *TM*-OH removal is the dissolution of Li that results from
266 the proton and lithium exchange. When compared to dissolution from the $\text{NMC}_{\text{h}-\text{Li}}$ surface, ΔG
267 dissolution from $\text{NMC}_{\text{h}-\text{H}}$ has decreased. As shown in Table 2, dissolution of Co from $\text{NMC}_{\text{h}-\text{H}}$ is
268 predicted to be favorable at low pH, whereas it was not predicted to occur from $\text{NMC}_{\text{h}-\text{Li}}$. Figure
269 7a depicts the ΔG of dissolution of *TM* from the $\text{NMC}_{\text{h}-\text{H}}$ surface. The dissolution trend is $\text{Ni} >$
270 $\text{Co} > \text{Mn}$, which was also observed in the Li-terminated surface. Different from the Li-terminated
271 surface is that dissolution of both Ni and Co are predicted to be favorable for the pH range of 1 to
272 5.9, and that Mn may dissolve as well, even if only at $\text{pH} < 1.95$.

273 The dissolution of cations from NMC leads to chemical transformations in which reactive
274 oxygen species (ROS) were measured *in situ* in prior experiments (59). While the ROS probe used
275 for the initial NMC dissolution experiments was selective towards hydroxyl (OH) radicals, the
276 identity of other potential ROS are still under investigation (61), as are the exact roles that ROS may
277 have in the negative biological impact of NMC. To investigate the energetics of different oxygen-
278 containing species mediating *TM* dissolution from the $\text{NMC}_{\text{h}-\text{H}}$ surface, the ΔG of dissolution for
279 removing neutral H_2O molecule is computed. The trends of H_2O mediated *TM* dissolution are

280 shown in Figure 7b. Depicted as dashed lines, when compared to $TM\text{-OH}$ dissolution, shown as
 281 solid lines, it is obvious that removing H_2O from the surface as a route for TM dissolution is not
 282 as energetically favorable as OH removal. The difference in dissolution energy between OH and
 283 H_2O assisted dissolution supports the claim that removal of TM from the NMC surface produces
 284 ROS (59).

285 A comparison of ΔG of dissolution for Ni, Co, and Mn at pH = 3 and pH = 6 for all surface TM
 286 vacancy densities of 16.67% (1/6 cation removal) is presented in Table 2. In all cases Ni dissolution
 287 from the (001) surface of NMC is predicted to be preferred relative to dissolution of Co and Mn.
 288 One reason could be that Ni^{2+} prefers to be in a square-planar configuration and not the octahedral
 289 configuration of the O- $TM\text{-O}$ units found in the Delafossite structure type. This could also be why
 290 Ni dissolution is less sensitive to changes in the chemical environment than either Mn or Co, as
 291 it will dissolve under all conditions investigated here because of its preference for forming fewer
 292 bon

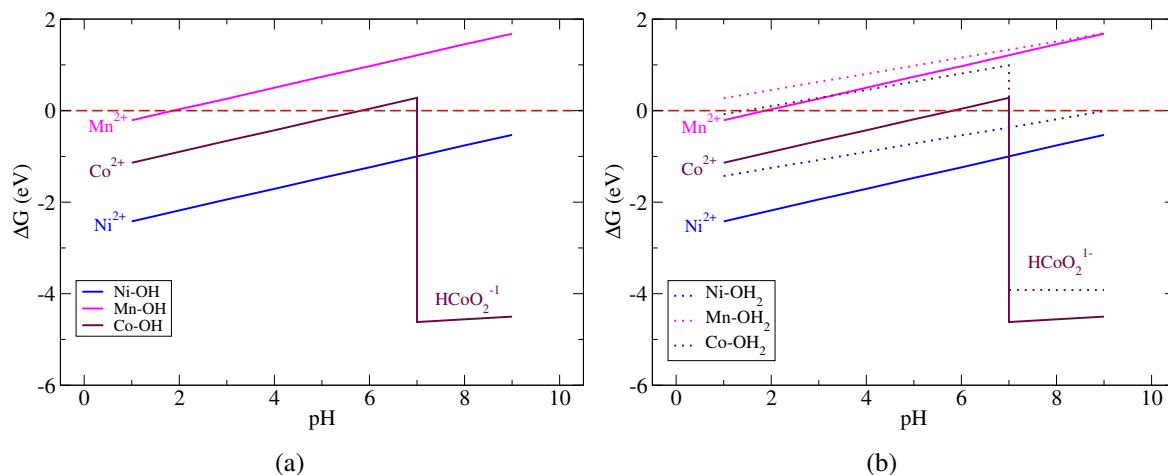


Figure 7: Same color scheme and axes as Figure 6 for ΔG of a) $TM\text{-OH}$ (solid lines) and b) $TM\text{-H}_2\text{O}$ (dashed lines) removal. Removal of OH is preferred over H_2O for Ni, Co, and Mn for the pH range of 1 to 9.

Table 2: Comparison of ΔG of TM dissolution for each of the 3 removal schemes. All ΔG are in units of eV. A positive ΔG is denoted with a -, indicating that the dissolution is not predicted to be favorable.

	Li-O		HO		H ₂ O	
	pH = 3	pH = 6	pH = 3	pH = 6	pH = 3	pH = 6
Ni	-0.58	-0.23	-1.94	-1.24	-1.08	-0.54
Co	-	-	-0.66	-	-	-
Mn	-	-	-	-	-	-

293 Decreasing Transition Metal Vacancy Density

294 One possible reason why Co and Mn dissolution from NMC_{h-H} is not favorable relative to Ni
 295 is that the surface TM vacancy density was too high for either to dissolve. As discussed in the
 296 Methodology section, to investigate a lower surface TM vacancy density, one needs to increase the
 297 size of the supercell slab. Here the size of the slab is increased from $2\sqrt{3} \times \sqrt{3}$ to $3\sqrt{3} \times \sqrt{3}$. The
 298 total number of surface transition metals increases from 6 to 9, so removal of one TM will result
 299 in a vacancy density of 11.1% (1/9).

