

## Evidence for Considerable Metal Cation Concentrations from Lithium Intercalation Compounds in the Nano-Bio Interface Gap

Merve Dogangun, Mimi N. Hang, Jo Machesky, Alicia C. McGeachy,  
Naomi Dalchand, Robert J Hamers, and Franz M. Geiger

*J. Phys. Chem. C, Just Accepted Manuscript* • DOI: 10.1021/acs.jpcc.7b09187 • Publication Date (Web): 10 Nov 2017

Downloaded from <http://pubs.acs.org> on November 13, 2017

### Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.



ACS Publications

The Journal of Physical Chemistry C is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036  
Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1  
2 Dogangun *et al.*

3 Page 1

4 **Evidence for Considerable Metal Cation Concentrations from Lithium Intercalation**5 **Compounds in the Nano-Bio Interface Gap**6  
7 Merve Doğangün,<sup>1</sup> Mimi N. Hang,<sup>2</sup> Jo Machesky<sup>1</sup>, Alicia C. McGeachy,<sup>1</sup> Naomi Dalchand,<sup>1</sup>8  
9 Robert J. Hamers,<sup>2</sup> Franz M. Geiger<sup>1</sup>10  
11 <sup>1</sup>Department of Chemistry, Northwestern University, Evanston, IL 60208, United States,12  
13 <sup>2</sup>Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI,  
14  
15 53706, United States16  
17  
18  
19  
20  
21  
22 **ABSTRACT.** An experimental investigation of how electrostatics and ion dissolution impact  
23 the interaction between nanosheets of lithium intercalation compounds and supported lipid  
24 bilayers has revealed evidence for considerable metal cation concentrations in the  
25 nanosheets/bilayer (the "nano-bio interface") gap. Specifically, elevated concentrations of  
26 aqueous metal ions in the 1 mg/L concentration regime produce vibrational sum frequency  
27 generation signal intensity changes that are commensurate with the induction of  
28 compositional membrane asymmetry. This outcome is consistent with the notion that the  
29 induction of bilayer asymmetry by LiCoO<sub>2</sub> nanosheets occurs through a non-contact  
30 mechanism that involves primarily the interaction of negatively charged lipids with dissolved  
31 ions concentrated within the electrical double layers present in the nano-bio interface gap.  
32 Our findings provide opportunities for mitigating non-contact interactions between  
33 nanomaterials and biological interfaces and point towards a path for enabling the design of  
34 new energy storage materials with reduced environmental impacts.52  
53  
54  
55  
56  
57  
58 \*Corresponding Author. Email: [geigerf@chem.northwestern.edu](mailto:geigerf@chem.northwestern.edu).59  
60

**I. INTRODUCTION.** The increasing use of nanoscale redox-active materials in all-electric/hybrid vehicles and grid energy storage, specifically lithium intercalation compounds,<sup>1-3</sup> may lead to environmental release and exposure,<sup>4-5</sup> with poorly understood biological outcomes.<sup>6-8</sup> Recent studies have explored metal oxide nanoparticle toxicity to prokaryotic and eukaryotic cells, as well as unicellular and multicellular organisms.<sup>9-12</sup> Some of the commonly proposed mechanisms of cytotoxicity include the generation of reactive oxygen species, release of metal ions, penetration of the cell envelope, and the disorganization of bacterial membrane.<sup>13-17</sup> As the toxicity mechanisms of metal oxide nanomaterials may vary fundamentally depending on the properties of nanomaterials as well as the membrane structures, a detailed molecular-level understanding of how redox active nanomaterials interact with cell membranes or model cell membranes, including supported phospholipid bilayers (SLBs), warrants exploration.

We have previously shown that lithium cobalt oxide ( $\text{LiCoO}_2$ ) nanosheets induce alterations to the compositional asymmetry in two-component SLBs through electrostatic interactions.<sup>18</sup> Here, we further explore the charge interactions by altering the  $\zeta$ -potential of nanosheets and changing the ionic strength of the solution. Yet, while many nanomaterials are poorly soluble in water, dissolution of some metal oxide nanoparticles, including those containing  $\text{TiO}_2$ ,  $\text{ZnO}$ , and  $\text{CuO}$ , in aqueous environments may result in cellular toxicity due to the release of  $\text{Ti}^{2+}$ ,  $\text{Zn}^{2+}$ , and  $\text{Cu}^{2+}$  ions into solution.<sup>19-20</sup> Indeed, previous work by Hang *et al.* demonstrated that the toxicity of nanoscale lithium nickel manganese cobalt oxide (NMC) to the Gram-negative bacterium *Shewanella oneidensis* MR-1 arises from the incongruent release of transition metal ions (specifically  $\text{Ni}^{2+}$  and  $\text{Co}^{2+}$ ) into solution, as opposed to the nanoparticles themselves.<sup>16</sup> Specifically, that study showed that  $\text{Co}^{2+}$  significantly delayed the onset of exponential growth at sub mg/L concentrations, while  $\text{Li}^+$  had no effect on bacterial growth.<sup>16</sup> For simultaneous exposure to both  $\text{Li}^+$  and  $\text{Co}^{2+}$ , total oxygen

1  
2 Dogangun et al.3 Page 34  
5 consumption remained unchanged. Subsequent research investigated the impact of chemical  
6 composition of NMC on bacterial oxygen consumption,<sup>17</sup> and how the surface structure of  
7 LiCoO<sub>2</sub> nanosheets can be altered to enhance phosphate binding,<sup>21</sup> so as to decrease ion  
8 dissolution by an environmentally acquired surface coating. In this present work, we aim to  
9 address the possible importance of ion dissolution from the LiCoO<sub>2</sub> nanosheets for the  
10 induction of compositional asymmetry in supported lipid bilayers. To this end, we present  
11 results from vibrational sum frequency generation (SFG) spectroscopy experiments sensitive  
12 to how the chemical composition of SLBs may or may not change upon exposure to aqueous  
13 Li<sup>+</sup> and Co<sup>2+</sup> ions. SFG spectroscopy has previously been used to probe the kinetics of  
14 transbilayer movement of lipids and bilayer asymmetry at aqueous/solid interfaces,<sup>22-25</sup> as  
15 well as to obtain structural and orientational information on aqueous ion-phospholipid  
16 interactions at the air/water interface.<sup>26-27</sup> Our studies provide empirical evidence for a locally  
17 high concentration of ions present at the bilayer-nanosheet gap, and provide estimates for the  
18 dissolved ion concentrations at the interfacial region, which may ultimately be helpful for to  
19 abating potential environmental impacts of nanomaterials used for energy storage.  
20  
2122 **II. EXPERIMENTAL.**23  
24 **A. Bilayer Preparation.** 1,2-dimyristoyl-*sn*-glycero-3-phosphocholine (DMPC) and 1,2-  
25 dimyristoyl-*sn*-glycero3-phospho-(1-*rac*-glycerol) (DMPG) were purchased from Avanti  
26 Polar Lipids and used without further purification. Lipid bilayers from small unilamellar  
27 vesicles of pure DMPC as well as a lipid mixture containing 90 mol% DMPC and 10 mol%  
28 DMPG were prepared on 3mm thick IR-grade fused silica windows (ISP Optics) by the  
29 vesicle fusion method, as described earlier.<sup>18, 28-29</sup> Experiments were carried out at room  
30 temperature (22 ± 1 °C). All SLBs were formed at 0.01 M Tris or 0.01 M HEPES buffer and  
31 0.1 M NaCl in the presence of 0.005 M CaCl<sub>2</sub>·2H<sub>2</sub>O at pH 7.40 ± 0.03, and rinsed with Ca-  
32 free buffer following bilayer formation.  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2 Dogangun *et al.*3 Page 44  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
**B. Dynamic Light Scattering (DLS) of Nanosheets.** Diffusion coefficients, electrophoretic mobilities, *z*-Average hydrodynamic diameters (nm) and apparent  $\zeta$ -potentials for fresh suspensions (5 mg/L) of LiCoO<sub>2</sub> nanosheets and vesicle solutions were determined using a Malvern Instruments Zetasizer Nano, with a He-Ne laser at 633 nm operating at a maximum of 5 mW. Electrophoretic mobility was converted to  $\zeta$ -potential by the Smoluchowski model which simply assumes spherical particles.<sup>30</sup> We note that nanosheets have different aspect ratios that might lead to deviations in the absolute values. LiCoO<sub>2</sub> nanosheet suspensions were sonicated in 0.1 M NaCl, 0.01 M Tris or HEPES buffer at pH 7.4 for 10 minutes and vortexed for 30 seconds.**C. Nanosheet Imaging on Supported Lipid Bilayers.** A Leo Supra55 VP scanning electron microscope (SEM) coupled with a Thermo Scientific UltraDry energy-dispersive X-ray spectroscopy (EDS) detector was used to probe for the presence of attached LiCoO<sub>2</sub> nanosheets on SLBs formed from unilamellar vesicles prepared from a 9:1 mix of DMPC/DMPG in Tris buffer on 5% thermal oxide ultraflat SiO<sub>2</sub> wafers.<sup>18</sup> In HEPES buffer, the nanosheet attachment to SLBs was probed by SEM (Hitachi SU8040) coupled with an Oxford Aztec X-max 80 EDS detector. The images were taken using 14 keV incident electron energy.**D. Metal Ion Dissolution from LiCoO<sub>2</sub> Nanosheets.** A PerkinElmer Optima 2000 inductively couple plasma (ICP) optical emission spectrometer (OES) was used to determine metal concentrations of the LiCoO<sub>2</sub> nanosheets in aqueous solutions held at 0.1M NaCl, 0.01M Tris and pH 7.4. To characterize metal ion release into the solution, triplicate sample suspensions of LiCoO<sub>2</sub> at 5 mg/L concentration was prepared. After 4 hours, the suspensions were centrifuged at 4,700g for 10 minutes to remove most of the LiCoO<sub>2</sub> nanoparticles in solution. The supernatants were then ultracentrifuged for 2 hours at 288,000g using a Beckman Coulter Optima Ultracentrifuge with a SW-41 Ti Rotor to ensure removal of any

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Dogangun *et al.*

Page 5

remaining LiCoO<sub>2</sub> nanoparticles. Concentrations of dissolved metal species in the resulting supernatants were measured by ICP-OES. Stock solutions of LiCl and CoCl<sub>2</sub>.6H<sub>2</sub>O in 0.01 M Tris buffer and 0.1 M NaCl at pH 7.4 at metal ion concentrations equivalent to those measured by ICP-OES were used as described in the Results section.

