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1.Introduction

Thesynthesisofmetalcomplexesofredox-activeandnon-innocentligandsisaresearcharea

thathasbeenexpandinginrecentyearsandhasresultedinnewclassesofcomplexesformetals

fromthroughouttheperiodictable[1–4]. Ofspecificinteresttousistheabilitytomodulatethe

reactivityofredox-activeligandsthroughcoordinationofLewisacids. Wearespecificallyinterestedin

howcoordinationofLewisacidswithdifferentstabilizingeffectschangetheelectronicstructureofa

commonredox-activeligand.Inthisvein,wehavebeeninterestedinthedevelopmentofaluminum

complexesofredoxactive-ligands[5–9]andhaverecentlyreportedthesynthesisandcharacterization

ofaseriesofAl-nitroxidecomplexes[7,8].Thenitroxidefunctionalgroupiswellknowntoexistover

threeoxidationstates:thereducedaminoxylanion(R2N–O
−),theneutralradical(R2N–O

•),andthe

oxidizedoxoammoniumcation(R2N=O
+)(Figure1
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1. Introduction 

The synthesis of metal complexes of redox-active and non-innocent ligands is a research area 

that has been expanding in recent years and has resulted in new classes of complexes for metals from 

throughout the periodic table [1–4]. Of specific interest to us is the ability to modulate the reactivity 

of redox-active ligands through coordination of Lewis acids. We are specifically interested in how 

coordination of Lewis acids with different stabilizing effects change the electronic structure of a 

common redox-active ligand. In this vein, we have been interested in the development of aluminum 

complexes of redox active-ligands [5–9] and have recently reported the synthesis and characterization 

of a series of Al-nitroxide complexes [7,8]. The nitroxide functional group is well known to exist over 

three oxidation states: the reduced aminoxyl anion (R2N–O−), the neutral radical (R2N–O•), and the 

oxidized oxoammonium cation (R2N=O+) (Figure 1). 
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The Schelter group has reported the synthetic chemistry for a series of pyridyl-hydroxylamines
(RpyNOH) and demonstrated their redox activities [10]. Metal complexes of these ligands have been
prepared for several f-block [11–15] and transition [16–18] metals. Inspired by these compounds
we prepared and fully characterized aluminum complexes of the type (RpyNO−)2AlCl (RpyNO− =
N-tert-butyl-N-(2-(5-R-pyridyl))nitroxyl, R = H, CH3, CF3) [7] and {(µ-RpyNO−)Al(CH3)2}2 (R = H,
CH3) [8] and explored their electrochemical behavior. The results of this study suggested that
coordination to the Lewis-acidic aluminum ion affected the redox energetics of the ligand to stabilize
the reduced pyNO− form. In their work with iminopyridine ligands, the Berben group demonstrated
key differences in the electrochemical behavior of the aluminum versus gallium [(IP2−)2M]− anion
(M = Al or Ga) which translated to different reaction profiles for the two complexes [19–21]. In light
of these results, we have become interested in the preparation of redox-active ligand complexes
of other group 13 metals, namely gallium and indium, to access how the identity of the metal
translates to differences in the physical properties of the complexes. In this current contribution,
we report the synthesis of the pyridyl-nitroxide gallium complex (pyNO−)2GaCl and present its
characterization by various physical methods. We then discuss the results in the context of the
corresponding aluminum complex.

2. Results

2.1. Synthesis and Spectroscopic Characterization

Our synthetic strategy is outlined in Scheme 1: Reaction of N-tert-butyl-N-(2-pyridyl)
hydroxylamine (pyNOH) with an equimolar amount of NaN(SiMe3)2 in tetrahydrofuran (THF)
followed by addition of 0.5 equiv of GaCl3 gave the (pyNO−)2GaCl (1) complex in 85% yield. The
compound was isolated as a yellow solid that is indefinitely stable in the solid state when stored in
the freezer (−25 ◦C) under an N2 environment. We also attempted the synthesis of the corresponding
indium complex under identical reaction conditions. However, unlike the aluminum and gallium
systems which cleanly provide monometallic complexes, there is a ligand redistribution in the indium
compound and after crystallization the zwitterionic [(pyNO−)2In][(pyNO−)2InCl2] (2) complex is
isolated. Compound 2 was crystalized from slow diffusion of pentane into a concentrated THF solution
at −25 ◦C, and it is not clear if the crystal sample obtained is representative of the bulk sample. In this
work, we are primarily interested in comparing the analogous (pyNO−)2MCl complexes, and further
characterization of complex 2 beyond X-ray was not carried out. A representation of the solid-state
structure of 2 along with selected bonding metrics is provided in the Supplementary Materials.