300 For the larger supercell slabs, ΔG of dissolution of transition metals for a range of H-coverage
 301 from 1/3 to 2/3 is computed. In this series, coverage of 4/9 and 5/9 are also included to investigate
 302 the effects of hydration close to 1/2 surface coverage and because Li and H surface exchanges may
 303 not necessarily be stoichiometric in a dynamic system. Depicted in Figures 8a-8c, the overall trend
 304 in dissolution is $Ni > Co > Mn$, and the magnitude of ΔG is dependent upon surface H-coverage.
 305 Dissolution of all 3 TM , for all H-coverages between 1/3 and 2/3, is predicted to occur, but is
 306 more energetically favorable for higher H-coverages. This is variable and dependent upon pH; the
 307 slopes of ΔG are different from each other and the higher vacancy density of 16.7%. The change
 308 in free energy of dissolution of TM between surface coverages is larger at lower pH and smaller
 309 at higher pH. At lower pH it is more likely that TM will dissolve from the (001) surface, and at
 310 higher pH it is less likely that TM will dissolve. As pH increases beyond 9, removal of $TM-OH$ is
 311 unlikely since the aqueous media may deprotonate the surface before OH can assist in dissolution.
 312 This suggests that aqueous syntheses need to take place at pH greater than those included here to

313 sidestep *TM* dissolution.

314 Decreasing the surface *TM* vacancy density from 16.7% to 11.1% has a larger impact on Co
315 and Mn removal than it does on Ni. For example, at pH = 6 the difference between *TM*-OH
316 removal for 16.6% (1/2 H coverage) and 11.1% (1/3 H coverage) vacancy densities is 0.86 eV
317 for Ni and 1.43 and 1.54 eV for Co and Mn, respectively. The dissolution of Ni is less sensitive
318 to surface terminations and *TM* vacancy density than either Co and Mn. Further support for this
319 claim is that Ni dissolution from the NMC (001) surface is predicted to occur for *all* pH values,
320 unlike Co and Mn. ΔG dissolution for all H-coverages investigated here, for both pH = 3 and pH
321 = 6, are compared in Table 3. We interpret the driving force for dissolution of Ni as a consequence
322 of its tendency to prefer square planar coordination as opposed to the octahedral environment of
323 the delafossite structure type. A comparison of the PDOS for the vacancy structures is presented
324 in Section 3 of the Supplemental Materials.

325 **Li-Deficient Surface Terminations**

326 In the previous sections of the Results, it was demonstrated that changes in the (001) surface
327 termination will affect both the structure and electronic states of the *TM*, and this will have an
328 impact of the likelihood of dissolution. Thus far the starting point for *all* dissolution cycles has
329 been NMC_{h-Li}, a (001) NMC surface with 1/2 Li coverage. As mentioned in the Introduction,
330 recent syntheses of NMC nanosheets show that for a range of NMC compositions, the overall
331 lithiation state (x_{Li}) can vary \approx between 1/3 and 2/3 (59, 61), and that x_{Li} is synthesis dependent.
332 Here we investigate the effects of a non-stoichiometric Li deficient surface as the starting point for
333 ΔG of *TM* dissolution.

334 If the initial Li-deficient supercell slab has 1/3 Li coverage (NMC_{ot-Li}), computing *TM*-OH
335 dissolution shows that ΔG increases by \approx 3 eV for all TM, up to pH = 7. This means that Ni, Co,
336 and Mn dissolution are only favorable until pH = 5.4, 3.8, and 1.4, respectively. Figure 8 compares
337 ΔG dissolution for the three cations of a 2/3 H covered surface for whose reaction cycles start
338 with either NMC_{h-Li} (solid lines) or NMC_{ot-Li} (dotted lines). The large change in ΔG for this

