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ABSTRACT

We present an original phenomenological model to describe the evolution of galaxy number counts, morphologies, and spectral

energy distributions across a wide range of redshifts (0.2 < z < 15) and stellar masses [log(M/M⊙) ≥ 6]. Our model follows

observed mass and luminosity functions of both star-forming and quiescent galaxies, and reproduces the redshift evolution of

colors, sizes, star-formation and chemical properties of the observed galaxy population. Unlike other existing approaches, our

model includes a self-consistent treatment of stellar and photoionized gas emission and dust attenuation based on the BEAGLE

tool. The mock galaxy catalogs generated with our new model can be used to simulate and optimize extragalactic surveys with

future facilities such as the James Webb Space Telescope (JWST), and to enable critical assessments of analysis procedures,

interpretation tools, and measurement systematics for both photometric and spectroscopic data. As a first application of this

work, we make predictions for the upcoming JWST Advanced Deep Extragalactic Survey (JADES), a joint program of the

JWST/NIRCam and NIRSpec Guaranteed Time Observations teams. We show that JADES will detect, with NIRCam imaging,

thousands of galaxies at z & 6, and tens at z & 10 at mAB .30 (5σ) within the 236 arcmin2 of the survey. The JADES data will

enable accurate constraints on the evolution of the UV luminosity function at z > 8, and resolve the current debate about the rate

of evolution of galaxies at z & 8. Ready to use mock catalogs and software to generate new realizations are publicly available as

the JAdes extraGalactic Ultradeep Artificial Realizations (JAGUAR) package.
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1. INTRODUCTION

Over the last two decades, deep extragalactic surveys with
the Hubble (HST) and Spitzer Space Telescopes have rev-
olutionized our understanding of galaxy evolution. These
surveys measured the buildup of galaxy populations from
the local Universe to the current redshift frontier at z ∼ 10
(for a review, see, e.g. Stark 2016). Meanwhile, ground-
based 8m- and 10m-class telescopes have characterized the
physical conditions of galaxies even beyond z ∼ 2 − 3, the
peak in the cosmic star formation rate density (e.g. with
Keck/MOSFIRE; Kriek et al. 2015, Steidel et al. 2014). Cur-
rently, further progress is hindered by the limited wavelength
coverage of HST, relatively low sensitivity of Spitzer, and
the atmospheric limitations that impede ground-based cam-
paigns. However, the soon-to-launch James Webb Space

Telescope (JWST; Gardner et al. 2006) will detect galaxies
well beyond the current redshift frontier, below the magni-
tude and stellar mass limits currently achievable with existing
facilities, while its high spatial resolution will image early
galaxies in exquisite detail. Furthermore, the unprecedented
spectroscopic capabilities of JWST will enable spectroscopic
observations of even the faintest galaxies detected with HST

to date (e.g. Chevallard et al. 2017)
This innovative telescope, hosting the largest mirror ever

to fly in space and a suite of state-of-the-art near-infrared in-
struments, will provide unique data to answer key open ques-
tions about the formation and evolution of galaxies. Specifi-
cally, the wavelength coverage provides the opportunity, for
the first time, to study the rest-frame optical properties of
galaxies out to z ∼ 9, and the rest-frame UV out to z > 10.
Observations with JWST will enable precise constraints on
the evolution of the stellar and chemical make up of galax-
ies, dust attenuation, and ionization sources across a broad
range of redshift, stellar mass and luminosity (e.g. Mannucci
et al. 2010; Reddy et al. 2015; Strom et al. 2017; Shapley
et al. 2017). These data are fundamental for understanding
the formation of the Hubble sequence, the emergence of qui-
escent galaxies, and the variety of observed scaling relations
between galaxy properties (e.g. Faber & Jackson 1976; Tully
& Fisher 1977; Kauffmann et al. 2003; Tremonti et al. 2004;
Franx et al. 2008; Maiolino et al. 2008; Speagle et al. 2014;
van der Wel et al. 2014; Glazebrook et al. 2017). In addition,
JWST will be used to target the exact epoch and sources of
cosmic reionization at high redshift (e.g. Bunker et al. 2004;
Finkelstein et al. 2012a; Robertson et al. 2015; Stark 2016).
Studies that address these topics will require large survey
campaigns using multiple instruments on board JWST includ-
ing, the Near Infrared Camera (NIRCam; Horner & Rieke
2004) and the Near Infrared Spectrograph, (NIRSpec; Bag-
nasco et al. 2007; Birkmann et al. 2016). These sensitive in-
struments will provide new space-based observation modes
including parallel imaging and spectroscopic observations,

simultaneous imaging enabled by the dichroic on NIRCam,
as well as the choice of fixed slit, high-multiplex or integral
field spectroscopy on NIRSpec.

Maximizing the scientific return of the innovative and
complex instruments on board JWST will require the devel-
opment of original analysis tools and space-based observ-
ing strategies. As an example, the advent of space-based
multi-object spectroscopy (with the NIRSpec Micro-Shutter
Array; MSA) initiates an era where spectroscopic follow up
of JWST-selected targets will demand the rapid analysis of
imaging data to create slit-mask designs. Meeting these fu-
ture challenges requires physically-motivated simulations of
JWST data that should ideally match existing observations,
while also extending to the unprecedented depths and red-
shifts that will be attained by JWST. Such simulations enable
critical tests of analysis procedures and processing tools, and
aid the scientific interpretation by identifying potential obser-
vational biases on measured galaxy properties (e.g. galaxy
sizes or UV continuum slope β; Dunlop et al. 2012; Finkel-
stein et al. 2012b; Rogers et al. 2013; Curtis-Lake et al. 2016;
Bouwens et al. 2017a).

Physically-motivated JWST simulations will require mock
galaxy catalogs, which can be built using semi-analytic
galaxy formation models (e.g. Blaizot et al. 2005; Cai et al.
2009; Bernyk et al. 2016; Mirocha et al. 2017; Furlanetto
et al. 2017) or hydrodynamical simulations (e.g. Torrey
et al. 2015; McAlpine et al. 2016). However, such sophis-
ticated approaches (e.g. Croton et al. 2006; Benson 2012;
Vogelsberger et al. 2014; Schaye et al. 2015) are intrinsically
model-dependent. As an example, semi-analytical models
that match low-to-intermediate redshift stellar mass func-
tions may provide widely different predictions for low-mass
galaxies [log(M/M⊙) . 8] and at high redshifts (z & 4, e.g.
Lu et al. 2014), or underpredict the specific star-formation
rates (sSFR) of sub-L∗ galaxies (e.g. Somerville & Davé
2015; Fontanot et al. 2009; Weinmann et al. 2012; Somerville
et al. 2015). In an effort to reduce the model-dependency of
mock observation tools, empirically driven approaches have
been developed based on observed galaxy distributions and
relations among physical quantities that replicate deep ex-
tragalactic surveys as observed from current facilities (e.g.
Schreiber et al. 2017).

As we look forward to future facilities that extend beyond
current limitations, we must incorporate accurate descrip-
tions of the spectral energy distributions (SEDs) of young,
low-mass and high sSFR galaxies across cosmic time. These
populations are of particular importance both as low-redshift
interlopers, as well as the high-redshift galaxies which are the
prime science targets for JWST, and are now known to pro-
duce strong nebular emission lines that can contribute signif-
icant excesses to broad-band photometric fluxes (Schaerer &
de Barros 2009; Shim et al. 2011; Atek et al. 2011; Labbé
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et al. 2013; Stark et al. 2013; Schenker et al. 2013; Smit
et al. 2014, 2015; Roberts-Borsani et al. 2016; Rasappu et al.
2016). Thus the treatment of nebular emission in mock cat-
alogs tailored to reproducing high-redshift galaxies is espe-
cially important. Currently, the treatment of nebular emis-
sion in mock catalogs based on galaxy formation models is
often approximated in post-processing with subgrid prescrip-
tions (e.g. Somerville & Davé 2015; Naab & Ostriker 2017),
although more advanced ones have been recently proposed
based on simplified prescriptions for the dependence of line
emission on metallicity, ISM conditions or ionization param-
eter (e.g. Kewley et al. 2013; Orsi et al. 2014; Shimizu et al.
2016). A fully self-consistent treatment of stellar and nebu-
lar emission in hydrodynamical simulations is, however, still
limited to small numbers of objects rather than full cosmo-
logical simulations (Hirschmann et al. 2017).

With this work, we present a new phenomenological model
for the cosmic galaxy population designed to benefit future
surveys with JWST and other forthcoming facilities target-
ing the UV to near-infrared emission of galaxies. Our model
is designed to reproduce observations of galaxy properties
from 0 < z < 10, and enables extrapolations of galaxy dis-
tributions to z ∼15, allowing for the generation of mock cat-
alogs that include physically-motivated counts, luminosities,
stellar masses, morphologies, photometry and spectroscopic
properties down to arbitrarily low stellar mass. Importantly,
we incorporate a self-consistent modeling of stellar and nebu-
lar emission using the models of Gutkin et al. (2016) teamed
with the BEAGLE tool (Chevallard & Charlot 2016), which
enables the inclusion of strong nebular emission lines and
nebular continuum emission in mock galaxy spectra and pho-
tometric SED. These models cover the wide parameter space
required to model the range of physical conditions expected
in local and extremely high redshift galaxies (z> 10) without
resorting to simple prescriptions of emission line ratios.

Simulations using our model have already proven invalu-
able to optimize the design of a large (∼ 720 hours) obser-
vational program, the JWST Advanced Deep Extragalactic
Survey (JADES), a joint program of the NIRCam and NIR-
Spec Guaranteed Time Observations (GTO) teams. In par-
ticular, mock catalogs produced using our model have been
used to optimize the selection of photometric filters and spec-
tral dispersers, the depth of the observations and area cov-
ered. This mock catalog tool, called JAdes extraGalactic Ul-
tradeep Artificial Realizations (JAGUAR), and related JWST

simulations will also provide a fundamental aid for the scien-
tific interpretation of future JWST data, and has enabled us to
make realistic science predictions for the future GTO survey.

