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1 Introduction

Exact non-perturbative results for SUSY QCD in 4D have played an important role in our

understanding of the dynamics of strongly interacting gauge theories. One of the most

famous examples of such dynamical effects is the non-perturbative Affleck-Dine-Seiberg

(ADS) superpotential [1] when the number of flavors, F , is less than the number of colors

N . Surprisingly the exact dynamical origin of this term is still somewhat mysterious.

For F = N − 1 there is a reliable instanton calculation, however for fewer flavors the

instanton generated correlation functions involve more than two fermions and thus can

not be interpreted as a contribution to the superpotential. One can nevertheless deduce

the presence of the ADS superpotential term via integrating out flavors, and attribute its
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dynamical origin to gaugino condensation in the unbroken SU(F −N) subgroup. However

no reliable direct calculation of this superpotential term currently exists.

One promising approach [2–10] for shedding light on some of these dynamical effects is

to compactify the 4D theory on a circle. Compactifying the theory significantly changes the

structure both of the moduli space as well as the spectrum of non-perturbative objects in the

theory. Due to the possible VEV of the component of the gauge field along the compact

direction, the moduli space develops a Coulomb branch where the theory is generically

described by a U(1)r gauge theory, where r is the rank of the gauge group. Furthermore, out

on the Coulomb branch there will be monopole-instantons present. These are the classical

’t Hooft-Polyakov solutions which in 4D are interpreted as static monopoles, however when

wrapped around the compactified direction they play the role of 3D instantons. They are

more elementary objects than the 4D instanton, in fact the 4D instanton can be thought

of as a multi-monopole containing one of each type of fundamental monopole [5, 6]. It

is believed that they can possibly contribute to more varied physical quantities than 4D

instantons. For instance, it has been noticed in [4] that gaugino condensation in a pure

SU(N) SYM theory arises due the dynamics of N individual monopoles of a theory on

R3×S1. Khoze et al. [11, 12] explicitly calculated the resulting superpotential by combining

the effects of N single monopole contributions and taking the large radius limit. They also

argued that in theories with 0 < F < N − 1 the superpotential can be obtained by going

on a Higgs branch so that low energy physics is a pure SYM with SU(N −F ) gauge group

and then performing a single monopole calculation in the low energy effective theory [13].

Our results will clarify this statement and confirm it in a somewhat modified form.

Specifically, in this paper we will examine the effects of multi-monopoles. Our key

new insight is to point out that to correctly account for the monopole contribution to the

superpotential, the calculation must be done in a specific region of the moduli space, in

particular on a mixed branch where both Coulomb and squark VEVs can be turned on.

The effect of the latter is to break some of the U(1)’s and confine some of the fundamental

monopoles via a Nielsen-Olesen string [14, 15] (aka a magnetic flux tube [16–18]). We will

argue that in 3D such confined multi-monopole configurations actually contribute to the

superpotential. We find a pre-ADS superpotential of the form

Wpre-ADS =
1

ΠF+1
i=1 Yi detQQ

(1.1)

where the Yi’s are the local Coulomb moduli corresponding to the monopoles that are

confined by the squark VEVs. We will show that for SU(N) with F flavors a multi-

monopole made up of (F+1) confined fundamental monopoles has exactly the right number

of zero modes and quantum numbers to contribute to this pre-ADS superpotential, and

we present a simple accounting of the relevant contributions to the path integral showing

that (1.1) is indeed the right form of the resulting pre-ADS superpotential. The ordinary,

single monopole contributions of Affleck, Harvey and Witten (AHW) [2] will still be present

for the Coulomb moduli associated with unconfined monopoles. Eliminating the lifted

moduli will give rise to the 3D ADS superpotential first described in [4], while taking

the R → ∞ limit we obtain the usual form of the 4D ADS superpotential. Our results
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suggest that the true dynamical origin of the ADS superpotential lies in the confined multi-

monopole contributions to the path integral.

Another approach to three dimensional physics that has received attention in recent

years is 3D bosonization [19–22] and the corresponding flows of relevant N = 2 theories [23,

24]. While our results are not directly along this line of research, we hope that they could

nevertheless shed light into a deeper understanding of the connections between 3D and 4D

physics with the hope of contributing to progress towards finding analogs of bosonization

in 4D.

The paper is organized as follows. Section 2 contains an overview of the results obtained

in this paper and its relation to the already established web of non-perturbative results

in 3D and 4D. In section 3 we use symmetries and zero mode counting to obtain multi-

monopole contributions to pre-ADS superpotential in SU(3) theory with one flavor. In

section 4 we show how this same result emerges from the path integral calculation of

fermion correlation functions. In section 5 we generalize the result for arbitrary SU(N)

with F < N . Finally we present our conclusions in section 6. We close the paper with

a series of appendices. Appendix A contains a review of the ’t Hooft-Polyakov monopole

embedded into SU(3). Appendix B reviews roots for su(N) Lie algebras. Appendix C has a

general review of the essential elements of N = 2 3D SUSY, while appendix D contrasts the

properties of the pure 3D theory with those of the theory on R3×S1. Finally, appendix E

contains a detailed description of multi-monopole zero modes.

2 The pre-ADS superpotential

We will start out by giving a brief overview of our main result and its connection to other

established non-perturbative effects. In the following sections we will argue that on the

Coulomb branch of SU(N) SUSY gauge theories with F flavors on R3 × S1 there are im-

portant confined multi-monopole effects in the presence of squark VEVs. For F < N one

can go to a region of the Coulomb branch1 where all squarks obtain VEVs. These VEVs

will break F of the original N −1 U(1) gauge symmetries and lead to confinement of F + 1

fundamental monopoles. One of these monopoles has 2 gaugino and 2F fundamental zero

modes,2 while the remaining fundamental monopoles have two gaugino zero modes each.

The squark VEVs will lift all but two zero modes of the multi-monopole due to the super-

symmetric Yukawa coupling mixing the gauginos and quarks. Note that in supersymmetric

theories there is an intricate relation between confinement, lifting of the zero modes and

higgsing the U(1)’s. By supersymmetry the lifting of a gaugino zero mode must be ac-

companied by the lifting of the corresponding gauge boson mass, and hence the higgsing

of a gauge symmetry. On a Coulomb branch this means that one of the U(1)’s must be

broken in order for each mixing of a photino and quark to be allowed. However as ’t Hooft

and Mandelstam explained [16–18], an electrically charged VEV leads to the confinement

of magnetic charges. Thus for the case of F flavors with maximal rank of the matrix of

1Indeed, non-perturbative single monopole contributions have the effect of pushing the theory towards

the region of the Coulomb branch where Higgs branch is accessible too [4].
2We assume for simplicity that all real mass terms vanish.
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VEVs, F U(1) factors will be broken, confining F + 1 monopoles, and the resulting con-

fined multi-monopole will have just two remaining unlifted fermionic zero modes, which

will contribute to the superpotential and result in the pre-ADS term of (1.1). In addition

single monopoles in the remaining unbroken U(1)’s will generate corresponding AHW 1/Yi
superpotential terms [2]. Finally, since we are considering the theory on a circle, the KK

monopole [25] will have its own ηΠiYi contribution.3 The full superpotential in one of these

regions of the Coulomb branch can be written as

Wpre-ADS = ηΠiYi +
1

detQQΠF+1
i=1 Yi

+

N−1∑
i=F+2

1

Yi
. (2.1)

As usual local Coulomb moduli are lifted here, and can be integrated out of the theory. This

can be conveniently done by introducing the globally defined Coulomb branch modulus

Y by adding a Lagrange multiplier term λ(Y − ΠiYi) to the superpotential. Once the

local Coulomb branch moduli are integrated out we obtain the globally defined 3D ADS

superpotential term of [4]:

W3D = ηY + (N − F − 1)
1

(Y detQQ)
1

N−F−1

. (2.2)

While Y is globally defined, it is easy to see that it is also lifted by the superpotential (2.2).