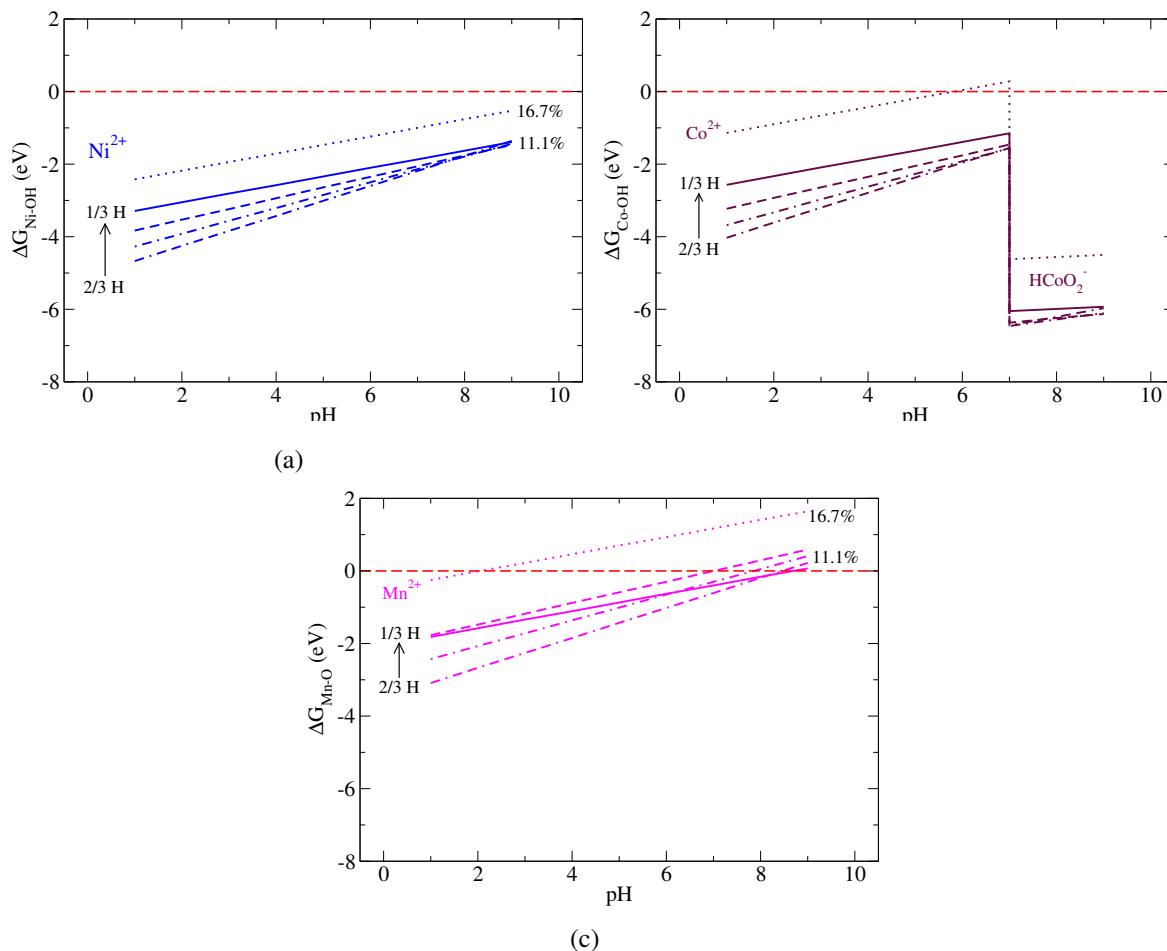


Figure 8: Shown here are comparison of $TM\text{-OH}$ dissolution between $2\sqrt{3} \times \sqrt{3}$ (16.7% vacancy density, dotted lines) and $3\sqrt{3} \times \sqrt{3}$ (11.1% vacancy density, solid and dashed lines) supercell surface slabs. The 11.1% vacancy density surface slabs have between $\frac{1}{3}$ and $\frac{2}{3}$ H-coverage, for a) Ni b) Co c) Mn. Same color scheme as Figure 6.

339 process demonstrates that initial surface termination dictates the dissolution of cations in aqueous
 340 media. This comparison also implies that if the starting material is overall Li-deficient, the surface
 341 Li coverage may be closer to 1/2 than 1/3, otherwise not even Ni would be removed until pH 5.4
 342 or below. Dissolution data for these tests are presented at the end of Table 3.

343 Environmental Implications

344 The present study helps fill the current knowledge gaps between molecular-level transformations
 345 of CMOs that take place at the nanoscale and their potential biological impact for a range of envi-

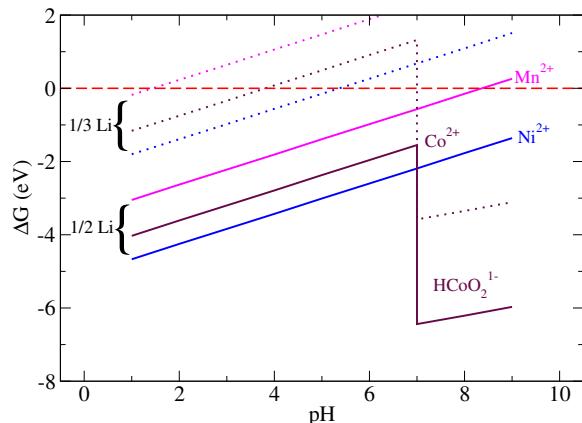


Figure 9: Shown here is a comparison of ΔG dissolution of 2/3 H-coverage supercell slabs for 2 different initial Li surface coverages of 1/2 and 1/3. Same color scheme as Figure 6.

Table 3: A comparison of ΔG of TM dissolution at 11.1% TM vacancy density for each of the H-coverages studied here. The last columns are for TM dissolution from the 2/3 H covered surface if the starting point were a Li-deficient surface. All ΔG are in units of eV. A positive ΔG is denoted with a -, indicating that the dissolution is not predicted to be favorable.

1/3 H		4/9 H		5/9 H		2/3 H		2/3 H	
pH = 3	pH = 6								
Ni	-2.81	-2.10	-3.24	-2.35	-3.56	-2.50	-3.84	-2.60	-0.98
Co	-2.09	-1.39	-2.64	-1.76	-2.97	-1.92	-3.20	-1.96	-0.34
Mn	-1.28	-0.52	-1.18	-0.35	-1.68	-0.61	-2.22	-0.98	-

346 environmentally relevant species and concentrations. Combining first-principles DFT calculations and
 347 solvent-ion thermodynamics is an effective method that can be used to elucidate the mechanistic
 348 pathways that lead to chemical transformations of CMOs for a wide range of conditions. For ex-
 349 ample, one can create DFT calculable speciation diagrams (71) for (meta)stable CMOs that take
 350 into account dynamic factors such as pH and concentration that yield insights into the molecular
 351 mechanistics of nanoparticle transformation. This information can be used to elucidate the possible
 352 transformations that take place for a range of conditions and in some cases, exclude possibilities
 353 that are not likely to occur for a given set of environmental or experimental conditions. As demon-
 354 strated here, this approach can yield atomistic insights into the reactive species and intermediates
 355 involved in complex chemical reactions and could serve as the input data to guide the redesign of
 356 current CMOs.

357 The molecular level understanding obtained from the study enables a chemical understanding
358 of previously reported dissolution trends. This, combined with the evidence that cation leaching is
359 a pathway to the negative biological impact of CMOs in the environment, points to possible design
360 rules to explore in the development of sustainable nanotechnology. We predict that Ni dissolution
361 from NMC will proceed for almost all environmental conditions investigated, while the dissolution
362 of Co and Mn is highly dependent upon vacancy density and surface coverage. One route to miti-
363 gate the negative biological impact of NMC could be to (partially) substitute Ni for another redox
364 active *TM* that is not toxic to a wide range of organisms. In comparing *TM* dissolution mediated
365 by different surface species, we find that dissolution of *TM*-OH is preferred to dissolution of *TM*-
366 H₂O for the range of pH investigated here. Since *TM* dissolution is indirectly mediated by surface
367 exchange of Li and H, and we show that OH are required for dissolution, then our results suggests
368 that a protective surface coating (78–80) that does not hydrolyze, and prevents Li exchange (to
369 form surface OH), may be an attractive alternative to complete or partial Ni replacement. Some
370 examples could be derived from small molecule adsorbates that exist in natural waters, such as
371 sulfate or phosphate, ordered metal phosphate derivatives (81), or amorphous coatings such as
372 LiPON (82).