The (pyNO−)2GaCl complex was readily characterized by 1H and 13C NMR spectroscopies, which
support assignment of the structure as diamagnetic with a Ga3+ cation coordinated by fully reduced
nitroxide ligands. As expected, the 1H NMR spectrum of the complex lacks the O–H signal of the
ligand precursor but has all of the remaining ligand signatures that are readily assignable and in the
expected chemical ranges. There is single resonance attributable to the t-Bu protons, which appears as
a singlet which integrates to 18H, along with four unique aromatic resonances each of which integrates
to 2H. All four of the aromatic signals exhibits a doublet-of-doublet-of-doublet coupling pattern
indicative of coupling between all four of the protons within the aromatic ring. Site assignments
for the pyridyl hydrogens are given in the Supporting Information. The 13C NMR spectra of 1 has
characteristic signals for the t-Bu groups (resonances at 28.3 ppm (C(CH3)3) and 61.7 ppm (C(CH3)3)
along with five aromatic signals. The single set of ligand-based resonances in both the 1H and 13C
NMR spectra indicate symmetry equivalent pyNO− ligands in the complex.
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Scheme 1. Synthesis of the gallium pyridyl nitroxide complex (pyNO−)2GaCl (1) and the indium dimer 

[(pyNO−)2In][(pyNO−)2InCl2] (2). 

2.2. Structural Characterization 

Single crystals of the (pyNO−)2GaCl complex were grown from a concentrated solution of diethyl 

ether at −25 °C. The molecule crystallizes in the orthorhombic space group Pna21 and collected data 

refined to a final R1 value of 0.0226. A representation of the molecule is shown in Figure 2 and selected 

bonding metrics are provided in Table 1. 

 

Figure 2. Solid state structure of (pyNO−)2GaCl (1). Ellipsoids are projected at 30% probability and H 

atoms are omitted for clarity. 
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Scheme 1. Synthesis of the gallium pyridyl nitroxide complex (pyNO−)2GaCl (1) and the indium
dimer [(pyNO−)2In][(pyNO−)2InCl2] (2).

2.2. Structural Characterization

Single crystals of the (pyNO−)2GaCl complex were grown from a concentrated solution of diethyl
ether at −25 ◦C. The molecule crystallizes in the orthorhombic space group Pna21 and collected data
refined to a final R1 value of 0.0226. A representation of the molecule is shown in Figure 2 and selected
bonding metrics are provided in Table 1.
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Figure 2. Solid state structure of (pyNO−)2GaCl (1). Ellipsoids are projected at 30% probability and H
atoms are omitted for clarity.
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Table 1. Selected bond distances (Å) and angles (◦) the (pyNO−)2GaCl complex obtained from the
solid-state structure and theoretical analysis.

Solid-State Theoretical

Ga(1)–Cl(1) 2.2215(7) 2.2918

Ga(1)–O(1)
Ga(1)–O(2)

1.8890(18)
1.9011(18) 1.8936

Ga(1)–N(1)
Ga(1)–N(3)

1.991(2)
2.006(2) 2.0028

N(2)–O(1)
N(4)–O(2)

1.397(3)
1.397(3) 1.4265

O(1)–Ga(1)–N(1)
O(1)–Ga(1)–N(3)
O(2)–Ga(1)–N(1)
O(2)–Ga(1)–N(3)

81.00(8)
91.61(8)
88.87(8)
80.28(8)

81.22
90.12

O(1)–Ga(1)–O(2) 145.14(8) 138.53

N(1)–Ga(1)–N(3) 149.25(9) 155.45

O(1)–Ga(1)–Cl(1)
O(2)–Ga(1)–Cl(1)