Integrating out this last Coulomb branch modulus removes any obstacle to taking R→∞
limit. As expected we obtain the usual ADS superpotential valid both in a theory on a

circle and in 4D limit superpotential:

W4D = (N − F )

(
Λ3N−F

detQQ

) 1
N−F

. (2.3)

3 Confined monopoles in SU(3) and the pre-ADS superpotential

We begin the analysis by considering an SU(3) SUSY gauge theory with a single flavor,

F = 1. This is the simplest interesting example where the superpotential does not arise

either from single monopole contributions of the theory on a circle (which would require

F = 0) or from the instanton contributions in 4D limit (which would require F = 2). The

discussion of this section is easily generalized to an SU(N) theory with one flavor, while

the generalization to an arbitrary number of flavors will be considered in section 5. We will

show that in the R3 × S1 theory with F = 1 two-monopole configurations will give rise to

the pre-ADS superpotential: a superpotential involving inverse powers of the fields but no

fractional powers. Since it is generated on regions of the Coulomb branch where also some

squark VEVs are turned on it will contain both the matter fields as well as the Coulomb

moduli.

For the SU(3) gauge group there are two fundamental monopoles described by the

Coulomb moduli Y1,2 as well as a KK monopole (see appendix D for a review). We first

3Here we follow the notation of [4], so η = exp(−8π2/g2) ∝ Λb.
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consider the pure Coulomb branch of the theory, with no squark VEVs turned on. We will

work in the fundamental Weyl chamber

φ = diag(v1, v2, v3) (3.1)

where v1 > v2 > v3 and v1 + v2 + v3 = 0. Further assuming that v1 > 0 > v2 we find the

standard one-instanton superpotential terms on the Coulomb branch

W = ηY1Y2 +
1

Y2
. (3.2)

The first term arises from the KK monopole while the second term is from the second

fundamental monopole. Both of these monopoles have two gaugino zero modes, and hence

contribute to the gaugino two point function. For the first fundamental monopole however

there are also zero modes corresponding to Q and Q in addition to the gaugino zero

modes, so this monopole contributes to a fermion four point function rather than a two

point function, and thus this monopole does not contribute to the superpotential.

Now consider two-monopole configurations on the mixed Coulomb-Higgs branch with

non-vanishing squark VEVs 〈Q〉, 〈Q〉. In particular we consider the following region:

φ = diag(v, 0,−v), 〈Q〉 =

 0

q

0

 , 〈Q̄〉 =

 0

q̄

0

 , |q| = |q̄| . (3.3)

While the adjoint VEV still breaks SU(3) to U(1)1×U(1)2, the squark VEVs further break

the gauge symmetry: U(1)1×U(1)2 → U(1)Q, with the unbroken charge generator given by

Q1+2 =
1

2
diag(1, 0,−1) , (3.4)

and the broken generator given by

X =
1

2
√

3
diag(1,−2, 1) . (3.5)

It’s the dynamics of this additional breaking that underlies the generation of the pre-ADS

superpotential. In 4D this breaking would confine [15–18] the first and second monopole

by a Nielsen-Olesen vortex [14] to form a composite monopole that is only charged under

the unbroken U(1)Q. After Wick rotations and compactification the two fundamental

monopoles are confined in 3D spacetime. This composite monopole potentially has 4

gaugino zero modes and 2 quark zero modes. However, as we shall see momentarily, 4

out of 6 zero modes are lifted by the squark VEVs and our composite monopole will

generate a new superpotential term. At the same time, the 1/Y2 contribution of the

second fundamental monopole disappears since, in the presence of the squark VEVs a

single confined, fundamental monopole has an infinite length flux tube attached to it, and

hence an infinite action.
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3.1 Zero mode structure of the composite monopole

The most important ingredient needed to explain the origin of the superpotential term is

an understanding of the zero mode structure of the composite monopole. As we saw above,

the classical two-monopole configuration potentially has 4 gaugino and 2 quark zero modes

while only configurations with two fermionic zero modes will contribute to the superpo-

tential. Thus naively the two-monopole configuration could not contribute. However, this

naive expectation is modified in the presence of squark VEVs in two important ways:

• in the presence of the squark VEVs the SUSY Yukawa coupling will lift two gaugino

and two quark zero modes;

• once the two monopoles are separated by some distance, ρ 6= 0, the remaining two

exact zero will be mixed with the quark field, and thus the exact zero mode will live

partly in the gauginos and partly in the quarks.

Let us discuss these statements in more detail. Irrespective of the presence of squark

VEVs there are always two supersymmetric zero modes which can be obtained by a SUSY

transformation on the monopole fields:

λ(0)α ∝ (σµν)βα Fµνεβ , (3.6)

where ε is the supersymmetry transformation parameter. These will be the gaugino com-

ponents of the exact zero modes, and as we will see shortly their nature depends on the sep-

aration, ρ, between the monopoles. First consider the ρ = 0 case when the two monopoles

are exactly on top of each other. In this case the two monopoles form a single monopole

charged under U(1)Q. For this single monopole we can use the Callias index theorem [3, 26]

to confirm that we have four gaugino and two fundamental fermionic zero modes. Carefully

analyzing how the gaugino zero modes transform under the full SU(3), we can explicitly

check that two of them are lifted in the presence of the squark VEVs due to the Yukawa

coupling √
2 g Q∗iλjiψj . (3.7)

Indeed, turning on the middle color component of the squark VEV, q2, we get mass terms

λj2ψj and ψ
i
λ2i which connect the two charged gaugino zero modes with the matter zero

modes. Thus for the ρ = 0 case in the presence of squark VEVs the two unlifted zero

modes purely live in the U(1)Q gauginos. The situation changes when ρ 6= 0: while four

out of six zero modes are still lifted by the squark VEVs, the nature of two remaining

zero modes is different. In this case, instead of describing a pure monopole in the U(1)Q
direction, we really need to think of it as a confined multi-monopole configuration. The

main new physical effect is that the true zero modes are given by a mixture of U(1)Q and

U(1)X gauginos. This is because when the monopoles are separated, with g|q| � 1/ρ,

there is a dipole field corresponding to the U(1)X charge (see appendix E for a detailed

discussion). Most importantly, the λ22 component of the gaugino zero mode will no longer

vanish. This means that the squark VEV 〈Q〉 = (0, q, 0) induces a non-vanishing mixing,

via (3.7), between the anti-chiral gaugino zero modes and (formerly non-zero mode) quarks.

– 6 –
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Figure 1. Sketch of the multi-monopole contribution to the superpotential for SU(3) with a single

flavor. The dark cylinder connecting the two monopoles represents the flux tube confining the two

fundamental monopoles.