373 The results of our first-principles investigations can be used as input datasets for curated
374 databases such as the recently created Nanomaterial Data Curation Initiative (NDCI) (83). The
375 field of nanoscience involves many scientific disciplines that generate a complex, diverse amount
376 of information (84), so the NDCI takes an informatics approach to understanding nanomaterial be-
377 havior, where nanocuration is seen as a path forward to make informed decisions on nanomaterials
378 through collaborative assessments and evaluations of the vast amounts of available data. These
379 efforts are hindered by the lack of completeness and quality of nanomaterial data (85), the lack of
380 material diversity (i.e., only properties of binary metal oxides and alloys), and that the development
381 of hazard and risk profiles cannot keep up with the technological advancements made in the field
382 of nanotechnology. Minimum nanomaterial characterization standards have been proposed, but
383 not yet widely adopted. The methods presented here have the ability to predict the potential health

³⁸⁴ and environmental impact (16) in a systematic manner, and go beyond simple materials (86), since
³⁸⁵ CMO are often multicomponent, complex mixtures.

³⁸⁶ Another area where the predictions presented here could have a sizable impact is in the im-
³⁸⁷ provement of environmental fate models (19, 87). These models forecast the effects of releasing
³⁸⁸ materials into naturally occurring systems (88), and until recently, the input parameters for these
³⁸⁹ models have largely belonged to either bulk materials or "as-synthesized" nanoparticles, which do
³⁹⁰ not take into account the possible transformations that an CMO may undergo. It has also been
³⁹¹ put forth that stream dynamics studies (89) under-predict nanoparticle mobility and reactivity and
³⁹² posit that CMO will not be found in their as-synthesized state, thereby undercutting the benefit of
³⁹³ these models.

³⁹⁴ Associated Content

³⁹⁵ Supporting Information. Thermodynamics of the DFT + solvent ion method. Dissolution compar-
³⁹⁶ ison using DFT + U methodology.

³⁹⁷ Author Information

³⁹⁸ Corresponding Author: sara-mason@uiowa.edu

³⁹⁹

⁴⁰⁰ Notes: The authors declare no competing financial interest.

⁴⁰¹ Acknowledgements

⁴⁰² This work was supported by National Science Foundation Center for Chemical Innovation Program
⁴⁰³ grant CHE-1503408 for the Center for Sustainable Nanotechnology. This research was supported
⁴⁰⁴ in part through computational resources provided by The University of Iowa, Iowa City, Iowa
⁴⁰⁵ and the National Science Foundation grant CHE-0840494. This work used the Extreme Science

⁴⁰⁶ and Engineering Discovery Environment (XSEDE (90)), which is supported by National Science
⁴⁰⁷ Foundation grant number ACI-1548562. The authors thank Profs. Christy Haynes, Qiang Cui and
⁴⁰⁸ Rigoberto Hernandez for useful discussions of this work.

⁴⁰⁹ References

⁴¹⁰ (1) Hamers, R. J. Nanomaterials and Global Sustainability. *Acc. Chem. Res.* **2017**, *50*, 633–637.

⁴¹¹ (2) Lim, S. Y.; Shen, W.; Gao, Z. Carbon Quantum Dots and Their Applications. *Chem. Soc. Rev.*
⁴¹² **2015**, *44*, 362–381.

⁴¹³ (3) Murphy, C. J.; Vartanian, A. M.; Geiger, F. M.; Hamers, R. J.; Pedersen, J.; Cui, Q.;
⁴¹⁴ Haynes, C. L.; Carlson, E. E.; Hernandez, R.; Klaper, R. D.; Orr, G.; Rosenzweig, Z. Bi-
⁴¹⁵ logical Responses to Engineered Nanomaterials: Needs for the Next Decade. *ACS Cent.*
⁴¹⁶ *Sci.* **2015**, *1*, 117–123.

⁴¹⁷ (4) Lu, J.; Chen, Z.; Ma, Z.; Pan, F.; Curtiss, L. A.; Amine, K. The role of nanotechnology in
⁴¹⁸ the development of battery materials for electric vehicles. *Nature Nanotech.* **2016**, *11*, 1031–
⁴¹⁹ 1038.

⁴²⁰ (5) Ellingsen, L. A.-W.; Hung, C. R.; Majeau-Bettez, G.; Singh, B.; Chen, Z.; Whitting-
⁴²¹ ham, M. S.; Stromman, A. H. Nanotechnology for environmentally sustainable electromo-
⁴²² bility. *Nature Nanotech.* **2016**, *11*, 1039–1051.

⁴²³ (6) Larcher, D.; Tarascon, J.-M. Towards greener and more sustainable batteries for electrical
⁴²⁴ energy storage. *Nature Chem.* **2014**, *7*, 19–29.

⁴²⁵ (7) Sani-Kast, N.; Labille, J.; Ollivier, P.; Slomberg, D.; Hungerbuhler, K.; Scheringer, M. A net-
⁴²⁶ work perspective reveals decreasing material diversity in studies on nanoparticle interactions
⁴²⁷ with dissolved organic matter. *PNAS* **2017**, *114*, E1756–E1765.

428 (8) Notter, D. A.; Gauch, M.; Widmer, R.; Wager, P.; Stamp, A.; Zah, R.; Althaus, H. J. Con-
429 tribution of Li-ion Batteries to the Environmental Impact of Electric Vehicles. *Environ. Sci.*
430 *Technol.* **2010**, *44*, 6550–6556.

431 (9) Zhang, K.; Schnoor, J. L.; Zeng, E. Y. E-Waste Recycling: Where Does It Go from Here?
432 *Environ. Sci. Technol.* **2012**, *46*, 10861–10867.

