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1 Introduction

Exact non-perturbative results for SUSY QCD in 4D have played an important role in our

understanding of the dynamics of strongly interacting gauge theories. One of the most

famous examples of such dynamical effects is the non-perturbative Affleck-Dine-Seiberg

(ADS) superpotential [1] when the number of flavors, F', is less than the number of colors

N. Surprisingly the exact dynamical origin of this term is still somewhat mysterious.

For F = N — 1 there is a reliable instanton calculation, however for fewer flavors the

instanton generated correlation functions involve more than two fermions and thus can

not be interpreted as a contribution to the superpotential. One can nevertheless deduce

the presence of the ADS superpotential term via integrating out flavors, and attribute its



dynamical origin to gaugino condensation in the unbroken SU(F — N) subgroup. However
no reliable direct calculation of this superpotential term currently exists.

One promising approach [2-10] for shedding light on some of these dynamical effects is
to compactify the 4D theory on a circle. Compactifying the theory significantly changes the
structure both of the moduli space as well as the spectrum of non-perturbative objects in the
theory. Due to the possible VEV of the component of the gauge field along the compact
direction, the moduli space develops a Coulomb branch where the theory is generically
described by a U(1)" gauge theory, where r is the rank of the gauge group. Furthermore, out
on the Coulomb branch there will be monopole-instantons present. These are the classical
't Hooft-Polyakov solutions which in 4D are interpreted as static monopoles, however when
wrapped around the compactified direction they play the role of 3D instantons. They are
more elementary objects than the 4D instanton, in fact the 4D instanton can be thought
of as a multi-monopole containing one of each type of fundamental monopole [5, 6]. It
is believed that they can possibly contribute to more varied physical quantities than 4D
instantons. For instance, it has been noticed in [4] that gaugino condensation in a pure
SU(N) SYM theory arises due the dynamics of N individual monopoles of a theory on
R?xS!. Khoze et al. [11, 12] explicitly calculated the resulting superpotential by combining
the effects of N single monopole contributions and taking the large radius limit. They also
argued that in theories with 0 < F' < N — 1 the superpotential can be obtained by going
on a Higgs branch so that low energy physics is a pure SYM with SU(N — F') gauge group
and then performing a single monopole calculation in the low energy effective theory [13].
Our results will clarify this statement and confirm it in a somewhat modified form.

Specifically, in this paper we will examine the effects of multi-monopoles. Our key
new insight is to point out that to correctly account for the monopole contribution to the
superpotential, the calculation must be done in a specific region of the moduli space, in
particular on a mixed branch where both Coulomb and squark VEVs can be turned on.
The effect of the latter is to break some of the U(1)’s and confine some of the fundamental
monopoles via a Nielsen-Olesen string [14, 15] (aka a magnetic flux tube [16-18]). We will
argue that in 3D such confined multi-monopole configurations actually contribute to the
superpotential. We find a pre-ADS superpotential of the form

1
/2] det QQ

Whre-ADS = (1.1)
where the Y;’s are the local Coulomb moduli corresponding to the monopoles that are
confined by the squark VEVs. We will show that for SU(N) with F flavors a multi-
monopole made up of (F'+1) confined fundamental monopoles has exactly the right number
of zero modes and quantum numbers to contribute to this pre-ADS superpotential, and
we present a simple accounting of the relevant contributions to the path integral showing
that (1.1) is indeed the right form of the resulting pre-ADS superpotential. The ordinary,
single monopole contributions of Affleck, Harvey and Witten (AHW) [2] will still be present
for the Coulomb moduli associated with unconfined monopoles. Eliminating the lifted
moduli will give rise to the 3D ADS superpotential first described in [4], while taking
the R — oo limit we obtain the usual form of the 4D ADS superpotential. Our results



suggest that the true dynamical origin of the ADS superpotential lies in the confined multi-
monopole contributions to the path integral.

Another approach to three dimensional physics that has received attention in recent
years is 3D bosonization [19-22] and the corresponding flows of relevant N = 2 theories [23,
24]. While our results are not directly along this line of research, we hope that they could
nevertheless shed light into a deeper understanding of the connections between 3D and 4D
physics with the hope of contributing to progress towards finding analogs of bosonization
in 4D.

The paper is organized as follows. Section 2 contains an overview of the results obtained
in this paper and its relation to the already established web of non-perturbative results
in 3D and 4D. In section 3 we use symmetries and zero mode counting to obtain multi-
monopole contributions to pre-ADS superpotential in SU(3) theory with one flavor. In
section 4 we show how this same result emerges from the path integral calculation of
fermion correlation functions. In section 5 we generalize the result for arbitrary SU(V)
with F' < N. Finally we present our conclusions in section 6. We close the paper with
a series of appendices. Appendix A contains a review of the ’t Hooft-Polyakov monopole
embedded into SU(3). Appendix B reviews roots for su(/V) Lie algebras. Appendix C has a
general review of the essential elements of N = 2 3D SUSY, while appendix D contrasts the
properties of the pure 3D theory with those of the theory on R x S'. Finally, appendix E
contains a detailed description of multi-monopole zero modes.

2 The pre-ADS superpotential

We will start out by giving a brief overview of our main result and its connection to other
established non-perturbative effects. In the following sections we will argue that on the
Coulomb branch of SU(N) SUSY gauge theories with F' flavors on R? x S! there are im-
portant confined multi-monopole effects in the presence of squark VEVs. For F' < N one
can go to a region of the Coulomb branch! where all squarks obtain VEVs. These VEVs
will break F' of the original N —1 U(1) gauge symmetries and lead to confinement of F'+ 1
fundamental monopoles. One of these monopoles has 2 gaugino and 2F fundamental zero
modes,? while the remaining fundamental monopoles have two gaugino zero modes each.
The squark VEVs will lift all but two zero modes of the multi-monopole due to the super-
symmetric Yukawa coupling mixing the gauginos and quarks. Note that in supersymmetric
theories there is an intricate relation between confinement, lifting of the zero modes and
higgsing the U(1)’s. By supersymmetry the lifting of a gaugino zero mode must be ac-
companied by the lifting of the corresponding gauge boson mass, and hence the higgsing
of a gauge symmetry. On a Coulomb branch this means that one of the U(1)’s must be
broken in order for each mixing of a photino and quark to be allowed. However as 't Hooft
and Mandelstam explained [16-18], an electrically charged VEV leads to the confinement
of magnetic charges. Thus for the case of F' flavors with maximal rank of the matrix of

Indeed, non-perturbative single monopole contributions have the effect of pushing the theory towards
the region of the Coulomb branch where Higgs branch is accessible too [4].
2We assume for simplicity that all real mass terms vanish.