Thus for ρ 6= 0 we find that the remaining unlifted zero mode has a small admixture of

the quark fields, and this admixture of the quark component in the exact zero mode will

be proportional to gq∗ρ. We see that this multi-monopole configuration has exactly 2 zero

modes which are partly contained in the quarks and partly in the gauginos. Hence they

can contribute to a superpotential term of the form 1/(Y1Y2QQ̄).

3.2 Small squark VEVs

Let us first consider the case where q, q � v. We will argue that in this case the superpo-

tential is given by

W = ηY1Y2 +
1

Y1Y2QQ
= ηY +

1

Y QQ
(3.8)

where Y = Y1Y2 is the globally defined Coulomb modulus. The first term is still the

contribution of the KK monopole. However the second term is the result of the first and

second BPS monopoles being confined to form a single composite monopole. As explained

above, naively the confined monopole has too many zero modes to be able to contribute to

the superpotential, but in the presence of the squark VEVs some of these zero modes are

actually lifted. In a diagrammatic language this would corresponding to the closing up of

the zero mode legs (“soaking up the zero modes” in the language of ADS). We illustrate

the closing up of the zero modes of the confined multi-monopole in figure 1. Note that

in the presence of squark VEVs the remaining true zero modes contain a mixture of the

anti-chiral gaugino and chiral matter fields where the mixing is proportional to gq∗ρ (see

the structure of the external fermion legs in figure 1).

The more precise statement is that in the presence of the squark VEVs the multi-

monopole configuration also contributes to the matter 2-point function, and the resulting

– 7 –
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contribution is holomorphic, hence corresponding to an effective superpotential term. The

precise form of the resulting contribution to the 2-point function will determine the exact

form of the superpotential. We will present a detailed analysis of the multi-monopole con-

tributions to the path integral evaluation of the two point correlators in the next section.

Here we will only use symmetry considerations to restrict the possible form of a superpo-

tential term. The SU(3) SUSY gauge theory with one flavor has three U(1) symmetries

(one of them is anomalous). We can assign charges to the Coulomb moduli Yi under these

symmetries, which match the charges of the zero modes for the corresponding monopole.

Since we are considering the confined multi-monopole, the proper Coulomb modulus here

will be Y = Y1Y2, which is automatically the globally defined modulus (for general values

of F and N this is only true when F = N − 2). The assignment of charges is given by

SU(3) U(1)A U(1)B U(1)R
Q 1 1 0

Q̄ 1 −1 0

Y = Y1Y2 1 −2 0 −2

(3.9)

We can see that the only superpotential term allowed by the symmetries is indeed given

by [4]

Wpre-ADS =
1

Y QQ̄
. (3.10)

Symmetries allow this term, we have outlined the dynamical mechanism for generating it via

confined multi-monopoles, and in the next section we will see that it is indeed generated

with a non-zero coefficient. While we will not directly calculate the overall coefficient,

consistency with known non-perturbative results requires it to be 1 for our specific case of

N = 3, F = 1. Adding on the ηY term from the KK monopole one can integrate out the

remaining Coulomb branch modulus Y and then take R → ∞ limit to find the expected

4D ADS superpotential [1]

W = 2

(
η

detQQ

) 1
2

= 2

(
Λ8

detQQ

) 1
2

. (3.11)

3.3 Large squark VEVs

Now let us consider the opposite case with large q, q � v. The calculation is further

simplified by taking q, q � 1/R. In this case the gauge group is broken in the 4D regime so

we first match the SU(3) gauge theory with one flavor onto the low-energy effective theory

with SU(2) and no flavors:

1

g2L3
=

2πR

g2L4(1/R)
= 2πR

[
1

g24(µ0)
+

bL
16π2

ln

(
1

R2QQ

)
+

b

16π2
ln

(
QQ

µ20

)]
(3.12)

4π

R g2L3
=

4π

R g23
+

(b− bL)

2
ln
(
R2QQ

)
. (3.13)

In terms of the strong coupling scale we have

Λb = Λ8 = Λ6
LQQ = ΛbLL QQ . (3.14)

– 8 –
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On R3 × S1 the superpotential of the pure SYM SU(2) is generated by contributions

of single fundamental and singe KK monopoles:

W = ηLYL +
1

YL
. (3.15)

Using (3.14) we find η = ηLQQR
2. Moreover, semiclassically the contribution of the KK

monopole is independent of the squark VEVs, ηLYL = ηY . We can now relate the Coulomb

branch moduli of low and high energy physics:

YL = Y QQR2 = Y1Y2QQR
2 . (3.16)

We conclude that the superpotential obtained in the large squark VEV regime agrees with

the superpotential of obtained in the small squark VEV regime.

4 Multi-monopole contributions to the path integral

In this section we will calculate contributions of two-monopole configurations to the su-

perpotential of SU(3) SUSY QCD with one flavor on R3 × S1 via the path integral. Our

results can be generalized to (F+1)-monopole calculations in theories with F flavors. These

calculations are analogous to the calculation of constrained instantons which generate a

superpotential in 4D theories with F = N − 1 flavors [1]. Indeed, N -monopole configura-

tions correspond to periodic instantons [27–29] of R3×S1 theories and turn into the usual

4D instantons in the large radius limit [5, 6]. Thus it is useful to first briefly review the

4D instanton calculation [1, 30] before attacking the case of confined multi-monopoles.

4.1 Review of the 4D instanton calculation for generating the ADS superpo-

tential for F = N − 1

In 4D N = 1 SU(N) SUSY QCD with F flavors there are 2N gaugino and 2F fundamental

fermion zero modes in the one-instanton background. In the presence of the most generic

squark VEVs all but two fermionic zero modes are lifted when F = N − 1. The remain-

ing two zero modes lead to a non-trivial instanton generated two-point chiral correlation

function. The existence of a two fermion chiral correlation function implies an effective

fermion mass and ADS superpotential in the low energy theory. The explicit evaluation

of the two point correlation function requires knowledge of several factors: the classical

action of the constrained instanton in the presence of squark VEVs; the contribution of

bosonic and fermionic zero modes to the path integral4 and the mixing between exact zero

modes with matter fermions. We will summarize the calculation of these factors below.

Up to a gauge transformation the gauge field of an instanton centered at the origin is

given by

Aaµ = 2η̄aµν
xν

x2 + ρ2
, (4.1)

4Due to supersymmetry contributions of non-zero modes in 4D cancel between bosons and fermions [31].

We should note that in 3D theories [32] as well as theories on R3 ×S1 [33] non-zero mode determinants do

not cancel. Nevertheless, non-zero mode determinants may be ignored because their contribution modifies

Kähler potential rather than superpotential [33].

– 9 –
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where ρ is the instanton size and ηaµν are the ’t Hooft symbols and the instanton is

embedded in the SU(2) subgroup generated by T a = τa, a = 1, 2, 3. In the presence of

squark VEVs only the zero size instanton extremizes the action, thus it is necessary to use

the constrained instanton formalism of ref. [1]. The squark profile in the fixed instanton

background is given by

Qjf = i
(x2)1/2

(x2 + ρ2)1/2
q δjf , Q

∗
jf = i

(x2)1/2

(x2 + ρ2)1/2
q∗ δjf , |q| = |q| . (4.2)

The classical action of this field configuration is

S(ρ) =
8π2

g2
+ 4π2ρ2|q|2 . (4.3)

The instanton has 4N bosonic zero modes. Of these, 4 correspond to spacetime trans-

lations of the instanton, 1 to dilatations and 4N − 5 modes correspond to global rotations

of the instanton in SU(N). Naively, the existence of zero modes leads to divergences in

the path integral. To obtain a physical result one must regulate the theory and integrate

over collective coordinates corresponding to the location and size of the instanton. After

calculating the corresponding Jacobian one finds that the measure of integration over the

bosonic collective coordinates is

dµB ∝
d4x0dρ

ρ5

(
ρµ0
g

)4N

, (4.4)

where µ0 is the regulator mass. Notice that this expression contains a factor of ρµ0/g for

each bosonic zero mode. The dependence on the regulator mass µ0 reflects the contributions

of the Pauli-Villars regulator fields (more specifically, the contributions of their lowest

eigenvalues) to the path integral, while the dependence on g arises from the Jacobian.