433 (10) Maurer-Jones, M. A.; Gunsolus, I. L.; Murphy, C. J.; Haynes, C. L. Toxicity of Engineered
434 Nanoparticles in the Environment. *Anal. Chem.* **2013**, *85*, 3036–3049.

435 (11) Lopez-Serrano, A.; Olivas, R. M.; Landaluze, J. S.; Camara, C. Nanoparticles: A Global
436 Vision. Characterization, Separation, and Auantification Methods. Potential Environmental
437 and Health Impact. *Anal. Chem.* **2014**, *6*, 38–56.

438 (12) Gunsolus, I. L.; Haynes, C. L. Analytical Aspects of Nanotoxicology. *Anal. Chm.* **2016**, *88*,
439 451–479.

440 (13) Xia, T. et al. Decreased Dissolution of ZnO by Iron Doping Yields Nanoparticles with Re-
441 duced Toxicity in the Rodent Lung and Zebrafish Embryos. *ACS Nano* **2011**, *5*, 1223–1235.

442 (14) Manshian, B. B.; Pokhrel, S.; Himmelreich, U.; Tamm, K.; Sikk, L.; Fernandez, A.; Rallo, R.;
443 Tamm, T.; Madler, L.; Soenen, S. J. In Silico Design of Optimal Dissolution Kinetics of Fe-
444 Doped ZnO Nanoparticles Results in Cancer-Specific Toxicity in a Preclinical Rodent Model.
445 *Adv. Healthcare Mater.* **2017**, *6*, 1001379–1–11.

446 (15) Naatz, H.; Lin, S.; Li, R.; Jiang, W.; Ji, Z.; Chang, C.-H.; Koser, J.; Thoming, J.; Xia, T.;
447 Nel, A. E.; Madler, L.; Pokhrel, S. Safe-by-Design CuO Nanoparticles via Fe-Doping, Cu-O
448 Bond Length Variation, and Biological Assessment in Cells and Zebrafish. *ACS Nano* **2017**,
449 *11*, 501–515.

450 (16) Gilbertson, L. M.; Zimmerman, J. B.; Plata, D. L.; Hutchinson, J. E.; Anastas, P. T. Designing

451 nanomaterials to maximize performance and minimize undesirable implications guided by
452 the Principles of Green Chemistry. *Chem. Soc. Rev.* **2015**, *44*, 5758–5777.

453 (17) Zhang, H.; Chen, B.; Banfield, J. F. Particle Size and pH Effects on Nanoparticle Dissolution.
454 *J. Phys. Chem. C* **2010**, *114*, 14876–14884.

455 (18) Ma, S.; Zhou, K.; Yang, K.; Lin, D. Heteroagglomeration of Oxide Nanoparticles with Algal
456 Cells: Effects of Particle Type, Ionic Strength and pH. *Environ. Sci. Technol.* **2015**, *49*, 932–
457 939.

458 (19) Lowry, G. V.; Gregory, K. B.; Apte, S. C.; Lead, J. R. Transformations of Nanomaterials in
459 the Environment. *Environ. Sci. Technol.* **2012**, *46*, 6893–6899.

460 (20) Mudunkotuwa, I. A.; Grassian, V. H. Biological and environmental media control oxide
461 nanoparticle surface composition: the roles of biological components (proteins and amino
462 acids), inorganic oxyanions and humic acid. *Environ. Sci. Nano.* **2015**, *2*, 429–439.

463 (21) Grassian, V. H. et al. NanoEHS - defining fundamental science needs: no easy feat when the
464 simple itself is complex. *Environ. Sci.: Nano.* **2016**, *3*, 15–27.

465 (22) Zhou, F.; Cococcioni, M.; Marianetti, C. A.; Morgan, D.; Ceder, G. First-Principles Prediction
466 of Redox Potentials in Transition-Metal Compounds with LDA+U. *Phys. Rev. B* **2004**,
467 *70*, 235121–1–8.

468 (23) Aykol, M.; Kim, S.; Wolverton, C. van der Waals Interactions in Layered Lithium Cobalt
469 Oxides. *J. Phys. Chem. C* **2015**, *119*, 19053–19058.

470 (24) Hautier, G.; Jain, A.; Ong, S. P.; Kang, B.; Moore, C.; Doe, R.; Ceder, G. Phosphates as
471 Lithium-Ion Battery Cathodes: An Evaluation Based on High-throughput *ab initio* Calculations.
472 *Chem. Mater.* **2011**, *23*, 3495–3508.

473 (25) Hautier, G.; Jain, A.; Chen, H.; Moore, C.; Ong, S. P.; Ceder, G. Novel Mixed Polyanions

474 Lithium-Ion Battery Cathode Materials Predicted by High-Throughput *ab initio* Calculations.

475 *J. Mater. Chem.* **2011**, *21*, 17147–17153.

476 (26) Urban, A.; Matts, I.; Abdellahi, A.; Ceder, G. Computational Design and Preparation of
477 Cation-Disordered Oxides for High-Energy-Density Li-Ion Batteries. *Adv. Energy Mater.*
478 **2016**, *6*, 1600488–1–8.

479 (27) Yoon, W.-S.; Balasubramanian, M.; Chung, K.-Y.; Yang, X.-Q.; McBreen, J.; Grey, C. P.;
480 Fischer, D. A. Investigation of the Charge Compensation Mechanism on the Electrochemi-
481 cally Li-Ion Deintercalated $\text{Li}_{1-x}\text{Co}_{1/3}\text{Ni}_{1/3}\text{Mn}_{1/3}\text{O}_2$ Electrode System by Combination of
482 Soft and Hard X-ray Absorption Spectroscopy. *J. Am. Chem. Soc.* **2005**, *127*, 17479–17487.

483 (28) Koyama, Y.; Yabuuchi, N.; Tanaka, I.; Adachi, H.; Ohzuku, T. Solid State Chemistry and
484 Electrochemistry of $\text{LiCo}_{1/3}\text{Ni}_{1/3}\text{Mn}_{1/3}\text{O}_2$ for Advanced Lithium-Ion Batteries. *J. Elec-
485 trochem. Soc.* **2004**, *151*, A1545–A1551.