**E. Vibrational Sum Frequency Generation Spectroscopy.** Details of our SFG approach and experimental setup for probing condensed matter interfaces have been reported previously.<sup>18, 31-33</sup> Experimental details regarding the solution preparation, bilayer formation and characterization, and flow conditions have been reported recently as well.<sup>18, 29</sup> Briefly, we followed the SFG signal intensity attributed to the terminal CH<sub>3</sub>- $\nu_s$  (symmetric stretch) in the lipids used in our bilayers to evaluate changes in SLB asymmetry upon exposure to the oxide nanosheets or the dissolved metal ions. We selectively probed vibrational modes having transition dipole moment orientation components perpendicular to the liquid/solid interface. The SFG spectra were recorded in triplicate for each experimental condition of varying buffer identity, oxide nanosheet, bare ion identity, bare ion concentration and ionic strength.

**F. Second Harmonic Generation [<sup>3</sup>D] Spectroscopy.** The SHG studies reported here were carried out using the methods described previously,<sup>29, 31</sup> using the s-in/all out polarization combination.

### III. RESULTS AND DISCUSSION.

**A. LiCoO<sub>2</sub> Nanosheet Interactions with SLBs Formed from 9:1 Mixtures of DMPC/DMPG Lipids Depend Critically on  $\zeta$ -Potential at 0.1 M NaCl.** We first examined the effect of buffer choice and  $\zeta$ -potential on nanosheet-bilayer interactions (Table I). While LiCoO<sub>2</sub> nanosheets suspended in 0.1M NaCl, 0.01 M Tris buffer exhibit positive  $\zeta$ -potentials (+12.9  $\pm$  0.6 mV),<sup>18</sup> they were found to exhibit negative  $\zeta$ -potentials (-19.4  $\pm$  1.8 mV) when suspended in solutions prepared using 0.1M NaCl and 0.01 M HEPES buffer. This difference in  $\zeta$ -potentials for the two different buffers is putatively attributed to the possibly surface-

1  
2 Dogangun *et al.*

3 Page 6

4 active nature of the Tris cation, which has been previously reported to be present at silica and  
5 bilayer surfaces.<sup>18, 29</sup> This finding also highlights the importance of buffer choice when  
6 studying oxide nanosheets at the nano-bio interface. Note that while the  $\zeta$ -potentials of  
7 nanosheet suspensions show differences in the two different buffers, the  $\zeta$ -potentials of the  
8 vesicles formed from the 9:1 mixture of DMPC/DMPG lipids used for preparing the  
9 supported lipid bilayers studied in this work remain invariant in the two buffers. The  
10 complete characterization data are provided in the Supporting Information Table S1.

11 We used SEM/EDS to provide evidence of LiCoO<sub>2</sub> nanosheet attachment to bilayers formed  
12 from the 9:1 mixture of DMPC/DMPG used in these experiments.<sup>18</sup> Figure 1A shows the  
13 SEM image and the corresponding EDS spectra of an ultraflat SiO<sub>2</sub> wafer with a bilayer  
14 prepared from a 9:1 mixture of DMPC/DMPG lipids in 0.1 M NaCl buffered at pH 7.4 using  
15 0.01 M Tris buffer. Following nanosheet exposure and rinse, the EDS data reveals localized  
16 regions of the bilayer contained LiCoO<sub>2</sub> nanosheets, identified at 0.79 and 7.65 keV for  
17 cobalt, that are readily distinguished from Na (1.04 keV) and Cl (2.62 keV) signals  
18 originating from the cubic feature seen in the image and Si (1.74 keV) and O (0.52 keV)  
19 signals from the underlying SiO<sub>2</sub> substrate.

20 Switching from Tris to HEPES buffer would be expected to lead to some degree of  
21 Coulombic repulsion between the negatively charged bilayers and the LiCoO<sub>2</sub> nanosheets,  
22 which carry a negative potential in HEPES buffer.<sup>29</sup> Indeed, as shown in Figure 1B, the flake-  
23 like LiCoO<sub>2</sub> structures in HEPES buffer are present but in more confined regions compared  
24 to Tris. EDS data shows the presence of LiCoO<sub>2</sub> nanosheets in localized regions, identified at  
25 0.78, 6.92 and 7.65 keV for cobalt. Signals originating from the cubic feature seen in the  
26 image are from Na (1.04 keV) and Cl (2.62 and 2.82 keV) and signals from the underlying  
27 SiO<sub>2</sub> substrate appear at 1.74 keV for Si and at 0.52 keV for O.

Dogangun *et al.*

Page 7

To probe the nanosheet-bilayer interactions *in situ*, and under conditions of dynamically changing aqueous flow, we proceeded to record vibrational SFG spectra of the supported lipid bilayers before, during, and after exposure to the oxide nanosheets. Figures 2A and 2B show representative SFG spectra of 9:1 DMPC/DMPG bilayers maintained in 0.01 M Tris and in 0.01 M HEPES buffer, respectively, both in the presence of 0.1 M NaCl at pH 7.4. Before the addition of the LiCoO<sub>2</sub> nanosheets, the SLBs produce vibrational SFG spectra featuring comparable peak positions at *ca.* 2980, 2930, and 2880 cm<sup>-1</sup>, where the 2880 cm<sup>-1</sup> peak which is attributed to the CH<sub>3</sub> symmetric stretch of the alkyl tails and the other two features are presumably due to interference from the O–H stretches.<sup>18, 34–36</sup> We note that the relative signal intensities vary somewhat with choice of buffer. Unlike the previously examined LiCoO<sub>2</sub> nanosheets suspended in Tris buffer, which show SFG signal increases that are attributable to asymmetry induction in the membrane (Fig. 2A),<sup>18</sup> the SFG responses from the bilayer remain invariant upon exposing it to LiCoO<sub>2</sub> nanosheets suspended in 0.01 M HEPES buffer (Fig. 2B). A similar lack of a signal intensity change was observed when NMC nanosheets, carrying a negative  $\zeta$ -potential of  $-19.5 \pm 1.4$  mV in 0.01 M Tris buffer and 0.1 M NaCl were exposed to bilayers formed from 9:1 mixture of DMPC/DMPG at 0.1 M NaCl.<sup>18</sup> These two results suggest that negatively charged nanosheets do not induce compositional asymmetry in supported lipid bilayers formed from 9:1 mixtures of DMPC/DMPG under the solution conditions used in our experiments, a likely result of Coulombic repulsion, given that the bilayers studied here carry a negative surface potential under the conditions of our experiments.<sup>29</sup>

**B. LiCoO<sub>2</sub> Nanosheets Do Not Disturb SLBs Formed from 9:1 Mixtures of**

**DMPC/DMPG Lipids at Low Ionic Strength.** To investigate the role of ionic strength on the oxide nanosheet-bilayer interactions, we rinsed bilayers formed in 0.1 M NaCl and 0.01 M Tris buffer with a solution of 0.001 M NaCl in 0.01 M Tris buffer and subsequently

1  
2 Dogangun *et al.*

3 Page 8

4 exposed them at that low ionic strength to LiCoO<sub>2</sub> nanosheets maintained in Tris buffer. Fig.  
5 2C shows that while the general lineshape of the SFG spectra obtained at high vs. low ionic  
6 strength in the presence of 0.01 M Tris buffer is invariant with salt concentration, the signal  
7 intensities tend to be higher at low salt concentration than at high salt concentration. Fig. 2D  
8 shows that exposing the SLBs to LiCoO<sub>2</sub> nanosheets suspended in 0.001 M NaCl and 0.01 M  
9 Tris buffer at pH 7.4, conditions for which the nanosheet  $\zeta$ -potential is  $-9.4 \pm 0.8$  mV (Table  
10 I), leads only to insignificant SFG signal intensity changes. This outcome is attributable to  
11 the notion that despite reduced charge screening at low ionic strength, considerable charge-  
12 charge repulsion remains such that the oxide nanosheets cannot readily approach the bilayer  
13 to induce chemical asymmetry, as probed by SFG spectroscopy.

14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27 **C. Dissolution of LiCoO<sub>2</sub> Nanosheets in Aqueous Solution Releases Li<sup>+</sup> and Co<sup>2+</sup> Ions.**

28 Having established that LiCoO<sub>2</sub> nanosheets that carry a positive  $\zeta$ -potential produce SFG  
29 signal intensity increases that indicate the induction of chemical asymmetry within supported  
30 lipid bilayers formed from 9:1 mixtures of DMPC/DMPG at 0.1 M NaCl, while those  
31 carrying a negative  $\zeta$ -potential do not (even though they are still present at the bilayer, as  
32 evidenced by SEM), we proceeded to further investigate the fundamental interactions that  
33 lead to chemical asymmetry in bilayers exposed to oxide nanosheets. Our prior work<sup>18</sup>  
34 established that bilayers prepared from purely zwitterionic lipids do not produce SFG signal  
35 intensity changes upon exposure to LiCoO<sub>2</sub> nanosheets under conditions of 0.1 M salt and  
36 0.01 M Tris buffer, while those prepared from mixes containing 10 mol% of the negatively  
37 charged lipids PS or PG do. This finding pointed to the importance of the lipids with  
38 negatively charged headgroups in the bilayer. Motivated by the extent of oxide dissolution  
39 reported for nanoscale lithium nickel manganese cobalt oxide by Hang *et al.*,<sup>16</sup> we asked  
40 whether the LiCoO<sub>2</sub> nanosheets studied in this present work could release metal cations  
41 directly into the membrane-nanosheet gap, where those metal cations (as opposed to the  
42

1  
2 Dogangun et al.

