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Abstract. By combining dynamic light scattering (DLS) measurements with the interface- and 

bond-specificity of vibrational sum frequency generation scattering (SFS) spectroscopy, we probe 

several structural aspects of how zwitterionic DMPC lipids adsorbed to oil droplets suspended in 

water (D2O) respond to the presence of the common polycation polyallylamine hydrochloride 

(PAH) in the presence of low and high salt concentration. We show that the polycation interactions 

with the lipids generally results in two distinct outcomes that depend upon salt and PAH 

concentration, identified here as Scheme 1 (observed under conditions of high salt concentration) 

and Scheme 2 (observed under conditions of low salt concentration). The Schemes differ in the 

extent of changes to droplet size and droplet coalescence coinciding with PAH addition. Our 
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combined DLS and SFS results illustrate that cationic polymers do not always interact in the same 

fashion with lipid membranes and demonstrate the feasibility of second-order spectroscopic 

methods to probe those interactions with chemical bond specificity, not only for the alkyl tails (C-

H stretches) but also the choline headgroup (P-O stretches).  

 

I. Introduction. Polycations are an important component of many chemical applications, where 

they are used, for instance, as ligands for engineered nanomaterials,1 in drug delivery systems,2 as 

anti-microbials,3 and as additives in polymer resins used in consumer products.4 While the benefits 

of polycations are numerous, these compounds also have the potential to be harmful once they 

enter the environment, as they may interact strongly with bacterial membranes even at relatively 

modest concentrations, as reported recently for the common polycation poly(allylamine 

hydrochloride) (PAH).5-9 The interaction between another cationic polymer, poly(ethlenimine), 

and mouse fibroblast cells has been shown to induce necrotic cell death.10 Similarly, polycation-

DNA polyplexes have been reported to adhere to cells by interacting with negatively charged 

phospholipids in cell membranes,11 while the polycationic bioadhesive chitosan has been reported 

to disturb the protective boundary of the outer membrane of Gram-negative bacteria.12 In addition, 

cationic species coupled with complexes of adenovirus can modify the efficiency of gene 

transfer,13 while the incorporation of hydrophilic spacers into polycations has been shown to 

improve gene delivery into targeted cells.11 Understanding polycation-lipid interaction on the 

molecular level therefore provides an opportunity to identify pathways for chemically modifying 

polycations so that potentially negative biological outcomes may be avoided while technological 

benefits are maintained, or perhaps even improved.  
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While several approaches have been used to determine polycation-membrane interaction 

mechanisms on a molecular level, ascertaining the role of molecular structure in this line of 

research has been challenging. The broad molecular weight distributions of many polymers is one 

of the problems.3 But, perhaps more importantly, the elucidation of interaction mechanisms by 

structural studies has been complicated by difficulties in applying label-free – yet chemically 

specific – probes to probe the relevant interfacial processes. Yet, some important insights have 

been gained. For instance, Banaszak-Holl and co-workers combined atomic force microscopy 

(AFM) and nuclear magnetic resonance spectroscopy to determine that polymer class and fluid 

phase state govern the interaction mechanism between polycationic polymer nanoparticles and 

lipid bilayers formed from the zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine 

(DMPC).14 Likewise, Hong et al. used AFM and confocal laser scanning microscopy to identify 

the importance of polymer charge state in the formation of nanoscale holes within supported lipid 

bilayers exposed to polycations, while neutral polymers did not exhibit this effect.15 Standard 

fluorescence techniques have also been used in permeability assays, quantifying leakage of 

fluorescent materials out of, or into, suspended vesicles exposed to cationic polymers.12 

Polycationic dendrimers have also been reported to bend anionic membranes, thus inducing stress 

and increasing vesicle leakage.16 Similarly, Davydov et al. reported phase transition temperatures 

measured using differential scanning calorimetry that indicated structural changes within 

membranes exposed to polycations depend on lipid composition.17 Finally, our own recent work 

combined nonlinear optical spectroscopy with molecular dynamics simulations to probe supported 

lipid bilayers interacting with PAH. This work identified considerable shifts in the pKa values of 

the PAH ammonium groups, along with counterion condensation, as a means for building up 

considerable PAH surface coverages while mitigating charge-charge repulsion in the crowded 
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interfacial environment.6 Direct ammonium-phosphate interactions were shown to be important in 

that study as well in that work. 