486 (29) Luo, G.; Zhao, J.; Ke, X.; Zhang, P.; Sun, H.; Wang, B. Structure, Electrode Voltage and Acti-
487 vation Energy of $\text{LiMn}_x\text{Co}_y\text{Ni}_{1-x-y}\text{O}_2$ Solid Solutions as Cathode Materials for Li Batteries
488 from First-Principles. *J. Electrochem. Soc.* **2012**, *159*, A1203–A1208.

489 (30) Dolotko, O.; Senyshyn, A.; Muhlbauer, M. J.; Nikolowski, K.; Ehrenberg, H. Understanding
490 structural changes in NMC Li-ion cells by *in situ* neutron diffraction. *J. Power Sources* **2014**,
491 *255*, 197–203.

492 (31) Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G. Unlocking the Potential of Cation-
493 Disordered Oxides for Rechargeable Lithium Batteries. *Science* **2014**, *343*, 519–522.

494 (32) Moradabadi, A.; Kaghazchi, P. Mechanism of Li Intercalation/Deintercalation into/from the
495 Surface of LiCoO_2 . *Phys. Chem. Chem. Phys.* **2015**, *17*, 22917–22922.

496 (33) Dixit, M.; Kosa, M.; Lavi, O. S.; Markovsky, B.; Aurbach, D.; Major, D. T. Thermodynamic

497 and kinetic studies of $\text{LiNi}_{0.5}\text{Co}_{0.2}\text{Mn}_{0.3}\text{O}_2$ as a positive electrode material for Li-ion batteries
498 using first-principles. *Phys. Chem. Chem. Phys.* **2016**, *18*, 6799–6812.

499 (34) Goodenough, J. B.; Kim, Y. Challenges for Rechargeable Li Batteries. *Chem. Mater.* **22**,
500 2010, 587–603.

501 (35) Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical ENergy Storage for the Grid: A Battery of
502 Choices. *Science* **2011**, *334*, 928–935.

503 (36) Choi, N. S.; Chen, Z.; Freunberger, S. A.; Ji, X.; Sun, Y. K.; Amine, K.; Yushin, G.;
504 Nazar, L. F.; Cho, J.; Bruce, P. G. Challenges Facing Lithium Batteries and ELectrical Double
505 Layer Capacitors. *Angew. Chem. Int. Ed.* **2012**, *51*, 9994–10024.

506 (37) Goodenough, J. B.; Park, K.-S. The Li-Ion Rechargeable Battery: A Perspective. *J. Am.*
507 *Chem. Soc.* **2013**, *135*, 1167–1176.

508 (38) Nitta, N.; Wu, F.; Lee, J.-T.; Yushin, G. Li-ion battery materials: present and future. *Mater.*
509 *Today* **2015**, *18*, 252–264.

510 (39) Ceder, G.; Chiang, Y.-M.; Sadoway, D. R.; Aydinol, M. K.; Jang, Y.-I.; Huang, B. Identifi-
511 cation of Cathode Materials for Lithium Batteries Guided by First-Principles Calculations.
512 *Nature* **1998**, *392*, 694–696.

513 (40) Carlier, D.; derVen, A. V.; Delmas, C.; Ceder, G. First-Principles Investigation of Phase
514 Stability in the $\text{O}_2\text{-LiCoO}_2$ System. *Chem. Mater.* **2003**, *15*, 2651–2660.

515 (41) Hwang, B. J.; Tsai, Y. W.; Carlier, D.; Ceder, G. A Combined Computational/Experimental
516 Study on $\text{LiNi}_{1/3}\text{Co}_{1/3}\text{Mn}_{1/3}\text{O}_2$. *Chem. Mater.* **2003**, *15*, 3676–3682.

517 (42) Kramer, D.; Ceder, G. Tailoring the Morphology of LiCoO_2 : A First Principles Study. *Chem.*
518 *Mater.* **2009**, *21*, 3799–3809.

519 (43) Islam, M. S.; Fischer, C. A. J. Lithium and Sodium Battery Cathode Materials: Compu-
520 tational Insights into Voltage, Diffusion and Nanostructural Properties. *Chem. Soc. Rev.* **2014**,
521 *43*, 185–204.

522 (44) Urban, A.; Seo, D.-H.; Ceder, G. Computational understanding of Li-ion batteries. *NPJ Com-
523 putational Mater.* **2016**, *2*, 16002–1–13.

524 (45) Jain, A.; Shin, Y.; Persson, K. Computational predictions of energy materials using density
525 functional theory. *Nature Review Materials* **2016**, *1*, 1–13.

526 (46) Cococcioni, M. Accurate and Efficient Calculations on Strongly Correlated Minerals with
527 the LDA + *U* Method: Review and Perspectives. *Rev. in Mineral. and Geochem.* **2010**, *71*,
528 147–167.

529 (47) Bennett, J. W.; Garrity, K. F.; Rabe, K. M.; Vanderbilt, D. Hexagonal *ABC* Semiconductors
530 as Ferroelectrics. *Phys. Rev. Lett.* **2012**, *109*, 167602.

531 (48) Bennett, J. W.; Garrity, K. F.; Rabe, K. M.; Vanderbilt, D. Orthorhombic *ABC* Semiconduc-
532 tors as Antiferroelectrics. *Phys. Rev. Lett.* **2013**, *110*, 017603.

533 (49) Huang, X.; Ramadugu, S. K.; Mason, S. E. Surface-Specific DFT + *U* Approach Applied to
534 $\alpha\text{-Fe}_2\text{O}_3$ (0001). *J. Phys. Chem. C* **2016**, *120*, 4919–4930.

535 (50) Rong, X.; Kolpak, A. M. Ab initio Approach for Prediction of Oxide Surface Structure,
536 Stoichiometry, and Electrocatalytic Activity in Aqueous Solution. *Phys. Chem. Lett.* **2015**, *6*,
537 1785–1789.