VEVs, F U(1) factors will be broken, confining F' 4+ 1 monopoles, and the resulting con-
fined multi-monopole will have just two remaining unlifted fermionic zero modes, which
will contribute to the superpotential and result in the pre-ADS term of (1.1). In addition
single monopoles in the remaining unbroken U(1)’s will generate corresponding AHW 1/Y;
superpotential terms [2]. Finally, since we are considering the theory on a circle, the KK
monopole [25] will have its own nIl;Y; contribution.® The full superpotential in one of these
regions of the Coulomb branch can be written as

N—-1
1 1

Wore-ans = nIL;Y; + Vol * Z 7 21
pre T detQQUI Y, i Vi

As usual local Coulomb moduli are lifted here, and can be integrated out of the theory. This
can be conveniently done by introducing the globally defined Coulomb branch modulus
Y by adding a Lagrange multiplier term A\(Y — II;Y;) to the superpotential. Once the
local Coulomb branch moduli are integrated out we obtain the globally defined 3D ADS
superpotential term of [4]:

1

WgDIT]Y—I-(N—F—l) — T .
(Ydet QQ)~N-F-1

(2.2)

While Y is globally defined, it is easy to see that it is also lifted by the superpotential (2.2).
Integrating out this last Coulomb branch modulus removes any obstacle to taking R — co
limit. As expected we obtain the usual ADS superpotential valid both in a theory on a
circle and in 4D limit superpotential:

A3N—F > ﬁ

Wip = (N —F) <detQQ

(2.3)

3 Confined monopoles in SU(3) and the pre-ADS superpotential

We begin the analysis by considering an SU(3) SUSY gauge theory with a single flavor,
F = 1. This is the simplest interesting example where the superpotential does not arise
either from single monopole contributions of the theory on a circle (which would require
F =0) or from the instanton contributions in 4D limit (which would require F' = 2). The
discussion of this section is easily generalized to an SU(NNV) theory with one flavor, while
the generalization to an arbitrary number of flavors will be considered in section 5. We will
show that in the R? x S! theory with F' = 1 two-monopole configurations will give rise to
the pre-ADS superpotential: a superpotential involving inverse powers of the fields but no
fractional powers. Since it is generated on regions of the Coulomb branch where also some
squark VEVs are turned on it will contain both the matter fields as well as the Coulomb
moduli.

For the SU(3) gauge group there are two fundamental monopoles described by the
Coulomb moduli Y; 2 as well as a KK monopole (see appendix D for a review). We first

3Here we follow the notation of [4], so n = exp(—87?/g?) x A®.



consider the pure Coulomb branch of the theory, with no squark VEVs turned on. We will
work in the fundamental Weyl chamber

¢ = diag(v1, va, v3) (3.1)

where v > vo > v3 and vy + v + v3 = 0. Further assuming that v; > 0 > v9 we find the
standard one-instanton superpotential terms on the Coulomb branch

1
W =nV1Yo + —. (3.2)
Ys

The first term arises from the KK monopole while the second term is from the second
fundamental monopole. Both of these monopoles have two gaugino zero modes, and hence
contribute to the gaugino two point function. For the first fundamental monopole however
there are also zero modes corresponding to @ and @ in addition to the gaugino zero
modes, so this monopole contributes to a fermion four point function rather than a two
point function, and thus this monopole does not contribute to the superpotential.

Now consider two-monopole configurations on the mixed Coulomb-Higgs branch with

non-vanishing squark VEVs (Q), (Q). In particular we consider the following region:

0 0
o= diag(v7 0, _U)’ <Q> =149]> <Q> =|q], |Q| = ‘Q| . (33)
0 0

While the adjoint VEV still breaks SU(3) to U(1); x U(1)a, the squark VEVs further break
the gauge symmetry: U(1); xU(1)2 — U(1)g, with the unbroken charge generator given by

1.
Q110 = 3 diag(1,0,-1), (3.4)

and the broken generator given by

1

2V3

It’s the dynamics of this additional breaking that underlies the generation of the pre-ADS

X diag(1,—-2,1). (3.5)

superpotential. In 4D this breaking would confine [15-18] the first and second monopole
by a Nielsen-Olesen vortex [14] to form a composite monopole that is only charged under
the unbroken U(1)g. After Wick rotations and compactification the two fundamental
monopoles are confined in 3D spacetime. This composite monopole potentially has 4
gaugino zero modes and 2 quark zero modes. However, as we shall see momentarily, 4
out of 6 zero modes are lifted by the squark VEVs and our composite monopole will
generate a new superpotential term. At the same time, the 1/Y5 contribution of the
second fundamental monopole disappears since, in the presence of the squark VEVs a
single confined, fundamental monopole has an infinite length flux tube attached to it, and
hence an infinite action.



3.1 Zero mode structure of the composite monopole

The most important ingredient needed to explain the origin of the superpotential term is
an understanding of the zero mode structure of the composite monopole. As we saw above,
the classical two-monopole configuration potentially has 4 gaugino and 2 quark zero modes
while only configurations with two fermionic zero modes will contribute to the superpo-
tential. Thus naively the two-monopole configuration could not contribute. However, this
naive expectation is modified in the presence of squark VEVs in two important ways:

e in the presence of the squark VEVs the SUSY Yukawa coupling will lift two gaugino
and two quark zero modes;

e once the two monopoles are separated by some distance, p # 0, the remaining two
exact zero will be mixed with the quark field, and thus the exact zero mode will live
partly in the gauginos and partly in the quarks.

Let us discuss these statements in more detail. Irrespective of the presence of squark
VEVs there are always two supersymmetric zero modes which can be obtained by a SUSY
transformation on the monopole fields:

)\éo) o8 (Uﬂy)g F/ﬂleﬂa (36)

where € is the supersymmetry transformation parameter. These will be the gaugino com-
ponents of the exact zero modes, and as we will see shortly their nature depends on the sep-
aration, p, between the monopoles. First consider the p = 0 case when the two monopoles
are exactly on top of each other. In this case the two monopoles form a single monopole
charged under U(1)g. For this single monopole we can use the Callias index theorem [3, 26]
to confirm that we have four gaugino and two fundamental fermionic zero modes. Carefully
analyzing how the gaugino zero modes transform under the full SU(3), we can explicitly
check that two of them are lifted in the presence of the squark VEVs due to the Yukawa
coupling

V2gQ N, . (3.7)

Indeed, turning on the middle color component of the squark VEV, g, we get mass terms
)\Jé@bj and @1)\% which connect the two charged gaugino zero modes with the matter zero
modes. Thus for the p = 0 case in the presence of squark VEVs the two unlifted zero
modes purely live in the U(1)q gauginos. The situation changes when p # 0: while four
out of six zero modes are still lifted by the squark VEVs, the nature of two remaining
zero modes is different. In this case, instead of describing a pure monopole in the U(1)q
direction, we really need to think of it as a confined multi-monopole configuration. The
main new physical effect is that the true zero modes are given by a mixture of U(1)g and
U(1)x gauginos. This is because when the monopoles are separated, with g|q| < 1/p,
there is a dipole field corresponding to the U(1)x charge (see appendix E for a detailed
discussion). Most importantly, the A3 component of the gaugino zero mode will no longer
vanish. This means that the squark VEV (Q) = (0, ¢,0) induces a non-vanishing mixing,
via (3.7), between the anti-chiral gaugino zero modes and (formerly non-zero mode) quarks.