Originally ’t Hooft [34] determined the dependence of the measure on the instanton size ρ

by using dimensional analysis; however, this dependence can also be obtained by carefully

including the norm of the zero modes in the calculation of the Jacobian [35].

In the calculation of the fermionic contribution to the correlation function we must

remember that the non-trivial scalar profiles (4.2) perturb the fermionic zero modes. In

particular, all but two gaugino zero modes are lifted by the squark VEVs. Since supersym-

metry requires the existence of Yukawa couplings

LY =
√

2gλψq∗ +
√

2gλψq∗ + h.c. , (4.5)

each squark VEV q∗ or q∗ soaks up one gaugino and one quark zero mode (cf. the closed

fermion lines in figure 1). Thus in the presence of squark VEVs the lowest eigenvalues of

these fields in the instanton background are lifted to
√

2gq∗. Correspondingly, contributions

from the Pauli-Villars regulators to the path integral give a factor of µ−10 for each connected

pair of fermion zero modes. To construct the integration measure for fermionic zero modes

one must further include the contribution of the two surviving exact zero modes. This

contribution includes the Grassmannian differentials of the exact fermionic zero modes, dξ
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and dξ̄, and a factor of 1/µ0 arising from the corresponding regulator fields. The final

expression for the fermionic measure with F = N − 1 takes the form

dµF ∝ dξdξ̄
(
g2q∗q∗

µ20

)N−1
1

µ0
. (4.6)

The two exact zero modes are mostly gaugino zero modes (3.6), where, by supersym-

metry, the profile of the gaugino exactly follows the profile of the field strength. While

these components of the exact zero modes lead to a gaugino-gaugino correlation function,

it is of no interest in 4D due to the 1/x4 fall off of the zero modes. On the other hand,

analogous components of zero modes will be important to us later when studying theories

on a circle. In addition, the squark VEVs mix the superconformal gaugino zero modes with

anti-chiral quark (and anti-quark) fields which contribute another piece of the exact zero

mode. This can be seen from equations of motion for anti-chiral matter fermions which, to

leading order in gq∗ρ, take the form [1, 30]

/Dλ = 0 (4.7)

/D
†
ψ†[β]α =

√
2g Q∗λ0 (4.8)

/D
†
ψ
†[β]
α = −

√
2g Q

∗
λ0 . (4.9)

The solution of the first of these equations is given by (3.6). Using explicit solutions for

Q(x) and λ0(x) it is easy to see that the quark and anti-quark components of the exact zero

modes fall of as 1/x3 at large distance. In fact, an exact solution can be found by observing

that, by supersymmetry, the righthand-sides of (4.8) and (4.9) are related to the derivative

of the scalar profile [1, 30]. To leading order in gq∗ρ one finds that the component of the

zero mode, χ, is

χ[β]
α (x) ∝ gq∗/∂βα

(
(x− x0)2

(x− x0)2 + ρ2

)1/2

ξ ∝ gq∗ρ2S4(x− x0)ξ , (4.10)

where S4 is the 4D position space fermionic propagator. While the ρ dependence in this

expression is completely determined by squark profile, it is useful to interpret one factor of

ρ as part of the expansion parameter gq∗ρ, while the second factor of ρ is the consequence

of the requirement that the zero mode is normalized to 1.

After combining all the factors and performing the integral over Grassmannian vari-

ables one finds for two point correlation function

〈χ(x1)χ̄(x2)〉 ∝
∫
d4x0dρρ

4N−1µ
2N+1
0 (q∗q∗)N

g2N
S4(x1 − x0)S4(x2 − x0) exp

[
−8π2

g2
− 4π2ρ2|q|2

]
.

(4.11)

Integrating over the instanton size gives the effective fermion mass

mχ ∝
µ2N+1
0

(gq)2N
e−8π

2/g2 , (4.12)
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where g2 should be interpreted as the coupling renormalized at the cutoff µ0. Rewriting

this result in terms of the RG invariant scale

Λ2N+1 =
µ2N+1

g2N (µ)
exp

[
−8π2/g2(µ)

]
(4.13)

and recalling that the holomorphic mass term is given by the second derivative of the

superpotential one finds

WADS =
Λ2N+1

detQQ
. (4.14)

4.2 Multi-monopole contributions to the path integral

We are now ready to apply path integral techniques to the calculation of the correlation

functions in multi-monopole backgrounds on R3×S1. To evaluate this contribution, we will

consider a specific example, an SU(3) SUSY gauge theory with one flavor, and go through

the steps corresponding to those of the instanton calculation reviewed above. The case of

SU(N) with one flavor would be completely analogous. We will comment on the case with

general number of flavors at the end of this section. We will consider the region (3.3) of

the moduli space, where the two U(1)’s are broken to the diagonal subgroup, giving rise to

confinement of the two fundamental monopoles. While monopole confinement is an intrin-

sically non-perturbative effect, the semiclassical approximation presented here will provide

additional support for this effect. In addition to confining the monopoles, the squark VEVs

will lift some of the fermionic zero modes and partly rotate the remaining exact zero modes

into the quark fields, allowing the generation of a holomorphic superpotential term. In our

case the relevant multi-monopole configuration is a background containing two distinct

fundamental monopoles (of size 1/(gv)) separated by a distance ρ � 1/(gv). Thus the

effective size of the multi-monopole is ρ. Just as in the 4D instanton case, we will keep

the multi-monopole size fixed, integrating over it at the end of the calculation. Imposing

the constraint on the multi-monopole size allows us to turn on an asymptotic squark VEV.

The magnetic flux corresponding to the broken U(1)X is confined in a flux tube with a

width that is set by the inverse of the mass of the broken U(1)X gauge boson ∼ 1/(g|q|),
since by D-flatness |q| = |q|. As we will see the path integral is dominated by monopole

separations of order

ρ ∼ 1

R|q|2
, (4.15)

so in the regime of weak coupling, g � R|q|, we should consider the case when the distance

between the monopoles, ρ, is much smaller than the flux tube width 1/(g|q|). For small

enough values of |q|, ρ can still be large compared to the size of the individual monopoles,

1/(gv). Then, in the region where there is a significant magnitude for the broken gauge

field due to the two monopoles, the broken gauge field itself is approximated by a 3D dipole.