538 (51) Huang, X.; Bennett, J. W.; Hang, M. N.; Laudadio, E. D.; Hamers, R. J.; Mason, S. E. *Ab*
539 *initio* Atomistic Thermodynamics Study of the (001) Surface of LiCoO₂ in a Water Envi-
540 ronment and Implications for Reactivity under Ambient Conditions. *J. Phys. Chem. C* **2017**,
541 *121*, 5069–5080.

542 (52) Dogangun, M.; Hang, M. N.; Troiano, J. M.; McGeachy, A. C.; Melby, E. S.; Pedersen, J. A.;
543 Hamers, R. J.; Geiger, F. M. Alteration of Membrane Compositional Asymmetry by LiCoO₂
544 Nanosheets. *ACS Nano* **2015**, *9*, 8755–8765.

545 (53) Dogangun, M.; Hang, M. N.; Machesky, J.; Hamers, R. J.; Geiger, F. M. Evidence for Con-
546 siderable Metal Cation Concentrations from Li Intercalation Compounds in the Nano-Bio
547 Interface Gap. *J. Phys. Chem. C* **2017**, *121*, 27473–27482.

548 (54) Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-Sized Transition-
549 Metal Oxides as Negative-Electrode Materials for Lithium-Ion Batteries. *Nature* **2000**, *407*,
550 496–499.

551 (55) Kang, K.; Meng, Y. S.; Breger, J.; Grey, C. P.; Ceder, G. Electrodes with High Power and
552 High Capacity for Rechargeable Lithium Batteries. *Science* **2006**, *311*, 977–980.

553 (56) Belharouak, I.; Sun, Y. K.; Liu, J.; Amine, K. Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O₂ as a Suitable Cathode
554 for High Power Applications. *J. Power Sources* **2003**, *123*, 247–252.

555 (57) Conry, T. E.; Mehta, A.; Cabana, J.; Doeff, M. M. Structural Underpinnings of the Enhanced
556 Cycling Stability upon Al-Substitution in LiNi_{0.45}Mn_{0.45}Co_{0.1-y}Al_yO₂ Positive Electrode
557 Materials for Li-ion Batteries. *Chem. Mater.* **2012**, *24*, 3307–3317.

558 (58) Li, Z.; Ban, C.; Chernova, N. A.; Wu, Z.; Upreti, S.; Dillon, A.; Whittingham, M. S. Towards
559 understanding the rate capability of layered transition metal oxides LiNi_yMn_yCo_{1-2y}O₂. *J.*
560 *Power Sources* **2014**, *268*, 106–112.

561 (59) Hang, M. N.; Gunsolus, I. L.; Wayland, H.; Melby, E. S.; Mensch, A. C.; Hurley, K. R.;
562 Pedersen, J. A.; Haynes, C. L.; Hamers, R. J. Impact of Nanoscale Lithium Nickel Manganese
563 Cobalt Oxide (NMC) on the Bacterium *Shewanella oneidensis* MR-1. *Chem. Mater.* **2016**, *28*,
564 1092–1100.

565 (60) Bozich, J.; Hang, M.; Hamers, R. J.; Klaper, R. Core chemistry influences the toxicity of mul-
566 ticomponent metal oxide nanomaterials, lithium nickel manganese cobalt oxide, and lithium
567 cobalt oxide to *Daphnia magna*. *Environ. Toxicology and Chem.* **2017**, *36*, 2493–2502.

568 (61) Gunsolus, I. L.; Hang, M. N.; Hudson-Smith, N. V.; Buchman, J. T.; Bennett, J. W.; Con-
569 roy, D.; Mason, S. E.; Hamers, R. J.; Haynes, C. L. Influence of nickel manganese cobalt
570 oxide nanoparticle composition on toxicity toward *Shewanella oneidensis* MR-1: redesign-
571 ing for reduced biological impact. *Environ. Sci.: Nano.* **2017**, *4*, 636–646.

572 (62) Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. *Phys. Rev.* **1964**, *136*, B864–71.

573 (63) Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects.
574 *Phys. Rev.* **1965**, *140*, A1133–8.

575 (64) Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.;
576 Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; et al., Quantum ESPRESSO: A Modular and
577 Open-Source Software Project for Quantum Simulations of Materials. *J. Phys.:Condens.*
578 *Matter* **2009**, *21*, 395502–20.

579 (65) Vanderbilt, D. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism.
580 *Phys. Rev. B Rapid Comm.* **1990**, *41*, 7892–5.

581 (66) Garrity, K. F.; Bennett, J. W.; Rabe, K. M.; Vanderbilt, D. Pseudopotentials for high-
582 throughput DFT calculations. *Comp. Mater. Sci.* **2014**, *81*, 446–452.

583 (67) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple.
584 *Phys. Rev. Lett.* **1996**, *77*, 3865–8.

585 (68) Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. *Phys. Rev. B*
586 **1976**, *13*, 5188–5192.

587 (69) Rong, X.; Parolin, J.; Kolpak, A. M. A Fundamental Relationship between Reaction Mech-
588 anism and Stability in Metal Oxide Catalysts for Oxygen Evolution. *ACS Catal.* **2016**, *6*,
589 1153–1158.

590 (70) Wagman, D. D. E.; Halow, I.; Parker, V. B.; Bailey, S. M.; Schumm, R. H. Selected Values of
591 Chemical Thermodynamic Properties. *National Bureau of Standards* **1971**,

592 (71) Persson, K. A.; Waldwick, B.; Lazić, P.; Ceder, G. Prediction of solid-aqueous equilibria:
593 Scheme to combine first-principles calculations of solids with experimental aqueous states.
594 *Phys. Rev. B* **2012**, *85*, 235438.

595 (72) Hubbard, J. Electron Correlation in Narrow Energy Bands. *Proc. R. Soc. Lond. A* **1963**, *276*,
596 238–257.

597 (73) Anisimov, V. I.; Gunnarsson, O. Density-Functional Calculation of Effective Coulomb Inter-
598 actions in Metals. *Phys. Rev. B* **1991**, *43*, 7570.