3 Page 9

4 actual nanosheets) could interact with the lipids to produce the observed SFG signal intensity  
5 changes described here.  
67 Incongruent oxide dissolution may release metal cations in amounts that depend on the  
8 intrinsic properties of the oxide (e.g., chemical composition and particle size) as well as the  
9 aqueous solution conditions (e.g., pH, temperature, ionic strength).<sup>37</sup> Under the conditions of  
10 our experiment (0.1 M salt, 0.01 M Tris buffer, pH 7.4, and room temperature), our ICP-OES  
11 measurements (Table II) show, for suspensions of 5 mg/L LiCoO<sub>2</sub> stirred for four hours,  
12 dissolved Li ions at  $0.124 \pm 0.002$  mg/L and dissolved Co ions at  $0.042 \pm 0.001$  mg/L. Table  
13 II also shows that the extent of dissolution is fairly comparable for conditions of 0.001 M salt  
14 and 0.01 M Tris buffer. Ion dissolution for the condition of using HEPES buffer is  
15 comparable to that of Tris buffer.  
16  
1718 Given the above findings, any experiment testing whether the presence of dissolved ions  
19 from the LiCoO<sub>2</sub> nanosheets cause the observed SFG signal intensity increases produced by  
20 the bilayers upon exposure to the nanosheets should then start with sub-mg/L concentrations  
21 of Li and Co ions dissolved in 0.1 M salt solution maintained at pH 7.4 using 0.01 M Tris  
22 buffer. Controls for chloride and any minor changes in ionic strength would be provided by  
23 adding sub-mg/L amounts of NaCl to the 0.1 M salt solution while monitoring the SFG  
24 spectra obtained from the bilayers. The following two sections present the results from those  
25 experiments.  
26  
2728 **D. Sub-mg/L Concentration of Aqueous Metal Ions Found in Bulk Nanosheet Solution**29 **Do Not Induce Apparent Bilayer Asymmetry from Bilayers Formed from 9:1 Mixture**30 **of DMPC/DMPG.** As shown in Figure 3A and 3B, the presence of Li<sup>+</sup> and Co<sup>2+</sup> ions at  
31 concentrations determined by ICP-OES to be relevant for LiCoO<sub>2</sub> nanosheet dissolution in  
32 high ionic strength does not produce significant SFG signal intensity increases in the spectra  
33 obtained from the bilayers. We further investigated possible combined ion effects by  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2 Dogangun *et al.*

Page 10

3 introducing a solution containing both  $\text{Li}^+$  and  $\text{Co}^{2+}$  ions using the concentrations determined  
4 in the dissolution experiments. Figure 3C shows negligible changes in the SFG spectra upon  
5 exposing bilayers to aqueous solutions under those conditions as well. Controls shown in  
6 Figure 3D indicate no change in the spectral lineshape when adding even one mg/L  $\text{NaCl}$  to  
7 the aqueous solution.

8  
9  
10  
11  
12  
13  
14  
15 **E. Elevated Concentrations of Aqueous Metal Ions Elicit Increases in SFG Signal**

16  
17 **Intensity from 9:1 DMPC/DMPG Bilayers.** Although ICP-OES measurements yield  
18 information about dissolved ion concentration in the solution phase, these concentrations do  
19 not necessarily correlate to the effective concentration of ions at the bilayer/nanosheet  
20 interface. We therefore exposed bilayers prepared from a 9:1 mixture of DMPC/DMPG to  
21  $\text{Li}^+$  and  $\text{Co}^{2+}$  ion concentrations 10 times above those determined in the nanosheet dissolution  
22 studies, at a total salt concentration of 0.1 M and at pH 7.4, maintained using 0.01 M Tris  
23 buffer. As shown in Figures 4A and 4B, the use of elevated ion concentrations indeed  
24 produced significant SFG signal intensity increases for the case of  $\text{Li}^+$  and  $\text{Co}^{2+}$  ions. Again,  
25 these results are for solution conditions of 0.01 M Tris buffer and 0.1 M  $\text{NaCl}$ . As shown in  
26 in the Supporting Information Figure S1, this result is robust over three measurements. Given  
27 the salt control (shown in Figure 3D), this outcome appears to point towards a role of ion  
28 specificity. The interaction appears to involve the negatively charged PG headgroup, as the  
29 introduction of 0.5 mg/L solution of  $\text{Co}^{2+}$  shown in Figure 4C respectively does not  
30 significantly alter the SFG signal intensity from bilayers composed of purely zwitterionic  
31 DMPC lipids, as shown in Figure 4C. Furthermore, Figure 4D shows that the increases in  
32 SFG signal intensity upon exposure to 0.5 mg/L  $\text{Co}^{2+}$  persist even upon rinsing.

33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60 Cation bonding to the backbone of peptides has been reported to depend on the hydration  
shell of the cation, with well-hydrated divalent cations showing stronger binding than weakly  
hydrated monovalent cations.<sup>38</sup> Similarly, the tendency of ions to interact with lipids in the

Dogangun *et al.*

Page 11

bilayer membrane depends on the strength of their hydration shell,<sup>39-40</sup> with anionic lipids typically more prone to strong interactions with metal cations than zwitterionic lipids because of attractive Coulombic forces.<sup>41</sup> McLaughlin and coworkers showed that  $\text{Co}^{2+}$  forms strong complexes with phosphatidylglycerol (PG) and phosphatidylserine (PS) lipids.<sup>42-43</sup>  $\text{Li}^+$  also forms strong, high melting dehydrated metal ion-PS complexes and induces bilayer hydrocarbon chain crystallization at higher concentrations.<sup>44-45</sup> Since  $\text{Co}^{2+}$  is more strongly hydrated than  $\text{Li}^+$ , with hydration enthalpies of 2113 and 545 kJ/mol, respectively,<sup>46</sup> we expect a stronger interaction of  $\text{Co}^{2+}$  with negatively charged lipid headgroups or an interaction with the headgroup at a lower ion concentration. Yet, we observe compositional asymmetry induced by  $\text{Co}^{2+}$  at comparable ionic strengths under the conditions of our experiments. A more detailed analysis of the binding thermodynamics and electrostatics, including the determination of the number of cations bound per unit area within the nano-bio interface gap is found in Section F.

## F. Quantifying $\text{Co}^{2+}$ Adsorption Thermodynamics and Electrostatics in the Nano-Bio-

**Interface Gap.** As shown previously,<sup>47-51</sup> second harmonic generation (SHG)  $\chi^{(3)}$  measurements can yield important information about binding thermodynamics and electrostatics.<sup>52-56</sup> SHG spectroscopy adsorption isotherms (Figure 5A) in which the SH signal intensity is monitored as a function of  $\text{Co}^{2+}$  concentration in the presence of SLBs formed from DMPC and a 9:1 mixture of DMPC and DMPG at a constant salt concentration of 100 mM allow us to explore the role of PG-lipids in promoting  $\text{Co}^{2+}$  adsorption, to estimate the adsorption Gibbs free energy and the interfacial charge density, and to investigate reversibility, thereby demonstrating the wide utility of the  $\chi^{(3)}$  method for studying the nano-bio interface. Figure 5A shows the adsorption of  $\text{Co}^{2+}$  to single-component lipid bilayers formed solely from DMPC results in little change in the SHG intensity as the  $\text{Co}^{2+}$  concentration is raised. This finding is similar to the SFG spectroscopy result presented

1  
2 Dogangun *et al.*

3 Page 12

4 in Figure 4C, which shows negligible SFG intensity changes upon exposure of bilayers  
5 formed from pure DMPC to Co<sup>2+</sup> ions.

6  
7 Figure 5A also shows the Co<sup>2+</sup> adsorption isotherm to bilayers formed from a 9:1 mixture of  
8 DMPC and DMPG, revealing that the addition of just 10% of PG-terminated lipid leads to  
9 substantial SHG losses as the Co<sup>2+</sup> concentration is raised. These results are consistent over  
10 triplicate measurements on individually formed bilayers of both compositions and consistent  
11 with previous studies that indicate divalent cations bind preferentially to anionic  
12 phospholipids.<sup>42, 57-59</sup> From the SHG adsorption isotherm and the extracted charge density, it  
13 is possible to determine the number of ions present at the interface at the concentration at  
14 which we observe the SFG signal intensity increases displayed in Figures 4B and 4D. At 100  
15 mM salt concentration, charge densities are estimated from SHG adsorption isotherms using  
16 electrostatic and adsorption models like the combined Gouy-Chapman/Langmuir expression  
17 shown in Equation 1.<sup>56</sup>

18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

$$I_{SHG} \propto |E_{SHG}|^2 \propto \left| A + B \sinh^{-1} \left[ \left( \sigma_0 + \sigma_{ads} \left\{ \frac{K_{ads}[M]}{1+K_{ads}[M]} \right\} \right) \left( \frac{8.44}{\sqrt{M+C_{elec}}} \right) \right] \right|^2 \quad \text{Eq. 1.}$$

59 Here,  $I_{SHG}$  and  $E_{SHG}$  are the second harmonic intensity and second harmonic electric field,  
60 respectively,  $\sigma_0$  is the charge density of the 9:1 DMPC/DMPG bilayer,  $\sigma_{ads}$  is the charge  
density of the adsorbed Co<sup>2+</sup> at saturation coverage,  $K_{ads}$  is the apparent equilibrium constant  
of Co<sup>2+</sup> adsorption in liters per mole,  $M$  is the bulk Co<sup>2+</sup> concentration in moles per liter, and  
61  $C_{elec}$  is the background electrolyte concentration (0.1 M NaCl) in moles per liter. As  
62 discussed in previously published work, A and B, which contain the second- and third- order  
63 nonlinear susceptibilities of the system, and the incident electric field at the fundamental  
64 frequency and are treated as constants in our approximations and estimations.<sup>56</sup> The  
65 applicability of the Langmuir adsorption model in our case is justified by the observation of  
66 near quantitative reversibility in the Co<sup>2+</sup>/bilayer interaction (Figure 5B).