Despite the abundance of research on polycation-lipid interactions, much remains to be 

discovered about the structural changes that occur in response to various stressors, and under 

conditions of varying ionic strength. Here, we combine dynamic light scattering (DLS) 

measurements with the interface- and bond-specificity of vibrational sum frequency generation 

(SFG) spectroscopy to probe several aspects of the molecular structure of lipid monolayers from 

DMPC lipids suspended in a liquid system composed of oil/water droplets. The lipid-coated 

droplets are exposed to varying concentrations of PAH in the presence of low and high salt 

concentration and studied using sum frequency scattering (SFS) spectroscopy,18 which is uniquely 

suited for probing lipid membranes in suspensions rather than immobilized supports, for which 

SFG spectroscopy in a reflection geometry is amenable.19-29 We show that polycation interactions 

with zwitterionic lipid bilayers generally result in two distinct outcomes that depend upon salt and 

PAH concentration, identified here as Scheme 1 and Scheme 2.  

We selected PAH for these polymer–lipid membrane interaction studies due to its 

importance in studies involving lipid membranes,30 cancer cells,31 and organismal toxicity,32 as 

well as its use as a common wrapping for nanomaterials.33 DMPC was used in the present study 

because it has also been widely studied and contains the phosphatidylcholine (PC) headgroup, 

which is prevalent in the membranes of eukaryotes.34-38 In order to probe PAH-DMPC membrane 

interactions, we used a membrane model system composed of phospholipid monolayers coating 

the surfaces of oil nanodroplets.39 Since oil droplets are hydrophobic in nature, the phospholipid 

orients itself with the hydrophilic portion in the aqueous phase. The polycations introduced into 

the system then interact with the headgroups of the monolayer, much as they would with the 
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Page 5 
headgroups in a lipid bilayer. The oil droplets studied here possess controllable molecular 

interfacial properties39 and have been previously used to study lipid structure and orientation as 

well as the interactions of the oil droplets with ions.40  

When compared to lipid monolayers formed in a Langmuir trough, one advantage is that 

the current approach requires considerably smaller sample volumes, and that the lipid tails are in 

contact with a liquid hydrophobic phase rather than air.39 In addition, recent experiments 

comparing micron- and nano-sized interfaces to extended planar interfaces have shown that the 

balance of interactions is different, which leads to different surface chemistry and interactions.41-

42 Eliminated final sentence here. 

II. Experimental.  

A. Chemicals. PAH was purchased from Sigma Aldrich (283215, ~17.5 kDa) and used without 

further purification (>95%). DMPC was purchased in powder form (>99%, Avanti Polar Lipids), 

stored at -20°C until use, and used without further purification. Sodium chloride (> 99%, Sigma 

Aldrich), d34-hexadecane (98%, Cambridge Isotope Laboratories), and D2O (99.8%, Armar 

Chemicals) were used as received.  

B. Oil Droplet Preparation. In order to prepare nanoscale oil droplets (nanodroplets), powdered 

DMPC was hydrated in D2O at a concentration of 2 mM for 30 minutes at approximately 40°C, 

ensuring that the hydration occurred above the transition temperature of the lipids (24 °C for 

DMPC).43 Deuterated hexadecane was then added at 1 vol % to the hydrated DMPC suspension. 

The lipid-oil suspension in D2O was sonicated for periods of five minutes at an intensity setting of 

40% on the ultrasonic bath (35 kHz, 400 W, Bandelin sonorex digiplus) until a DLS size 

measurement indicated a polydispersity index (PDI) below 0.25 and a diameter between 100 and 

200 nm. Once the sample met these criteria and the solution was milky white and homogeneous, 
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Page 6 
the sample was used for no more than one week, stored in the refrigerator. Sample stability was 

verified with DLS before each SFS measurement.  

