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Abstract. By combining dynamic light scattering (DLS) measurements with the interface- and
bond-specificity of vibrational sum frequency generation scattering (SFS) spectroscopy, we probe
several structural aspects of how zwitterionic DMPC lipids adsorbed to oil droplets suspended in
water (D20) respond to the presence of the common polycation polyallylamine hydrochloride
(PAH) in the presence of low and high salt concentration. We show that the polycation interactions
with the lipids generally results in two distinct outcomes that depend upon salt and PAH
concentration, identified here as Scheme 1 (observed under conditions of high salt concentration)
and Scheme 2 (observed under conditions of low salt concentration). The Schemes differ in the

extent of changes to droplet size and droplet coalescence coinciding with PAH addition. Our
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combined DLS and SFS results illustrate that cationic polymers do not always interact in the same
fashion with lipid membranes and demonstrate the feasibility of second-order spectroscopic
methods to probe those interactions with chemical bond specificity, not only for the alkyl tails (C-

H stretches) but also the choline headgroup (P-O stretches).

I. Introduction. Polycations are an important component of many chemical applications, where
they are used, for instance, as ligands for engineered nanomaterials,' in drug delivery systems,? as
anti-microbials,® and as additives in polymer resins used in consumer products.* While the benefits
of polycations are numerous, these compounds also have the potential to be harmful once they
enter the environment, as they may interact strongly with bacterial membranes even at relatively
modest concentrations, as reported recently for the common polycation poly(allylamine
hydrochloride) (PAH).>® The interaction between another cationic polymer, poly(ethlenimine),
and mouse fibroblast cells has been shown to induce necrotic cell death.!® Similarly, polycation-
DNA polyplexes have been reported to adhere to cells by interacting with negatively charged
phospholipids in cell membranes,!' while the polycationic bioadhesive chitosan has been reported
to disturb the protective boundary of the outer membrane of Gram-negative bacteria.!? In addition,
cationic species coupled with complexes of adenovirus can modify the efficiency of gene
transfer,!> while the incorporation of hydrophilic spacers into polycations has been shown to
improve gene delivery into targeted cells.!! Understanding polycation-lipid interaction on the
molecular level therefore provides an opportunity to identify pathways for chemically modifying
polycations so that potentially negative biological outcomes may be avoided while technological

benefits are maintained, or perhaps even improved.
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While several approaches have been used to determine polycation-membrane interaction
mechanisms on a molecular level, ascertaining the role of molecular structure in this line of
research has been challenging. The broad molecular weight distributions of many polymers is one
of the problems.® But, perhaps more importantly, the elucidation of interaction mechanisms by
structural studies has been complicated by difficulties in applying label-free — yet chemically
specific — probes to probe the relevant interfacial processes. Yet, some important insights have
been gained. For instance, Banaszak-Holl and co-workers combined atomic force microscopy
(AFM) and nuclear magnetic resonance spectroscopy to determine that polymer class and fluid
phase state govern the interaction mechanism between polycationic polymer nanoparticles and
lipid bilayers formed from the zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine
(DMPC)." Likewise, Hong et al. used AFM and confocal laser scanning microscopy to identify
the importance of polymer charge state in the formation of nanoscale holes within supported lipid
bilayers exposed to polycations, while neutral polymers did not exhibit this effect.!> Standard
fluorescence techniques have also been used in permeability assays, quantifying leakage of
fluorescent materials out of, or into, suspended vesicles exposed to cationic polymers.'?
Polycationic dendrimers have also been reported to bend anionic membranes, thus inducing stress
and increasing vesicle leakage.'® Similarly, Davydov et al. reported phase transition temperatures
measured using differential scanning calorimetry that indicated structural changes within
membranes exposed to polycations depend on lipid composition.!” Finally, our own recent work
combined nonlinear optical spectroscopy with molecular dynamics simulations to probe supported
lipid bilayers interacting with PAH. This work identified considerable shifts in the pKa values of
the PAH ammonium groups, along with counterion condensation, as a means for building up

considerable PAH surface coverages while mitigating charge-charge repulsion in the crowded
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interfacial environment.® Direct ammonium-phosphate interactions were shown to be important in
that study as well in that work.