1  
2 Dogangun et al.3  
4 Page 135  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Fitting Equation 1 to the SHG adsorption data yields a  $\text{Co}^{2+}$  charge density of  $0.1 \pm 0.02$   $\text{C/m}^2$ , corresponding to roughly  $3 \times 10^{13}$  ions/ $\text{cm}^2$  at maximum surface coverage if each ion carries a +2 charge. A charge density of  $0.1 \text{ C/m}^2$  for  $\text{Co}^{2+}$  adsorption implies that the surface charge of the SLB is neutralized, as we have previously determined that SLBs formed from 9:1 DMPC/DMPG carry a surface charge density of approximately  $-0.1 \text{ C/m}^2$ .<sup>29, 56</sup> Thus, cobalt ion adsorption to SLBs formed from 9:1 mixtures of DMPC and DMPG appears to result in charge neutralization at the interface. Using the equilibrium constant obtained from the SHG adsorption isotherm shown in Figure 5 ( $1760 \pm 290 \text{ M}^{-1}$ ), and applying  $55.5 \text{ M}$  as the standard state for adsorption from solution,<sup>60</sup>  $\Delta G^{\text{Co}^{2+}\text{ads}}$  is estimated to be  $-28 \pm 0.4 \text{ kJ/mol}$ . This value is comparable to our previous estimates for divalent metal ions binding to mineral oxide surfaces.<sup>54, 61-62</sup> While there are several studies exploring the adsorption behavior of  $\text{Ca}^{2+}$ ,  $\text{Ni}^{2+}$ , and  $\text{Mg}^{2+}$  to phospholipids,<sup>57-59, 63</sup> and given the ultra-trace concentrations of cobalt in living systems,<sup>64</sup> little effort has been made to elucidate cobalt adsorption to phospholipid model systems or actual cells in terms of Gibbs free adsorption energies or quantitative surface coverages and electrostatics prior to this present work.

From the  $\text{Co}^{2+}$  isotherm shown for the SLBs formed from 9:1 DMPC/DMPG (Figure 5A), we estimate that *ca.*  $2 \times 10^{12}$   $\text{Co}^{2+}$  ions per  $\text{cm}^2$  are present at the interface under the conditions for which we observe the SFG signal intensity increases when the bilayer is exposed to  $0.5 \text{ mg/L}$ , or  $\sim 8.5 \mu\text{M}$ ,  $\text{CoCl}_2$  (Figure 4). Given the comparable SFG signal intensity increases when the bilayer is exposed to this  $\text{CoCl}_2$  concentration and when it is exposed to  $5 \text{ mg/L}$  solutions of  $\text{LiCoO}_2$  nanosheets under otherwise identical buffer and ionic strength conditions, then, we estimate that a *ca.* ten-fold enhancement of  $\text{Co}^{2+}$  ions in the nano-bio interface gap when compared to the free  $\text{Co}^{2+}$  ion concentration in  $5 \text{ mg/L}$  solutions of  $\text{LiCoO}_2$  nanosheets in  $100 \text{ mM}$  salt and  $10 \text{ mM}$  Tris buffer without bilayers present.

1  
2 Dogangun *et al.*

3 Page 14

4 As stated above, Figure 5B reveals that cobalt adsorption to supported lipid bilayers formed  
5 from 9:1 mixtures of DMPC/DMPG lipids is nearly completely reversible under the  
6 conditions explored. In contrast, the SFG experiments we report do not show reversibility, as  
7 indicated by the retention in the spectral intensity and lineshapes shown in Figure 4D. These  
8 results, taken together, imply that while cobalt ions appear to reversibly adsorb to the bilayer  
9 surface, as monitored by SHG spectroscopy, the induced lipid asymmetry upon interaction  
10 persists, as revealed by SFG spectroscopy.

10  
11 **IV. CONCLUSIONS.** In conclusion, we have investigated the role of electrostatics on the  
12 interactions between redox active nanomaterials and supported lipid bilayers. We found that  
13 the interactions of  $\text{LiCoO}_2$  nanosheets with bilayers formed from 9:1 mixtures of  
14 DMPC/DMPG depend critically on the  $\zeta$ -potential of the nanosheets and the ionic strength.  
15 By studying metal ion dissolution from  $\text{LiCoO}_2$  nanosheets, additional information on the  
16 mechanism of induced bilayer asymmetry was obtained. Specifically, we found that sub-  
17 mg/L concentrations of aqueous metal ions ( $\text{Li}^+$  and  $\text{Co}^{2+}$ ) found in bulk  $\text{LiCoO}_2$  solution do  
18 not change the bilayer structure. However, elevated concentrations of aqueous metal ions in  
19 the 1 mg/L concentration regime were found to produce SFG signal intensity changes  
20 commensurate with induction of compositional asymmetry in the supported lipid bilayers  
21 studied here. This outcome is consistent with the notion that the induction of the bilayer  
22 asymmetry by  $\text{LiCoO}_2$  nanosheets occurs through a non-contact mechanism that involves  
23 primarily the interaction of negatively charged lipids with dissolved ions concentrated within  
24 the electrical double layers present at the nanosheet/bilayer gap. Surface coverage estimates  
25 of the  $\text{Co}^{2+}$  ions within this nano-bio interface gap were obtained by SHG spectroscopy and  
26 found to correspond to *ca.*  $2 \times 10^{12}$   $\text{Co}^{2+}$  ions per  $\text{cm}^2$  for the conditions of nanosheet  
27 concentrations that induce membrane asymmetry. SHG and SFG spectroscopy together  
28 indicate the observed effects to be specific to the negatively charged DMPG lipids, as  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2 Dogangun *et al.*

3 Page 15

4  
5 bilayers formed purely from zwitterionic DMPC lipids show none of the effects described for  
6 the bilayers that contain DMPG. The observation that just 10% of DMPG lipids lead to the  
7 effects described here indicates the ion-lipid interactions are of considerable strength, which  
8 is the subject of ongoing work. Whether other lipid types have similar specific interactions  
9 with transition metal ions like  $\text{Co}^{2+}$  is the subject of ongoing work.  
10  
1112 Our findings provide opportunities for mitigating non-contact interactions between natural  
13 and engineered nanomaterials and biological interfaces. Computational studies aimed at  
14 elucidating the thermodynamics of phosphate passivation of  $\text{LiCoO}_2$  indicate that such an  
15 approach is in principle feasible.<sup>21</sup> We therefore suggest that reducing ion dissolution from  
16 lithium intercalation compounds, such as the one studied in this work, by intentional surface  
17 modifications may provide a path forward for enabling the design of new energy storage  
18 materials with reduced environmental impacts through controlled release mechanisms.  
19  
2021 **ACKNOWLEDGEMENTS.** This study was supported by the US National Science  
22 Foundation Centers for Chemical Innovation Program, the Center for Sustainable  
23 Nanotechnology, under Grant No. CHE-1503408. This work made use of the EPIC and  
24 Keck-II facilities of Northwestern University's NUANCE Center, which has received support  
25 from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI-  
26 1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the  
27 International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of  
28 Illinois, through the IIN. MNH and ACM gratefully acknowledge support of the Graduate  
29 Research Fellowship Program of the US National Science Foundation. FMF gratefully  
30 acknowledges support through the Friedrich Wilhelm Bessel Prize of the Alexander von  
31 Humboldt Foundation.  
32  
3334 **Supporting Information available.** Details regarding the experiments, sample preparation  
35 and characterization, and negative controls are available in the Supporting Information.  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

## References

1. Armand, M.; Tarascon, J. M., Building Better Batteries. *Nature* **2008**, *451*, 652-657.
2. Manthiram, A.; Murugan, A. V.; Sarkar, A.; Murali, T., Nanostructured Electrode Materials for Electrochemical Energy Storage and Conversion. *Energy Environ. Sci.* **2008**, *1*, 621-638.
3. Zhang, Q.; Uchaker, E.; Candelaria, S. L.; Cao, G., Nanomaterials for Energy Conversion and Storage. *Chem. Soc. Rev.* **2013**, *42*, 3127-3171.
4. Andre, D.; Kim, S.-J.; Lamp, P.; Lux, S. F.; Maglia, F.; Paschos, O.; Stiaszny, B., Future Generations of Cathode Materials: An Automotive Industry Perspective. *J. Mater. Chem. A* **2015**, *3*, 6709-6732.
5. Belharouak, I.; Sun, Y. K.; Liu, J.; Amine, K.,  $\text{Li}(\text{Ni}_{1/3}\text{Co}_{1/3}\text{Mn}_{1/3})\text{O}_2$  as a Suitable Cathode for High Power Applications. *J. Power Sources* **2003**, *123*, 247-252.
6. Nel, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M., Understanding Biophysicochemical Interactions at the Nano-Bio Interface. *Nat. Mater.* **2009**, *8*, 543-557.
7. Kang, D. H. P.; Chen, M.; Ogunseitan, O. A., Potential Environmental and Human Health Impacts of Rechargeable Lithium Batteries in Electronic Waste. *Environ. Sci. Technol.* **2013**, *47*, 5495-5503.
8. Murphy, C. J., et al., Biological Responses to Engineered Nanomaterials: Needs for the Next Decade. *ACS Cent. Sci.* **2015**, *1*, 117-123.
9. Heinlaan, M.; Ivask, A.; Blinova, I.; Dubourguier, H.-C.; Kahru, A., Toxicity of Nanosized and Bulk  $\text{ZnO}$ ,  $\text{CuO}$  and  $\text{TiO}_2$  to Bacteria *Vibrio Fischeri* and Crustaceans *Daphnia Magna* and *Thamnocephalus Platyurus*. *Chemosphere* **2008**, *71*, 1308-1316.
10. Khanna, P.; Ong, C.; Bay, B.; Baeg, G., Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death. *J. Nanomater.* **2015**, *5*, 1163-1180.
11. Gajewicz, A.; Schaeublin, N.; Rasulev, B.; Hussain, S.; Leszczynska, D.; Puzyn, T.; Leszczynski, J., Towards Understanding Mechanisms Governing Cytotoxicity of Metal Oxides Nanoparticles: Hints from Nano-Qsar Studies. *Nanotoxicology* **2015**, *9*, 313-325.
12. Jeng, H. A.; Swanson, J., Toxicity of Metal Oxide Nanoparticles in Mammalian Cells. *J Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng.* **2006**, *41*, 2699-711.
13. He, X.; Aker, W. G.; Fu, P. P.; Hwang, H.-M., Toxicity of Engineered Metal Oxide Nanomaterials Mediated by Nano-Bio-Eco-Interactions: A Review and Perspective. *Environ. Sci. Nano* **2015**, *2*, 564-582.
14. Puzyn, T.; Rasulev, B.; Gajewicz, A.; Hu, X.; Dasari, T. P.; Michalkova, A.; Hwang, H.-M.; Toropov, A.; Leszczynska, D.; Leszczynski, J., Using Nano-Qsar to Predict the Cytotoxicity of Metal Oxide Nanoparticles. *Nat. Nanotechnol.* **2011**, *6*, 175-178.
15. Fu, P. P.; Xia, Q.; Hwang, H.-M.; Ray, P. C.; Yu, H., Mechanisms of Nanotoxicity: Generation of Reactive Oxygen Species. *J. Food Drug Anal.* **2014**, *22*, 64-75.
16. Hang, M. N.; Gunsolus, I. L.; Wayland, H.; Melby, E. S.; Mensch, A. C.; Hurley, K. R.; Pedersen, J. A.; Haynes, C. L.; Hamers, R. J., Impact of Nanoscale Lithium Nickel Manganese Cobalt Oxide (NMC) on the Bacterium *Shewanella Oneidensis* Mr-1. *Chem. Mater.* **2016**, *28*, 1092-1100.
17. Gunsolus, I. L.; Hang, M. N.; Hudson-Smith, N. V.; Buchman, J. T.; Bennett, J. W.; Conroy, D.; Mason, S. E.; Hamers, R. J.; Haynes, C. L., Influence of Nickel Manganese Cobalt Oxide Nanoparticle Composition on Toxicity toward *Shewanella Oneidensis* Mr-1: Redesigning for Reduced Biological Impact. *Environ. Sci. Nano* **2017**, *4*, 636-646.
18. Doğangün, M.; Hang, M. N.; Troiano, J. M.; McGeachy, A. C.; Melby, E. S.; Pedersen, J. A.; Hamers, R. J.; Geiger, F. M., Alteration of Membrane Compositional Asymmetry by  $\text{LiCoO}_2$  Nanosheets. *ACS Nano* **2015**, *9*, 8755-8765.