108.00(6)
106.86(6) 110.74

N(1)–Ga(1)–Cl(1)
N(3)–Ga(1)–Cl(1)

106.23(6)
104.44(6) 102.28

Complex 1 is five-coordinate at the gallium cation with a τ5 value [22] of 0.07 and is best described
as slightly distorted square pyramidal. The two pyridyl nitroxide ligands are Npy,O-bound in a
bidentate fashion and are arranged in the basal plane. The arrangement of the ligands results in the
O–Al–O and N–Al–N atoms being in mutually trans arrangements, giving the complexes near C2
symmetry and supporting the equivalent ligands observed in the 1H and 13C NMR spectra. A chloride
ligand completes the coordination sphere. The Ga–Cl bond is in the range of other non-bridging Ga–Cl
bonds reported for structurally characterized five-coordinate gallium(III) complexes. For example, the
bis(o-iminosemiquinonate) gallium(III) chloride complex reported by Piskunov et al. has a Ga–Cl of
2.1875(5) Å [23] and the gallium salen complex reported by the Dagorne group has a Ga–Cl distance of
2.2255(6) Å [24] The bis(β-ketoiminate) gallium(III) chloride complex prepared by the Carmalt group
has a Ga–Cl bond length of distance 2.231(7) Å [25]. The Ga–Npy bond distances are also similar
to other Ga–N distances reported for gallium complexes supporting pyridine ligands: The pyGaX3

(X = Cl and Br) complexes have an average Ga–N distance of 1.98 Å [26] while the {pyGaCl2H}2

dimer has Ga–N distances of 2.000(2) and 1.998(2) Å [27]. Several gallium complexes incorporating
hydroxyl amine ligands have been structurally characterized, and the Ga–O and N–O distances
observed for 1 compare well to their metrics. As representative examples, the Ga–O bond length
in the (Me2GaONMe2)2 complex is 1.886(2) Å and the N–O distance was 1.435(3) Å [28] while the
analogous distances in the GaH2(quinuclidine)(TEMPO) (TEMPO = tetramethylpiperidinyloxide)
complex are 1.850(5) and 1.447(8) Å, respectively [29]. Finally, the series of bis(hydroxylamine) gallium
complexes prepared by the Mitzel group have an average Ga–O distance of 1.91 Å and average N–O
distance of 1.44 Å [30,31]. In all cases, the N–O bond distance in these complexes are longer than
that observed for 1 (1.397(3) Å). However, the N–O bond distance in 1 does fit in the range of similar
bonding parameters reported for metal complexes coordinated by the aminoxyl anion form of the
pyridyl nitroxide ligand. For example, the cerium complexes {CeIII(µ-RpyNO−)(RpyNO−)2}2 and
CeIV(RpyNO−)4 reported by the Schelter group have average N–O distances of 1.37 and 1.38 Å),
respectively [12,13]. The [Cu2+(pyNO−)(pyNO•)]+ cation reported by the Ishida group has an N–O
distance for the pyNO− ligand in the range of 1.4092(8)–1.423(2) Å [18]. This complex also has neutral,
radical pyNO• ligands which have N–O distances in the range of 1.298(3)–1.303(2) Å. Similarly, the
terbium complex (hfac)3Tb(pyNO•) (Hhfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione) has a N–O
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distance of 1.279(9) Å [11] which is significantly shorter than the analogous distance observed for 1.
This supports the assignment of fully reduced pyNO− ligands in the gallium complex.

2.3. Electronic Strucutre of the (pyNO−)2GaCl Complex

2.3.1. Density Functional Theory (DFT) Studies

The full geometry of the (pyNO−)2GaCl complex was optimized using density functional theory
with the molecule being constrained to C2 symmetry. A representation of the optimized structure and
a table of xyz coordinates are provided in the Supporting Information. Overall, the computed bond
distances were found to be in good agreement with those obtained in the X-ray data (Table 1). With the
exception of the Ga–Cl distance, all of the computed bond distances centered around the gallium ion
are within 0.05 Å. The Ga–Cl in the computed structure is slightly longer by ~0.07 Å. Similarly, all of
the bond angles are also in good agreement, with the largest deviation being ~6◦ for the O–Ga–O and
N–Ga–N angles. The charge distribution of the (pyNO−)2GaCl complex was studied by the natural
bonding orbital (NBO) method, with selected data given in Table 2. The gallium cation has a positive
charge while the bonding heteroatoms and chloride have negative charges.