599 (74) Anisimov, V. I.; Aryasetiawan, F.; Lichtenstein, A. I. First-principles Calculations of the
600 Electronic Structure of Strongly Correlated Systems: the LDA + *U* Method. *J. Phys. Cond.
601 Matter* **1997**, *9*, 767.

602 (75) Shick, A. B.; Liechtenstein, A. I.; Pickett, W. E. Implementation of the LDA+U method using
603 the full-potential linearized augmented plane-wave basis. *Phys. Rev. B* **1999**, *60*, 10763–9.

604 (76) Yabuuchi, N.; Ohzuku, T. Novel lithium insertion material of $\text{LiCo}_{1/3}\text{Ni}_{1/3}\text{Mn}_{1/3}\text{O}_2$ for ad-
605 vanced lithium-ion batteries. *J. Power Sources* **2003**, *119-121*, 171–174.

606 (77) Yin, S.-C.; Rho, Y.-H.; Swainson, I.; Nazar, L. F. X-ray/Neutron Diffraction and Electro-
607 chemical Studies of Lithium De/Re-Intercalation in $\text{Li}_{1-x}\text{Co}_{1/3}\text{Ni}_{1/3}\text{Mn}_{1/3}\text{O}_2$ ($x = 0$ to 1).
608 *Chem. Mater.* **2006**, *18*, 1901–1910.

609 (78) Cho, J.; Lee, J.-G.; Kim, B.; Park, B. Effect of P_2O_5 and AlPO_4 Coating on LiCoO_2 Cathode
610 Material. *Chem. Mater.* **2003**, *15*, 3190–3193.

611 (79) Kim, J.; Noh, M.; Cho, J.; Kim, H.; Kim, K.-B. Controlled Nanoparticle Metal Phosphates
612 (M= Al, Fe, Ce, and Sr) Coatings on LiCoO₂ Cathode Materials. *J. Electrochem. Soc.* **2005**,
613 152, A1142–A1148.

614 (80) Verdier, S.; Ouatani, L. E.; Dedryvere, R.; Bonhomme, F.; Biensan, P.; Gonbeau, D. XPS
615 Study on Al₂O₃- and AlPO₄-Coated LiCoO₂ Cathode Material for High-Capacity Li-Ion
616 Batteries. *J. Electrochem. Soc.* **2007**, 154, A1088–A1099.

617 (81) Taminato, S.; Hirayama, M.; Suzuki, K.; Tamura, K.; Minato, T.; Arai, H.; Uchimoto, Y.;
618 Ogumi, Z.; Kanno, R. Lithium Intercalation and Structural Changes at the LiCoO₂ Surface
619 under High Voltage Battery Operation. *J. Power Sources* **2016**, 307, 599–603.

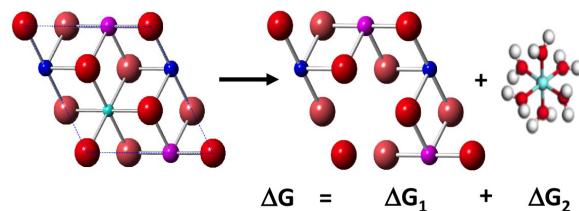
620 (82) Kim, Y.; Veith, G. M.; Nanda, J.; Unocic, R. R.; Chi, M.; Dudney, N. J. High Voltage Stability
621 of LiCoO₂ Particles with a Nanoscale Lipon Coating. *Electrochim. Acta* **2011**, 56, 6573–
622 6580.

623 (83) Hendren, C. O.; Powers, C. M.; Hoover, M. D.; Harper, S. L. The Nanomaterial Data Curation
624 Initiative: A collaborative approach to assessing, evaluating, and advancing the state of the
625 field. *Beilstein J. Nanotechnol.* **2015**, 6, 1752–1762.

626 (84) Powers, C. M.; Mills, K. A.; Morris, S. A.; Klaessig, F.; Gaheen, S.; Lewinski, N.; Hen-
627 dren, C. O. Nanocuration workflows: Establishing best practices for identifying, inputting,
628 and sharing data to inform decisions on nanomaterials. *Beilstein J. Nanotechnol.* **2015**, 6,
629 1860–1871.

630 (85) Robinson, R. L. M. et al. How should the completeness and quality of curated nanomaterial
631 data be evaluated? *Nanoscale* **2016**, 8, 9919.

632 (86) Cui, Q.; Hernandez, R.; Mason, S. E.; Frauenheim, T.; Pedersen, J. A.; Geiger, F. Sustainable
633 Nanotechnology: Opportunities and Challenges for Theoretical/Computational Studies. *J.*
634 *Phys. Chem. B* **2016**, 120, 7297–7306.


635 (87) Levard, C.; Hotze, E. M.; Lowry, G. V.; G. E. Brown, J. Environmental Transformations
636 of Silver Nanoparticles: Impact on Stability and Toxicity. *Environ. Sci. Technol.* **2012**, *46*,
637 6900–6914.

638 (88) Dale, A. L.; Casman, E. A.; Lowry, G. V.; Lead, J. R.; Viparelli, E.; Baalousha, M. Modeling
639 Nanomaterial Environmental Fate in Aquatic Systems. *Environ. Sci. Technol.* **2015**, *49*, 2587–
640 2593.

641 (89) Dale, A. L.; Lowry, G. V.; Casman, E. A. Stream Dynamics and Chemical Transformations
642 Control the Environmental Fate of Silver and Zinc Oxide Nanoparticles in a Watershed-Scale
643 Model. *Environ. Sci. Technol.* **2015**, *49*, 7285–7293.

644 (90) Towns, J.; Cockerill, T.; Dahan, M.; Foster, I.; Gaither, K.; Grimshaw, A.; Hazlewood, V.;
645 Lanthrop, S.; Lifka, D.; Peterson, G. D.; Roskies, R.; Scott, J. R.; Wilkins-Diehr, N.
646 XSEDE: Accelerating Scientific Discovery. *Comp. Sci. Engineering* **2014**, *16*, 62–74.

647 **TOC Entry**