For SFS measurements, 60 μL of the nanodroplet solution was placed into a cuvette 

composed of a fused silica window with a slight interior indentation (Hellma Analytics, 106-0.20–

40, Germany) and a detachable CaF2 window (CeNing Optics, 1.3 mm thick, 60-40S/D, L/2). Care 

was taken not to trap air bubbles within the sample during preparation of the cuvette. The CaF2 

window was oriented towards the incoming IR and visible beams, and the quartz window was 

oriented towards the detector. All experimental data shown in the main text was obtained in 

duplicate. For SFS experiments in the CH stretching region, PAH solutions were made from PAH 

stock solutions composed of 41 mM PAH in 1 mM NaCl in D2O. For SFS experiments in the PO 

stretching region, PAH solutions were made from PAH stock solutions composed of 2.3 mM PAH 

in 1 mM NaCl in D2O. Aliquots of PAH stock solutions were added to the lipid oil droplet solutions 

via micropipette. Solutions were vortexed for ten seconds and then allowed to sit at room 

temperature for 20 minutes prior to SFS experiments.  

Creaming can be easily detected during the experiment and did not occur on the time scale 

of the measurement. The sample is shaken before each measurement, i.e. it is well mixed prior to 

being placed in the cuvette.  Once the solution is placed in the cuvette, the acquisition begins 

immediately.  The sample is not shaken during SFG spectral acquisition. 

C. SFS system. Vibrational SFS spectra were recorded using our previously described approach.44-

46 Briefly, an 800 nm regeneratively amplified 1 kHz Ti:sapphire system (Spitfire Pro, Spectra 

physics) was used to pump a HE-TOPAS-C (Light Conversion) optical parametric amplifier to 

generate IR pulses. The visible beam was split off directly from the amplifier and spectrally shaped 

with a home-built pulse shaper for a spectral resolution of 10 cm-1. The angle between the 10 μJ 
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Page 7 
visible (VIS) beam (800 nm, FWHM 10 cm-1) and the 6 μJ IR beam (9700 nm or 3200 nm, FWHM 

160 cm-1) was 20° (as measured in air). The IR and visible beams were focused using parabolic 

gold mirror with effective focal length of 101.6 mm (84-625, Edmund Optics) and plano-convex 

lens (LA1484-B, Thorlabs) overlapped in a sample cuvette with a path length of 200 µm at incident 

angles of 35° and 55°, respectively. At a scattering angle of 55° with respect to 800 nm beam, the 

scattered SF light was collimated using a plano-convex lens (f=15 mm, Thorlabs LA1540-B) and 

passed through two short wave pass filters (3rd Millenium, 3RD770SP). The SF light was 

spectrally dispersed with a monochromator (Acton, SpectraPro 2300i) and detected with an 

intensified CCD camera (Princeton Instruments, PI-Max3) using a gate width of 10 ns. The 

acquisition time for a single spectrum was 10-20 min for P-O stretch modes and 20 min for C-H 

stretch modes. A Glan-Taylor prism (Thorlabs, GT15-B), a half-wave plate (EKSMA, 460-4215), 

and a polarizing beam splitter cube (CVI, PBS-800-050), and two BaF2 wire grid polarizers 

(Thorlabs, WP25H-B) were used to control the polarization of the SFG, VIS, and IR beams, 

respectively. The SFG and VIS beams were polarized in the vertical (S) direction and the IR beam 

was polarized in the horizontal plane (P) with respect to the plane of incidence, leading to the 

polarization combination SoutSinPin. The recorded intensity was baseline subtracted and normalized 

to the SFG spectrum obtained from a gold mirror in PoutPinPin polarization and in a conventional 

reflection geometry (with incident angles of 45° for vis and 65° for IR) that was recorded before 

each measurement. Droplet size was accounted for by dividing the SFS spectrum by the radius of 

the droplet cubed (r3), based on DLS data (the Z-average provided by the Zetasizer software size 

intensity distribution cumulant results found under the “Intensity Peak Stats” tab in the software), 

as described previously.18 Daily changes in power were accounted for by dividing the SFS 

spectrum by the power (both IR and visible) multiplied by the acquisition time (in seconds).  
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Page 8 
D. Dynamic Light Scattering. Dynamic Light Scattering measurements utilized a Malvern 

Zetasizer Nano ZS. Each size result shown is the average of three measurements, each of which is 

the average of 11 data points. Standard deviation is calculated from the three replicates. All DLS 

data was acquired on the same samples that were used to acquire the SFS data.  