If the dipole is oriented along the z axis and centered around the point ~x0 then, since the

monopoles have opposite charges under U(1)X , we have

AXi(~x) ∝ r̂1

g
∣∣~x− ~x0 − 1

2ρẑ
∣∣ − r̂2

g
∣∣~x− ~x0 + 1

2ρẑ
∣∣ . (4.16)
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where r̂1 and r̂2 are the unit vectors pointing towards ~x from the position of the corre-

sponding monopole. The field is concentrated in the region (of size ρ) between the two

monopoles where

AXi ∝
2 ẑ

g |~x− ~x0|
, (4.17)

while at large distances it falls much more quickly:

|AXi| ∝
ρ

g |~x− ~x0|2
. (4.18)

This gauge field is independent of the compactified direction, and we will assume that we

are in a region of the mixed Coulomb branch where the squark VEVs do not lift the adjoint

scalar, A0, as in eq. (3.3). Then the contribution of the mass term in the Lagrangian to

the classical action is (also integrating over the compact direction)∫
d4x g2AµX(~x)AXµ(~x)Q†(~x)Q(~x) ∝ R

∫
|x|<ρ

d3x

(
1

g |~x|

)2

g2|q|2 ∝ Rρ|q|2 . (4.19)

This gives us the classical action of the two-monopole configuration in the presence of

squark VEVs:

S(ρ) =

∫
d4x|Fµν |2 + g2|Aµq|2 =

8π2Rv

g2
+ a|q|2ρR , (4.20)

where a is a numerical factor. The linear dependence of this action on ρ indicates that the

monopoles are confined. However, in an analogy with the constrained instanton calculation

of [1], we will allow for an arbitrary inter-monopole distance ρ and integrate over ρ at the

end of the calculation.

The two-monopole configuration has 8 bosonic zero modes. Of these, four zero modes

are collective coordinates that correspond to the location of the center of the two-monopole

configuration, xi, and its size ρ. The bosonic zero mode measure in the path integral is then

dµB ∝
d3x0dρ

ρ4

(
(ρR)1/2µ0

g

)8

. (4.21)

Just as in the 4D instanton case, each bosonic zero modes contributes a factor of µ0/g. A

new factor of
√
R enters through the normalization of the zero modes and is a consequence

of the fact that fields are independent of the compact dimension.

The contribution of the lifted fermionic zero modes (corresponding to the closed

fermion lines in figure 1) is identical to the 4D case (4.6):

dµF ∝ dξdξ̄
(
g2q∗ q∗

µ20

)
1

µ0
. (4.22)

Finally we need to discuss the structure of two exact zero modes. These are mostly

supersymmetric gaugino zero modes living in the unbroken U(1)Q. However, as explained

in section 3 and appendix E, for ρ 6= 0 the supersymmetric gaugino zero modes have a
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small admixture of U(1)X gauginos. The U(1)X component of gaugino zero modes is short

range (falling off as 1/x3), see (E.19) and at large distances from the monopoles, the zero

modes behave as the zero modes of a single composite monopole associated with U(1)Q

λ
(0)
Q (x− x0) ∝

ρ1/2

R1/2(x− x0)2
ξ ∝

√
ρ

R
S3(x− x0) ξ , (4.23)

where the factor
√
ρ/R arises due to the requirement that the zero mode is normalized

to 1.

Despite their short range behavior, the U(1)X components of the supersymmetric

gaugino zero modes have an important consequence: these anti-chiral modes mix with

chiral components of matter fermions. Indeed, just as in 4D the anti-chiral matter fields

satisfy (4.8). The right hand side of (4.8) is non-vanishing precisely due to the U(1)X
component of the gaugino zero modes. Moreover, the 1/x3 behavior of this term implies

that the quark and anti-quark components of the zero modes are long range

χ
(0)
X (x) ∝ gq∗ρ3/2

R1/2(x− x0)2
ξ ∝ gq∗ρ3/2

R1/2
S3(x− x0) ξ , (4.24)

where, just as in the 4D case the factor gq∗ρ is the expansion parameter and the additional

factor of ρ1/2 arises from the normalization of the zero mode.

We can now combine all the factors to calculate the gaugino-gaugino and quark-quark

correlation functions. For quarks we project the zero mode legs onto the massless matter

fermion in (4.24) and after integration over Grassmannian variables we find

〈χX(x)χX(y)〉 ∝ e−4π2vR/g2
(
R3µ50
g4

)
(q∗q∗)2

∫
d3x0dρρ

3 S3(x− x0)S3(y − x0) e−aR|q|
2ρ .

(4.25)

Integrating over the multi-monopole size ρ we find that the path integral is dominated by

ρ ∼ 1

R|q||q|
. (4.26)

Finally, setting the cutoff of the 3D theory at µ0 = 1/R we obtain

〈χX(x)χX(y)〉 ∝ e−8π2Rv/g2
∫
d3x0

S3(x− x0)S3(y − x0)
g4R6q2q2

. (4.27)

This corresponds to a fermion mass term that is a holomorphic function of q and q:

mχ ∝
(

1

g4R5

)
e−8π

2Rv/g2

q2 q2
. (4.28)

Since this mass term is holomorphic it should arise as the second derivative of the super-

potential

mχ =
∂2W

∂Q∂Q
, (4.29)
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from which we can identify the two-monopole contribution to the 3D superpotential

Wpre-ADS ∝
e−8π

2Rv/g2

R4QQ
∝ 1

Y1Y2QQ
, (4.30)

in agreement with (3.8).

For the gaugino-gaugino correlation function we project onto the zero mode compo-

nent (4.23) to find

〈λ(x)λ(y)〉 ∝ e−8π2vR/g2
∫
d3x0dρ

(
R4µ50q

∗q∗

g6

)
λ
(0)
Q (x)λ

(0)
Q (y)e−aR|q|

2ρ

∝ e−8π2vR/g2
∫
d3x0dρρ

(
R3µ50q

∗q∗

g6

)
S3(x− x0)S3(y − y0)e−aR|q|

2ρ

∝ e−8π2Rv/g2
∫
d3x0

S3(x− x0)S3(y − x0)
g6R4qq

.

(4.31)

The corresponding gaugino mass term is

mλ ∝
1

g6R3

e−8π
2Rv/g2

q q
≡ ∂2W

∂φ∂φ
, (4.32)

We conclude that both quark-quark and gaugino-gaugino correlation functions imply the

same superpotential (4.30).

The calculations of this section can be generalized to (F+1)-monopole configurations in

theories with F flavors. The only non-trivial step in such a generalization is the introduction

of the collective coordinates describing the multi-monopole configuration, one combination

of which will correspond to the size. While the size is easily seen to be the inter-monopole

distance in the two-monopole case, the relevant definition in the multi-monopole case is

more complicated.

5 Confined monopoles in SU(N)

In this section we generalize the discussion of the pre-ADS superpotential generated by

multi-monopoles to the general case of SU(N) with F flavors. In the absence of squark

VEVs we can take a generic VEV for φ

φ = diag(v1, . . . , vN ) (5.1)

and the gauge symmetry is broken to ΠN−1
i=1 U(1)i. Choosing for concreteness a region of

the fundamental Weyl chamber satisfying v1 > 0 > v2 > . . . > vN , one finds that single

monopole contributions to the superpotential are

W = ηΠiYi +

N−1∑
i=2

1

Yi
. (5.2)

Since quark zero modes are localized on the first fundamental monopole, its contribution

is missing from the superpotential. Next we turn on generic squark VEVs. To be able
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to do so we must set F diagonal elements of the adjoint VEV to zero — indeed, single

monopole effects push the theory precisely in this direction. As a result the squark VEVs

can appear (by a gauge choice) in colors 2 up to F + 1, and the gauge symmetry is broken

to ΠN−1
i=F+2 U(1)i. The squark VEVs confine the first F + 1 fundamental monopoles into

a composite which naively inherits 2(F + 1) gaugino and 2F quark zero modes of its

constituents. The Coulomb branch will now be described by the modulus corresponding to

the confined multi-monopole given by ΠF+1
i=1 Yi as well as the remaining Yi moduli (where

i > F + 1) that are not confined. The resulting table of symmetry charges for this general

case with maximal rank squark VEVs is given by

SU(N) SU(F ) SU(F ) U(1)A U(1)B U(1)R
Q 1 1 1 0

Q̄ 1 1 −1 0

ΠF+1
i=1 Yi 1 1 1 −2F 0 −2

YF+2 1 1 1 0 0 −2
...