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Dogangun *et al.*

Page 17

19. Xia, T.; Kovochich, M.; Liong, M.; Mädler, L.; Gilbert, B.; Shi, H.; Yeh, J. I.; Zink, J. I.; Nel, A. E., Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties. *ACS Nano* **2008**, *2*, 2121-2134.

20. Franklin, N. M.; Rogers, N. J.; Apte, S. C.; Batley, G. E.; Gadd, G. E.; Casey, P. S., Comparative Toxicity of Nanoparticulate ZnO, Bulk ZnO, and ZnCl<sub>2</sub> to a Freshwater Microalga (*Pseudokirchneriella Subcapitata*): The Importance of Particle Solubility. *Environ. Sci. Technol.* **2007**, *41*, 8484-8490.

21. Huang, X.; Bennett, J. W.; Hang, M. N.; Laudadio, E. D.; Hamers, R. J.; Mason, S. E., Ab Initio Atomistic Thermodynamics Study of the (001) Surface of LiCoO<sub>2</sub> in a Water Environment and Implications for Reactivity under Ambient Conditions. *J. Phys. Chem. C* **2017**, *121*, 5069-5080.

22. Anglin, T. C.; Conboy, J. C., Kinetics and Thermodynamics of Flip-Flop in Binary Phospholipid Membranes Measured by Sum-Frequency Vibrational Spectroscopy. *Biochemistry US* **2009**, *48*, 10220-10234.

23. Brown, K. L.; Conboy, J. C., Electrostatic Induction of Lipid Asymmetry. *J. Am. Chem. Soc.* **2011**, *133*, 8794-8797.

24. Anglin, T. C.; Liu, J.; Conboy, J. C., Facile Lipid Flip-Flop in a Phospholipid Bilayer Induced by Gramicidin a Measured by Sum-Frequency Vibrational Spectroscopy. *Biophys. J.* **2007**, *92*, L01-L03.

25. Wu, F.-G.; Yang, P.; Zhang, C.; Han, X.; Song, M.; Chen, Z., Investigation of Drug-Model Cell Membrane Interactions Using Sum Frequency Generation Vibrational Spectroscopy: A Case Study of Chlorpromazine. *J. Phys. Chem. C* **2014**, *118*, 17538-17548.

26. Casper, C. B.; Verreault, D.; Adams, E. M.; Hua, W.; Allen, H. C., Surface Potential of DPPC Monolayers on Concentrated Aqueous Salt Solutions. *J. Phys. Chem. B* **2016**, *120*, 2043-2052.

27. Casillas-Ituarte, N. N.; Chen, X. K.; Castada, H.; Allen, H. C., Na<sup>+</sup> and Ca<sup>2+</sup> Effect on the Hydration and Orientation of the Phosphate Group of DPPC at Air-Water and Air-Hydrated Silica Interfaces. *J. Phys. Chem. B* **2010**, *114*, 9485-9495.

28. Castellana, E. T., Solid Supported Lipid Bilayers: From Biophysical Studies to Sensor Design. *Surf. Sci. Rep.* **2006**, *61*, 429-444.

29. Troiano, J. M.; Olenick, L. L.; Kuech, T. R.; Melby, E. S.; Hu, D.; Lohse, S. E.; Mensch, A. C.; Dogangun, M.; Vartanian, A. M.; Torelli, M. D.; Ehimiaghe, E.; Walter, A. R.; Fu, L.; Anderton, A. R.; Zhu, Z.; Wang, H.-f.; Orr, G.; Murphy, C. J.; Hamers, R. J.; Pedersen, J. A.; Geiger, F. M. Direct Probes of 4 Nm Diameter Gold Nanoparticles Interacting with Supported Lipid Bilayers. *J. Phys. Chem. C* **2014**, *119*, 534-546.

30. Smoluchowski, M. V. *Phys. Z.* **1905**, *6*, 529-531.

31. Geiger, F. M. Second Harmonic Generation, Sum Frequency Generation, and Chi((3)): Dissecting Environmental Interfaces with a Nonlinear Optical Swiss Army Knife. *Annu. Rev. Phys. Chem.* **2009**, *60*, 61-83.

32. Buchbinder, A. M.; Ray, N. A.; Lu, J.; Van Duyne, R. P.; Stair, P. C.; Weitz, E.; Geiger, F. M., Displacement of Hexanol by the Hexanoic Acid Overoxidation Product at Supported Palladium Nanoparticles under Cyclohexane Solution. *J. Am. Chem. Soc.* **2011**, *133*, 17816-17823.

33. Buchbinder, A. M.; Weitz, E.; Geiger, F. M., When the Solute Becomes the Solvent: Orientation, Ordering, and Structure of Binary Mixtures of 1-Hexanol and Cyclohexane over the (0001) a-Al<sub>2</sub>O<sub>3</sub> Surface. *J. Am. Chem. Soc.* **2010**, *132*, 14661-14668.

34. Liu, J.; Conboy, J. C., 1,2-Diacyl-Phosphatidylcholine Flip-Flop Measured Directly by Sum-Frequency Vibrational Spectroscopy. *Biophys. J.* **2005**, *89*, 2522-2532.

35. Olenick, L. L. C., H. M.; Fu, L.; Zhang, Y.; McGeachy, A. C.;; Dogangun, M. W., S. R.; Wang, H-f.; Geiger, F. M., Single-Component Supported Lipid Bilayers Probed Using Broadband Nonlinear Optics. *Phys. Chem. Chem. Phys.*, **2018**, Advance Article.

36. Wen, Y. C.; Zha, S.; Liu, X.; Yang, S. S.; Guo, P.; Shi, G. S.; Fang, H. P.; Shen, Y. R.; Tian, C. S., Unveiling Microscopic Structures of Charged Water Interfaces by Surface-Specific Vibrational Spectroscopy. *Phys. Rev. Lett.* **2016**, *116*, 016101.

37. Sajid, M.; Ilyas, M.; Basheer, C.; Tariq, M.; Daud, M.; Baig, N.; Shehzad, F., Impact of Nanoparticles on Human and Environment: Review of Toxicity Factors, Exposures, Control Strategies, and Future Prospects. *Environ. Sci. Pollut. Res.* **2015**, *22*, 4122-4143.

38. Okur, H. I.; Kherb, J.; Cremer, P. S., Cations Bind Only Weakly to Amides in Aqueous Solutions. *J. Am. Chem. Soc.* **2013**, *135*, 5062-5067.

39. Zimmermann, R.; Küttner, D.; Renner, L.; Kaufmann, M.; Werner, C. Fluidity Modulation of Phospholipid Bilayers by Electrolyte Ions: Insights from Fluorescence Microscopy and Microslit Electrokinetic Experiments. *J. Phys. Chem. A* **2012**, *116*, 6519-6525.

40. Collins, K. D.; Neilson, G. W.; Enderby, J. E. Ions in Water: Characterizing the Forces That Control Chemical Processes and Biological Structure. *Biophys. Chem.* **2007**, *128*, 95-104.

41. Binder, H.; Zschornig, O. The Effect of Metal Cations on the Phase Behavior and Hydration Characteristics of Phospholipid Membranes. *Chem. Phys. Lipids* **2002**, *115*, 39-61.

42. Lau, A.; McLaughlin, A.; McLaughlin, S. The Adsorption of Divalent Cations to Phosphatidylglycerol Bilayer Membranes. *Biochim. Biophys. Acta* **1981**, *645*, 279-92.

43. McLaughlin, A. C. The Interaction of Cobalt with Glycerophosphoryl Glycerol and Phosphatidyl Glycerol Bilayer Membranes. *J. Magn. Reson.* **1982**, *49*, 246-256.

44. Hauser, H.; Shipley, G. G. Interactions of Divalent Cations with Phosphatidylserine Bilayer Membranes. *Biochemistry US* **1984**, *23*, 34-41.

45. López Cascales, J. J.; Garcia de la Torre, J. Effect of Lithium and Sodium Ions on a Charged Membrane of Dipalmitoylphosphatidylserine: A Study by Molecular Dynamics Simulation. *BBA Biomemb.* **1997**, *1330*, 145-156.