Figure 1. Sketch of the multi-monopole contribution to the superpotential for SU(3) with a single
flavor. The dark cylinder connecting the two monopoles represents the flux tube confining the two
fundamental monopoles.

Thus for p # 0 we find that the remaining unlifted zero mode has a small admixture of
the quark fields, and this admixture of the quark component in the exact zero mode will
be proportional to gg*p. We see that this multi-monopole configuration has exactly 2 zero
modes which are partly contained in the quarks and partly in the gauginos. Hence they
can contribute to a superpotential term of the form 1/(Y;Y2QQ).

3.2 Small squark VEVs

Let us first consider the case where ¢,§ < v. We will argue that in this case the superpo-
tential is given by
W =nY1Ys +

ny (3.8)

1 1
neee " YeQ
where Y = Y1Y5 is the globally defined Coulomb modulus. The first term is still the
contribution of the KK monopole. However the second term is the result of the first and
second BPS monopoles being confined to form a single composite monopole. As explained
above, naively the confined monopole has too many zero modes to be able to contribute to
the superpotential, but in the presence of the squark VEVs some of these zero modes are
actually lifted. In a diagrammatic language this would corresponding to the closing up of
the zero mode legs (“soaking up the zero modes” in the language of ADS). We illustrate
the closing up of the zero modes of the confined multi-monopole in figure 1. Note that
in the presence of squark VEVs the remaining true zero modes contain a mixture of the
anti-chiral gaugino and chiral matter fields where the mixing is proportional to gg*p (see
the structure of the external fermion legs in figure 1).

The more precise statement is that in the presence of the squark VEVs the multi-
monopole configuration also contributes to the matter 2-point function, and the resulting



contribution is holomorphic, hence corresponding to an effective superpotential term. The
precise form of the resulting contribution to the 2-point function will determine the exact
form of the superpotential. We will present a detailed analysis of the multi-monopole con-
tributions to the path integral evaluation of the two point correlators in the next section.
Here we will only use symmetry considerations to restrict the possible form of a superpo-
tential term. The SU(3) SUSY gauge theory with one flavor has three U(1) symmetries
(one of them is anomalous). We can assign charges to the Coulomb moduli Y; under these
symmetries, which match the charges of the zero modes for the corresponding monopole.
Since we are considering the confined multi-monopole, the proper Coulomb modulus here
will be Y = Y1Y5, which is automatically the globally defined modulus (for general values
of F and N this is only true when F' = N — 2). The assignment of charges is given by

SU(3) U(1)a U(1)p U(1)r
Q O 1 1 0
Q O -1 0 (3:9)
Y =YY 1 -2 0 —2

We can see that the only superpotential term allowed by the symmetries is indeed given
by [4]

1
YQQ "

Symmetries allow this term, we have outlined the dynamical mechanism for generating it via

Wpre—ADS = (310)

confined multi-monopoles, and in the next section we will see that it is indeed generated
with a non-zero coefficient. While we will not directly calculate the overall coefficient,
consistency with known non-perturbative results requires it to be 1 for our specific case of
N = 3,F = 1. Adding on the nY term from the KK monopole one can integrate out the
remaining Coulomb branch modulus Y and then take R — oo limit to find the expected
4D ADS superpotential [1]

W:2< ">2z2< A8>2. (3.11)
det QQ det QQ

3.3 Large squark VEVs

Now let us consider the opposite case with large ¢,§ > v. The calculation is further
simplified by taking ¢, > 1/R. In this case the gauge group is broken in the 4D regime so
we first match the SU(3) gauge theory with one flavor onto the low-energy effective theory
with SU(2) and no flavors:

1 21 R 1 br, < 1 ) b (QQH
5 = g = 2T + In = | + In(=5)| (3.12)
9ts  9ia(1/R) Buo) 1672 \R2QQ) 1672\ 43
4 4T (b—"0br) -
= + In (R7QQ) . 3.13
Rg?, Rg} 2 ( ) (3.13)

In terms of the strong coupling scale we have

A =A% =A8QQ = A% QQ. (3.14)



On R? x S! the superpotential of the pure SYM SU(2) is generated by contributions
of single fundamental and singe KK monopoles:

1
W=nYr + —. (3.15)
Yy,

Using (3.14) we find n = n,QQR?. Moreover, semiclassically the contribution of the KK
monopole is independent of the squark VEVs, n; Y7, = nY. We can now relate the Coulomb
branch moduli of low and high energy physics:

Y, = YQQR? = Y1Y2QQR?. (3.16)

We conclude that the superpotential obtained in the large squark VEV regime agrees with
the superpotential of obtained in the small squark VEV regime.

4 Multi-monopole contributions to the path integral

In this section we will calculate contributions of two-monopole configurations to the su-
perpotential of SU(3) SUSY QCD with one flavor on R3 x S! via the path integral. Our
results can be generalized to (F'+1)-monopole calculations in theories with F' flavors. These
calculations are analogous to the calculation of constrained instantons which generate a
superpotential in 4D theories with F' = N — 1 flavors [1]. Indeed, N-monopole configura-
tions correspond to periodic instantons [27-29] of R3 x S! theories and turn into the usual
4D instantons in the large radius limit [5, 6]. Thus it is useful to first briefly review the
4D instanton calculation [1, 30] before attacking the case of confined multi-monopoles.

4.1 Review of the 4D instanton calculation for generating the ADS superpo-
tential for F = N — 1

In 4D N =1 SU(N) SUSY QCD with F' flavors there are 2N gaugino and 2F fundamental
fermion zero modes in the one-instanton background. In the presence of the most generic
squark VEVs all but two fermionic zero modes are lifted when FF = N — 1. The remain-
ing two zero modes lead to a non-trivial instanton generated two-point chiral correlation
function. The existence of a two fermion chiral correlation function implies an effective
fermion mass and ADS superpotential in the low energy theory. The explicit evaluation
of the two point correlation function requires knowledge of several factors: the classical
action of the constrained instanton in the presence of squark VEVs; the contribution of
bosonic and fermionic zero modes to the path integral* and the mixing between exact zero
modes with matter fermions. We will summarize the calculation of these factors below.