...
...

...
...

...
...

YN−1 1 1 1 0 0 −2

(5.3)

The most general superpotential allowed by these symmetries is

Wpre-ADS = ηΠiYi +
1

detQQΠF+1
i=1 Yi

+

N−1∑
i=F+2

1

Yi
. (5.4)

The middle term is again to be interpreted as the contribution of the F + 1 confined

monopoles.5 It replaces the 1/Yi contributions of F + 1 single fundamental monopoles

whose individual actions become infinite in the presence of squark VEVs. In terms of zero

mode counting we can interpret the multi-monopole term in the following way: all but

two zero modes of the confined multi-monopole can be closed off with the insertion of F

squark and F antisquark VEVs to obtain (5.4). The first term is the effect of the KK

monopole, which breaks some of the global symmetries (the ones that are anomalous in

the 4D theory). The final sum consists of the usual AHW single monopole superpotential

terms induced on the Coulomb branch.

Integrating out the lifted Coulomb moduli YF+2, . . . , YN−1 we obtain the globally de-

fined 3D superpotential of [4]:

W3D = ηY + (N − F − 1)
1

(Y detQQ)
1

N−F−1

. (5.5)

Of course, this superpotential also lifts the global moduli Y and QQ̄. Integrating out the

monopole modulus first, we find the ADS superpotential of the theory on R3 × S1:

WADS = (N − F )

(
Λ3N−F

detQQ

) 1
N−F

, (5.6)

5For the case of F = N − 2, the semiclassical field configuration of the composite monopole is actually

known explicitly [36, 37].
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where we replaced η with Λ3N−F in anticipation of taking the infinite radius limit. Indeed

at this point such a limit is trivial. Thus we see that for the general case the origin of the

ADS superpotential can be traced back to an F + 1 multi-monopole contribution to the

superpotential in the theory on a circle. We expect that there should be an equivalent field

configuration contributing to the path integral for fully 4D theories as well. It would be

very interesting to explore the exact nature of that multi-monopole for the full theory.

Now let us consider the case with large squark VEVS: q, q > 1/R. In this case the

gauge group is broken in the 4D regime so we first match the SU(N) gauge theory with F

flavors onto the low-energy effective theory with SU(N −F ) and no flavors. The matching

in terms of the strong coupling scale is

Λb = Λ3N−F = Λ
3(N−F )
L (QQ)F = ΛbLL detQQ . (5.7)

On R3 × S1 the SU(N − F ) gauge theory with no flavors has N − F − 1 fundamental

monopoles, so the superpotential is

W = ηLYL +
N−1∑
j=F+1

1

YL,j
. (5.8)

Note that (5.7) implies ηL = ΛbLL = Λb/ detQQ̄. Then integrating out all the lifted YL,j
Coulomb branch directions we can easily check that (5.8) reproduces the ADS superpoten-

tial as expected.

Furthermore it is convenient to relabel the summation index by i = j +F , so that the

sum runs from F + 1 to N − 1. Then semiclassically (in terms of the relabelled indices and

SU(N) VEVs and the roots αi)

YL,i = e8π
2vR (h·αi)/g

2
L , i > F + 1 (5.9)

YL,F+1 = e8π
2vR(h·

∑F+1
i=1 αi)R/g2L , (5.10)

ηLYL = e−8π
2/g2Le8π

2vR(h·
∑N−1

i=1 αi)
/
g2L = e−8π

2/g2Le8π
2vRh·α0/g2L . (5.11)

so we see that identifying

YL = detQQΠiYi , YL,F+1 = detQQΠF+1
i=1 Yi , and ηL = η/ detQQ , (5.12)

gives the two superpotentials have the same dependence on the squark VEVs.

Finally let us consider the case of SU(N) with F = N − 1 flavors. In this case turning

on the maximal rank squark VEVs breaks all the U(1)’s. Thus the Coulomb branch is

completely lifted and low energy degrees of freedom do not contain the monopole modulus

Y . Despite the absence of a true monopole, there still exists a topologically non-trivial field

configuration which can be interpreted as an N -monopole configuration containing each

fundamental monopole as well as the KK monopole. Indeed, this N -monopole configuration

is a periodic instanton [27–29] of the theory on a circle and it turns into a conventional

instanton in the infinite radius limit. This N -monopole configuration contributes to the

path integral and the superpotential. Its contribution could be determined by using the
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symmetry arguments of this section or calculating multi-monopole contributions to the

path integral as in section 4. In either case one finds

W =
ηΠiYi

ΠiYi detQQ
=

η

detQQ
=

Λ3N−F

detQQ
, (5.13)

which is exactly the expected 4D instanton induced ADS superpotential term for F = N−1.

6 Conclusions

Examples of dynamically generated superpotential terms with a clear underlying dynami-

cal origin are few and far between. 4D instantons only contribute in special cases, while the

other known examples are usually obtained using indirect methods. In this paper we have

established that the confinement of monopoles is the underlying dynamical origin for the

generic ADS superpotential when the 4D theory is compactified on a circle. This happens

on the mixed Higgs-Coulomb branch, where turning on some of the squark VEVs breaks

one or more U(1) gauge groups, leading to the confinement of some of the fundamental

monopoles. At the same time most of the fermionic zero modes of the multi-monopole are

lifted. In particular, we have identified an F + 1 multi-monopole for the case of SU(N)

SUSY QCD (with four supercharges) and F flavors. In the presence of squark VEVs these

monopoles are confined, and exactly two fermionic zero modes remain unlifted (these modes

being partly in the quarks and partly in the gauginos). The resulting pre-ADS superpoten-

tial term is inversely proportional to the fields but no fractional powers appear. Since it is

a contribution on the mixed Higgs-Coulomb branch it depends both on the Coulomb and

the Higgs moduli. The globally defined 3D ADS superpotential can be obtained by inte-

grating out the lifted Coulomb moduli Yi, while the full 4D ADS superpotential is obtained

by also integrating out the global Coulomb modulus Y =
∏
i Yi. A symmetry argument

clearly shows that the pre-ADS superpotential can be generated. We have presented a

detailed accounting of the path integral calculation of the fermionic two-point functions in

the presence of the confined multi-monopole, argued that these indeed correspond to the

presence of the pre-ADS superpotential, and that they yield a more detailed dynamical

explanation of the origin of the well-known ADS superpotential.
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A Monopole solutions for SU(3)