The outline of this paper is as follows. In Section 2, we
provide a conceptual overview of our procedure for produc-
ing mock galaxies and assigning their properties. In the sub-
sequent sections, we describe the phenomenological model

that underlies JAGUAR quantitatively. In Sections 3 and 4,
we describe the procedure for producing star-forming and
quiescent galaxies (respectively) across cosmic time, includ-
ing their masses, redshifts, luminosities and SED proper-
ties. In Section 5 we describe the procedure for assigning
morphological parameters to both star-forming and quies-
cent galaxies. In Section 6, we characterize a realization of
our model (a JAGUAR mock catalog) by presenting compar-
isons to measurements made from current surveys between
0 < z < 10. In Section 7, we present our predictions for
the science results of JADES that are enabled by this tool.
Finally, in Section 8 we summarize this work. We release
ready-to-use realizations 1 as described below, as well as a
PYTHON package for JAGUAR that can be used to generate
catalogs to any area or depth. Throughout this work we as-
sume a ΛCDM cosmology with H0=70 km s−1 Mpc−1, ΩM =
0.3, ΩΛ = 0.7. When necessary, we assume a Chabrier (2003)
stellar initial mass function (IMF).

2. METHODS OVERVIEW

The foundation of our model consists of observed stellar
mass and UV luminosity functions that have been measured
from 0< z< 10. We use these observations to model the evo-
lution of stellar mass functions for both star-forming and qui-
escent galaxies, which are then used to generate each mock
population at all redshifts.2 We assign integrated properties
such as the UV absolute magnitude MUV and UV continuum
slope β (where fλ ∝ λβ ; for star-forming galaxies only), and
structural properties based entirely on empirical relations or
distributions. Finally, the model assigns spectra that are con-
sistent with these integrated properties to each mock galaxy,
which we use to produce the broadband photometry. Sum-
maries of our overall procedure for star-forming galaxies are
shown in Figures 1 and 2, which indicate the sections that de-
scribe the relevant quantitative procedures for assigning var-
ious properties to mock galaxies.

2.1. Generating galaxy counts

Here we describe the procedure we follow to generate
galaxy number counts (i.e. the expected number of galax-
ies of a given mass, at fixed redshift and on-sky area). We
first model the evolution of stellar mass functions across cos-
mic time using continuously-evolving Schechter functions
for both star-forming and quiescent galaxies. We then gener-
ate the expected number of star-forming or quiescent galaxies
for a given redshift bin over a given survey area by integrat-
ing their respective model mass function, multiplying by the
co-moving volume and drawing from a Poisson distribution

1 http://fenrir.as.arizona.edu/jaguar
2 We note that we do not attempt to include galaxies composed of metal-

free, ‘PopIII’ stars, since no empirical constraints exist on such objects.
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our two methods for assigning SEDs to mock galaxies ac-
cording to whether or not the realized properties overlap with
those of observed galaxies from current surveys.

In BEAGLE, the emission from simple stellar populations
of different ages, t′ and metallicities, Z (the mass fraction
of all elements heavier than Helium), is described by the lat-
est version of the Bruzual & Charlot (2003) population syn-
thesis code. Stellar emission is computed using the MILES
stellar library (Sánchez-Blázquez et al. 2006) and includes
new prescriptions for the evolution of massive stars (Bres-
san et al. 2012; Chen et al. 2015) and their spectra (Hamann
& Gräfener 2004; Leitherer et al. 2010). We account for
the (continuum+line) emission of gas photoionized by young
stars by considering the large grid of photoionization mod-
els of Gutkin et al. (2016). These are based on the stan-
dard photoionization code CLOUDY (version 13.3; Ferland
et al. 2013) and assume ‘ionization bounded’ nebulae, i.e.
a zero escape fraction of H-ionizing photons. The models
are described in terms of ‘effective’, i.e. galaxy-wide pa-
rameters following the prescription of Charlot & Longhetti
(2001). Adjustable model parameters include the ionization
parameter logUS, which sets the ratio of H-ionizing photons
to H atoms at the edge of the Strömgren sphere, the inter-
stellar metallicity ZISM, and the dust-to-metal (mass) ratio ξd,
which traces metal depletion onto dust grains. Since the gas
density nH and depletion factor ξd do not significantly affect
emission line ratios at sub-solar metallicities (see figure 3
and 5 of Gutkin et al. 2016), and most of our galaxies ex-
hibit log(Z/Z⊙) . −0.5 (see Fig 12), we fix nH = 102 cm−3,
the typical value measured in z ∼ 2–3 galaxies (e.g. Sanders
et al. 2016; Strom et al. 2017), and ξd = 0.3, a value similar to
what measured in the Solar neighborhood (although, see Sec-
tion 6.5). We account for attenuation by dust of the emission
from stars and photoionized gas using the two-component
model of Charlot & Fall (2000), parameterized in terms of
the total attenuation optical depth τ̂V, and the fraction of this
arising in the diffuse ISM µ. The mean effects of intergalac-
tic medium absorption are included following the model of
Inoue et al. (2014).

For mock galaxies with properties that are observable us-
ing current facilities we use BEAGLE to generate a distribu-
tion of model SEDs consistent with the observations and as-
sign these SEDs to the mock objects. To achieve this, we
fit SED models from BEAGLE to the multi-band photome-
try of galaxies in two CANDELS fields using the 3D-HST
catalog Skelton et al. (2014). When performing parameter
estimation, BEAGLE employs the nested sampling algorithm
(Skilling et al. 2006) as implemented in MULTINEST (Feroz
et al. 2009). This procedure creates a range of statistically ac-
ceptable SED fits for each observed galaxy in a subset of the
3D-HST sources (see Sections 3.4.2 and 4.2, while for more
detail of the BEAGLE output see C16, Section 3.3) which are

then used to produce a parent catalog. This parent catalog is
used to assign SEDs to mock objects with high stellar mass
(i.e. those with mass above log(M/M⊙) > 8, or, above the
mass-completeness of the 3D-HST catalog if larger in that
redshift bin) and low redshift (z < 4), where the λ . 4.5µm
photometry provides firm constraints on stellar mass. The
SEDs are assigned by finding the closest match in stellar
mass and redshift for each mock galaxy within the parent
catalog, allowing us to encapsulate the observed diversity of
galaxy SEDs at z< 4 with relatively few assumptions.

For mock galaxies with realized properties that extend be-
yond current measurements of real sources, we can leverage
the capabilities of BEAGLE to produce theoretical SEDs and
generate model spectra for the mock objects. In this sec-
ond method, we generate a parent catalog built of theoreti-
cal SEDs covering a range of model parameters that can be
matched to mock galaxy stellar mass, redshift, and, for star-
forming galaxies, MUV, and β (see Sections 3.4.3 and 4.2).
We use this method at low stellar masses [log(M/M⊙) < 8]
where current galaxy survey sampling of the population is
less complete, and at z ≥ 4 where SED coverage in the
rest-frame optical is only available from imaging taken with
IRAC, the 3.6 − 8µm camera on Spitzer (Fazio et al. 2004).

3. GENERATING STAR-FORMING GALAXIES
ACROSS COSMIC TIME

Here we describe the phenomenological model and quan-
titative procedure for generating counts, redshifts, stellar
masses, luminosities, and photometric and spectroscopic
properties for mock star-forming galaxies. Galaxies are as-
signed masses and redshifts according to evolving stellar
mass functions, as described in Section 3.1. In Sections 3.2
and 3.3 we describe the procedure for assigning integrated
star-forming galaxy properties (MUV and β) based on empir-
ical distributions. Finally, in Section 3.4, we describe the
procedure for assigning SEDs to star-forming galaxies.

3.1. Generating star-forming galaxy counts

In generating a mock galaxy catalog, we aim to reproduce
measurements of the star-forming galaxy stellar mass func-
tions at low redshift (z . 4) and the UV luminosity function
at high redshift (z & 4). Our primary mass function con-
straints come from Tomczak et al. (2014, hereafter T14),
while our UV luminosity function constraints are adopted
from Bouwens et al. (2015) at 4. z. 8 and the newest z∼ 10
estimate presented in Oesch et al. (2017).

T14 provide measurements of the stellar mass function of
star-forming and quiescent galaxies in eight redshift bins in
the range 0.2 < z < 3. They employed imaging data from
the FourStar galaxy evolution (ZFOURGE) survey (Straat-
man et al. 2016) covering the CDFS, COSMOS and UDS
fields with 5 near-IR medium-bandwidth filters spanning the
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J and H bands, as well as broad-band KS imaging. Specifi-
cally they used the regions that also overlap with CANDELS
J125 and H160 imaging (to ∼ 26.5 depth to 5σ), covering a to-
tal area of ∼316 arcmin2. Additionally, imaging from NEW-
FIRM Medium-band Survey (Whitaker et al. 2011) was used
in the AEGIS and COSMOS fields, employing the same filter
sets as the ZFOURGE survey to shallower depths but wider
area to leverage better constraints of the high-mass end of
the mass function. Each of the fields also benefit from further
imaging that allows comprehensive sampling of galaxy SEDs
over the wavelength range 0.3 − 8µm, with the field-specific
filter-sets and imaging programs summarized in Section 2.4
of Straatman et al. (2016).