Despite the abundance of research on polycation-lipid interactions, much remains to be
discovered about the structural changes that occur in response to various stressors, and under
conditions of varying ionic strength. Here, we combine dynamic light scattering (DLS)
measurements with the interface- and bond-specificity of vibrational sum frequency generation
(SFG) spectroscopy to probe several aspects of the molecular structure of lipid monolayers from
DMPC lipids suspended in a liquid system composed of oil/water droplets. The lipid-coated
droplets are exposed to varying concentrations of PAH in the presence of low and high salt
concentration and studied using sum frequency scattering (SFS) spectroscopy,'® which is uniquely
suited for probing lipid membranes in suspensions rather than immobilized supports, for which
SFG spectroscopy in a reflection geometry is amenable.'”>” We show that polycation interactions
with zwitterionic lipid bilayers generally result in two distinct outcomes that depend upon salt and
PAH concentration, identified here as Scheme 1 and Scheme 2.

We selected PAH for these polymer—lipid membrane interaction studies due to its
importance in studies involving lipid membranes,*® cancer cells,?! and organismal toxicity,>* as
well as its use as a common wrapping for nanomaterials.*> DMPC was used in the present study
because it has also been widely studied and contains the phosphatidylcholine (PC) headgroup,
which is prevalent in the membranes of eukaryotes.>*>8 In order to probe PAH-DMPC membrane
interactions, we used a membrane model system composed of phospholipid monolayers coating
the surfaces of oil nanodroplets.*® Since oil droplets are hydrophobic in nature, the phospholipid
orients itself with the hydrophilic portion in the aqueous phase. The polycations introduced into

the system then interact with the headgroups of the monolayer, much as they would with the
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headgroups in a lipid bilayer. The oil droplets studied here possess controllable molecular
interfacial properties®® and have been previously used to study lipid structure and orientation as
well as the interactions of the oil droplets with ions.*

When compared to lipid monolayers formed in a Langmuir trough, one advantage is that
the current approach requires considerably smaller sample volumes, and that the lipid tails are in
contact with a liquid hydrophobic phase rather than air.*® In addition, recent experiments
comparing micron- and nano-sized interfaces to extended planar interfaces have shown that the
balance of interactions is different, which leads to different surface chemistry and interactions.*!"
42 Eliminated final sentence here.

I1. Experimental.

A. Chemicals. PAH was purchased from Sigma Aldrich (283215, ~17.5 kDa) and used without
further purification (>95%). DMPC was purchased in powder form (>99%, Avanti Polar Lipids),
stored at -20°C until use, and used without further purification. Sodium chloride (> 99%, Sigma
Aldrich), dss-hexadecane (98%, Cambridge Isotope Laboratories), and DO (99.8%, Armar
Chemicals) were used as received.

B. Oil Droplet Preparation. In order to prepare nanoscale oil droplets (nanodroplets), powdered
DMPC was hydrated in D>0O at a concentration of 2 mM for 30 minutes at approximately 40°C,
ensuring that the hydration occurred above the transition temperature of the lipids (24 °C for
DMPC).* Deuterated hexadecane was then added at 1 vol % to the hydrated DMPC suspension.
The lipid-oil suspension in D>O was sonicated for periods of five minutes at an intensity setting of
40% on the ultrasonic bath (35 kHz, 400 W, Bandelin sonorex digiplus) until a DLS size
measurement indicated a polydispersity index (PDI) below 0.25 and a diameter between 100 and

200 nm. Once the sample met these criteria and the solution was milky white and homogeneous,
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the sample was used for no more than one week, stored in the refrigerator. Sample stability was
verified with DLS before each SFS measurement.