III. Results and Discussion 

III. A. PAH modifies SFS spectral intensity of DMPC/d-hexadecane nanodroplets depending 

on NaCl concentration. SFS spectra in the CH stretching region were obtained from DMPC/oil 

nanodroplets dispersed in D2O, without added salt. The ssp-polarized spectra in the absence of salt 

(Figure 1A) include the symmetric methylene stretch (s-CH2) near 2850 cm-1, the symmetric 

methyl stretch (s-CH3) near 2879 cm-1, the antisymmetric methyl stretch (as-CH3) near 2865 cm-1, 

the antisymmetric methylene stretch (as-CH2) near 2919 cm-1, as well as the methylene Fermi 

resonance near 2905 cm-1 and the methyl Fermi resonance near 2937 cm-1.47-49 The spectra are 

comparable to those obtained from systems having similar hydrocarbon tails, such as those 

recently published by the Richmond group using similar methods.50  

Upon interaction with a 140 μM solution of PAH the SFS signal intensity from the 

DMPC/oil nanodroplets decreases by approximately 60% in both the ssp and ppp polarizations 

(Fig. 1A and B). Size changes observed by DLS are negligible (vide infra). The relative SFG peak 

intensities remain the same, indicating that the orientation of the lipids with respect to the interface 

does not change notably in response to the presence of PAH under the conditions of this 

experiment. 

Unlike the SFS spectra from DMPC/oil nanodroplets interacting with PAH under 

conditions of “no added salt”, combining the nanodroplet solution with a solution of 140 μM PAH 

in 100 mM NaCl (~9 mS/cm conductivity) results in signal increases in both polarization 
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combinations (Fig. 2A and B, again accounting for size changes observed by DLS, vide infra). 

This signal intensity increase may be attributed to either an increase in the number of oscillators 

at the droplet surface or to increased lipid ordering of the surface (recall that the PAH methylene 

groups themselves to not provide SFS signal intensity in PAH-only control experiments in D2O, 

as shown in Figure S1.) Fig. 2B also shows a reversal in the intensity ratio between the peaks at 

2875 cm-1 and 2850 cm-1 in the ppp-polarized SFS spectra. This outcome indicates a change in 

lipid conformation at the surface, as a mere increase or decrease in the number of oscillators, 

without a corresponding change in lipid ordering, would leave the peak intensity ratios the same. 

This effect is comparable to outcomes from earlier SFS studies comparing oil droplets coated by 

lipids of varying alkyl tail lengths.47  

The conformation of PAH in “no added salt” and “100 mM added NaCl” solutions may 

also play a role in this interaction. According to a study of polyelectrolyte multilayers, which 

included PAH, PAH became more coiled in solution in response to the presence of various salt 

solutions.51 Without salt, the PAH swelled, indicating a more extended conformation in aqueous 

solutions.51 Other studies have also documented swelling of PAH in salt-free solutions as well as 

structural changes of thin films prepared from PAH in response to rinsing with salt-free 

solutions.52-53  

Complementary DLS experiments illustrate how the nanodrop size varies upon PAH 

addition under the conditions of “no salt added” and “100 mM salt added” (Fig. 3A-D). We notice 

first similar droplet sizes in the absence (Fig. 3A) and presence (Fig. 3C) of salt. Results from 

replicate experiments shown in the Supporting Information indicate, on occasion, bimodal size 

distribution, with one population centered at approximately 150 nm (as shown here in the main 

text) and one at either 350 nm or 500 nm, albeit with smaller intensity. After interaction with a 140 
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Page 10 
μM PAH solution, the size distributions remain largely unchanged for the case of “no added salt”. 

Yet, in the 100 mM salt cases, the DLS data reveal the presence of a new population in the 

supermicron size range, having sizes up to 5 µm. The Supporting Information shows these results 

are observed for up to 8 mM added PAH.  

According to the theory of SFS spectroscopy and sum frequency generation (SFG) 

spectroscopy,18, 54 decreases in SFS peak intensity observed upon addition of PAH under 

conditions of “no-salt added” indicates either a loss in the number of oscillators due to lipid 

removal, a randomization in the orientation of oscillators without a change in the lipid coverage 

on the droplets, or an ordering of the oscillators in such a way that they destructively interfere with 

each other (as commonly seen in all-trans-configured methylene groups). Given the negligible 

differences in the relative peak positions seen in Fig. 1, we rule out changes in the number of 

gauche defects, as those would lead to SFS signal intensity changes only at the methylene 

stretching frequencies and not across the entire spectrum. A decrease in the number of oscillators 

at the surface of the oil droplet due to lipid removal would lead to a greater amount of disorder at 

the interface and a subsequent decrease in the ssp- and ppp-polarized SFS intensity, as is indeed 

observed. This Scheme (Scheme 1) is supported by the observation of increased spp-polarized SFS 

intensity shown in Fig. S15 of the Supporting Information, as such a response indicates an uneven 

lipid arrangement on oil droplets.  