Table 2. Charge Distribution of the (pyNO−)2GaCl Complex.

Ga(1) 1.124 Cl(1) −0.418
N(1)/N(3) −0.470 N(2)/N(4) −0.076
O(1)/O(2) −0.565 - -

We also examined the molecular orbitals of the (pyNO−)2GaCl complex. All of the frontier orbitals
(Figure 3) are primarily localized on the pyNO− ligands. The HOMO and HOMO–1 are similar in
structure and energy (energy difference of 0.163 eV) and have electron density delocalized across the
N–O and pyridine groups of both pyNO− ligands, as well as some contribution from the chloride. The
HOMO is antisymmetric with respect to C2 rotation about the Ga–Cl bond while the HOMO−1 is
symmetric about the same rotation. The LUMO and LUMO+1 are also similar in structure and also
have a relationship relative to C2 rotation about the Ga–Cl bond (the LUMO is symmetric to rotation
and the LUMO + 1 is antisymmetric to rotation). The two virtual orbitals are degenerate (energy
difference of 0.005 eV) and are localized primarily on the pyridine rings of the two pyNO− ligands
with very little density on the N–O fragment and none on the chloride ligand.
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2.3.2. Absorption Spectra

The absorption spectra of the (pyNO−)2GaCl complex was collected in methylene chloride
(Figure 4). The spectrum has a dominant feature at 281 nm (ε ~2300 M−1·cm−1) and a smaller feature
at 357 nm (ε ~550 M−1·cm−1). We propose that both features result from primarily ligand based π-to-π*
transitions, as was determined for the corresponding aluminum complex.
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2.3.3. Electrochemistry

The cyclic voltammogram of (pyNO−)2GaCl was collected in CH2Cl2 and exhibits two
features which we attribute to two sequential one-electron oxidation processes corresponding to
the N–O−/N–O• couples of each pyNO− ligand (Figure 5). We do not observe the other two oxidation
processes corresponding to the N–O•/N=O+ couples in the electrochemical window. Coordination to
the Ga3+ cation shifts the redox events to more positive potential relative to pyNOH [10], indicating
that the Lewis acidic metal stabilizes the reduced aminoxyl anion pyNO−. For example, the first
oxidation in 1 occurs at 0.24 V while the pyNOH/pyNO0 couple for free ligand comes at E 1

2
= −0.39 V,

for a shift in potential of 0.63 V. All values are referenced to the ferrocene/ferrocenium couple. This
is in line with chemistry reported by the Hayton group, who demonstrated that coordination of the
TEMPO radical (TEMPO = 2,2,6,6-tetramethylpiperidine-N-oxyl) to a Lewis acid significantly changes
the reactivity of the molecule in the oxidation of various organic molecules.
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3. Discussion

The (pyNO−)2GaCl complex presented herein was prepared using a salt metathesis route
analogous to that employed for the synthesis of our previously reported (pyNO−)2AlCl complex.
In both cases, complexes were isolated in high purity and yield. The gallium complex is significantly
more soluble in hydrocarbon solvent relative to the aluminum complex, which reduced the
recoverability of the former during recrystallization from hexane or pentane. The two complexes are
isostructural, crystalizing as five-coordinate M3+ ions in distorted square pyramidal geometries. The
gallium complex is closer to the idealized geometry as gauged by the τ5 geometry indices. Complex
1 has a τ5 value of 0.07 while the (pyNO−)2AlCl complex has a τ5 value of 0.30. The τ5 value for a
square pyramid is 0 while that for a trigonal bipyramid is 1 [22]. Arrangement of the pyNO− ligands
is also identical in the two complexes, with both ligands coordinating in the basal plane and with
trans O–Al–O and N–Al–N geometries. The Ga–Cl, Ga–O, and Ga–N distances in 1 are all slightly
longer than the corresponding distance in the aluminum complex, as is expected given the larger ionic
radius [32] and relative decrease in Lewis acidity [33] of the Ga3+ ion relative to the Al3+ ion.