For SFS measurements, 60 pL of the nanodroplet solution was placed into a cuvette
composed of a fused silica window with a slight interior indentation (Hellma Analytics, 106-0.20—
40, Germany) and a detachable CaF> window (CeNing Optics, 1.3 mm thick, 60-40S/D, L/2). Care
was taken not to trap air bubbles within the sample during preparation of the cuvette. The CaF»
window was oriented towards the incoming IR and visible beams, and the quartz window was
oriented towards the detector. All experimental data shown in the main text was obtained in
duplicate. For SFS experiments in the CH stretching region, PAH solutions were made from PAH
stock solutions composed of 41 mM PAH in 1 mM NacCl in D;0. For SFS experiments in the PO
stretching region, PAH solutions were made from PAH stock solutions composed of 2.3 mM PAH
in I mM NaCl in D>0O. Aliquots of PAH stock solutions were added to the lipid oil droplet solutions
via micropipette. Solutions were vortexed for ten seconds and then allowed to sit at room
temperature for 20 minutes prior to SFS experiments.

Creaming can be easily detected during the experiment and did not occur on the time scale
of the measurement. The sample is shaken before each measurement, i.e. it is well mixed prior to
being placed in the cuvette. Once the solution is placed in the cuvette, the acquisition begins
immediately. The sample is not shaken during SFG spectral acquisition.

C. SFS system. Vibrational SFS spectra were recorded using our previously described approach.*+
46 Briefly, an 800 nm regeneratively amplified 1 kHz Ti:sapphire system (Spitfire Pro, Spectra
physics) was used to pump a HE-TOPAS-C (Light Conversion) optical parametric amplifier to
generate IR pulses. The visible beam was split off directly from the amplifier and spectrally shaped

with a home-built pulse shaper for a spectral resolution of 10 cm™. The angle between the 10 pJ
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visible (VIS) beam (800 nm, FWHM 10 cm™) and the 6 pJ IR beam (9700 nm or 3200 nm, FWHM

160 cm™) was 20° (as measured in air). The IR and visible beams were focused using parabolic
gold mirror with effective focal length of 101.6 mm (84-625, Edmund Optics) and plano-convex
lens (LA 1484-B, Thorlabs) overlapped in a sample cuvette with a path length of 200 pm at incident
angles of 35° and 55°, respectively. At a scattering angle of 55° with respect to 800 nm beam, the
scattered SF light was collimated using a plano-convex lens (f=15 mm, Thorlabs LA1540-B) and
passed through two short wave pass filters (3rd Millenium, 3RD770SP). The SF light was
spectrally dispersed with a monochromator (Acton, SpectraPro 2300i) and detected with an
intensified CCD camera (Princeton Instruments, PI-Max3) using a gate width of 10 ns. The
acquisition time for a single spectrum was 10-20 min for P-O stretch modes and 20 min for C-H
stretch modes. A Glan-Taylor prism (Thorlabs, GT15-B), a half-wave plate (EKSMA, 460-4215),
and a polarizing beam splitter cube (CVI, PBS-800-050), and two BaF, wire grid polarizers
(Thorlabs, WP25H-B) were used to control the polarization of the SFG, VIS, and IR beams,
respectively. The SFG and VIS beams were polarized in the vertical (S) direction and the IR beam
was polarized in the horizontal plane (P) with respect to the plane of incidence, leading to the
polarization combination SouSinPin. The recorded intensity was baseline subtracted and normalized
to the SFG spectrum obtained from a gold mirror in PouPinPin polarization and in a conventional
reflection geometry (with incident angles of 45° for vis and 65° for IR) that was recorded before
each measurement. Droplet size was accounted for by dividing the SFS spectrum by the radius of
the droplet cubed (r*), based on DLS data (the Z-average provided by the Zetasizer software size
intensity distribution cumulant results found under the “Intensity Peak Stats” tab in the software),
as described previously.'® Daily changes in power were accounted for by dividing the SFS