Under conditions of 100 mM added salt, we consider charge, which plays an important role 

in the stability of oil-in-water macroemulsions. For instance, monovalent cations prevent droplets 

aggregation better than di- or tri-valent cations when the counter-ion is kept the same.55 Likewise, 

Kundu et al. reported that coalescence and Ostwald ripening can occur as mechanisms for 

destabilization and droplet growth in oil-in-water macroemulsions that contain anionic 
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Page 11 
surfactants.55 In our present experiments under conditions of 100 mM added salt, PAH may 

promote the coalescence of nanodroplets, evidenced by the supermicron size fraction seen in the 

DLS data, by removing lipids from the small droplets. The removal of the lipids provides a 

destabilizing force by increasing the interfacial tension. During DMPC removal by PAH, 

hexadecane could also dissolve into the bulk phase and droplets may grow due to a process similar 

to Ostwald ripening.56-57 

In the second Scheme (Scheme 2), PAH is bound to the surface of the lipid droplet and 

does not remove lipids, but instead it disorders the lipids at the interface, resulting in a decrease in 

SFS intensity in spp, ssp, and ppp polarizations. This Scheme is reminiscent of work reported by 

Kabalnov et al., who describe a nonionic surfactant-water-decane system whereby the adsorption 

of a hydrophobically modified naturally occurring polymer causes a change in the curvature of the 

surfactant leading to an increased rigidity in the system upon polymer addition.58  

Which Scheme is more likely to occur depends upon the experimental conditions employed in our 

study. From the DLS data as well as the ssp-, ppp-, and spp-polarized SFS data, Scheme 1 is 

considered most plausible under high salt conditions, whereas Scheme 2 is more plausible at low 

salt conditions. The salt concentration dependence of the observations is consistent with increased 

charge screening under high salt conditions, which decreases the electrical double layer thickness 

between the polymer and the oil nanodroplet, allowing the PAH to approach the droplet and 

remove the lipids from the surface.59-60  

III. B. Low PAH concentration increases SFS signal intensity of DMPC/d-hexadecane 

nanodroplets even at low [salt] in C-H – but not P-O – stretching region. In various surfactant 

polymer systems, changing the polymer concentration is known to change the interfacial tension, 

thus affecting the critical micelle concentration.61 We therefore lowered the PAH concentration 
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Page 12 
~tenfold, from 140 μM, discussed in the previous section, to 15 μM at no added salt conditions. 

Figure 4 shows an increase in ssp-polarized SFS intensity at low salt conditions, reminiscent of 

Scheme 2. This is potentially due to the fact that we have an abundance of oil droplets compared 

to the concentration of PAH. The spp polarization combination is sensitive to the changes in 

dispersion of lipids on the surface of the oil droplet. If all of the lipids were evenly separated at the 

surface, and in the presence of uniform lipid coverage, spp signal intensity would not be 

observable.62-63 If the lipids were distributed non-uniformly, considerable spp-polarized SFS signal 

intensity should be observed.62-63 Indeed, the spp-polarized SFS spectra, which are weak but 

nevertheless show a decrease in SFS intensity after PAH addition (Figure 5) at 2960 cm-1, support 

the notion that the lipids are more evenly dispersed under low vs high PAH concentrations, 

pointing towards Scheme 2.  

In contrast to the increases observed in the C-H stretching region for the experiment leading 

to Figures 4 and 5 (no salt, 15 µM PAH), a PAH concentration of 40 μM causes an SFS signal 

decrease of DMPC/oil droplets in the PO stretching region (unfortunately, no spectra were taken 

in the C-H stretching region for that PAH concentration). As shown in Figure 6, the observable 

features in this spectral region occur near 1070 cm-1 (the symmetric CO-O-C stretch) and near 

1100 cm-1 (the symmetric PO2
- stretch).47 As in the case of the C-H stretching region for DMPC 

in the presence of no salt and 140 µM PAH, the change in the ratio of the SFS intensities at 1070 

cm-1 and 1100 cm-1 is negligible, indicating little to no structural change in the choline headgroup 

of DMPC when 15 µM PAH interacts with the lipid-coated droplets in the absence of extra salt.  