T14 inferred photometric redshifts and rest-frame colors
(used to separate galaxies into star-forming or quiescent
based on the UV J diagram of Whitaker et al. 2011) us-
ing the template-based EAZY code (Brammer et al. 2008),
while stellar masses were estimated using FAST (Kriek et al.
2009). Within FAST, they used the original Bruzual & Char-
lot (2003) population synthesis code at fixed solar metallic-
ity, employing a Chabrier (2003) IMF, and a declining expo-
nential star-formation history. The 80% mass completeness
limits of their sample increase from log(M/M⊙) ∼ 7.75 at
z ∼ 0.5 to log(M/M⊙) ∼ 9.25 at z ∼ 3. T14 fit their resulting
stellar mass functions with a sum of two Schechter (1976)
functions:

Φ(M⋆)dM⋆ =Φ1(M⋆)dM⋆ +Φ2(M⋆)dM⋆

= ln10φ∗1,M 10(M⋆-M∗
1,M)(1+α1,M)exp(−10M⋆-M∗

1,M )dM⋆

+ ln10φ∗2,M 10(M⋆-M∗
2,M)(1+α2,M)exp(−10M⋆-M∗

2,M )dM⋆ ,
(4)

where M⋆ = log(M/M⊙), as defined in Section 2.1, Φ(M⋆) in-
dicates the number of galaxies per Mpc3 with stellar masses
between M⋆ and M⋆ + dM⋆, and M∗

1,M, M∗
2,M, φ∗1,M, φ∗2,M,

α1,Mand α2,M are the six free parameters of the function.4 In a
single Schechter function, M∗

M is the mass at the turnover, or
“knee” of the mass function, φ∗M is the characteristic number
density of galaxies at the turnover, and αM is the low-mass
slope. In the double-Schechter function used in T14, they
explicitly set M∗

1,M = M∗
2,M = M∗

M meaning that they fit with a
single “knee” but the different normalizations and faint-end
slopes of each function enable them to fit the observed steep-
ening of the mass function to low masses (see Figure 4).

At z> 4 stellar masses become progressively less well con-
strained from measurements, in part because the rest-frame
optical SED (a key region containing the Balmer break at ∼
3600 Å, and the 4000 Å break), shifts into the infrared where
current facilities have low sensitivity. Additionally, high

4 Schechter function parameters used to describe a mass function are suf-
fixed by an ‘M’ to distinguish them from those used to describe a luminosity
function.

equivalent width (EW) emission lines can add to the flux in
the reddest photometric bands, leading to an over-prediction
of galaxy stellar masses (Schaerer & de Barros 2010, Stark
et al. 2013, Curtis-Lake et al. 2013, de Barros et al. 2014). As
a result, relative uncertainties on stellar mass measurements
are high (e.g. 0.4 dex at 1010M⊙ at z = 4, increasing with
redshift and decreasing mass; Grazian et al. 2015, see also
Mobasher et al. 2015) and may contribute to the large scatter
of mass function measurements in the literature (nearly ∼1
dex in counts; see Figure 9 in Song et al. 2016, Figure 11 in
Davidzon et al. 2017). Therefore, to generate galaxy counts
at z> 4 we leverage the constraints provided by the observed
UV luminosity function between 4 . z . 8 from Bouwens
et al. (2015) with luminosity function measurements with
mean redshifts at < z >= [3.8,4.9,5.9,6.8,7.9] using data
from the HST Legacy Fields, as well as the z ∼ 10 luminosity
function of Oesch et al. (2017). The binned UV luminosity
function measurements we use for this work are overall con-
sistent with many other results in the literature at MUV< −17
(e.g. McLure et al. 2013; Finkelstein et al. 2015; Atek et al.
2015; Laporte et al. 2015; Castellano et al. 2016; Yue et al.
2017; Livermore et al. 2017; Ono et al. 2017; Bouwens et al.
2017b).

We choose to model the redshift evolution of the six mass
function parameters across the entire redshift range of the
mock, i.e. 0.2 < z < 15. This ensures a smooth evolution in
number counts across the transition from mass to luminos-
ity function-based constraints. At z < 3.8 (the mean redshift
of the B-dropout sample used to produce the Bouwens et al.
(2015) z ∼ 4 luminosity function) we use the measured mass
functions of T14 to directly constrain their redshift evolution,
while at z ≥ 3.8 we use our model of the redshift-evolving
MUV–M⋆ relation (see Section 3.2) to fit to the observed lu-
minosity functions with mass function parameters. However,
it is important to note that this is not a direct prediction of the
shape or evolution of the z & 4 mass functions that we expect
to measure with JWST. Our z & 4 mass functions are depen-
dent on our model of the MUV–M⋆ relation and additionally,
we do not yet know how incomplete the current MUV-selected
samples at z & 4 may be.

To determine a suitable form for the redshift-evolution of
the Schechter function parameters, we first need to know
what mass function parameters can reproduce the observed
UV luminosity functions at z & 4. The details of this fitting
are given in Appendix A.1 and we plot the Schechter (mass)
function parameters that best fit the z& 4 luminosity function
observations in Figure 3, as well as the individual maximum-
likelihood estimates of T14 at z < 4. The estimates of M∗

M

derived from the measured luminosity functions at z & 4 are
significantly lower than the T14 measurements. However, if
we fit the evolution of a double Schechter function with dif-
ferent “knees”, as in Equation 4, we can use M∗

1,M to fit to the
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Table 1. The values of the parameters used in our model of the
mass function evolution, as described in Equations 5-10. For those
parameters determined using the multi-level model fitting to z < 4
mass functions, we report the median of the posterior distribution
function, its 1σ confidence interval, as well as the prior used in the
fitting.

parameter median
1σ

uncertainty
prior/source of fits

a1 10.69 0.04 N (0,50)

b1 -2.68 0.16 N (0,50)

b2 0.06 0.24 N (0,50)

b3 -0.19 0.08 N (0,50), ∈ [−∞,0]

c1 -1.02 0.16 N (0,50)

c2 0.29 0.13 N (0,50)

D1 10.30 0.10 Linear fitting 4 . z < 8

D2 -0.15 0.02 Linear fitting 4 . z < 8

e1 0.73 0.26 N (0,50), ∈ [0,∞]

e2 -3.60 -
= E1 + 3.8E2 − e1[1 −

exp(−3.8)]

E1 -2.03 0.41 Linear fitting 4 . z < 8

E2 -0.23 0.09 Linear fitting 4 . z < 8

E ′
1 -0.67 - φ∗

2,M fit to z ∼ 10 LF

E ′
2 -0.40 - φ∗

2,M fit to z ∼ 10 LF

f1 0.41 0.17 N (0,50), ∈ [0,∞]

f2 -1.82 -
= F1 + 3.8F2 − f1[1 −

exp(−3.8)]

F1 -1.16 0.10 Linear fitting 4 . z < 8

F2 -0.07 0.02 Linear fitting 4 . z < 8

δlog(M/M⊙) < 1, δz < 1 and δMUV < 1 (where e.g. δz

is the 68% credibility interval on redshift.) The limits im-
posed were chosen to avoid biasing the characterization of
the MUV–M⋆ distribution with overly strict MUV or M⋆ cuts,
which we discuss further below.

In Figure 6, we plot the MUV–M⋆ distributions for the 3D-
HST galaxies with well-constrained MUV, M⋆ and redshift
measurements. As discussed above, these distributions show
a trend of increasing stellar mass with decreasing MUV at low
stellar mass. At high stellar mass the MUV values tend to be
fainter than the linear relation, as observed in Spitler et al.
(2014). Rather than attempting to fully model this mass-
dependent behavior, especially given the Malmquist biases
that begin to affect the higher-redshift bins, we adopt the fol-
lowing two-step procedure to describe the MUV–M⋆ distribu-
tions at z. 4. We fit the observed MUV–M⋆ distribution under

the simplest assumption of a linear relationship to extrapolate
to low masses, while at higher masses (log(M/M⊙)&8-8.5,
depending on the mass limit at a given redshift), we assign
MUV values by sampling from real galaxies of the same mass.
The matching procedure allows us to maintain the observed
flattening of the distribution at high masses, and is fully de-
scribed in Section 3.4.2 below.

Figure 6 illustrates the substantial scatter in the observed
MUV–M⋆ distributions at z. 4. Owing to the large scatter, the
best fitting slope will depend strongly on the uncertainties on
the data points, and the size of the uncertainties may depend
on MUV, M⋆, and also plausibly on redshift. Indeed, we find
that when fitting with both slope and normalization as free
parameters neither parameter is well constrained, and the best
fitting slope is highly variable between redshift bins. There-
fore, we adopt a fixed slope for the MUV–M⋆ relation at all
redshifts and fit only the intercept at each redshift. This pro-
cedure essentially fits the average redshift-dependent mass to
light ratio, which has lower uncertainty and is less dependent
on the error on individual galaxy measurements and stellar
mass-dependent systematics. Several studies have reported
the measurement of constant slope for UV-selected galaxies,
with normalization evolving in redshift (Duncan et al. 2014;
Salmon et al. 2015; Grazian et al. 2015; Song et al. 2016; Ste-
fanon et al. 2017a), and find a reasonable description of the
data. The blue dashed line in Figure 6 shows our best fit re-
lation to the MUV–M⋆ distribution in each redshift bin, where
the slope is fixed to a value of -1.66. We find excellent agree-
ment with the observed distribution at all redshifts. For refer-
ence we also indicate the stellar mass limits in each redshift
bin above which we assign MUV values by sampling from real
galaxies (red dashed lines). Fitting the MUV–M⋆ distribution
only above these mass limits instead has a negligible effect
on the result at z < 3. At z ∼ 3.75 where there are fewer
well-constrained measurements, fitting above this mass limit
would increase the MUV–M⋆ intercept by ∼ 0.1 mag, an indi-
cation that fitting only at the high-mass end biases the char-
acterization of the MUV–M⋆ due to the high-mass end flatten-
ing. Therefore, we choose to proceed using all galaxies with
well-characterized stellar mass, redshift and MUV.