Up to a gauge transformation the gauge field of an instanton centered at the origin is
given by

v

x

Uy L — 41
p = “Map 22 2 (4.1)

“Due to supersymmetry contributions of non-zero modes in 4D cancel between bosons and fermions [31].
We should note that in 3D theories [32] as well as theories on R? x 8! [33] non-zero mode determinants do
not cancel. Nevertheless, non-zero mode determinants may be ignored because their contribution modifies
Kahler potential rather than superpotential [33].



where p is the instanton size and 74, are the 't Hooft symbols and the instanton is
embedded in the SU(2) subgroup generated by 7% = 7% a = 1,2,3. In the presence of
squark VEVs only the zero size instanton extremizes the action, thus it is necessary to use
the constrained instanton formalism of ref. [1]. The squark profile in the fixed instanton
background is given by

2)1/2 . ()12 B -
T e q9jf 5 ij=2¥q o, lal =gl (4.2)

Qjf =1
Y@ (a2 + p2) 2

The classical action of this field configuration is
872
S(p) = 2 +47°p%|g|* . (4.3)

The instanton has 4N bosonic zero modes. Of these, 4 correspond to spacetime trans-
lations of the instanton, 1 to dilatations and 4N — 5 modes correspond to global rotations
of the instanton in SU(NN). Naively, the existence of zero modes leads to divergences in
the path integral. To obtain a physical result one must regulate the theory and integrate
over collective coordinates corresponding to the location and size of the instanton. After
calculating the corresponding Jacobian one finds that the measure of integration over the
bosonic collective coordinates is

(4.4)

d d*zodp (P#o > N
HB X - )

p° g

where fi is the regulator mass. Notice that this expression contains a factor of pug/g for
each bosonic zero mode. The dependence on the regulator mass g reflects the contributions
of the Pauli-Villars regulator fields (more specifically, the contributions of their lowest
eigenvalues) to the path integral, while the dependence on g arises from the Jacobian.
Originally 't Hooft [34] determined the dependence of the measure on the instanton size p
by using dimensional analysis; however, this dependence can also be obtained by carefully
including the norm of the zero modes in the calculation of the Jacobian [35].

In the calculation of the fermionic contribution to the correlation function we must
remember that the non-trivial scalar profiles (4.2) perturb the fermionic zero modes. In
particular, all but two gaugino zero modes are lifted by the squark VEVs. Since supersym-
metry requires the existence of Yukawa couplings

Ly = V2g\bq* + V2g 7" + h.c., (4.5)

each squark VEV ¢* or §* soaks up one gaugino and one quark zero mode (cf. the closed
fermion lines in figure 1). Thus in the presence of squark VEVs the lowest eigenvalues of
these fields in the instanton background are lifted to v/2¢gq*. Correspondingly, contributions
from the Pauli-Villars regulators to the path integral give a factor of i ! for each connected
pair of fermion zero modes. To construct the integration measure for fermionic zero modes
one must further include the contribution of the two surviving exact zero modes. This
contribution includes the Grassmannian differentials of the exact fermionic zero modes, d¢

~10 -



and d¢, and a factor of 1/ug arising from the corresponding regulator fields. The final
expression for the fermionic measure with ' = N — 1 takes the form

es N1
9°q" ) 1

d dede —. 4.6
pr 55( M% Ho ( )

The two exact zero modes are mostly gaugino zero modes (3.6), where, by supersym-
metry, the profile of the gaugino exactly follows the profile of the field strength. While
these components of the exact zero modes lead to a gaugino-gaugino correlation function,
it is of no interest in 4D due to the 1/z* fall off of the zero modes. On the other hand,
analogous components of zero modes will be important to us later when studying theories
on a circle. In addition, the squark VEVs mix the superconformal gaugino zero modes with
anti-chiral quark (and anti-quark) fields which contribute another piece of the exact zero
mode. This can be seen from equations of motion for anti-chiral matter fermions which, to
leading order in gq*p, take the form [1, 30]

DX=0 (4.7)
DIyilPl = V29 Q*\° 48
P = 2@\, (4.9)

The solution of the first of these equations is given by (3.6). Using explicit solutions for
Q(x) and \°(x) it is easy to see that the quark and anti-quark components of the exact zero
modes fall of as 1/23 at large distance. In fact, an exact solution can be found by observing
that, by supersymmetry, the righthand-sides of (4.8) and (4.9) are related to the derivative
of the scalar profile [1, 30]. To leading order in gg*p one finds that the component of the

zero mode, x, i

(x — m)?

1/2
MW) £ o gq*p* Sa(w — )¢, (4.10)

X (@) o< g @, <
where Sy is the 4D position space fermionic propagator. While the p dependence in this
expression is completely determined by squark profile, it is useful to interpret one factor of
p as part of the expansion parameter gq*p, while the second factor of p is the consequence
of the requirement that the zero mode is normalized to 1.

After combining all the factors and performing the integral over Grassmannian vari-

ables one finds for two point correlation function

4 v gt (7)™ 872 9 91 19
(x(z1)x(22)) x /d zodpp™ gg—N54(I1 — 20) Sa(w2 — o) exp 7 —Ar*p7lq|*]|
(4.11)
Integrating over the instanton size gives the effective fermion mass
2N+1
M —8n2/g?
My X (goq)2Ne /9" (4.12)
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where g2 should be interpreted as the coupling renormalized at the cutoff 19. Rewriting
this result in terms of the RG invariant scale

A2N+1 o /1’2N+1 [—8 2/ 2( )} (4 13)
) TP |

and recalling that the holomorphic mass term is given by the second derivative of the
superpotential one finds

A2N+1
det QQ

4.2 Multi-monopole contributions to the path integral

Waps = (4.14)

We are now ready to apply path integral techniques to the calculation of the correlation
functions in multi-monopole backgrounds on R3 x S'. To evaluate this contribution, we will
consider a specific example, an SU(3) SUSY gauge theory with one flavor, and go through
the steps corresponding to those of the instanton calculation reviewed above. The case of
SU(N) with one flavor would be completely analogous. We will comment on the case with
general number of flavors at the end of this section. We will consider the region (3.3) of
the moduli space, where the two U(1)’s are broken to the diagonal subgroup, giving rise to
confinement of the two fundamental monopoles. While monopole confinement is an intrin-
sically non-perturbative effect, the semiclassical approximation presented here will provide
additional support for this effect. In addition to confining the monopoles, the squark VEVs
will lift some of the fermionic zero modes and partly rotate the remaining exact zero modes
into the quark fields, allowing the generation of a holomorphic superpotential term. In our
case the relevant multi-monopole configuration is a background containing two distinct
fundamental monopoles (of size 1/(gv)) separated by a distance p > 1/(gv). Thus the
effective size of the multi-monopole is p. Just as in the 4D instanton case, we will keep
the multi-monopole size fixed, integrating over it at the end of the calculation. Imposing
the constraint on the multi-monopole size allows us to turn on an asymptotic squark VEV.
The magnetic flux corresponding to the broken U(1)x is confined in a flux tube with a
width that is set by the inverse of the mass of the broken U(1)x gauge boson ~ 1/(glq|),
since by D-flatness [g| = |¢|. As we will see the path integral is dominated by monopole
separations of order

1

p

so in the regime of weak coupling, g < R|q|, we should consider the case when the distance
between the monopoles, p, is much smaller than the flux tube width 1/(g|g|). For small
enough values of |g|, p can still be large compared to the size of the individual monopoles,
1/(gv). Then, in the region where there is a significant magnitude for the broken gauge
field due to the two monopoles, the broken gauge field itself is approximated by a 3D dipole.
If the dipole is oriented along the z axis and centered around the point Ty then, since the
monopoles have opposite charges under U(1)x, we have

(4.16)
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where 71 and 75 are the unit vectors pointing towards Z from the position of the corre-
sponding monopole. The field is concentrated in the region (of size p) between the two
monopoles where

95
Ax; o _,72_, ) (4.17)
g|Z — Zo|
while at large distances it falls much more quickly:
Ax| x —L—— 5 (4.18)
g T — o

This gauge field is independent of the compactified direction, and we will assume that we
are in a region of the mixed Coulomb branch where the squark VEVs do not lift the adjoint
scalar, A%, as in eq. (3.3). Then the contribution of the mass term in the Lagrangian to
the classical action is (also integrating over the compact direction)

A (vt o 1)
/d4xng“X(x)AXM(:U)QT(:U)Q(x) x R d3x <q> g*lql* < Rplq|*. (4.19)
lz|<p g "T‘
This gives us the classical action of the two-monopole configuration in the presence of
squark VEVs:

872 Rv
S(p) = / A2l Fyul? + |4yl = T + R, (4.20)

where a is a numerical factor. The linear dependence of this action on p indicates that the
monopoles are confined. However, in an analogy with the constrained instanton calculation
of [1], we will allow for an arbitrary inter-monopole distance p and integrate over p at the
end of the calculation.