The electronic structure of the (pyNO−)2MCl complexes are also similar, with small differences
being noted relative to the identity of the metal ion. The frontier molecular orbitals for the two
complexes are essentially identical, although the HOMO–LUMO gap (∆E = 3.926 eV) is slightly smaller
for 1 relative to that for the aluminum complex (∆E = 4.122 eV). The electronic transitions observed
in the absorption spectra of the complexes are similar in shape, although there is a small red-shift
(281 nm and 357 nm for 1 compared to 276 nm and 345 nm for (pyNO−)2AlCl) for both of the features
in 1 relative to those of the aluminum complex. In both cases the transitions are primarily ligand
based π-to-π*, and it follows that the smaller HOMO–LUMO gap for 1 would result in lower energy
transitions. The redox process observed for the gallium complex are much more reversible than they
were for the aluminum complex. Additionally, the processes are shifted to more negative potentials
relative to those observed for the aluminum by ~0.1 V. We propose this shift is due to the decreased
Lewis acidity of Ga3+ relative to Al3+.

In this work, we have demonstrated that pyridyl nitroxide ligands can be coordinated to gallium
to provide a new class of redox-active gallium complexes. Characterization of the complex shows
similar physical and electronic structure to the aluminum analog, although there are systematic
differences commensurate with the difference in Lewis acidity of the two metal ions. Although subtle,
these results demonstrate the ability to tune the electronic nature of the redox-active ligand through
judicial choice of Lewis-acid. Our future work will involve investigating the reaction chemistry of the
(pyNO−)2GaCl complex as well as the preparation of other gallium complexes supporting different
classes of redox-active ligands.

4. Materials and Methods

4.1. Physical Measurements

The 1H and 13C NMR spectra were recorded at ambient temperature in C6D6 using a Bruker
400 MHz spectrometer (399.78 MHz for 1H, 100.52 MHz for 13C) (Bruker Corporation, Billerica,
MA, USA). Chemical shifts were referenced to residual solvent. s = singlet, ad = apparent doublet,
ddd = doublet of doublet of doublets. CHN analysis was performed on a crystalized sample of
1 at Midwest Microlab (Indianapolis, IN, USA). Electrochemical measurements were done in a
glovebox under a dinitrogen environment using a CHI Potentiostat/Galvanostat (CH Instruments,
Austin, TX, USA). A glassy carbon working electrode, a platinum wire auxiliary electrode, and
a silver wire plated with AgCl as a quasi-reference electrode were utilized. Potentials were
reported versus ferrocene, which was added as an internal standard for calibration at the end
of each run. Solutions employed during these studies were ~3 mM in analyte and 100 mM in
[n-Pr4N][BArF] (BArF

− = B(3,5-CF3)2-C6H3)4
−) in ~5 mL of CH2Cl2. All data were collected in a

positive-feedback IR compensation mode at 500 mV/s. The absorbance spectrum was collected using
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an Agilent Cary Series UV–Vis spectrophotometer (Agilent, Santa Clara, CA, USA) in anhydrous
methylene chloride at ambient temperature and pressure.

4.2. Preparation of Compounds

All reactions and manipulations were performed under an inert atmosphere (N2) using standard
Schlenk techniques or in a Vacuum Atmospheres, Inc. NextGen drybox (Hawthorne, CA, USA)
equipped with both oxygen and moisture purifier systems. Glassware was dried overnight at 150 ◦C
before use. C6D6 was degassed and stored over 4 Å molecular sieves prior to use. All solvents
were sparged for 20 min with dry argon and dried using a commercial two-column solvent
purification system comprising two columns packed with neutral alumina (for tetrahydrofuran,
diethyl ether, acetonitrile, and dichloromethane) or Q5 reactant then neutral alumina (for hexanes).
The ligand precursor N-tert-butyl-N-(2-pyridyl)hydroxylamine was prepared as reported by the
Schelter group [10]. [n-Pr4N][BArF] was prepared according to literature procedure [34]. All other
reagents were purchased from commercial sources and used as received.