spectrum by the power (both IR and visible) multiplied by the acquisition time (in seconds).
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D. Dynamic Light Scattering. Dynamic Light Scattering measurements utilized a Malvern
Zetasizer Nano ZS. Each size result shown is the average of three measurements, each of which is
the average of 11 data points. Standard deviation is calculated from the three replicates. All DLS
data was acquired on the same samples that were used to acquire the SFS data.
II1. Results and Discussion
II1. A. PAH modifies SFS spectral intensity of DMPC/d-hexadecane nanodroplets depending
on NaCl concentration. SFS spectra in the CH stretching region were obtained from DMPC/oil
nanodroplets dispersed in D,O, without added salt. The ssp-polarized spectra in the absence of salt
(Figure 1A) include the symmetric methylene stretch (s-CHz) near 2850 cm™!, the symmetric
methyl stretch (s-CH3) near 2879 cm’!, the antisymmetric methyl stretch (as-CH3) near 2865 cm™,
the antisymmetric methylene stretch (as-CHz) near 2919 cm’!, as well as the methylene Fermi
resonance near 2905 cm™! and the methyl Fermi resonance near 2937 cm™.*”*° The spectra are
comparable to those obtained from systems having similar hydrocarbon tails, such as those
recently published by the Richmond group using similar methods.>

Upon interaction with a 140 uM solution of PAH the SFS signal intensity from the
DMPC/oil nanodroplets decreases by approximately 60% in both the ssp and ppp polarizations
(Fig. 1A and B). Size changes observed by DLS are negligible (vide infra). The relative SFG peak
intensities remain the same, indicating that the orientation of the lipids with respect to the interface
does not change notably in response to the presence of PAH under the conditions of this
experiment.

Unlike the SFS spectra from DMPC/oil nanodroplets interacting with PAH under
conditions of “no added salt”, combining the nanodroplet solution with a solution of 140 uM PAH

in 100 mM NaCl (~9 mS/cm conductivity) results in signal increases in both polarization
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combinations (Fig. 2A and B, again accounting for size changes observed by DLS, vide infra).
This signal intensity increase may be attributed to either an increase in the number of oscillators
at the droplet surface or to increased lipid ordering of the surface (recall that the PAH methylene
groups themselves to not provide SFS signal intensity in PAH-only control experiments in D>O,
as shown in Figure S1.) Fig. 2B also shows a reversal in the intensity ratio between the peaks at
2875 cm™! and 2850 cm! in the ppp-polarized SFS spectra. This outcome indicates a change in
lipid conformation at the surface, as a mere increase or decrease in the number of oscillators,
without a corresponding change in lipid ordering, would leave the peak intensity ratios the same.
This effect is comparable to outcomes from earlier SFS studies comparing oil droplets coated by
lipids of varying alkyl tail lengths.*’

The conformation of PAH in “no added salt” and “100 mM added NaCl” solutions may
also play a role in this interaction. According to a study of polyelectrolyte multilayers, which
included PAH, PAH became more coiled in solution in response to the presence of various salt
solutions.’! Without salt, the PAH swelled, indicating a more extended conformation in aqueous
solutions.’! Other studies have also documented swelling of PAH in salt-free solutions as well as
structural changes of thin films prepared from PAH in response to rinsing with salt-free
solutions.>*>3

Complementary DLS experiments illustrate how the nanodrop size varies upon PAH
addition under the conditions of “no salt added” and “100 mM salt added” (Fig. 3A-D). We notice
first similar droplet sizes in the absence (Fig. 3A) and presence (Fig. 3C) of salt. Results from
replicate experiments shown in the Supporting Information indicate, on occasion, bimodal size
distribution, with one population centered at approximately 150 nm (as shown here in the main

text) and one at either 350 nm or 500 nm, albeit with smaller intensity. After interaction with a 140
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uM PAH solution, the size distributions remain largely unchanged for the case of “no added salt”.
Yet, in the 100 mM salt cases, the DLS data reveal the presence of a new population in the
supermicron size range, having sizes up to 5 um. The Supporting Information shows these results
are observed for up to 8 mM added PAH.