The two-monopole configuration has 8 bosonic zero modes. Of these, four zero modes
are collective coordinates that correspond to the location of the center of the two-monopole
configuration, z;, and its size p. The bosonic zero mode measure in the path integral is then

8
3 1/2
dup o 2000 <(pR) ”0> . (4.21)

p g

Just as in the 4D instanton case, each bosonic zero modes contributes a factor of ug/g. A
new factor of v/R enters through the normalization of the zero modes and is a consequence
of the fact that fields are independent of the compact dimension.

The contribution of the lifted fermionic zero modes (corresponding to the closed
fermion lines in figure 1) is identical to the 4D case (4.6):

_ 2k =% 1
djp o dEdE <g 74 > - (4.22)
Ho Ho

Finally we need to discuss the structure of two exact zero modes. These are mostly

supersymmetric gaugino zero modes living in the unbroken U(1)g. However, as explained
in section 3 and appendix E, for p # 0 the supersymmetric gaugino zero modes have a
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small admixture of U(1) x gauginos. The U(1)x component of gaugino zero modes is short
range (falling off as 1/23), see (E.19) and at large distances from the monopoles, the zero
modes behave as the zero modes of a single composite monopole associated with U(1)q

(0) p/? P

where the factor m arises due to the requirement that the zero mode is normalized
to 1.

Despite their short range behavior, the U(1)x components of the supersymmetric
gaugino zero modes have an important consequence: these anti-chiral modes mix with
chiral components of matter fermions. Indeed, just as in 4D the anti-chiral matter fields
satisfy (4.8). The right hand side of (4.8) is non-vanishing precisely due to the U(1)x

component of the gaugino zero modes. Moreover, the 1/x3 behavior of this term implies
that the quark and anti-quark components of the zero modes are long range

3/2 3/2

aq*p
RY/2(z — x)?

£ aq*p

R1/2 53(1: - l’o) g ) (424)

where, just as in the 4D case the factor gq*p is the expansion parameter and the additional

1/2 arises from the normalization of the zero mode.

factor of p
We can now combine all the factors to calculate the gaugino-gaugino and quark-quark
correlation functions. For quarks we project the zero mode legs onto the massless matter

fermion in (4.24) and after integration over Grassmannian variables we find

- —4n2vR/g? Rs:ug *—k) 2 Brodoo’ S o S. o —aR|q|?p
(xx(x)xx(y)) e 794 (¢"7") zodpp” S3(x — 10)S3(y — x0) € .
(4.25)
Integrating over the multi-monopole size p we find that the path integral is dominated by

1
P~ ST (4.26)
R|q|[q|
Finally, setting the cutoff of the 3D theory at o = 1/R we obtain
— _872Rv/g? Sg(m — xo)Sg(y — xo)
Rl L (4.27)

This corresponds to a fermion mass term that is a holomorphic function of ¢ and §:

1 6—871'21%1)/92
. 4.28
T (94R5> > (4.28)
Since this mass term is holomorphic it should arise as the second derivative of the super-
potential
0*W
my = — (4.29)
0Q 0Q
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from which we can identify the two-monopole contribution to the 3D superpotential
e—8m°Ru/g* 1

1000 ok
RIQQ  Y"1Y2QQ

Whre-ADS X (4.30)

in agreement with (3.8).
For the gaugino-gaugino correlation function we project onto the zero mode compo-
nent (4.23) to find

sruryg? Ry o
M) o e ot [ d%odp( 5 )Aé?)(mé?)(y)e Rl

R3 5 kk
T /dgﬂfodpp <l;)glq> Ss(a — 0)S3(y — yo)e *Fll*r (4.31)

—872Rv/g? 3 S3(x —0)S3(y — wo)
x e /9 /d o PRI .

The corresponding gaugino mass term is
1 6—871'2Rv/92 92w
¢R3  qq 0909’

(4.32)

m)y o<

We conclude that both quark-quark and gaugino-gaugino correlation functions imply the
same superpotential (4.30).

The calculations of this section can be generalized to (F'+1)-monopole configurations in
theories with F' flavors. The only non-trivial step in such a generalization is the introduction
of the collective coordinates describing the multi-monopole configuration, one combination
of which will correspond to the size. While the size is easily seen to be the inter-monopole
distance in the two-monopole case, the relevant definition in the multi-monopole case is
more complicated.

5 Confined monopoles in SU(IN)

In this section we generalize the discussion of the pre-ADS superpotential generated by
multi-monopoles to the general case of SU(N) with F flavors. In the absence of squark
VEVs we can take a generic VEV for ¢

¢ = diag(vy, ..., vN) (5.1)

and the gauge symmetry is broken to Hi]i _11 U(1);. Choosing for concreteness a region of
the fundamental Weyl chamber satisfying v; > 0 > vo > ... > vy, one finds that single
monopole contributions to the superpotential are

N—
= nILY; + Z ? (5.2)
i=2 ¢

Since quark zero modes are localized on the first fundamental monopole, its contribution
is missing from the superpotential. Next we turn on generic squark VEVs. To be able
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to do so we must set F' diagonal elements of the adjoint VEV to zero — indeed, single
monopole effects push the theory precisely in this direction. As a result the squark VEVs
can appear (by a gauge choice) in colors 2 up to F' + 1, and the gauge symmetry is broken
to I }1+2 U(1);. The squark VEVs confine the first /' + 1 fundamental monopoles into
a composite which naively inherits 2(F 4 1) gaugino and 2F quark zero modes of its
constituents. The Coulomb branch will now be described by the modulus corresponding to
the confined multi-monopole given by HZF: JEIYZ- as well as the remaining Y; moduli (where
i > F 4+ 1) that are not confined. The resulting table of symmetry charges for this general

case with maximal rank squark VEVs is given by

SU(N) SU(F) SU(F) U(1)4 U(1)s U(1)r
Q O O 1 1 1 0
Q O 1 O 1 -1 0
iyl 1 1 1 —2F 0 -2 (5.3)
Yigo | 1 1 1 0 0o -2
Yy | 1 1 1 0 0o -2