To set the full redshift evolution of the MUV–M⋆ relation,
we combine the intercept values for the best fit relations
with fixed slope at each redshift z . 4 with measurements
of the MUV–M⋆ intercept at z > 4. We use the average ob-
served value of stellar mass for bright (MUV= -20) galaxies
at 4 < z ≤ 7 to set the overall normalization in each z > 4
redshift bin, while assuming the same constant MUV–M⋆

slope. We utilize the high-redshift stellar mass measure-
ments shown in figure 7 of Stark et al. (2013), where the
measured stellar masses were fit while including the contri-
bution to the SED from nebular emission lines. The normal-
ization value at MUV = −20 shows an overall decline between
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atively independent of UV luminosity with values between
σβ ∼ 0.3–0.4 (Bouwens et al. 2012b, 2014; Kurczynski et al.
2014; Mehta et al. 2017). We note that there is some evi-
dence for the intrinsic scatter of the distribution increasing
with UV luminosity, such that populations of brighter galax-
ies will have larger intrinsic scatter in β (Rogers et al. 2014).
This evidence comes from a careful analysis at z ∼ 5 only,
however, and such luminosity dependence in the σβ is not
characterized sufficiently across cosmic time to be incorpo-
rated in our model. We correspondingly adopt an intrinsic
scatter of σβ ∼ 0.35 in our model uniformly across all red-
shifts and UV luminosities.

To include intrinsic scatter σβ ∼ 0.35 in our model, we
assign β values to mock galaxies according to a Gaussian
distribution with a mean defined at a given redshift and MUV

according to Equation 13 with σβ = 0.35. To avoid values
of β bluer than the theoretical limits described in the previ-
ous section (for which we would not be able to associate a
BEAGLE spectrum), we truncate the distribution at β = −2.6.
With this truncated Gaussian scatter, at the very highest red-
shifts and faintest MUV the mean value of β reddens slightly
so as to cause a mild flattening of the linear relations shown
in Figure 9. However, we accept this feature as more favor-
able than artificially fixing to the bluest value of β and reduc-
ing the galaxy diversity in the mock. In addition, it mimics
the behavior of β–MUV seen in some studies that indicate an
apparent flattening of the linear relation at faint luminosities
(e.g. MUV & −19; Bouwens et al. 2014). Future measure-
ments from JWST imaging and spectroscopy will help to in-
form our stellar population synthesis models as we uncover
the full range and distribution of UV continuum slopes in the
early universe.

As described further in the following section, when pos-
sible we use 3D-HST galaxies to provide the constraints on
the shape of the SED for mock galaxies. However, when this
is not possible, we use the β slope that is assigned to each
galaxy to match to a parent catalog of SEDs produced by
BEAGLE (see Section 3.4.3). This ensures that our catalog
will follow observed trends in β–MUV.

3.4. Assigning Galaxy SEDs and spectroscopic properties

We assign a set of spectral properties to each mock galaxy,
allowing us to provide filter photometry as well as a full spec-
trum for each object. The general method is to produce a
parent catalog of spectra that can be matched to galaxies in
the mock. Where possible we produce this parent catalog
from the results of SED fitting to galaxies in the 3D-HST
catalog, allowing the observed photometry to provide the di-
versity of observed SEDs at given stellar mass and redshift
(see Section 2.3). We limit the use of these empirical SEDs
to z ≤ 4 galaxies, as beyond this redshift the rest-frame op-
tical is only sampled by the Spitzer IRAC bands where the

poor resolution leads to a significant confusion of sources at
faint magnitudes.

For galaxies at redshifts z> 4, or z ≤ 4 but below the mass
completeness limits of 3D-HST, we rely on extrapolations of
observed relationships between MUV–M⋆ and β–MUV to pro-
vide constraints on the galaxy SEDs. These constraints are
used to match to a parent catalog, produced using BEAGLE

in mock catalog mode. When generating this parent catalog
we have the full parameter space of the stellar and nebular
templates to choose from (described in Section 2.3) and so
we use observed trends in galaxy physical parameters, albeit
with large scatter, to restrict this parameter space. Specifi-
cally we use three observed relations: M⋆ − Z −ψ, where ψ
is the SFR of the object (the ‘fundamental metallicity rela-
tion’); ψ − Z − τ̂V, to provide physically motivated constraints
on dust attenuation (where τ̂Vis the effective V-band optical
depth); and Z − logUS.

3.4.1. SED fitting to 3D-HST catalogs

The photometric catalogs produced by the 3D-HST team
(Skelton et al. 2014) are selected from the noise-equalized
combination of HST/WFC3 J125, JH140 and H160 images
taken from an extensive set of publicly available imaging data
over 5 fields (AEGIS, COSMOS, GOODS-North, GOODS-
South, and the UKIDSS UDS) covering ≃ 900 arcmin2.
From these catalogs we use the data in the deeper regions
of the CANDELS (Grogin 2011, Koekemoer et al. 2011)
GOODS-South and GOODS-North fields to provide a par-
ent catalog of redshift and mass-dependent SEDs that can be
assigned to our mock catalog galaxies.

We use version 4.1 of the 3D-HST photometric catalogs
(Momcheva et al. 2016). These catalogs include selection
from mosaics that include HUDF-09 (11563; PI:Illingworth)
and HUDF-12 (12498; PI: Ellis) WFC3 imaging in the
HUDF and parallels (11563; PI: Illingworth) that was per-
formed as part of release 3.05. The catalogs do not include
deeper HUDF ACS imaging of Beckwith et al. (2006) and so
ACS photometry across the GOODS-South is at the depths
of the original GOODS imaging (Giavalisco et al. 2004).

From the GOODS-South and GOODS-North 3D-HST cat-
alogs we fit to the broad-band HST fluxes (B435, V606, i775,
z850, J125, JH140 and H160), as well as the Spitzer/IRAC Chan-
nel 1 (3.6µm) and Channel 2 (4.5µm) imaging from SEDS
(Ashby et al. 2013) to provide constraints in the rest-frame
optical at high redshifts. We also use a subset of the ground-
based filters that required small photometric zeropoint cor-
rections in the SED fitting analysis of Skelton et al. (2014)
compared to the H160 band (see their Table 11). In the

5 as outlined in 3D-HST v3.0 release documentation
http://monoceros.astro.yale.edu/RELEASE_V3.0/Photometry/
3dhst_v3.0_readme.pdf
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GOODS-South field we use photometry from VLT/ISAAC J,
H, and Ks band imaging from the ESO/GOODS and FIRE-
WORKS surveys (Wuyts et al. 2008; Retzlaff et al. 2010),
and VLT/VIMOS U-band imaging from the ESO/GOODS
survey (Nonino et al. 2009). In the GOODS-North field we
use Subaru/MOIRCS imaging in J, H and Ks bands from the
MODS survey (Kajisawa et al. 2011)6. We do not apply the
zeropoint offsets reported in Skelton et al. (2014), Table 11
after verifying that applying these corrections does not im-
prove the accuracy of photometric redshifts output by BEA-
GLE.

We fit the broad-band photometry using BEAGLE (see Sec-
tion 2.3 for details on the model). We use a delayed star for-
mation history ψ(t) ∝ t exp(−t/τSFR), where τSFR is the star
formation timescale and t the age of the galaxy, taken to lie
between 107 yr and the maximum time allowed since the on-
set of star formation at the galaxy redshift. This parameteri-
zation gives a star formation history that rises at early times
and declines exponentially at later times. This star formation
history is shown to better reproduce the colors and mass-to-
light ratios of galaxies in the smoothed particle hydrodynam-
ics (SPH) simulations of Simha et al. (2014) than the widely-
used exponentially decreasing star-formation histories. Ad-
ditionally, simulations have been shown to predict that high-
redshift galaxies have rising star-formation histories (Finla-
tor et al. 2011), a scenario that is naturally achieved using
this parameterization. To ensure that galaxies are not fitted
with models that are older than the age of the Universe, we
set an upper limit of zmax

form = 15 to the redshift of onset of star
formation. We further employ a weakly informative Gaus-
sian prior on log t, with mean at log(t/yr) = 9.3 and σ = 0.7.7

We approximate the distributions of stellar and interstellar
metallicities in a galaxy with a single metallicity ZISM = Z.
We use an exponential prior for τ̂V and fix µ = 0.4. The free
parameters in the model fitting are summarized in Table 2,
and see Section 2.3 for a general overview of the individual
parameters.

3.4.2. Parent SED catalog of galaxies based on 3D-HST catalog

for z ≤ 4, log(M⋆/M⊙) > 8

To generate our parent SED catalog for high mass galax-
ies at z < 4, we use fits to the broad-band photometry of
star-forming galaxies in the 3D-HST catalog using BEAGLE.
Since T14 use rest-frame U − V vs V − J colors to separate

6 We choose not to fit using the KPNO U-band data in GN as the imaging
is significantly shallower than the VLT/VIMOS U-band imaging in GS, and
a large zeropoint offset was measured in Skelton et al. (2014)

7 Since the galaxy age is only weakly constrained by broad-band data
alone, the resulting stellar masses are sensitive to the choice of the age prior
(e.g. Pacifici et al. 2015). Empirically, we find that adopting a uniform prior
on log t overweights young ages, therefore leading to underestimated stellar
masses with respect to those derived by Pacifici et al. (2015).

Table 2. Parameters allowed to vary in the BEAGLE fitting to galax-
ies in the 3D-HST catalog with their priors.

Parameter Prior Description

z Uniform ∈ [0,15] redshift

log(Mtot/M⊙)a Uniform ∈ [7,13] Integrated SFH

log(t/yr)

Gaussian
N (9.3; 0.7)
truncated

∈ [7,10.15]

Age of oldest stars in the
galaxy

log(τSFR/yr) Uniform ∈ [7,12]
Timescale of star

formation

log(Z/Z⊙)
Uniform

∈ [−2.2,0.24]
Stellar (and interstellar)

metallicity (Z=ZISM)

τ̂V

Exponential
exp(-τ̂V) truncated

∈ [0,4]

V -band attenuation
optical depth

µ Fixed 0.4
Fraction of attenuation

arising in the diffuse ISM

logUS Uniform ∈ [−4,−1]
Effective gas ionization

parameter

ξd Fixed 0.3 Dust-to-metal mass ratio
aBEAGLE samples over the integral of the past star formation
history of the galaxy (Mtot ). It returns the stellar mass (M⋆), which
accounts for the mass returned by evolved stars to the ISM.

galaxies into star-forming and quiescent galaxies before mea-
suring the type-dependent mass functions, we select star-
forming galaxies from the 3D-HST catalog using a similar
star-forming/quiescent (SF/Q) classification scheme. Specif-
ically, we select objects in the star-forming region of U −V

vs V − J color space as defined by Whitaker et al. (2011) (see
their Figure 17 and Equations 14 and 25) using the reported
U , V and J-band absolute rest-frame magnitudes supplied in
the 3D-HST catalog.