Synthesis of (pyNO−)2GaCl: N-tert-Butyl-N-(2-pyridyl)hydroxylamine (0.50 g, 3.0 mmol) was
added to a flask equipped with a magnetic stirbar and was dissolved in THF (~25 mL). NaN(SiMe3)2

(0.62 g, 3.3 mmol) was added to the stirring solution in small portions over 0.5 h. The resulting reaction
mixture was stirred at room temperature for 4 h after which gallium trichloride (0.26 g, 1.5 mmol) was
added. The solution was stirred for 12 h at room temperature after which the reaction products were
filtered over a Celite-padded frit and volatiles were removed from the filtrate. Crude product was
dissolved in boiling hexanes (~25 mL) and filtered over a celite-padded frit. Solvents were removed
from the filtrate to give (pyNO−)2GaCl as a yellow solid. Yield: 0.55 g, 1.3 mmol (85%). 1H NMR
(C6D6): δ 8.19 (ddd, J = 5.8 Hz, J = 1.6 Hz, J = 0.9 Hz, 2H), 6.68 (ddd, J = 9.2 Hz, J = 6.8 Hz, J = 1.8 Hz,
2H), 6.46 (ad, J = 9.2 Hz, 2H), 5.98 (ddd, J = 6.8 Hz, J = 5.9 Hz, J = 0.7 Hz, 2H), 1.39 (s, 18H). 13C{1H}
NMR (C6D6): δ 153.9, 142.8, 136.6, 110.0, 109.0, 61.7 (C(CH3)3), 28.3 (C(CH3)3. Anal. Calcd. for
C18H26ClGaN4O2: C, 49.63; H, 6.02; N, 12.86. Found: C, 49.78; H, 5.77; N, 12.58.

4.3. X-ray Structure Determination

X-ray diffraction data were collected either on a Bruker APEXII [35] CCD area detector (for 2)
or a Bruker APEXIII [36] D8QUEST CMOS area detector (for 1) (Bruker Corporation, Billerica, MA,
USA), both employing graphite-monochromated Mo-Kα radiation (λ = 0.71073Å) at a temperature of
100 K. Rotation frames were integrated using SAINT [37], producing a listing of unaveraged F2 and
σ(F2) values. The intensity data were corrected for Lorentz and polarization effects and for absorption
using SADABS [38]. The structures were solved by direct methods (SHELXT [39]) and refined by
full-matrix least squares based on F2 using SHELXL-2014 [40]. All non-hydrogen atoms were refined
anisotropically and hydrogen atoms were refined using a riding model. CCDC 1833920-1833921
contain the supplementary crystallographic data for this paper. These data can be obtained free of
charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by
contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK;
fax: +44-1223-336033.

(pyNO−)2GaCl: Refinement converged to R1 = 0.0226 and wR2 = 0.0481 for 4230 observed
reflections for which F > 4σ(F) and R1 = 0.0260 and wR2 = 0.0491 and GOF = 1.091 for all 4528 unique,
non-zero reflections and 241 variables.

(pyNO−)2In(pyNO−)2InCl2: Refinement converged to R1 = 0.0253 and wR2 = 0.0574 for 9724
observed reflections for which F > 4σ(F) and R1 = 0.0290 and wR2 = 0.0600 and GOF = 1.094 for all
10,557 unique, non-zero reflections and 576 variables.

4.4. Computational Details

The structure optimization of (pyNO−)2GaCl was performed with the Gaussian ’09, Revision D.01
program using the B3LYP hybrid DFT method [41] and the LanL2DZ basis set [42–44]. Geometry

www.ccdc.cam.ac.uk/data_request/cif
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optimization was performed using the crystal structure geometry as the initial starting point. Molecular
orbitals are rendered at an isovalue of ±0.03 a.u. NBO analyses were performed using the NBO6
package [45].

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/6/2/50/s1.
Figures S1 and S2: 1H NMR and 13C NMR spectrum of (pyNO−)2GaCl (1), Figure S3: Solid state structure of
{(pyNO−)2In}{(pyNO−)2InCl2} (2), Tables S1 and S2: Summary of Structure Determination of (pyNO−)2GaCl (1)
and {(pyNO−)2In}{(pyNO−)2InCl2} (2), Table S3: Optimized coordinates of (pyNO−)2GaCl (1); Full Gaussian
’09 Reference.
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