According to the theory of SFS spectroscopy and sum frequency generation (SFG)
spectroscopy,'® ** decreases in SFS peak intensity observed upon addition of PAH under
conditions of “no-salt added” indicates either a loss in the number of oscillators due to lipid
removal, a randomization in the orientation of oscillators without a change in the lipid coverage
on the droplets, or an ordering of the oscillators in such a way that they destructively interfere with
each other (as commonly seen in all-trans-configured methylene groups). Given the negligible
differences in the relative peak positions seen in Fig. 1, we rule out changes in the number of
gauche defects, as those would lead to SFS signal intensity changes only at the methylene
stretching frequencies and not across the entire spectrum. A decrease in the number of oscillators
at the surface of the oil droplet due to lipid removal would lead to a greater amount of disorder at
the interface and a subsequent decrease in the ssp- and ppp-polarized SFS intensity, as is indeed
observed. This Scheme (Scheme 1) is supported by the observation of increased spp-polarized SFS
intensity shown in Fig. S15 of the Supporting Information, as such a response indicates an uneven
lipid arrangement on oil droplets.

Under conditions of 100 mM added salt, we consider charge, which plays an important role
in the stability of oil-in-water macroemulsions. For instance, monovalent cations prevent droplets
aggregation better than di- or tri-valent cations when the counter-ion is kept the same.>” Likewise,
Kundu et al. reported that coalescence and Ostwald ripening can occur as mechanisms for

destabilization and droplet growth in oil-in-water macroemulsions that contain anionic
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surfactants.”® In our present experiments under conditions of 100 mM added salt, PAH may
promote the coalescence of nanodroplets, evidenced by the supermicron size fraction seen in the
DLS data, by removing lipids from the small droplets. The removal of the lipids provides a
destabilizing force by increasing the interfacial tension. During DMPC removal by PAH,
hexadecane could also dissolve into the bulk phase and droplets may grow due to a process similar
to Ostwald ripening.’®>’

In the second Scheme (Scheme 2), PAH is bound to the surface of the lipid droplet and
does not remove lipids, but instead it disorders the lipids at the interface, resulting in a decrease in
SFS intensity in spp, ssp, and ppp polarizations. This Scheme is reminiscent of work reported by
Kabalnov et al., who describe a nonionic surfactant-water-decane system whereby the adsorption
of a hydrophobically modified naturally occurring polymer causes a change in the curvature of the
surfactant leading to an increased rigidity in the system upon polymer addition.*®
Which Scheme is more likely to occur depends upon the experimental conditions employed in our
study. From the DLS data as well as the ssp-, ppp-, and spp-polarized SFS data, Scheme 1 is
considered most plausible under high salt conditions, whereas Scheme 2 is more plausible at low
salt conditions. The salt concentration dependence of the observations is consistent with increased
charge screening under high salt conditions, which decreases the electrical double layer thickness
between the polymer and the oil nanodroplet, allowing the PAH to approach the droplet and
remove the lipids from the surface.>-

III. B. Low PAH concentration increases SFS signal intensity of DMPC/d-hexadecane
nanodroplets even at low [salt] in C-H — but not P-O — stretching region. In various surfactant

polymer systems, changing the polymer concentration is known to change the interfacial tension,

thus affecting the critical micelle concentration.®! We therefore lowered the PAH concentration
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~tenfold, from 140 uM, discussed in the previous section, to 15 uM at no added salt conditions.
Figure 4 shows an increase in ssp-polarized SFS intensity at low salt conditions, reminiscent of
Scheme 2. This is potentially due to the fact that we have an abundance of oil droplets compared
to the concentration of PAH. The spp polarization combination is sensitive to the changes in
dispersion of lipids on the surface of the oil droplet. If all of the lipids were evenly separated at the
surface, and in the presence of uniform lipid coverage, spp signal intensity would not be
observable.526 If the lipids were distributed non-uniformly, considerable spp-polarized SFS signal
intensity should be observed.>%* Indeed, the spp-polarized SFS spectra, which are weak but
nevertheless show a decrease in SFS intensity after PAH addition (Figure 5) at 2960 cm™, support
the notion that the lipids are more evenly dispersed under low vs high PAH concentrations,
pointing towards Scheme 2.