As described in Section 2.3, BEAGLE uses MULTINEST

(Feroz et al. 2009) to sample the parameter space, and
records the associated SEDs and MULTINEST weights. This
information can be used to produce samples drawn from the
corresponding posterior probability distribution, and we use
these samples to populate a parent catalog with a range of
statistically acceptable SED fits (plus associated physical
parameters) for each object.

At low masses, constraints on the rest-frame UV, metal-
licity and dust attenuation can suffer from poor photometric
constraints. For each of these parameters we therefore im-
pose conditional priors on MUV–M⋆, M⋆−Z−ψ andψ−Z− τ̂V.
These are additional priors to those already set in the SED-
fitting (listed in Table 2) that we must apply after the fact, as
BEAGLE does not accept conditional priors. Luckily it is rela-
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these parameters, we utilize the distributions of M⋆ − Z −ψ
and Z − logUS inferred from observations.

We use delayed SFHs to produce the SEDs, where the τ
and t values are chosen to ensure that the galaxies would be
classified as star-forming, with log(ψS/yr−1)> −10. Here we
allow log(t/yr) to vary between 6 and the age of the Universe.
The lower limit in age is lower than that introduced in the
prior on log(t/yr) used in the fitting to objects in the 3D-
HST catalog (see Table 2) as this parent catalog is going to be
used to match to lower mass/higher redshift objects. BEAGLE

provides the stellar masses accounting for mass returned to
the ISM as stars evolve and die, as well as the current SFR
which can be used to assign metallicity, ionisation parameter
and V-band optical depth due to attenuation by dust.

To constrain the metallicities of galaxies, we use the fun-
damental metallicity relation between M⋆ − Z −ψ measured
by Hunt et al. (2016) from a compilation of ∼ 1000 galax-
ies covering a wide range in ψ and stellar mass, with oxy-
gen abundance estimates derived from consistent calibra-
tions, and, crucially, covering a wide range in redshifts up
to z ∼ 3.7. The redshift distribution of Hunt et al. (2016)
can be viewed in their Figure 1, which can be compared with
the fundamental metallicity relation measured in Mannucci
et al. (2010) from galaxies in the Sloan Digital Sky Survey
for objects with redshifts between 0.07 and 0.3. A fit to this
fundamental metallicity relation is given by

12 + log(O/H) = − 0.14 log(ψ/M⊙ yr−1)+

0.37log(M/M⊙) + 4.82.
(15)

This relation is a fit to the gas-phase oxygen abundance,
while we require a relation based on the nebular metallic-
ity ZISM = Z associated with our models. From the grid of
ξd = 0.3 models used here, we infer the approximate rela-
tion 12 + log(O/H) ≃ log(ZISM/Z⊙)+8.7. While this approx-
imation is not suitable to determine accurately 12 + log(O/H)
from the output metallicity for individual nebular models
(see Gutkin et al. 2016, Table 2 for values of 12 + log(O/H)
for different model metallicities), the errors it generates are
much smaller than the scatter we introduce below in the fun-
damental metallicity relation.

It is important to highlight here that the Hunt et al. (2016)
relation only models a linear dependence between oxygen
abundance and stellar mass, whereas we know the mass-
metallicity relation is not linear at high stellar masses (e.g.
Tremonti et al. 2004). In fact the upper limit in metallicity of
Z/Z⊙ = 0.24 (also the upper limit of the prior in metallicity
employed when fitting to objects in the 3DHST catalogs) in-
troduces a turnover in the catalog mass-metallicity relation at
low redshifts and high masses (see Section 6.4).

We wish to instill a broad diversity in our parent catalog
SEDs and avoid an over-representation of unphysical param-
eters in our resulting mock catalogs. We therefore apply

a broad scatter to the fundamental metallicity relation, and
do not attempt to predict the form of the M⋆ − Z relation or
M⋆ − Z −ψ plane to high redshifts. The broad range of spec-
tral parameters will enable investigations of selection effects
in future observations, especially for redshift and magnitude
regimes where current measurements cannot yet reach. We
characterize the scatter with a Student’s-t distribution:

f (x) =
Γ(ν+1

2 )√
νπΓ(ν2 )

(

1 +

x2

ν

)

−
ν+1

2
, (16)

where ν is the number of degrees of freedom and Γ is the
gamma function and:

x =
log(ZISM/Z⊙) − log(Z̄ISM/Z⊙)

σx

. (17)

We set σx = 0.3 and ν = 3, where ν = 3 has been chosen to
provide a distribution with more weight in the tails compared
to a Gaussian.

To constrain the ionization parameter of these galaxies we
use a linear fit between metallicity and logUS measurements
at low redshift from Carton et al. (2017, see their figure 2):

logUS(Z) = −0.8 log(Z/Z⊙) − 3.58 . (18)

We again use the Student’s-t distribution with 3 degrees of
freedom to introduce scatter in this relation.

We account for dust attenuation by using an approach com-
monly featured in semi-analytic models of galaxy formation
(e.g. Guiderdoni & Rocca-Volmerange 1987; De Lucia &
Blaizot 2007; Fontanot et al. 2009). Following Devriendt
et al. (1999, their equation 6), we estimate the V -band, face-
on attenuation optical depth τ̂V⊥ using the relation

τ̂V⊥ =
(

ZISM

Z⊙

)1.6 (
NH

2.1×1021 cm−2

)

(19)

where ZISM is the interstellar metallicity and NH the mean hy-
drogen column density. As in Devriendt et al. (1999), we
compute NH from the (cold) gas fraction

NH = 6.8×1021 Mgas

M⋆ + Mgas
, (20)

where the cold gas mass Mgas is computed by inverting
the Schmidt-Kennicutt relation (Schmidt 1959; Kennicutt
1998). In practice, we consider the size and SFR of each
galaxy to compute the SFR density Σψ = ψ/(π r2), in units
of M⊙ yr−1 pc−2, where r is the galaxy effective radius. We
can then compute the cold gas surface density Σgas from the
Schmidt-Kennicutt relation, and estimate the cold gas mass
as Mgas = Σgasπ r2.

Equation (19) provides us with the face-on attenuation op-
tical depth, from which we can derive an angle-averaged at-
tenuation optical depth by assuming a spatial distribution of
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dust and stars. Following Devriendt et al. (1999), we ap-
proximate our galaxies as oblate ellipsoids where dust and
stars are homogeneously mixed. The V -band attenuation op-
tical depth averaged over all galaxy inclinations i can then be
written as

〈τ̂V〉i = −2.5 log
(

aV

1 −ωV +ωV aV

)

1
1.086

, (21)

where ωV = 0.87 is the albedo at 5500 Å for dust grains with
properties as in the Small Magellanic Cloud (Pei 1992), and
aV is computed as

aV =
3

4 τ̂ ′V⊥

[

1 −

1
2 τ̂ ′2

V⊥

+

(

1
τ̂ ′V⊥

+

1
2 τ̂ ′2

V⊥

)

exp(−2 τ̂ ′V⊥)
]

,

where τ̂ ′V⊥ = 2.62 τ̂V⊥.
Equations (19)–(21) enable us to associate to each mock

galaxy a physically-motivated value for the angle-averaged
V -band attenuation optical depth, which depends on the
galaxy SFR, size, and metallicity. We then account for the
effect of galaxy inclination on the V -band attenuation optical
depth τ̂V by randomly drawing τ̂V from a Gaussian distribu-
tion centered at 〈τ̂V〉i and truncated at τ̂V = 0. The width of the
Gaussian used to draw the τ̂V value is chosen to be dependent
on 〈τ̂V〉i and Z, according to:

σ = 0.2 + Z/Z⊙ − 〈τ̂V〉i (22)

This function ensures that at low metallicities, there is a
smaller scatter in τ̂V, limiting range of dust attenuation in
the regime where we expect low dust-to-gas ratios, while the
minimum value of 0.2 prevents the values of τ̂V being too
constrained at the lowest metallicities. We note that non-
negligible attenuation by dust even at very low metallicities
is not unreasonable, as even if they have low gas-to-dust ra-
tios they may be gas-rich, allowing for non-negligible dust-
to-stellar mass ratios (e.g. da Cunha et al. 2010). Our choice
of the negative dependence of σ on 〈τ̂V〉i mimics results ob-
tained from radiative transfer calculations of dust attenuation
in galaxies (e.g. Tuffs et al. 2004; Pierini et al. 2004), which
show that galaxies with low angle-averaged attenuation op-
tical depths 〈τ̂V〉i . 0.1 exhibit a larger fractional range of
inclination-dependent attenuations than galaxies with larger
〈τ̂V〉i.

3.4.4. Matching mock galaxies to the parent catalog

To assign SEDs from the parent catalog to mock galaxies,
we find the closest match between the mock galaxy parame-
ters and the physical parameters of the parent catalog galax-
ies. Which properties are matched differ when assigning
SEDs drawn from fits to 3D-HST galaxies or from the wide
grid of galaxies produced by BEAGLE. For those objects with
z< 4 and stellar mass higher than log(M/M⊙) = 8 or the mass

completeness limit of the 3D-HST catalog (log(M/M⊙) >
0.7z + 0.63)9, red vertical lines shown in figure 6), we find
the closest match in M⋆ and redshift, as we rely on observed
broad-band photometry to constrain the expected SED shape
of an object at a given stellar mass. For objects at z > 4 or
with lower stellar masses at z ≤ 4, the expected SED shape is
based on extrapolations of the MUV–M⋆ and β–MUV relations,
as described in Sections 3.2 and 3.3, respectively. These re-
lations are used to assign MUV and β values to each galaxy in
the star-forming galaxy mock catalog. Each mock object is
then assigned an SED based on the closest match in redshift,
stellar mass, MUV and UV-slope in the parent catalog.