Above we have presented our detailed dynamical explanation for the generation of the ADS

superpotential [1] in SU(3) theories due to multi-monopole dynamics. To remind the reader
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of the background we will review the details of SU(3) monopoles. The ’t Hooft-Polyakov

monopole solution [38, 39] gives a configuration with a magnetic charge in an SU(2) gauge

theory that is broken to U(1) by an adjoint VEV. In the absence of a scalar potential (a.k.a.

the BPS limit) the fields (in the hedgehog gauge) are given by [40]

φa = r̂avf(r, v) , Aai = εaij r̂ j
k(r, v)

g r
(A.1)

where f(r, v) and k(r, v) approach 1 as r →∞. The solutions are:

f(r, v) = coth(gvr)− 1

gvr
, (A.2)

k(r, v) = 1− gvr

sinh(gvr)
. (A.3)

Using this we can also easily find the monopole solutions in an SU(3) gauge group [36,

37]. By a gauge choice we will work in the fundamental Weyl chamber

φ = diag(v1, v2, v3) (A.4)

where v1 > v2 > v3 and v1 + v2 + v3 = 0. On the Coulomb branch with the squark VEVs

set to zero 〈Q〉 = 〈Q〉 = 0 the gauge symmetry is broken to U(1)1 ×U(1)2. The unbroken

U(1) charge generators are:

Q1 =
1

2
diag(1,−1, 0) (A.5)

Q2 =
1

2
diag(0, 1,−1), (A.6)

To find the monopole solutions we can split the VEV (A.4) into two pieces that corre-

spond to an adjoint and a singlet under the SU(2) subgroup in question. For example for

the SU(2) subgroup corresponding to Q1 we can write

φ = diag

(
v1 − v2

2
,−v1 − v2

2
, 0

)
+ diag

(
v1 + v2

2
,
v1 + v2

2
,−v1 − v2

)
≡ ṽ1 + w1 (A.7)

and similarly for Q2 yielding the corresponding ṽ2, w2 diagonal matrices. Then we can

write the two BPS monopole solutions as [36, 37]:

φi(r) = r̂aτai vf(r, v) + wi (A.8)

where, v = 2
√
v21 + v1v2 + v22, and τai are generators of the SU(2) with diagonal genera-

tor Qi = τ3i .

B Roots of SU(N)

In order to generalize our results to SU(N) let us review how the results previously obtained

can be written in terms of simple roots. First let us start from SU(3). On the Coulomb

branch with the squark VEVs set to zero 〈Q〉 = 〈Q〉 = 0 the gauge symmetry is broken to
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Figure 2. Simple roots, α1 and α2, of SU(3), and the lowest negative root α0.

U(1)1 × U(1)2, the unbroken U(1) charge generators can be chosen to correspond to the

two simple roots, αi, (see figure 2) which are, explicitly

α1 = (1, 0), α2 = (−1/2,
√

3/2) , (B.1)

and the two Cartan generators, Hi, of SU(3):

H1 = diag

(
1

2
,−1

2
, 0

)
, H2 = diag

(
1

2
√

3
,

1

2
√

3
,− 1√

3

)
. (B.2)

Each element of an SU(3) representation can be assigned a charge under the two U(1)’s.

For example, the fundamental representation has charges

 r

g

b

 ∼

(
1
2 ,

1
2
√
3

)
(
−1

2 ,
1

2
√
3

)
(

0,− 1√
3

)
 . (B.3)

Then we see that starting with the lowest state,

b+ α2 ∼ g , g + α1 ∼ r , (B.4)

we can work our way up through the entire representation using the roots. Thus the roots

represent the charges of the off-diagonal generators (the analogs of the W ’s) that can make

the transition from one element of a represent to another element (aka ladder operators).

We can assemble the Hi generators into a vector H and then write the unbroken U(1)

charge generators in the conventional basis associated with the two BPS monopoles as

Q1 =
1

2
diag(1,−1, 0) = α1 ·H ,

Q2 =
1

2
diag(0, 1,−1) = α2 ·H , (B.5)

Expressing the unbroken generators (B.5) in terms of the roots, allows us to immediately

read off how a given ’t Hooft-Polyakov monopole solution, which is associated with a

breaking of a particular SU(2) factor, is embedded into the full SU(N) gauge group [36, 37].
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Consider Q1 = α1 ·H, we can rewrite eq. (A.7) in terms of the Cartan elements as:

φ = v h ·H (B.6)

where

h =

(
v1 − v2
v

,

√
3(v1 + v2)

v

)
, v = 2

√
v21 + v1v2 + v22 . (B.7)

Note that h · h = 1. The condition that we are in the fundamental Weyl chamber (v1 >

v2 > v3) is

h · αi ≥ 0 . (B.8)

With this notation we see that the first term in (A.7) is just

ṽ1 = v (h · α1) (α1 ·H) = diag

(
v1 − v2

2
,−v1 − v2

2
, 0

)
(B.9)

The second term in (A.7) is just the remainder:

φ− ṽ1 = v(h− (h · α1)α1) ·H . (B.10)

Then we can write the BPS monopole solutions as

Φi = r̂aτav(h · αi)f(r, v(h · αi)) + v(h− (h · αi)αi) ·H (B.11)

where, τai are generators of the SU(2) associated with αi.

This embedding pattern can be repeated for any SU(N). For each simple root αj of the

SU(N) gauge group there is an SU(2) subgroup whose diagonal generator is αj ·H. With

a general gauge group the BPS monopoles corresponding to the root αi have a magnetic

charge vector6 [36, 37] αi
∗ = αi/αi · αi. For SU(N) this simplifies since αi

∗ = αi. The

KK monopole is associated with the lowest negative root, α0, and has magnetic charge

α∗0 = α0 = −
∑

j αj.

C The Coulomb branch in 3D N = 2 SUSY

N = 2 SUSY QCD in 3D can be obtained by a dimensional reduction of the corresponding

N = 1 4D theory (both are theories with four supercharges). After Wick rotation, com-

pactification of the time direction, and Wick rotation of a spatial direction, the 4D time

component of the gauge field turns into a scalar in the adjoint representation, A0 → φ,

and as a result the 3D theory acquires a Coulomb branch. On the Coulomb branch, the

photons of the unbroken U(1) gauge symmetries can be dualized to a scalar: εijkF
jk ∼ ∂iγ.

The effective low energy Lagrangian on the Coulomb branch can be written in terms of the

chiral superfield ϕ = φ+ iγ and its superpartners, where φ = A0. There are instantons on

the Coulomb branch of non-Abelian gauge theories in 3D and their field configurations can

6The jth component of the charge vector gives the charge associated with Qj = αj ·H.
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be obtained from a dimensional reduction of a 4D monopole with its worldline wrapped

around the compactified dimension (thus we usually refer to 3D instantons as monopoles).

The fundamental result on which both the current paper and much of the past work is

based was obtained by AHW [2]: they found that in N = 2 SUSY pure Yang-Mills in

3D the gaugino two point correlation function has non-trivial contribution in a wrapped

monopole background. In an SU(2) theory with no matter this results in a superpotential

W =
1

Y
, (C.1)

where Y is the monopole operator parameterizing the Coulomb branch

Y = exp
[
8π2(ϕ11 − ϕ22)R/g

2
]
. (C.2)

The above result can be easily generalized to theories with larger gauge symmetry.