The most general superpotential allowed by these symmetries is

1 =
Wpre—ADS nHz}/z + det Qé Hf:il}/i + i;g sz ' (5'4)
The middle term is again to be interpreted as the contribution of the F' + 1 confined
monopoles.” It replaces the 1/Y; contributions of F + 1 single fundamental monopoles
whose individual actions become infinite in the presence of squark VEVs. In terms of zero
mode counting we can interpret the multi-monopole term in the following way: all but
two zero modes of the confined multi-monopole can be closed off with the insertion of F
squark and F antisquark VEVs to obtain (5.4). The first term is the effect of the KK
monopole, which breaks some of the global symmetries (the ones that are anomalous in
the 4D theory). The final sum consists of the usual AHW single monopole superpotential
terms induced on the Coulomb branch.
Integrating out the lifted Coulomb moduli Yryo,...,Yny_1 we obtain the globally de-
fined 3D superpotential of [4]:

1

Wip =nY + (N — F —1) SR
(Y det QQ) N-F—1

(5.5)

Of course, this superpotential also lifts the global moduli Y and QQ. Integrating out the
monopole modulus first, we find the ADS superpotential of the theory on R? x S':

1
A3N—F N—F
> , (5.6)

det QQ

5For the case of F = N — 2, the semiclassical field configuration of the composite monopole is actually

Waps = (N — F) (

known explicitly [36, 37].
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where we replaced n with A3N—F

in anticipation of taking the infinite radius limit. Indeed
at this point such a limit is trivial. Thus we see that for the general case the origin of the
ADS superpotential can be traced back to an F' + 1 multi-monopole contribution to the
superpotential in the theory on a circle. We expect that there should be an equivalent field
configuration contributing to the path integral for fully 4D theories as well. It would be
very interesting to explore the exact nature of that multi-monopole for the full theory.

Now let us consider the case with large squark VEVS: ¢, > 1/R. In this case the
gauge group is broken in the 4D regime so we first match the SU(N) gauge theory with F
flavors onto the low-energy effective theory with SU(N — F) and no flavors. The matching
in terms of the strong coupling scale is

AP = ABN=F = ASNER (00)F = A% det QQ . (5.7)

On R? x S! the SU(N — F) gauge theory with no flavors has N — F — 1 fundamental
monopoles, so the superpotential is

N-1 1
g YLy
j=F+1

Note that (5.7) implies 7, = A%L = A’/ det QQ. Then integrating out all the lifted Yrj
Coulomb branch directions we can easily check that (5.8) reproduces the ADS superpoten-
tial as expected.

Furthermore it is convenient to relabel the summation index by ¢ = j + F', so that the
sum runs from F +1 to N — 1. Then semiclassically (in terms of the relabelled indices and
SU(N) VEVs and the roots «;)

G A B T | (5.9)
YL Fil = eSTrQUR(h-ZZF:JFll ai)R/g% ’ (510)
nLYL — 678#2/9% eSﬂZUR(h'Zﬁzl ai)/g% _ 678#2/91% eSﬂ'%}Rh-Olo/Q% . (511)

so we see that identifying
Yy =det QQILY;,  Yppy =detQQIUY'Y;,  and  np=1n/detQQ, (5.12)

gives the two superpotentials have the same dependence on the squark VEVs.

Finally let us consider the case of SU(N) with F' = N — 1 flavors. In this case turning
on the maximal rank squark VEVs breaks all the U(1)’s. Thus the Coulomb branch is
completely lifted and low energy degrees of freedom do not contain the monopole modulus
Y. Despite the absence of a true monopole, there still exists a topologically non-trivial field
configuration which can be interpreted as an N-monopole configuration containing each
fundamental monopole as well as the KK monopole. Indeed, this N-monopole configuration
is a periodic instanton [27-29] of the theory on a circle and it turns into a conventional
instanton in the infinite radius limit. This N-monopole configuration contributes to the
path integral and the superpotential. Its contribution could be determined by using the
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symmetry arguments of this section or calculating multi-monopole contributions to the
path integral as in section 4. In either case one finds

N S
CILY;detQQ  detQQ  detQQ’
which is exactly the expected 4D instanton induced ADS superpotential term for F = N—1.

(5.13)

6 Conclusions

Examples of dynamically generated superpotential terms with a clear underlying dynami-
cal origin are few and far between. 4D instantons only contribute in special cases, while the
other known examples are usually obtained using indirect methods. In this paper we have
established that the confinement of monopoles is the underlying dynamical origin for the
generic ADS superpotential when the 4D theory is compactified on a circle. This happens
on the mixed Higgs-Coulomb branch, where turning on some of the squark VEVs breaks
one or more U(1) gauge groups, leading to the confinement of some of the fundamental
monopoles. At the same time most of the fermionic zero modes of the multi-monopole are
lifted. In particular, we have identified an F' + 1 multi-monopole for the case of SU(N)
SUSY QCD (with four supercharges) and F' flavors. In the presence of squark VEVs these
monopoles are confined, and exactly two fermionic zero modes remain unlifted (these modes
being partly in the quarks and partly in the gauginos). The resulting pre-ADS superpoten-
tial term is inversely proportional to the fields but no fractional powers appear. Since it is
a contribution on the mixed Higgs-Coulomb branch it depends both on the Coulomb and
the Higgs moduli. The globally defined 3D ADS superpotential can be obtained by inte-
grating out the lifted Coulomb moduli Y;, while the full 4D ADS superpotential is obtained
by also integrating out the global Coulomb modulus Y = [[,Y;. A symmetry argument
clearly shows that the pre-ADS superpotential can be generated. We have presented a
detailed accounting of the path integral calculation of the fermionic two-point functions in
the presence of the confined multi-monopole, argued that these indeed correspond to the
presence of the pre-ADS superpotential, and that they yield a more detailed dynamical
explanation of the origin of the well-known ADS superpotential.
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A Monopole solutions for SU(3)

Above we have presented our detailed dynamical explanation for the generation of the ADS
superpotential [1] in SU(3) theories due to multi-monopole dynamics. To remind the reader
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of the background we will review the details of SU(3) monopoles. The 't Hooft-Polyakov
monopole solution [38, 39] gives a configuration with a magnetic charge in an SU(2) gauge
theory that is broken to U(1) by an adjoint VEV. In the absence of a scalar potential (a.k.a.
the BPS limit) the fields (in the hedgehog gauge) are given by [40]

o = f(r,v), Al = ™ 7”7(70’ v) (A.1)
gr
where f(r,v) and k(r,v) approach 1 as r — oo. The solutions are:
1
= coth - — A2
Fr.0) = cothlgur) ~ - (A2)
k(r,v) = g (A.3)

l1l——.
sinh(gvr)

Using this we can also easily find the monopole solutions in an SU(3) gauge group [36,
37]. By a gauge choice we will work in the fundamental Weyl chamber

¢ = diag(vy, v, v3) (A.4)

where v1 > vy > w3 and v1 + vo + v3 = 0. On the Coulomb branch with the squark VEVs

set to zero (@) = (@) = 0 the gauge symmetry is broken to U(1); x U(1)2. The unbroken
U(1) charge generators are:

Q1 = ding(1,~1,0) (A.5)
Qs = 5 diag(0,1,-1), (A.6)

To find the monopole solutions we can split the VEV (A.4) into two pieces that corre-
spond to an adjoint and a singlet under the SU(2) subgroup in question. For example for
the SU(2) subgroup corresponding to ()1 we can write

¢ = diag <v1;U2,—Ul—UQ,O>+diag <vl+02 U1+02,—vl—v2> =v+w; (A7)

2 2 72

and similarly for @) yielding the corresponding vs,ws diagonal matrices. Then we can
write the two BPS monopole solutions as [36, 37]:

oi(r) =7 f(r,v) + w; (A.8)

where, v = QW, and 77 are generators of the SU(2) with diagonal genera-
tor Q; = 77

B Roots of SU(N)

In order to generalize our results to SU(N) let us review how the results previously obtained
can be written in terms of simple roots. First let us start from SU(3). On the Coulomb
branch with the squark VEVs set to zero (Q) = (Q) = 0 the gauge symmetry is broken to
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Figure 2. Simple roots, a; and as, of SU(3), and the lowest negative root «y.

U(1)1 x U(1)2, the unbroken U(1) charge generators can be chosen to correspond to the
two simple roots, «j, (see figure 2) which are, explicitly

a1 = (1,0),  az=(-1/2,V3/2), (B.1)

and the two Cartan generators, H;, of SU(3):

1 1 1 1 1
Hy=diag (=,—=,0), Hy=diag| —=, —— —— . B.2
! g(? 2 > 2 g<2\f 23 ﬁ) (B2)

Each element of an SU(3) representation can be assigned a charge under the two U(1)’s.
For example, the fundamental representation has charges

r ( ’ﬁ>
~ (_ Tbﬁ) . (B.3)
(0%

Then we see that starting with the lowest state,

[N

[N

b+az~g, gt+aoag~r, (B.4)

we can work our way up through the entire representation using the roots. Thus the roots
represent the charges of the off-diagonal generators (the analogs of the W’s) that can make
the transition from one element of a represent to another element (aka ladder operators).
We can assemble the H; generators into a vector H and then write the unbroken U(1)
charge generators in the conventional basis associated with the two BPS monopoles as

1
Ql = 5 dlag(17 _17 O) = Qq - H>
1
Qo = 3 diag(0,1,—-1) = a2 -H, (B.5)
Expressing the unbroken generators (B.5) in terms of the roots, allows us to immediately

read off how a given 't Hooft-Polyakov monopole solution, which is associated with a
breaking of a particular SU(2) factor, is embedded into the full SU(V) gauge group [36, 37].
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Consider Q1 = «; - H, we can rewrite eq. (A.7) in terms of the Cartan elements as:

where

— 3
h:(vl 1)2,\[(1)1-1-?)2)) ’ UZQ\/m- (B.7)
v v

Note that h-h = 1. The condition that we are in the fundamental Weyl chamber (v; >
Vo > Ug) is

With this notation we see that the first term in (A.7) is just

T =v (h-a1) (a1 - H) = diag (”1;”2,—”1;”2,o> (B.9)
The second term in (A.7) is just the remainder:
p—v1=vh—(h-aq)aq) -H. (B.10)
Then we can write the BPS monopole solutions as
O; =77 (h- o) f(r,v(h-a;)) +v(h— (h- o)) - H (B.11)

where, 7% are generators of the SU(2) associated with o.

This embedding pattern can be repeated for any SU(N). For each simple root «; of the
SU(N) gauge group there is an SU(2) subgroup whose diagonal generator is aj - H. With
a general gauge group the BPS monopoles corresponding to the root «; have a magnetic
charge vector® [36, 37] a4* = /i - o5. For SU(N) this simplifies since oz* = a;. The
KK monopole is associated with the lowest negative root, g, and has magnetic charge

ap = o= — ;0

C The Coulomb branch in 3D N = 2 SUSY

N =2 SUSY QCD in 3D can be obtained by a dimensional reduction of the corresponding
N =1 4D theory (both are theories with four supercharges). After Wick rotation, com-
pactification of the time direction, and Wick rotation of a spatial direction, the 4D time
component of the gauge field turns into a scalar in the adjoint representation, Ay — o,
and as a result the 3D theory acquires a Coulomb branch. On the Coulomb branch, the
photons of the unbroken U(1) gauge symmetries can be dualized to a scalar: €;;, F7 ko 0y.
The effective low energy Lagrangian on the Coulomb branch can be written in terms of the
chiral superfield ¢ = ¢ + iy and its superpartners, where ¢ = Ag. There are instantons on
the Coulomb branch of non-Abelian gauge theories in 3D and their field configurations can

5The jth component of the charge vector gives the charge associated with Q; = a5 -H.
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be obtained from a dimensional reduction of a 4D monopole with its worldline wrapped

around the compactified dimension (thus we usually refer to 3D instantons as monopoles).

The fundamental result on which both the current paper and much of the past work is

based was obtained by AHW [2]: they found that in N/ = 2 SUSY pure Yang-Mills in

3D the gaugino two point correlation function has non-trivial contribution in a wrapped

monopole background. In an SU(2) theory with no matter this results in a superpotential
1

W=— C.1
= (1)
where Y is the monopole operator parameterizing the Coulomb branch

Y = exp [87° (11 — p22)R/g°] - (C.2)

The above result can be easily generalized to theories with larger gauge symmetry.
For example, in SU(N) the classical Coulomb branch is N — 1 dimensional. At the generic
point on the classical Coulomb branch the SU(N) is broken to U(1)¥~! and the field ¢
acquires a VEV (p;;) = v;. It is convenient to choose the basis in which generators of these
U(1)’s are given by T; = 1/2diag(0,...,1,—1,...,0) = a; - H, where 1 appears in the jth
slot along the diagonal. Each ordering of VEVs defines a so called Weyl chamber and it is
sufficient to consider dynamics in the fundamental Weyl chamber which is defined by

v >V > ... > UN. (C.3)

One can construct a fundamental monopole associated with each of the N —1 U(1)’s by
embedding them into N —1 linearly independent but non-orthogonal SU(2) subgroups. This
can be easily done in terms of the simple roots of the initial gauge group (see appendix B).
We see that aj- F"'? is the U(1) field strength associated with the Cartan generator o - H.
We can also write the general moduli in terms of the roots, if we promote h to be a complex
field:

}/j — eSﬂzv(h-aj)R/gQ’ (C4)

with
¢»=vRe(h) -H, vim(h) - o =;, (C.5)
where 7, represents the dual photon [2]
Om7j = €mmp 0j - F"P. (C.6)

This makes the fundamental Weyl chamber condition (C.3) equivalent to (B.8).