In contrast to the increases observed in the C-H stretching region for the experiment leading
to Figures 4 and 5 (no salt, 15 uM PAH), a PAH concentration of 40 uM causes an SFS signal
decrease of DMPC/oil droplets in the PO stretching region (unfortunately, no spectra were taken
in the C-H stretching region for that PAH concentration). As shown in Figure 6, the observable
features in this spectral region occur near 1070 cm™ (the symmetric CO-O-C stretch) and near
1100 cm™ (the symmetric PO, stretch).*” As in the case of the C-H stretching region for DMPC
in the presence of no salt and 140 uM PAH, the change in the ratio of the SFS intensities at 1070
cm™ and 1100 cm™ is negligible, indicating little to no structural change in the choline headgroup
of DMPC when 15 uM PAH interacts with the lipid-coated droplets in the absence of extra salt.
IV. Conclusions. In summary, we have probed several structural aspects of how zwitterionic
DMPC lipids adsorbed to oil droplets suspended in D,O respond to the presence of the common

polycation polyallylamine hydrochloride in the presence of low and high salt concentration. We
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show that the polycation interactions with the lipids generally results in two distinct outcomes that
depend upon salt and PAH concentration, identified here as Scheme 1 (observed under conditions
of high salt concentration) and Scheme 2 (observed under conditions of low salt concentration).
At 100 mM NacCl and 140 uM PAH, Scheme 1 prevailed, leading to lipid removal by PAH
followed by droplet coalescence. Under conditions of no added NaCl and 140 uM PAH, Scheme
2 dominated, which involved PAH surrounding several droplets, thereby changing the lipid
orientation but keeping the droplet size constant. Under conditions of no added NaCl and 15 uM
PAH, the observations are consistent with Scheme 1, indicating an interplay between NaCl and
PAH concentration in determining which Scheme is most likely.

We caution that our results require further investigations into quantifying the size
distribution changes that occur under some of the conditions probed here. Moreover, further
studies will probe an expanded set of experimental conditions (salt and PAH concentration, lipid
and oil composition) in order to determine the scope of our findings. Yet, our present results
illustrate that cationic polymers do not always interact in the same fashion with lipid membranes
and demonstrate spectroscopic methods to probe those interactions with chemical bond specificity,
not only for the alkyl tails, but also the choline headgroup.

Supporting Information Available. Results from PAH controls as well as DLS and SFG replicate
experiments are available in the Supporting Information. This information is available free of
charge via the Internet at https://pubs.acs.org.
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Figure and Scheme Captions.

Figure 1. ssp- (A) and ppp- (B) polarized sum frequency scattering spectra of DMPC at the d-

hexadecane/DZO interface before (black) and after (gray) interaction with 140 uM PAH in D,O

with no added salt.

Figure 2. ssp- (A) and ppp- (B) polarized sum frequency scattering spectra of DMPC at the d-

hexadecane/D 2O interface before (black) and after (gray) interaction with 140 uM PAH at 100 mM

added NaCl in D,O.

Figure 3. Representative hydrodynamic diameter measurements by DLS of DMPC/oil
nanodroplets dispersed in water before (A, C) and after (B, D) interaction with 140 uM PAH under

conditions of no added NaCl (A, B) and 100 mM added NaCl (C, D).

Figure 4. ssp-polarized sum frequency scattering spectra of DMPC at the d-hexadecane/DzO

interface before (black) and after (gray) interaction with 15 uM PAH in D>O with no added salt.

Figure 5. spp-polarized sum frequency scattering spectra of DMPC at the d-hexadecane/DzO

interface before (black) and after (gray) interaction with 15 uM PAH in D>O with no added salt.
Figure 6. ssp- (A) and ppp- (B) polarized SFS spectra in the PO stretching region of DMPC/d-

hexadecane droplets dispersed in D,O before (top spectrum) and after (bottom spectrum) addition

of 40 uM PAH in D>O with no added salt.
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Scheme 1. Cartoon representation of the interactions possible between PAH and DMPC-coated oil
nanodroplets under conditions of high salt concentration (0.1 M). Gold spheres represent oil
droplets. Green shapes represent lipids. Blue shapes represent PAH. Counterions and water

molecules omitted for clarity.

Scheme 2. Cartoon representation of the interactions possible between PAH and DMPC oil
nanodroplets under conditions of low salt concentration. Gold spheres represent oil droplets. Green
shapes represent lipids. Blue shapes represent PAH. Counterions and water molecules omitted for

clarity.
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