46. Royal Society of Chemistry Data Book: *Hydration Enthalpies of Selected Ions*; RSC, 2006.

47. Chen, E. H.; Hayes, P. L.; Nguyen, S. T.; Geiger, F. M., Zinc Interactions with Glucosamine-Functionalized Fused Silica/Water Interfaces. *J. Phys. Chem. C* **2010**, *114*, 19483-19488.

48. Hayes, P. L.; Malin, J. N.; Jordan, D. S.; Geiger, F. M. Get Charged Up: Nonlinear Optical Voltammetry for Quantifying the Thermodynamics and Electrostatics of Metal Cations at Aqueous/Oxide Interfaces. *Chem. Phys. Lett.* **2010**, *499*, 183-192.

49. Ohno, P. E.; Saslow, S. A.; Wang, H.-f.; Geiger, F. M.; Eisenthal, K. B. Phase-Referenced Nonlinear Spectroscopy of the A-Quartz/Water Interface. *Nat. Comm.* **2016**, *7*, 13587.

50. Ohno, P. E.; Wang, H. F.; Geiger, F. M., Second-Order Spectral Lineshapes from Charged Interfaces. *Nat. Comm.* **2017**, *8*, 1032.

51. Ong, S. W.; Zhao, X. L.; Eisenthal, K. B., Polarization of Water-Molecules at a Charged Interface - 2nd Harmonic Studies of the Silica Water Interface. *Chem. Phys. Lett.* **1992**, *191*, 327-335.

52. Achtyl, J. L.; Vlassiuk, I. V.; Surwade, S. P.; Fulvio, P. F.; Dai, S.; Geiger, F. M., Interaction of Magnesium Ions with Pristine Single-Layer and Defected Graphene/Water Interfaces Studied by Second Harmonic Generation. *J. Phys. Chem. B* **2014**, *118*, 7739-7749.

1  
2 Dogangun et al.3  
4 Page 19

5  
6 53. Malin, J. N.; Geiger, F. M., Uranyl Adsorption and Speciation at the Fused  
7 Silica/Water Interface Studied by Resonantly Enhanced Second Harmonic Generation and  
8 the Chi((3)) Method. *J. Phys. Chem. A* **2010**, *114*, 1797-1805.

9 54. Malin, J. N.; Hayes, P. L.; Geiger, F. M., Interactions of Ca, Zn, and Cd Ions at  
10 Buried Solid/Water Interfaces Studied by Second Harmonic Generation. *J. Phys. Chem. C*  
11 **2009**, *113*, 2041-2052.

12 55. Troiano, J. M.; Kuech, T. R.; Vartanian, A. M.; Torelli, M. D.; Sen, A.; Jacob, L. M.;  
13 Hamers, R. J.; Murphy, C. J.; Pedersen, J. A.; Geiger, F. M. On Electronic and Charge  
14 Interference in Second Harmonic Generation Responses from Gold Metal Nanoparticles at  
15 Supported Lipid Bilayers. *J. Phys. Chem. C* **2016**, *120*, 20659-20667.

16 56. Troiano, J. M., McGeachy, A. C.; Olenick, L. L.; Fang, D.; Liang, D.; Hong, J.;  
17 Kuech, T. R.; Caudill, E. R.; Pedersen, J. A.; Cui, Q.; Geiger, F. M. Quantifying the  
18 Electrostatics of Polycation-Lipid Bilayer Interactions. *J. Am. Chem. Soc.* **2017**, *139*, 5808-  
19 5816.

20 57. Javanainen, M.; Melcrova, A.; Magarkar, A.; Jurkiewicz, P.; Hof, M.; Jungwirth, P.;  
21 Martinez-Seara, H., Two Cations, Two Mechanisms: Interactions of Sodium and Calcium  
22 with Zwitterionic Lipid Membranes. *Chem. Commun.* **2017**, *53*, 5380-5383.

23 58. Lehrmann, R.; Seelig, J., Adsorption of Ca<sup>2+</sup> and La<sup>3+</sup> to Bilayer-Membranes -  
24 Measurement of the Adsorption Enthalpy and Binding Constant with Titration Calorimetry.  
25 *BBA - Biomemb.* **1994**, *1189*, 89-95.

26 59. Melcrova, A.; Pokorna, S.; Pullanchery, S.; Kohagen, M.; Jurkiewicz, P.; Hof, M.;  
27 Jungwirth, P.; Cremer, P. S.; Cwiklik, L., The Complex Nature of Calcium Cation  
28 Interactions with Phospholipid Bilayers. *Sci. Rep.* **2016**, *6*, 38035.

29 60. Adamson, A. W., *Physical Chemistry of Surfaces*, 5th ed.; John Wiley & Sons: New  
30 York, 1990.

31 61. Chen, E. H.; Saslow, S. A.; Nguyen, S. T.; Geiger, F. M., Zinc Ion-Hydroxyl  
32 Interactions at Undecanol-Functionalized Fused Silica/Water Interfaces Using the Eisenthal  
33 Chi((3)) Technique. *J. Phys. Chem. C* **2012**, *116*, 7016-7020.

34 62. Hayes, P. L.; Malin, J. N.; Konek, C. T.; Geiger, F. M., Interaction of Nitrate, Barium,  
35 Strontium and Cadmium Ions with Fused Quartz/Water Interfaces Studied by Second  
36 Harmonic Generation. *J. Phys. Chem. A* **2008**, *112*, 660-668.

37 63. McLaughlin, A.; Grathwohl, C.; McLaughlin, S., Adsorption of Divalent-Cations to  
38 Phosphatidylcholine Bilayer Membranes. *Biochim. Biophys. Acta* **1978**, *513*, 338-357.

39 64. Okamoto, S.; Eltis, L. D., The Biological Occurrence and Trafficking of Cobalt.  
40 *Metalomics* **2011**, *3*, 963-970.

41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Dogangun *et al.*

Page 20

**Table I.** Apparent  $\zeta$ -Potentials<sup>a</sup> for Fresh Suspensions (5mg/L) of LiCoO<sub>2</sub> Nanosheets in 0.001 M or 0.1 M NaCl and 0.01 M HEPES or Tris Buffer at pH 7.4 and Corresponding Observed Changes in SFG Signal Intensity Upon Exposure of SLBs Made from 9:1 Mixtures of DMPC/DMPG Lipids.

| [NaCl]<br>(M) | Buffering agent<br>(0.01M) | Apparent $\zeta$ -Potential<br>(mV) | $\square \square_{\text{SFG}}$ |
|---------------|----------------------------|-------------------------------------|--------------------------------|
| 0.1           | Tris                       | +12.9 ± 0.6                         | Increase by<br>+2.0±0.7        |
| 0.1           | HEPES                      | -19.4 ± 1.8                         | No change                      |
| 0.001         | Tris                       | -9.4 ± 0.8                          | No change                      |
| 0.001         | HEPES                      | -20.5 ± 0.3                         | Not measured                   |

<sup>a</sup>Estimate assumes spherical particles.

1  
2  
3  
4  
5  
6  
7  
8  
9  
Dogangun *et al.*

Page 21

4  
5  
6  
7  
8  
9  
**Table II.** Measured Concentrations of Ions Produced by Dissolution in a 5 mg/L Solution of  
LiCoO<sub>2</sub> Nanosheets.<sup>a</sup>10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  

| Buffer                      | Dissolved metal ion concentration (mg/L) |              |               |             |
|-----------------------------|------------------------------------------|--------------|---------------|-------------|
|                             | Li (mg/L)                                | Li (μM)      | Co (mg/L)     | Co (μM)     |
| 0.1 M NaCl,<br>0.01M Tris   | 0.124 ± 0.002                            | 17.86 ± 0.29 | 0.042 ± 0.001 | 0.71 ± 0.01 |
| 0.001 M NaCl,<br>0.01M Tris | 0.206 ± 0.001                            | 29.68 ± 0.20 | 0.029 ± 0.001 | 0.49 ± 0.05 |
| 0.1 M NaCl,<br>0.01M HEPES  | 0.283 ± 0.004                            | 40.77 ± 0.61 | 0.035 ± 0.004 | 0.59 ± 0.07 |

<sup>a</sup> The mean and standard deviation of three replicate samples are listed for the measured values.

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Dogangun *et al.*

Page 22

**Figure Captions**

**Figure 1:** SEM images and EDS spectra from numbered areas indicated of bilayers formed from a 9:1 mixture of DMPC/DMPG in (A) 0.01 M Tris buffer, 0.1 M NaCl at 23°C and pH 7.4 upon exposure to LiCoO<sub>2</sub> nanosheets (5 mg/L) and rinsing, and (B) 0.01 M HEPES buffer, 0.1 M NaCl at 23°C and pH 7.4 upon exposure to LiCoO<sub>2</sub> nanosheets (5 mg/L) and rinsing.

**Figure 2:** *ssp*-Polarized SFG spectra of bilayers formed from 9:1 mixture of DMPC/DMPG lipids at 22 °C and pH 7.4 in (A) 0.1 M NaCl, 0.01M Tris buffer before (green) and after (black) exposure to LiCoO<sub>2</sub> nanosheets (5 mg/L) (B) 0.1 M NaCl, 0.01M HEPES buffer before (green) and after (black) exposure to LiCoO<sub>2</sub> nanosheets (5 mg/L) (C) 0.1 M NaCl, 0.01 M Tris buffer (green), 0.01 M NaCl, 0.01M Tris buffer (blue) (D) 0.01 M NaCl, 0.01 M Tris buffer before (blue) and after (black) exposure to LiCoO<sub>2</sub> nanosheets (5 mg/L).

**Figure 3:** *ssp*-Polarized SFG spectra of bilayers formed from 9:1 mixture of DMPC/DMPG lipids before (green) and after exposure to (A) 0.1 mg/L Li<sup>+</sup> (black), (B) 0.05 mg/L Co<sup>2+</sup> (purple), (C) a mixture of 0.1 mg/L Li<sup>+</sup> and 0.05 mg/L Co<sup>2+</sup> (black), and (D) 1 mg/L NaCl (dark green), all in 0.01 M Tris buffer, 0.1 M NaCl, and at 22 °C and pH 7.4.