For all matches between mock galaxies and parent catalog
it is then possible to shift the redshift of the SED to the exact
redshift of the mock galaxy. Figure 12 displays the distri-
butions of physical parameters assigned to all star-forming
galaxies in the mock catalog.

4. GENERATING QUIESCENT GALAXIES ACROSS
COSMIC TIME

4.1. Quiescent galaxy counts

Our model for the redshift evolution of the stellar mass
function of quiescent galaxies is based on observed stel-
lar mass functions that have been measured in the redshift
range 0.2 ≤ z ≤ 3.0 by T14. These authors use the redshift-
dependent UV J color selection from Whitaker et al. (2011) to
select quiescent galaxies from the ZFOURGE medium-band
photometric survey (Straatman et al. 2016) and data from the
CANDELS survey (see Section 3.1). T14 find that the qui-
escent galaxy stellar mass function is best fitted by a double-
Schechter function (equation 4 above) in the redshift range
0.2 ≤ z ≤ 1.5, and by a single-Schechter function at higher
redshifts, 1.5 ≤ z ≤ 3.0. The differing functional forms were
chosen to match the observed upturn in the stellar mass func-
tion below log(M/M⊙) ≤ 9.5 at z ≤ 1, a result in line with
observations by Santini et al. (2012); Muzzin et al. (2013);
Ilbert et al. (2013).

In this work, we use both the observed binned stellar mass
functions and the fitted Schechter parameters in bins of red-
shift from T14 to construct a continuous model for the red-
shift evolution of the quiescent stellar mass function. To pro-
duce smooth evolution at all redshifts, we choose to adopt
the double-Schechter function description for the mass func-
tion at all redshifts, even at z > 1.5 where observations find
consistency with a single Schechter function. This double-

9 The approximate mass completeness limits are estimated in bins of red-
shift and fit with a linear relation. Specifically, we randomly sample 100
SEDs from the posterior probability distribution of each galaxy in the HUDF
portion of the 3D-HST catalog. These SEDs are binned in redshift and mass
and the completeness limit calculated as the mass at which 95% of the SEDs
are brighter than 27.6 in H160 (the magnitude at which the number counts in
the UDF portion of the field start to turn over, see Figure 11).
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Table 3. Quiescent Mass Function double-Schechter parameters (Figure 14) and their evolution. The parameter is shown on the left column, the
functional form of the parameter (with associated constants) on the right column, and the redshift-range of that functional form in the middle
column.

Parameter Redshift range Functional Form

M∗
M z ≥ 0.2 M∗

M = 10.617

α1,M

z < 0.5 α1,M = −0.225

0.5 ≤ z < 1.75
α1,M = b0 × z3

+ b1 × z2
+ b2 × z + b3

b0 = 0.43, b1 = −2.33, b2 = 3.49, b3 = −1.44

z ≥ 1.75 α1,M = −0.150

φ∗
1,M

z < 0.75 log(φ∗
1,M) = −2.67

0.75 ≤ z < 1.877
log(φ∗

1,M) = c0 × z3
+ c1 × z2

+ c2 × z + c3

c0 = −0.35, c1 = 1.92, c2 = −3.77, c3 = −0.78

z ≥ 1.877
log(φ∗

1,M) = c4 × z + c5

c4 = − = 0.43, c5 = −2.59

α2,M

z < 0.5 α2,M = −1.83

z ≥ 0.5
α2,M = d0 × z + d1

d0 = 1.15, d1 = −2.41

φ∗
2,M

z < 0.5 log(φ∗
2,M) = −4.71

z ≥ 0.5
log(φ∗

2,M) = e0 × z2
+ e1 × z + e2

e0 = −0.59, e1 = 1.93, e2 = −5.52

H160 < 24.5 + z criterion. The H160 limit translates to an ap-
proximate mass limit of log(M/M⊙)> 8.7 + 0.4z. Thus only
objects in the mock catalog with log(M/M⊙) > 8.7 + 0.4z

are paired with the closest match in redshift and stellar mass
among parent catalog galaxies.

For objects with log(M/M⊙) < 8.7 + 0.4z, we produce a
parent catalog of SEDs and associated physical parameters
using BEAGLE. For quiescent galaxies, we do not need to as-
sign nebular H II-region parameters (e.g. ξd, logUS), and we
neglect dust attenuation. We therefore vary only the galaxy
age t, star formation timescale τSFR, and metallicity Z to gen-
erate SEDs for the parent galaxy catalog. Using a delayed
SFH (Section 3.4.1) with log(τSFR)< 1.11× log(t) − 2.02 en-
sures that the specific star formation rate of objects be less
than log(ψS/yr−1) = −10. The parameters t and τSFR are as-
signed to each mock catalog galaxy from uniform distribu-
tions. The parameter t is allowed to vary between 30 Myr
and the age of the Universe at the redshift of the object. We
allow τSFR to vary between 10 Myr and the maximum value
required to produce log(ψS/yr−1)< −10.

Measuring the stellar metallicities of quiescent galaxies
and their evolution is technically challenging, requiring deep
rest-frame optical spectra to measure stellar absorption-line
indices. (JWST will provide new opportunities to probe stel-
lar metallicities of quiescent galaxies at high-redshift). How-
ever, with existing data, most stellar metallicity measure-
ments for quiescent galaxies exist only for high mass field

galaxies (log(M/M⊙) & 9.5) to moderate redshifts (e.g. Gal-
lazzi et al. 2006, z ∼ 0.1 and Gallazzi et al. 2014, z ∼ 0.7)
or cluster galaxies (e.g. Sánchez-Blázquez et al. 2009, Jør-
gensen & Chiboucas 2013). The highest mass galaxies in
our mock have their physical properties assigned from SED
fits to 3D-HST galaxies, and so, with the lack of current
constraints on the stellar metallicities of low-mass and high-
redshift quiescent galaxies, we assign metallicities with a
uniform weight between the limits of our templates (−2.2 <
log(Z/Z⊙)< 0.24).

After each galaxy in the mock catalog is assigned t, τSFR,
and Z values, BEAGLE computes the fraction of mass 1 −

M⋆/Mtot returned by evolved stars to the ISM, and hence the
scaling required to generate an SED with the corresponding
stellar mass assigned to the mock catalog object. BEAGLE

then generates the SEDs in “mock mode” using the assigned
parameters. As with the star-forming catalog, the SEDs as-
signed to each of the quiescent mock catalog galaxies are
used to generate NIRCam filter fluxes.

5. GALAXY MORPHOLOGIES FROM 0.2 ≤ Z ≤ 15

The evolution of galaxy morphologies with cosmic time
represents one of many key insights into the galaxy forma-
tion process that JWST will provide. Perhaps more practi-
cally, galaxy shapes and light distributions affect detectabil-
ity and measurability of other galaxy properties, and fully
understanding these systematics in future JWST data will be
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important for characterizing uncertainties. Anticipated ap-
plications of this mock catalog include JWST NIRCam im-
age and NIRSpec spectroscopic simulations, as well as NIR-
Spec MSA slit assignment. Therefore, we assign simple mor-
phologies to mock galaxies to enable these types of analyses.
All mock galaxies are modeled as simple Sersic profiles (Ser-
sic 1968), and follow the redshift evolution of the relevant
morphological parameters that has been characterized using
deep extragalactic surveys with HST. In the following sec-
tions, we describe our method for producing continuous evo-
lutionary models and realistic distributions for galaxy sizes,
shapes, and light profiles. Below, we describe the procedure
for assigning half-light radii to both star-forming and qui-
escent galaxies at z ≤ 4 where WFC3 has provided accurate
rest-frame optical morphologies, and at z> 4 where HST has
characterized rest-frame UV morphologies, and shapes, light
profiles, and orientations for star-forming galaxies.

5.1. Galaxy Sizes at z< 4

We aim to generate a continuously evolving model in stel-
lar mass, UV luminosity, and redshift, using the observed
size-mass relationships that have been measured for galax-
ies at 0 ≤ z ≤ 4. For this purpose, we use the relationships
measured in van der Wel et al. (2014) for both star-forming
and quiescent galaxies using CANDELS data, and extrapo-
late their behavior down to log(M/M⊙)∼6. These relation-
ships have also been shown to agree with the measured size-
mass relation of local galaxies in SDSS (Shen et al. 2003;
Guo et al. 2009).

van der Wel et al. (2014) parametrize the redshift evolu-
tion of the half-light semi-major radius in kpc, Reff,maj, as a
power-law function of the Hubble parameter at a given red-
shift, H(z), in bins of stellar mass. The parametrization has
the form

Reff,maj(z) = BH

(H(z)
H0

)βH

(23)

where both BH and βH (respectively, the coefficient and
power-law slope of the redshift evolution) vary with stellar
mass. To generate a smoothly evolving model, we generalize
this evolution of Reff,maj(z) between stellar mass bins by fit-
ting both BH and βH as functions of stellar mass, to produce
one smooth function in both redshift and stellar mass.

The behavior of BH and βH with stellar mass differs be-
tween star-forming galaxies and quiescent, and therefore we
model the stellar mass dependence differently between the
two samples. For star-forming galaxies, both BH and βH ap-
pear linear with M⋆ = log(M/M⊙). The best-fitting linear
relationships are

BH(M⋆) = 0.23M⋆ − 1.61

βH(M⋆) = − 0.08M⋆ + 0.25,
(24)

and the shape of the resulting function Reff,maj(z,M⋆) for star-
forming galaxies is shown in the left panel of Figure 15. We
extrapolate the relationship out to z ∼ 4, and assign sizes
to all star-forming galaxies in this redshift range using this
method.