To determine the resulting superpotential terms for the fundamental monopoles one
needs to count fermion zero modes [41], which can be done using the appropriate index
theorems [26, 42, 43]. Under each SU(2), the gaugino decomposes into an SU(2) adjoint,
2(N — 2) doublets and (N — 2)? — 1 singlets. Inside the fundamental Weyl chamber the
doublets obtain large real masses from the ¢ VEVS and do not have zero modes. Thus
each fundamental monopole has exactly two gaugino zero modes and there are N — 1
contributions to two point correlation function, resulting in a superpotential

w=3 —. (C.7)
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D R3?vs. R? x §' and KK monopoles

It is important to distinguish between a truly 3D theory on R? and a theory on R3 x S!
which exhibits 3D behavior at low energies. In the compactified theory on a circle of radius
R, the 3D gauge coupling is given in terms of the 4D holomorphic coupling by

1 97 R 1 b 1
1_ 2R, +1n<>]. D1
935  9i(1/R) 93 (ko) 8w \ Ruo (B-1)

The monopole configuration exists both in the theory on R? and a theory on R? x S
However, the latter theory has another property that is important for our discussion. The
Coulomb branch is periodic with a period 1/R, ¢ — ¢+ 1/R. To see this for SU(2), notice

that the gauge boson KK tower has masses given by n/R for integer values of n and when
¢ acquires a VEV

(¢) = diag(v, —v) (D.2)

the masses are shifted to n/R+v. As (¢) approaches 1/R a new KK state becomes massless
and the SU(2) symmetry is restored, implying that the Coulomb branch is periodic with a
period 1/R.

There is another important distinction between the theory on R? and a theory on
R3xS!. The latter has an additional monopole configuration, called the KK monopole [25],
specific to the existence of the additional S'. The KK monopole can be obtained by twisting
the fundamental monopole configuration around the circle with a large anti-periodic gauge
transformation U = exp(—izo o®/2R). While this large gauge transform U is anti-periodic,
the resulting gauge-transformed field configurations are periodic since the vector multiplet
transforms in the adjoint representation of SU(3). The action of the KK monopole is
given by Skx = (47/R + ¢11 — ¢22)/g3. There are two gaugino zero modes in the KK-
monopole background as can be seen directly by performing the large gauge transformation
on the zero modes of the fundamental monopole [44]. Thus the chiral two-point gaugino
correlation function receives a non-trivial contribution in the KK monopole background,
resulting in a new superpotential term of the pure SU(2) super-Yang-Mills:

Am A (oo —
27T A (22 . ¢>11)R> -
g5R 93

WK = exp <— (D.3)

where we defined n = exp (—47‘(’ / g%R) = exp (—87T2 / 92). The parameter 7 can be expressed
in terms of the dynamical scale of the 4d theory, 7 ~ A, where b is a one-loop beta-function
coeflicient.

E Multi-monopole zero modes

Here we analyze the structure of supersymmetric gaugino zero modes of the SU(3) theory
in the two-monopole background. When the squark VEVs are turned off the gaugino
zero modes can easily be obtained by performing a supersymmetry transformation on the
two-monopole field

N(z) o< " Fp € oc (BET 0" + V" T 0")¢ = 2BIT0'¢ (E.1)
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where in the last equality we used the fact that BT i = V,;0*T%". Thus, to understand
the scaling of the gaugino zero modes we need to study the magnetic field of the two-
monopole configuration.

Consider the case of an SU(3) gauge group with two different monopoles centered
around the point Zy, a distance p apart. We can denote the direction of the line between
them by the unit vector d. Then we have two vectors that point from each of the monopoles
to an arbitrary point 7

N L L 5
=17 — 0_§pd’ 2 =T—To+ ;pd. (E.2)
We will also write r; = |7;|. With this notation the approximate scalar solution [36] for

two widely separated monopoles is

$T — & [E— @ (h - ) —072(5.072)} H + T8 (h-ay) f(r h-di)  (E3)

+f§T&)(E‘a3)f(T2,H'O72) (E.4)
1 . 1, Y, .
= 5 diag(v,0,—v) + ——Tyv f(r1,0) + =T (v) f(r2,0). (E.5)
1 T2

At the point 7 the local unbroken U(1)’s can be taken to be
(ER— 1. (SR 1.
?T(l) =@ = B diag(1,—1,0), TQT(2) =@ = 3 diag(0,1,-1). (E.6)
Far from the monopoles the asymptotic scalar VEVs (3.3) split the SU(3) fundamental
into three singlets (r,g,b) and the SU(3) adjoint into two massless singlets )\?1) and /\?2)
(corresponding to the unbroken U(1) generators (1 and 2) and fields with masses of
order guv.
The magnetic field of the two-monopole solution is

3

21 2a

21 =2a 3
arpa arma T a Ty T a
B{T® = D;¢*T* = Z %T(l)vf'(m,v) + Z QT%Q T(Q)vf’(rg,v)
a=1 a=1
K K
., ((”:“)) e (“&’”) . (E.)
glril g173]
From (A.3) we have for large r
1
/!
P~ = (.8
K (r,v) ~ 2¢°v%re 9" (E.9)

For distances |ri|,|r3| > 1/v we can neglect the exponentially suppressed terms. At a
given point in space there are two long range magnetic fields whose directions in SU(3)
group space are aligned with /1% and 75®. For simplicity we can choose our coordinates so
that we are along ¥ = rZ direction, and the origin is at Zp, so at large distances we have

1 - 1
=Tz — ipd =rz (1 — 2£C089> - §psin0(nﬁcos¢+g}sin¢) . (E.10)
T
L 1 s p
71| = Tz—ipd %\/rQ—rpcosemr(l—z—COSG) . (E.11)
T
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So the radial magnetic field is

pore ~ 91 (1 - fco 9) Q2 (1 + fcos 9) (E.12)

gr?

The local kinetic terms for the massless gauge fields are

2TrF, T FP T = 2Tr(F ), Q1 + Fla)u/Q2) (P Q1 + Flyy Q2) (E.13)
= (UNVF(IS + F(Q)MVFg;V - F(l)w/F(l% . (E.14)

Changing basis to the @@ and X generators given in (3.4) and (3.5) we find:

ABQ + AYX = Al Q1+ Aty Q) (E.15)
V3
% % u %
Al = (A(l) +AL)) . A= (4l —al) . (B16)
1 2 T % [ T 112
FiY = Fy + —\/EFX , Fly = F \/gFX . (E.17)

So the kinetic term becomes
Fayuw Py + Foyuw Py — FawFly = FawF)" + FxuFY . (E.18)

In the Q-X basis the magnetic field is

BT ~ giQ (1— 'jcos@) <Q+\}§X> + gi (1—1— COSQ) (Q— %X)

2

Q 2 X
~ 2— — 00— . E.19
1 + \/gpcos 3 ( )
while at 7= 0 we have
—Lpcosh 1 Lpcosh 1
mr - (0 ) (oY) e
g‘%pd) 9‘%
—4 cos 0 1 . 4cosb 1
— Q+X> f’+<Q—X> B.21
9 < V3 9p° V3 (2
— 1
_ 802807)(‘ (E.22)
g* V3

Thus the X gaugino component of the zero mode is much more localized that the A gaugino
component.
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