**Figure 4:** *ssp*-Polarized SFG spectra of bilayers formed from 9:1 mixture of DMPC/DMPG lipids before (green) and after exposure to (A) 1 mg/L Li<sup>+</sup> (black), (B) 0.5 mg/L Co<sup>2+</sup> (purple). (C) *ssp*-Polarized SFG spectra of bilayer formed from 100% DMPC lipids before (green) and after exposure to 1 mg/L Li<sup>+</sup> (black). (D) *ssp*-Polarized SFG spectra of bilayers formed from 9:1 mixture of DMPC/DMPG lipids before (green) and after exposure to 0.5 mg

1  
2 Dogangun et al.3 Page 234 Co<sup>2+</sup> and rinsing. All data recorded in 0.01 M Tris buffer, 0.1 M NaCl, and at 22 °C and pH  
5  
6 7.4.7  
8 **Figure 5:** (A) Normalized SHG E-field as a function of bulk cobalt chloride concentration in  
9 the presence of supported lipid bilayers formed from DMPC (open circles) and 9:1 mixtures  
10 of DMPC and DMPG (filled circles) at 0.1 M NaCl (0.01 M Tris buffer, pH 7.4), and fit of  
11 the combined Gouy-Chapman and Langmuir model (solid black line). (B) Time trace of the  
12 normalized SHG E-field (left-axis) with a sliding average of 10 seconds (gray) and 50  
13 seconds (black) and incident laser power (dots, right-axis) before and during the exposure of  
14 a SLB formed from a 9:1 mixture of DMPC and DMPG at 0.1 M NaCl (0.01 M Tris buffer,  
15 pH 7.4) to 0.001 M cobalt chloride at t=53 min, followed by rinsing in cobalt-free buffer at  
16 t=80 min.  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

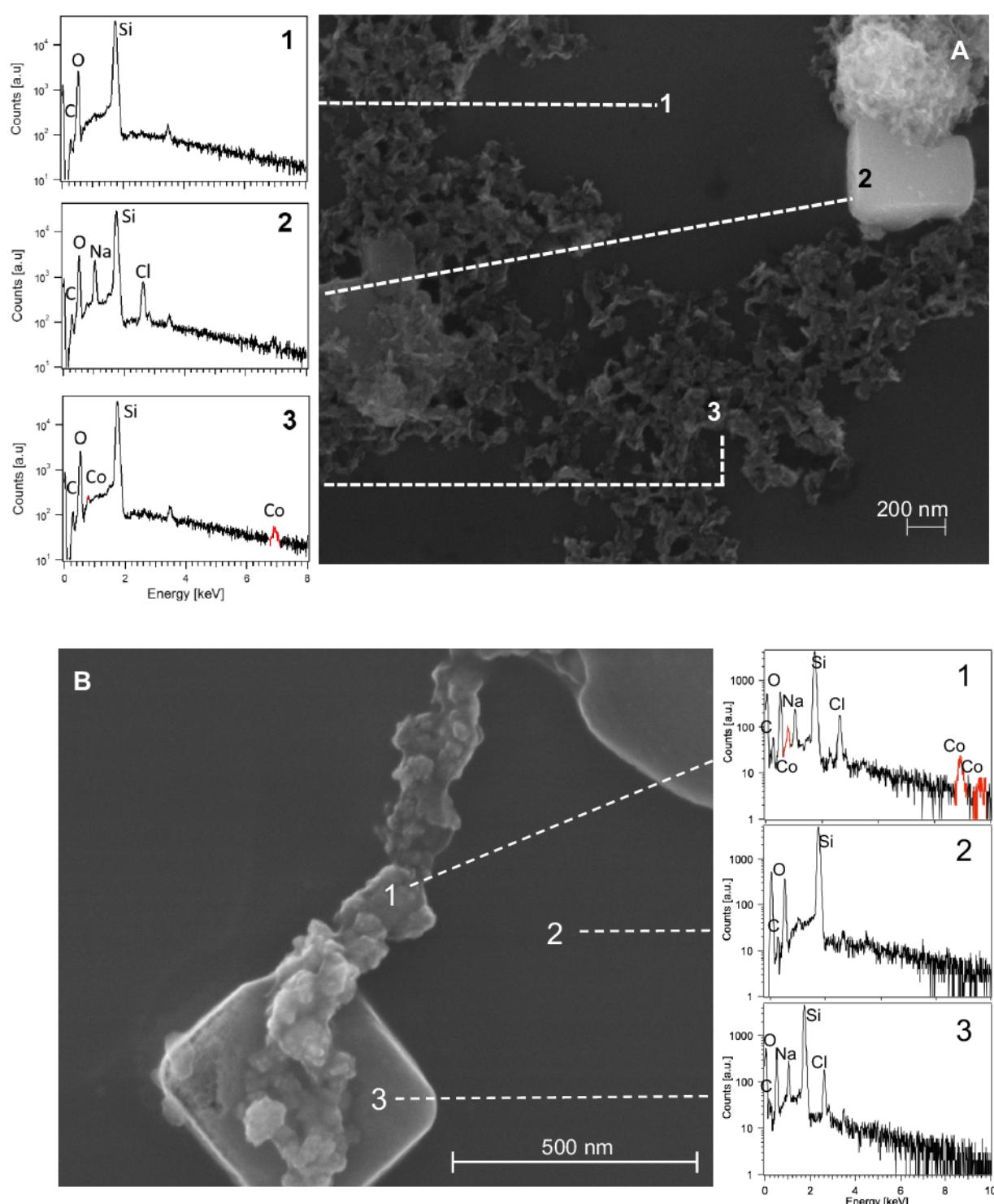

1  
2 Dogangun *et al.*  
3  
4  
5Page 24  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