IV. Conclusions. In summary, we have probed several structural aspects of how zwitterionic 

DMPC lipids adsorbed to oil droplets suspended in D2O respond to the presence of the common 

polycation polyallylamine hydrochloride in the presence of low and high salt concentration. We 
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Page 13 
show that the polycation interactions with the lipids generally results in two distinct outcomes that 

depend upon salt and PAH concentration, identified here as Scheme 1 (observed under conditions 

of high salt concentration) and Scheme 2 (observed under conditions of low salt concentration). 

At 100 mM NaCl and 140 μM PAH, Scheme 1 prevailed, leading to lipid removal by PAH 

followed by droplet coalescence. Under conditions of no added NaCl and 140 μM PAH, Scheme 

2 dominated, which involved PAH surrounding several droplets, thereby changing the lipid 

orientation but keeping the droplet size constant. Under conditions of no added NaCl and 15 μM 

PAH, the observations are consistent with Scheme 1, indicating an interplay between NaCl and 

PAH concentration in determining which Scheme is most likely.  

We caution that our results require further investigations into quantifying the size 

distribution changes that occur under some of the conditions probed here. Moreover, further 

studies will probe an expanded set of experimental conditions (salt and PAH concentration, lipid 

and oil composition) in order to determine the scope of our findings. Yet, our present results 

illustrate that cationic polymers do not always interact in the same fashion with lipid membranes 

and demonstrate spectroscopic methods to probe those interactions with chemical bond specificity, 

not only for the alkyl tails, but also the choline headgroup.  

Supporting Information Available. Results from PAH controls as well as DLS and SFG replicate 

experiments are available in the Supporting Information. This information is available free of 

charge via the Internet at https://pubs.acs.org. 
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Figure and Scheme Captions.  

 

Figure 1. ssp- (A) and ppp- (B) polarized sum frequency scattering spectra of DMPC at the d-

hexadecane/D
2
O interface before (black) and after (gray) interaction with 140 μM PAH in D2O 

with no added salt.  

 

Figure 2. ssp- (A) and ppp- (B) polarized sum frequency scattering spectra of DMPC at the d-

hexadecane/D
2
O interface before (black) and after (gray) interaction with 140 μM PAH at 100 mM 

added NaCl in D2O.  

 

Figure 3. Representative hydrodynamic diameter measurements by DLS of DMPC/oil 

nanodroplets dispersed in water before (A, C) and after (B, D) interaction with 140 μM PAH under 

conditions of no added NaCl (A, B) and 100 mM added NaCl (C, D). 

 

Figure 4. ssp-polarized sum frequency scattering spectra of DMPC at the d-hexadecane/D
2
O 

interface before (black) and after (gray) interaction with 15 μM PAH in D2O with no added salt. 

 

Figure 5. spp-polarized sum frequency scattering spectra of DMPC at the d-hexadecane/D
2
O 

interface before (black) and after (gray) interaction with 15 μM PAH in D2O with no added salt. 

 

Figure 6. ssp- (A) and ppp- (B) polarized SFS spectra in the PO stretching region of DMPC/d-

hexadecane droplets dispersed in D2O before (top spectrum) and after (bottom spectrum) addition 

of 40 μM PAH in D2O with no added salt.  
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Scheme 1. Cartoon representation of the interactions possible between PAH and DMPC-coated oil 

nanodroplets under conditions of high salt concentration (0.1 M). Gold spheres represent oil 

droplets. Green shapes represent lipids. Blue shapes represent PAH. Counterions and water 

molecules omitted for clarity. 

 

Scheme 2. Cartoon representation of the interactions possible between PAH and DMPC oil 

nanodroplets under conditions of low salt concentration. Gold spheres represent oil droplets. Green 

shapes represent lipids. Blue shapes represent PAH. Counterions and water molecules omitted for 

clarity. 
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