For quiescent galaxies, the behavior of both BH and βH

with stellar mass are not linear. We find that BH (M⋆) is
well described by either a quadratic or exponentially declin-
ing function of mass, however we choose to parametrize BH

using the exponential to avoid the undesirable quadratic fea-
ture that galaxy size increases unphysically to low masses.
We find that βH is well fit by an exponentially increasing
function with decreasing stellar mass; however, increasingly
large values of this power-law exponent at low masses pro-
duce unphysical size evolution at low mass. Therefore, we fix
the value of βH below log(M/M⊙)< 9.75. The relationships
we use for quiescent galaxies are:

BH(M⋆) =3.8e−4e0.71M⋆
− 0.11 (at all masses)

βH(M⋆) =1.38e12e−2.87M⋆
− 1.21 (M⋆ ≥ 9.75)

βH(M⋆) = − 0.19 (M⋆ < 9.75).

(25)

The resulting function Reff,maj(z,M⋆) for quiescent galax-
ies is shown in Figure 15. The significant size evolution
among massive quiescent galaxies (log(M/M⊙)&10) is in
agreement with other studies (e.g. Cassata et al. 2013). The
flattening of the quiescent galaxy size-mass relation evolu-
tion at lower stellar mass is consistent with the expectations
of environmental effects due to satellite quenching (e.g. van
der Wel et al. 2010; Kawinwanichakij et al. 2017) and the
observations that quiescent galaxies in high-density regions
typically have larger sizes (e.g. Cooper et al. 2012; Delaye
et al. 2014).

As we have outlined in Section 4, our model extrapolates
the evolution of the stellar mass function for quiescent galax-
ies at z> 4, and therefore mock catalogs will contain samples
of quiescent galaxies at redshifts beyond where current sur-
veys can identify them or measure their morphologies. Al-
though the expected number of quiescent galaxies at z> 4 in
mock surveys would be small, we estimate that mock cata-
logs of comparable area to one GOODS field (∼150 arcmin2)
will contain quiescent galaxies out to z ∼6. Therefore we
note here that sizes for such objects come from an extrap-
olation of the relationship presented in Equation 25 which
can be calculated for arbitrarily large redshift. We show the
extrapolation out to z ∼ 6 in the right panel of Figure 15.

The data presented in van der Wel et al. (2014) indicate that
the scatter in galaxy sizes within quiescent and star-forming
galaxy samples is approximately uniform in both redshift and
stellar mass. The size distributions within redshift and mass
bins for quiescent galaxies are log-normal with σ = 0.16 dex,
whereas the sizes of star-forming galaxies follow a skewed
distribution better fit by a Gauss-Hermite polynomial ex-
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tions, and star-forming galaxies at z> 6 follow the 5 ≤ z ≤ 6
distributions.

The resulting axis ratio for each mock galaxy is used to
convert the semi-major axis at z ≤ 4 into both semi-minor
axis and circularized half-light radius, and to convert circu-
larized half-light radius into semi-major and minor axes at
z> 4. Position angles for all galaxies are assigned randomly
from a uniform distribution.

6. MOCK GALAXY PROPERTIES

To assess the performance and possible limitations of our
phenomenological model, we compare mock galaxy prop-
erties, distributions, and relations to observations that were
not used to inform our methodology. For this purpose we
use a single realization (i.e. a JAGUAR mock catalog) on
an area of 11× 11 square arcminutes containing both star-
forming and quiescent galaxies with log(M/M⊙) = 6−12 and
at z = 0.2 − 15.10 In the following sections, we compare the
mock galaxies from this realization to the redshift evolution
of observed quantities including galaxy UV luminosity func-
tions, star-formation rate densities and average specific star-
formation rates, the mass–metallicity relation, emission line
diagnostic diagrams, and observed infrared galaxy colors.

6.1. UV Luminosity Function Evolution

We compare the UV luminosity function at z ≤ 4 com-
puted from the mock catalog with measurements from the
literature, as this enables us to test the adopted evolutionary
model of both the star-forming galaxy stellar mass function
(Section 3.1) and the MUV–M⋆ relation (Section 3.2).

To compare with observations of the UV luminosity func-
tion, we use the compilation of literature measurements an-
alyzed in Parsa et al. (2016) from 0.4 < z < 4. Parsa et al.
(2016) provide a compilation of Schechter function parame-
ters with errorbars but do not quantify the covariance(s) be-
tween these parameters, which are known to be strong. Be-
cause of the degeneracies among the parameters, we avoid
comparing directly to individually measured Schechter func-
tions, and rather convert these into step-wise binned luminos-
ity functions with equal magnitudes and bin widths. We then
average the binned luminosity functions to produce a mean
step-wise luminosity function at each redshift. We quantify
the scatter in the literature as the standard deviation of the
galaxy counts in each luminosity bin, divided by the square
root of the number of measured luminosity functions con-
tributing to the average. The binned averages and scatter
from the literature are presented in Table 4.

Figure 17 shows the comparison of the 0.4 < z < 4 mock
galaxy UV luminosity functions (black circles) with the av-

10 Available at http://fenrir.as.arizona.edu/jwstmock/

erage literature measurements (blue squares).11 At z > 1.5,
the mock catalog exhibits excellent agreement with the ob-
servations, while at z < 1.5 the agreement is less robust. We
note, however, that the mock catalog never overpredicts the
measured number density of galaxies by more than ∼ 0.36
dex (at MUV ∼ −19 at 0.6 < z < 1 and 1 < z < 1.5). This
overprediction is likely caused by the poor observational con-
straints on the rest-frame UV emission of galaxies at z< 1.5,
where photometry in the 3D-HST catalog no-longer provides
coverage at 1500Å (rest wavelength). This affects both the
characterization of the MUV–M⋆ relation, which we use to di-
rectly assign MUV values to low-mass mock galaxies at these
redshifts, as well as the MUV values of high-mass galaxies
that are derived directly from fits to the 3D-HST photometry.
The same uncertainties affect the observed UV luminosity
functions compiled from the literature between z ∼ 0, where
GALEX data are available, and z ∼ 1, where HST near-UV
bands probe the rest-frame 1500 Å flux (e.g. Oesch et al.
2010; Windhorst et al. 2011; Teplitz et al. 2013; Rafelski
et al. 2015).

6.2. Star-formation rate density evolution

In Figure 18, we compare the cosmic star-formation rate
density (CSFRD) of mock galaxies with the average CSFRD
evolution presented in Madau & Dickinson (2014, based on
a uniform analysis of luminosity function measurements in
the literature), converted to a Chabrier IMF. To approximate
the same UV luminosity limits imposed by Madau & Dick-
inson (2014), we estimate the limiting MUV corresponding
to 0.03L∗ in each redshift bin. These values are taken di-
rectly from the Schechter UV luminosity function parameter
M∗

UV which is used to estimate the equivalent limit in MUV

from 0 < z < 10. The equivalent of 0.03L∗, as published in
the following studies, corresponds to MUV ∼ −14.5 at 1 < z

(Cucciati et al. 2012); MUV ∼ −15.5 at 1 < z < 2 (Cucciati
et al. 2012); MUV ∼ −16.89 at 1.9 < z < 2.7 (Reddy & Stei-
del 2009); and MUV ∼ −17 at z > 2.7 (Bouwens et al. 2015;
Finkelstein et al. 2015; Bouwens et al. 2016b; Oesch et al.
2017).

To calculate the CSFRD of mock galaxies in each red-
shift bin, we identify all mock galaxies above the limiting
MUV corresponding to 0.03L∗ and take the sum of their star-
formation rates (averaged over the past 100 Myr) per comov-
ing volume. We find that the evolution of the CSFRD es-
timated from the mock catalog qualitatively reproduces the
overall shape of the observed CSFRD; however, at 4< z< 6
mock galaxies show a slight excess with respect to the results
of Madau & Dickinson (2014), who derive their z> 4 points

11 We exclude mock galaxies at z < 0.4, as the volume probed in the
realization is small, and the empirical constraints on MUV–M⋆ and observed
UV luminosity functions are less robust.
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Table 4. Stepwise average binned luminosity functions from the literature in the redshift bins presented in Figure 17

MUV z∼ 0.5 z∼ 0.8 z∼ 1.25 z∼ 1.75 z∼ 2.25 z∼ 2.75 z∼ 3.75

LogΦa LogΦ LogΦ LogΦ LogΦ LogΦ LogΦ

-22.75 -14.59 -12.02 ± 1.34 -10.38 ± 0.88 -9.06 ± 0.21 -6.55 ± 0.70 -6.27 ± 0.30 -6.44 ± 0.17

-22.25 -10.42 -8.96 ± 1.10 -7.91 ± 0.69 -6.92 ± 0.17 -5.34 ± 0.53 -5.15 ± 0.24 -5.16 ± 0.11

-21.75 -7.74 -6.98 ± 0.85 -6.27 ± 0.50 -5.35 ± 0.15 -4.49 ± 0.38 -4.35 ± 0.19 -4.28 ± 0.07

-21.25 -6.02 -5.68 ± 0.62 -5.15 ± 0.34 -4.26 ± 0.15 -3.88 ± 0.27 -3.77 ± 0.17 -3.66 ± 0.05

-20.75 -4.88 -4.78 ± 0.43 -4.37 ± 0.21 -3.54 ± 0.16 -3.43 ± 0.18 -3.33 ± 0.17 -3.23 ± 0.05

-20.25 -4.13 -4.11 ± 0.27 -3.78 ± 0.11 -3.07 ± 0.17 -3.08 ± 0.12 -3.01 ± 0.17 -2.92 ± 0.05

-19.75 -3.61 -3.58 ± 0.16 -3.34 ± 0.04 -2.76 ± 0.17 -2.8 ± 0.09 -2.76 ± 0.17 -2.69 ± 0.05

-19.25 -3.25 -3.17 ± 0.08 -3.0 ± 0.03 -2.54 ± 0.16 -2.59 ± 0.10 -2.56 ± 0.17 -2.51 ± 0.06

-18.75 -2.98 -2.86 ± 0.03 -2.75 ± 0.05 -2.39 ± 0.14 -2.41 ± 0.12 -2.39 ± 0.17 -2.36 ± 0.07

-18.25 -2.76 -2.63 ± 0.01 -2.54 ± 0.06 -2.27 ± 0.12 -2.27 ± 0.15 -2.23 ± 0.17 -2.22 ± 0.08

-17.75 -2.59 -2.45 ± 0.01 -2.37 ± 0.07 -2.16 ± 0.10 -2.14 ± 0.17 -2.09 ± 0.18 -2.10 ± 0.10

-17.25 -2.44 -2.3 ± 0.00 -2.23 ± 0.09 -2.06 ± 0.08 -2.03 ± 0.21 -1.95 ± 0.20 -1.99 ± 0.12

a The z ∼ 0.5 binned luminosity function only includes one measurement from the literature, therefore the observed scatter in that bin is zero.
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find that this survey will detect 1000s of galaxies at z> 6 and
10s of galaxies at z> 10, and will put firm constraints on the
evolution of galaxy counts at z > 8, resolving uncertainties
on the rate of evolution that is currently debated in the lit-
erature. Additionally, we demonstrate how NIRCam colors
can be used to select for high-equivalent width line emitters
at high-redshift using the emission line information that is
provided for the mock galaxies. We make JAGUAR avail-
able for use, including both ready to use mock catalogs, and
software to produce additional mock catalogs12.