Figure 1

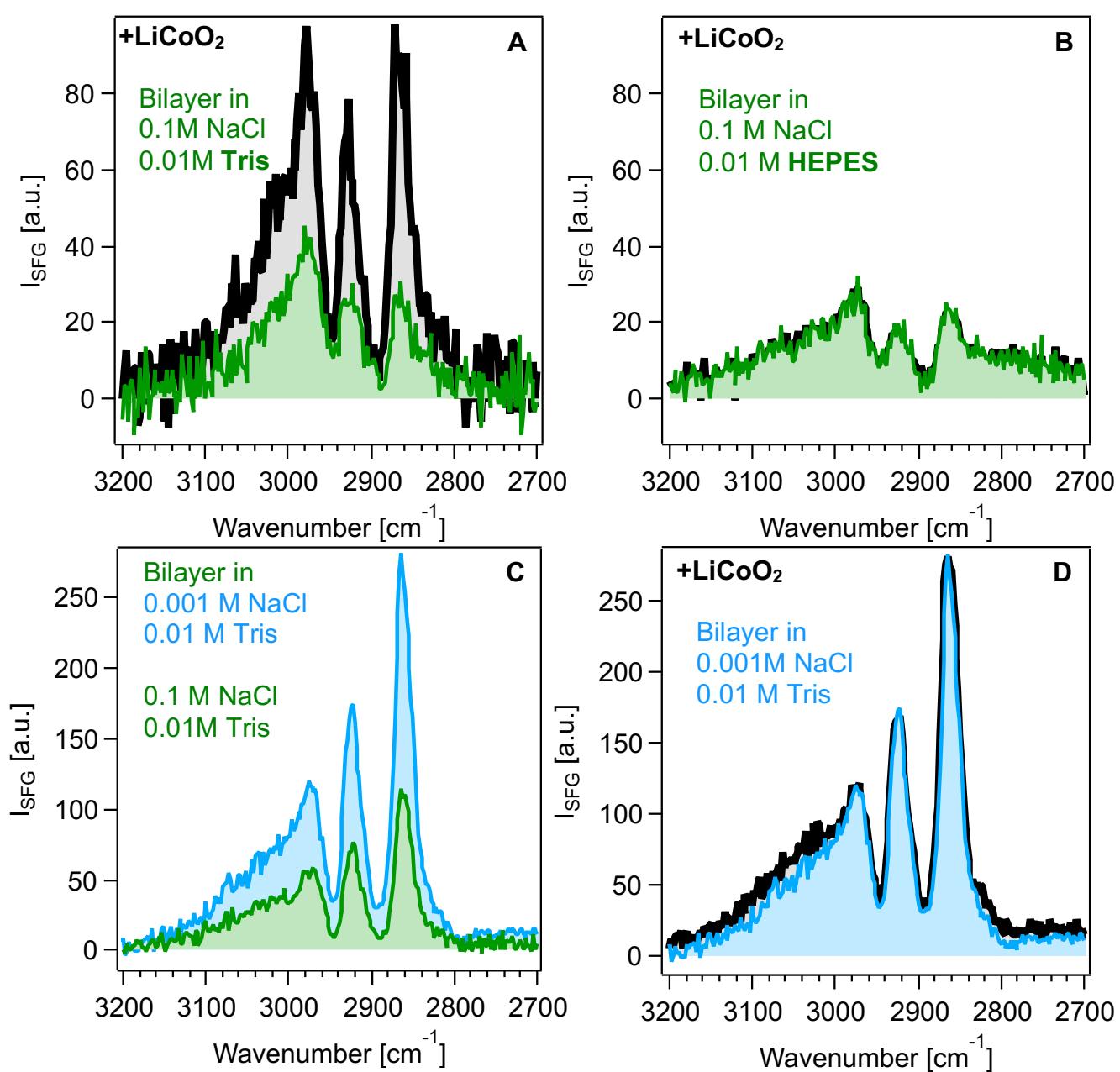



Figure 2

1  
2 Dogangun *et al.*  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60

Page 26

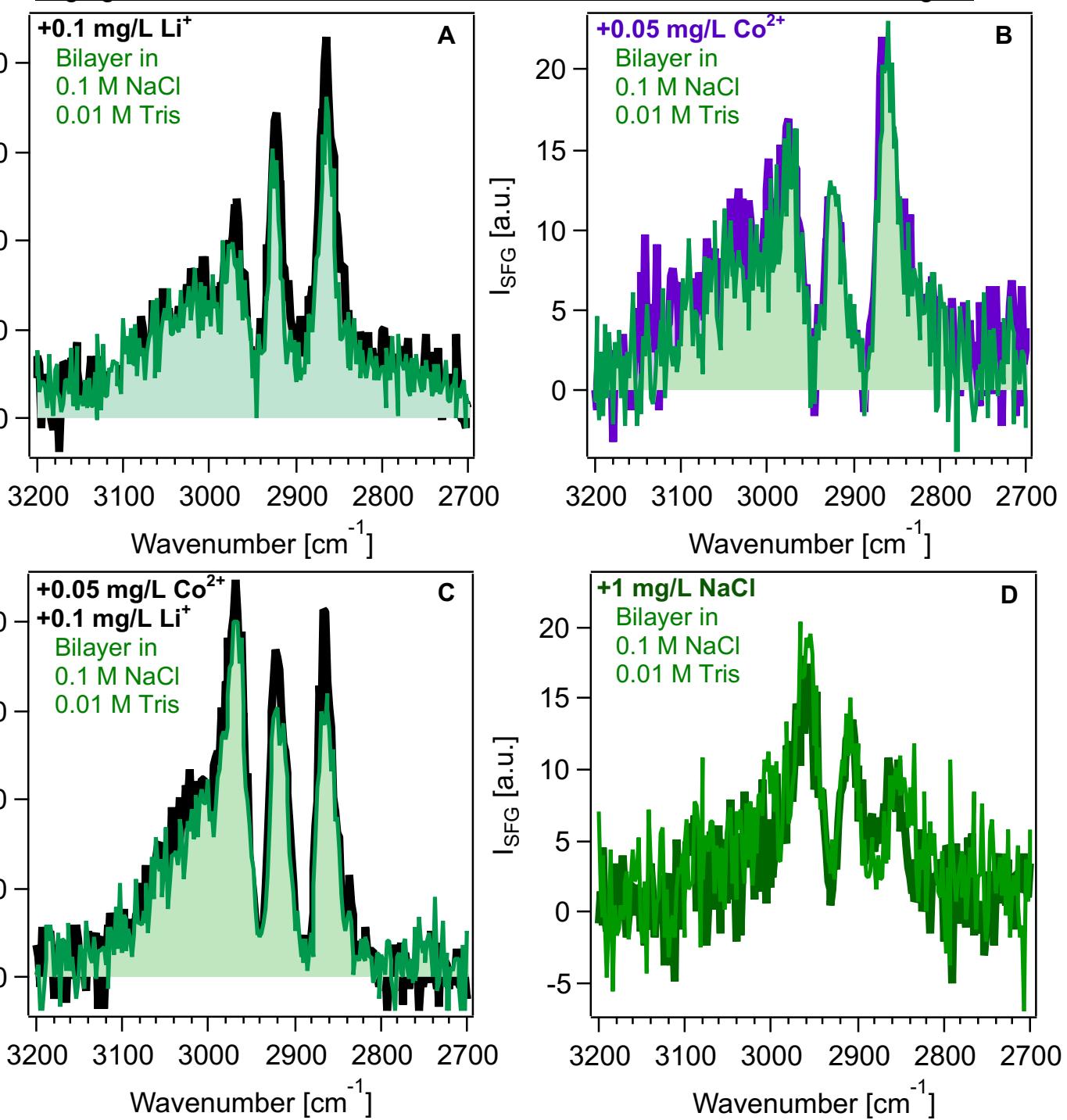



Figure 3

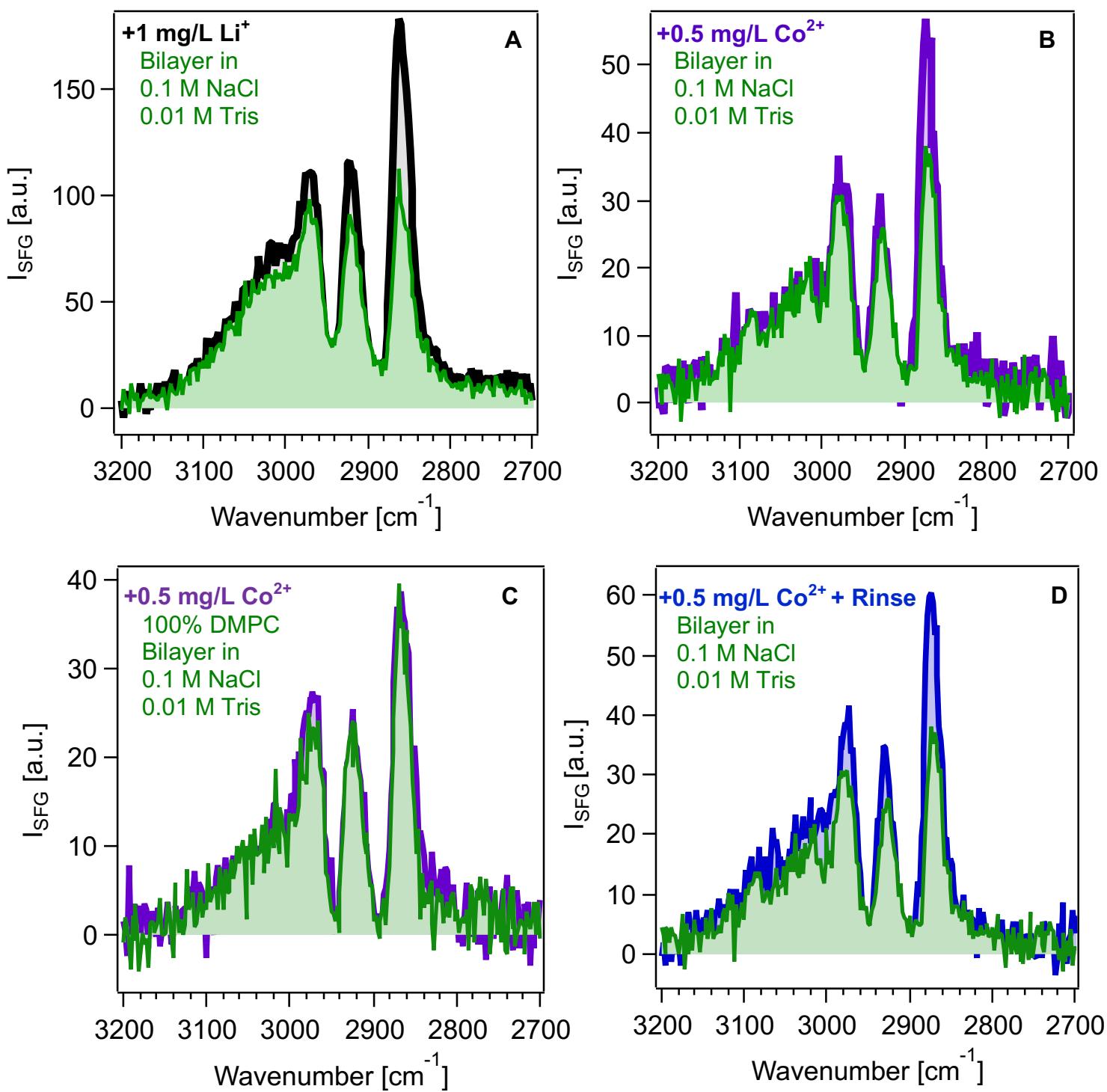



Figure 4

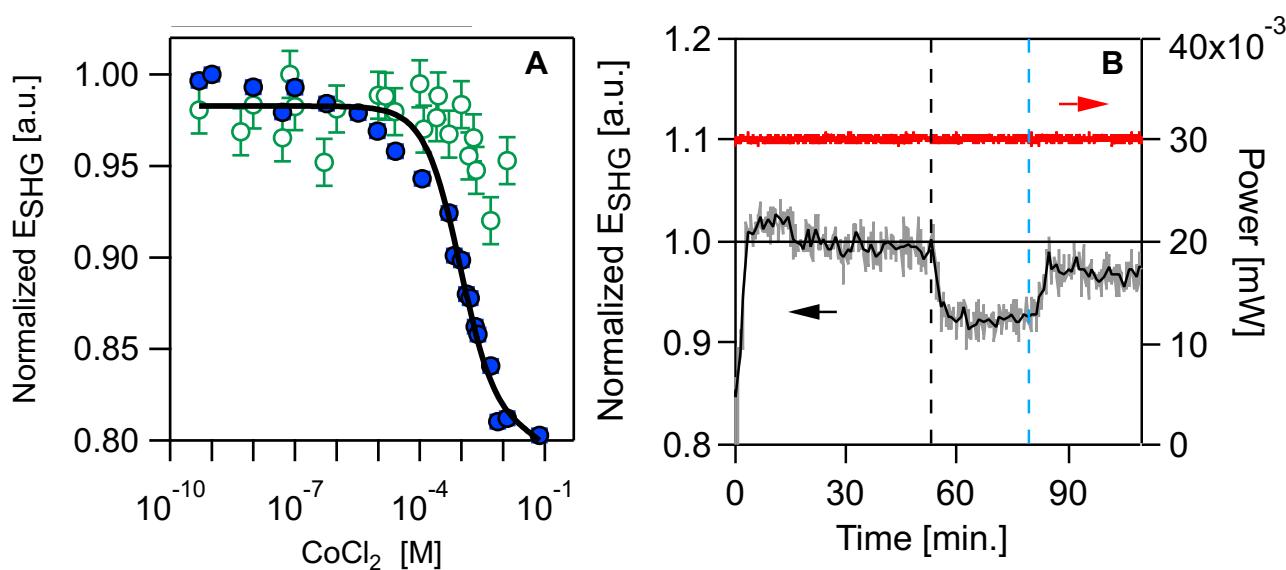
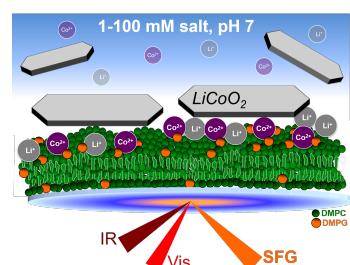




Figure 5

## TOC Graphic