Acknowledgments. We gratefully thank Darren Croton
for thoughtful and constructive comments. Authors ac-
knowledge helpful discussions with George Rieke, Michaela
Hirschmann, and Jacob Magnusson, and gratefully thank
Karl Misselt for computing and website assistance, and
Pascal Oesch for providing his z ∼ 10 luminosity function
measurements. CCW acknowledges enlightening conver-
sations with Ivo Labbé. ECL, JC and SCh acknowledge

support from the European Research Council (ERC) via
an Advanced Grant under grant agreement no. 321323-
NEOGAL. CCW acknowledges support from the National
Science Foundation Astronomy and Astrophysics Fellow-
ship grant AST-1701546. SCh acknowledges financial sup-
port from the Science and Technology Facilities Council
(STFC). All members of NIRCam (CCW, KNH, BER, RE,
DPS, CNAW, SAl, SB, SCr, EE, DJE, MR) acknowledge
funding from JWST/NIRCam contract to the University of
Arizona, NAS5-02015. BER acknowledges partial support
through NASA contract NNG16PJ25C, grants 17-ATP17-
0034 and HST-GO-14747. SAr is funded by MINECO under
grant ESP2015-68964-P. RM and RA acknowledge ERC
Advanced Grant 695671 "QUENCH” and support by the
Science and Technology Facilities Council (STFC). RS ac-
knowledges a NWO Rubicon grant, project number 680-50-
1518. This work is based on observations taken by the CAN-
DELS Multi-cycle Treasury Program with the NASA/ESA
HST. This research made use of Astropy, a community-
developed core Python package for Astronomy (Astropy
Collaboration et al. 2013).

APPENDIX

A. RE-FITTING OBSERVED UV-LUMINOSITY AND MASS FUNCTIONS

A.1. Fitting mass function parameters to z & 4 observed luminosity functions

As described in Section 3.1, we re-fit the individual Bouwens et al. (2015) UV-luminosity functions with mass function
Schechter parameters. To do this we convolve a given mass function with our model of the evolving MUV–M⋆ relation (de-
scribed in Section 3.2) to produce the corresponding UV luminosity function (general procedure described in Section 2.1). We
then use Markov-Chain Monte-Carlo (MCMC) sampling, employing the adaptive metropolis algorithm of Haario et al. (2001),
to sample from the posterior probability distributions of the Schechter function parameters. At each iteration, Schechter function
parameters are proposed and corresponding CDF function generated. The CDF function is used to randomly assign masses to a
large population of objects, which can then be used to assign each object an MUV value following our adopted redshift-evolving
MUV–M⋆ model. The resulting UV luminosity function is measured within the MUV bins of the published measurements. The
likelihood of those given Schechter function parameters is evaluated using the published Φ(MUV,z) values and associated errors
given in Bouwens et al. (2015), Table 5, and the modeled luminosity function values evaluated in the same MUV bins.

The z& 4 luminosity functions are well-described by a single Schechter function; thus fitting these data with a double Schechter
function renders the parameters of Φ1(M⋆) unconstrained at z & 4. We therefore constrain the values of each Φ1(M⋆) parameter
while performing the luminosity function fits. The values of α1,M and φ∗1,M are fixed in each redshift bin using the extrapolated
best-fit linear and quadratic relations to the published T14 maximum likelihood measurements, and we also tie the value of M∗

1,M

to that of M∗
2,Mwith M∗

1,M = M∗
2,M = M∗

M. The exact form of the redshift evolution of the parameters of Φ1(M⋆) do not affect the
results of the luminosity function fits as long as the number density has fallen significantly by z ∼ 4.

The measurements are displayed in Figure 3.

A.2. Multi-level modeling to fit to Tomczak et al. (2014) star-forming galaxy stellar mass functions

To constrain the parameters a1, b1, b2, b3, c1, c2, e1 and f1 of our model of the redshift evolution of the mass function
(equations 5 - 10), we fit to the T14 star-forming mass functions using a Bayesian multi-level modeling approach. Whereas the
Bayesian fitting to each individual luminosity function entails sampling from the posterior distribution of each Schechter function
parameter, the multi-level modeling involves sampling over the posterior distribution of the hyper-parameters (as we shall now
refer to the parameters a1, b1, b2, b3, c1, c2, e1 and f1) and the conditional probability distributions for each Schechter function

12 available for download at http://fenrir.as.arizona.edu/jaguar/



JWST MOCK GALAXY CATALOG 39

parameter in each redshift bin. The posterior distribution of the model free parameters can be expressed as:

P(A,Φ | X) ∝
8
∏

i=1

P(Ai)
8
∏

z=1

P(xz | φz)
8
∏

z=1

P(φz | A) , (A1)

where A = [a1,b1,b2,b3,c1,c2,e1, f1] represents the free parameters describing the redshift evolution of the individual Schechter
function parameters, P(Ai) is the prior on the ith free parameter, Φ = [φ1,φ2, ...,φn] the set of n mass function parameters,
X = [x0,x1, ...,x8] the measurements of the mass function in each redshift bin, and φz = [M∗

1,M,z,φ
∗
1,M,z,α1,M,z,M∗

2,M,z,φ
∗
2,M,z,α2,M,z]

the Schechter function parameters in each redshift bin. We fit with weakly informative priors (broad Gaussian distributions)
on each hyper-parameter, with the added constraint that b3 be negative to ensure that the normalization of Φ1(M) decreases
with redshift, and e1 and f1 be positive. All priors are reported in Table 4. We assume that the measurements represent true
measurements of the mass function at the mid-point of each redshift bin (z = [0.35,0.625,0.875,1.125,1.375,1.75, 2.25,2.75]),
and so do not include any modeling of the redshift distribution of the underlying sources that make up the mass bin volume
density measurements.

The mass function estimates reported in T14 are supplied as log[Φ(M⋆)] (see their Table 1), with no information of the number
of galaxies entering each bin. In fact, the associated errors adopted from T14 account for Poisson noise, cosmic variance, the
uncertainties arising from classifying galaxies as star-forming or quiescent and from the determination of stellar masses, and so
are not simply Poissonian errors. Thus, in the absence of the information required to construct the correct function for our count
distribution, we resort to a Gaussian assumption, giving:

P(xz | φz) =
∏

i

1√
2πσi

exp
(

−

(xi − x̂i (φz))2

2σ2
i

)

(A2)

where xi and σi are the estimate and error of the mass function in bin i respectively and x̂i (φz) is the model prediction.
We sample the posterior distribution of model parameters with a Metropolis-within-Gibbs sampler (see, e.g., Sharma 2017).

Gibbs sampling involves drawing directly from the conditional distribution for each parameter in turn. However, when the
conditional probability is tricky to derive, it is possible to use the Metropolis update step, where the next step in the chain is
sampled from a proposal distribution, often a Gaussian, and accepted or rejected based on comparison of the posterior probability
between the current and last steps of the chain. The advantage of using a Gibbs sampler for this problem is that the conditional
distribution of the model parameters in each redshift bin are independent of each other, meaning that P(φi | ...φi−1,φi+1, ...,A,X) =
P(xi | φi)P(φi | A) and so the mass function parameters for each redshift bin can be sampled in turn, before updating the values
of the hyper-parameters.

During each iteration of the chain our multi-level modeling algorithm performs the following steps:

1. Values for the double Schechter function parameters are proposed for each individual redshift bin in turn, sampling from
P(φi | ...φi−1,φi+1, ...,A,X), using a Metropolis update step.

2. Once the mass function parameters of each redshift bin has been updated, new values for the hyper parameters are proposed.
They are updated simultaneously, sampling from P(A | Φ,X), again using a Metropolis update step.

After an initial burn-in stage of 10000 iterations, the width of the Gaussian proposal distribution is set using the covariance matrix
of the past history of the chains, following the adaptive Metropolis algorithm of Haario et al. (2001). We run two different chains
with independent starting points for 40000 iterations each, after which we test for convergence using the scale reduction factor,
R̂, which compares the within-chain and between-chain variance. We require R̂< 1.05 in each free parameter.

After rejecting the initial 10000 iterations, we estimate each parameter value as the median of the values in the chain and
uncertainties as their standard deviation.

B. UNCERTAINTIES IN STAR-FORMING/QUIESCENT SELECTION CRITERIA AND IMPACT ON CREATING
PARENT CATALOG FOR HIGH-MASS QUIESCENT GALAXIES FROM 3D-HST DATA

When drawing multiple realizations from SED fits to individual quiescent galaxies we often find that the uncertainties on
the U , V and J-band absolute magnitudes allow for solutions that would place the object in the star-forming region of the
UV J color space. This is because galaxies are selected from a combined J125, J140 and H160 band image in the 3D-HST catalog
(Section 3.4.1). Since quiescent galaxies have red SEDs, their fainter fluxes at shorter wavelengths can therefore suffer from large
observational uncertainties. Although the uncertainties on the star-forming and quiescent galaxy classifications are included in
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