For example, in SU(N) the classical Coulomb branch is N − 1 dimensional. At the generic

point on the classical Coulomb branch the SU(N) is broken to U(1)N−1 and the field ϕ

acquires a VEV 〈ϕii〉 = vi. It is convenient to choose the basis in which generators of these

U(1)’s are given by Tj = 1/2 diag(0, . . . , 1,−1, . . . , 0) = αj ·H, where 1 appears in the jth

slot along the diagonal. Each ordering of VEVs defines a so called Weyl chamber and it is

sufficient to consider dynamics in the fundamental Weyl chamber which is defined by

v1 > v2 > . . . > vN . (C.3)

One can construct a fundamental monopole associated with each of the N−1 U(1)’s by

embedding them into N−1 linearly independent but non-orthogonal SU(2) subgroups. This

can be easily done in terms of the simple roots of the initial gauge group (see appendix B).

We see that αj ·F np is the U(1) field strength associated with the Cartan generator αj ·H.

We can also write the general moduli in terms of the roots, if we promote h to be a complex

field:

Yj = e8π
2v(h·αj)R/g

2
, (C.4)

with

φ = vRe(h) ·H , v Im(h) ·αj = γj , (C.5)

where γj represents the dual photon [2]

∂mγj = εmnpαj · F np . (C.6)

This makes the fundamental Weyl chamber condition (C.3) equivalent to (B.8).

To determine the resulting superpotential terms for the fundamental monopoles one

needs to count fermion zero modes [41], which can be done using the appropriate index

theorems [26, 42, 43]. Under each SU(2), the gaugino decomposes into an SU(2) adjoint,

2(N − 2) doublets and (N − 2)2 − 1 singlets. Inside the fundamental Weyl chamber the

doublets obtain large real masses from the ϕ VEVS and do not have zero modes. Thus

each fundamental monopole has exactly two gaugino zero modes and there are N − 1

contributions to two point correlation function, resulting in a superpotential

W =

N−1∑
i=1

1

Yi
. (C.7)

– 22 –



J
H
E
P
0
5
(
2
0
1
8
)
1
8
8

D R3 vs. R3 × S1 and KK monopoles

It is important to distinguish between a truly 3D theory on R3 and a theory on R3 × S1

which exhibits 3D behavior at low energies. In the compactified theory on a circle of radius

R, the 3D gauge coupling is given in terms of the 4D holomorphic coupling by

1

g23
=

2πR

g24(1/R)
= 2πR

[
1

g24(µ0)
+

b

8π2
ln

(
1

Rµ0

)]
. (D.1)

The monopole configuration exists both in the theory on R3 and a theory on R3 × S1.

However, the latter theory has another property that is important for our discussion. The

Coulomb branch is periodic with a period 1/R, φ→ φ+ 1/R. To see this for SU(2), notice

that the gauge boson KK tower has masses given by n/R for integer values of n and when

φ acquires a VEV

〈φ〉 = diag(v,−v) (D.2)

the masses are shifted to n/R+v. As 〈φ〉 approaches 1/R a new KK state becomes massless

and the SU(2) symmetry is restored, implying that the Coulomb branch is periodic with a

period 1/R.

There is another important distinction between the theory on R3 and a theory on

R3×S1. The latter has an additional monopole configuration, called the KK monopole [25],

specific to the existence of the additional S1. The KK monopole can be obtained by twisting

the fundamental monopole configuration around the circle with a large anti-periodic gauge

transformation U = exp(−ix0 σ3/2R). While this large gauge transform U is anti-periodic,

the resulting gauge-transformed field configurations are periodic since the vector multiplet

transforms in the adjoint representation of SU(3). The action of the KK monopole is

given by SKK = (4π/R + φ11 − φ22)/g23. There are two gaugino zero modes in the KK-

monopole background as can be seen directly by performing the large gauge transformation

on the zero modes of the fundamental monopole [44]. Thus the chiral two-point gaugino

correlation function receives a non-trivial contribution in the KK monopole background,

resulting in a new superpotential term of the pure SU(2) super-Yang-Mills:

WKK = exp

(
− 4π

g23R
− 4π2(φ22 − φ11)R

g23

)
= ηY , (D.3)

where we defined η = exp
(
−4π/g23R

)
= exp

(
−8π2/g2

)
. The parameter η can be expressed

in terms of the dynamical scale of the 4d theory, η ∼ Λb, where b is a one-loop beta-function

coefficient.

E Multi-monopole zero modes

Here we analyze the structure of supersymmetric gaugino zero modes of the SU(3) theory

in the two-monopole background. When the squark VEVs are turned off the gaugino

zero modes can easily be obtained by performing a supersymmetry transformation on the

two-monopole field

λ0(x) ∝ σµνFµν ξ ∝ (Ba
i T

aσi +∇iφaT aσi)ξ = 2Ba
i T

aσiξ , (E.1)

– 23 –



J
H
E
P
0
5
(
2
0
1
8
)
1
8
8

where in the last equality we used the fact that Ba
i T

aσi = ∇iφaT aσi. Thus, to understand

the scaling of the gaugino zero modes we need to study the magnetic field of the two-

monopole configuration.

Consider the case of an SU(3) gauge group with two different monopoles centered

around the point ~x0, a distance ρ apart. We can denote the direction of the line between

them by the unit vector d̂. Then we have two vectors that point from each of the monopoles

to an arbitrary point ~r:

~r1 = ~r − ~x0 −
1

2
ρd̂ , ~r2 = ~r − ~x0 +

1

2
ρd̂ . (E.2)

We will also write ri = |~ri|. With this notation the approximate scalar solution [36] for

two widely separated monopoles is

φaT a = σ
[
~h− ~α1(~h · ~α1)− ~α2(~h · ~α2)

]
· ~H + r̂a1T

a
(1)(

~h · ~α1) f(r1,~h · ~α1) (E.3)

+r̂a2T
a
(2)(

~h · ~α2) f(r2,~h · ~α2) (E.4)

=
1

2
diag(v, 0,−v) +

~r1
a

r1
T a(1)v f(r1, v) +

~r2
a

r2
T a(2)(v) f(r2, v) . (E.5)

At the point ~r the local unbroken U(1)’s can be taken to be

~r1
a

r1
T a(1) = Q1 =

1

2
diag(1,−1, 0) ,

~r2
a

r2
T a(2) = Q2 =

1

2
diag(0, 1,−1) . (E.6)

Far from the monopoles the asymptotic scalar VEVs (3.3) split the SU(3) fundamental

into three singlets (r, g, b) and the SU(3) adjoint into two massless singlets λ3(1) and λ3(2)
(corresponding to the unbroken U(1) generators Q1 and Q2) and fields with masses of

order gv.

The magnetic field of the two-monopole solution is

Ba
i T

a = Diφ
aT a =

3∑
a=1

~r i1 ~r
a
1

r21
T a(1) v f

′(r1, v) +
3∑

a=1

~r i2 ~r
a
2

r22
T a(2) v f

′(r2, v)

+O
(
k′(r1, v)

g |~r1|

)
+O

(
k′(r2, v)

g |~r2|

)
. (E.7)

From (A.3) we have for large r

f ′(r, v) ∼ 1

gvr2
, (E.8)

k′(r, v) ∼ 2g2v2 r e−gvr . (E.9)

For distances |~r1|, |~r2| � 1/v we can neglect the exponentially suppressed terms. At a

given point in space there are two long range magnetic fields whose directions in SU(3)

group space are aligned with ~r1
a and ~r2

a. For simplicity we can choose our coordinates so

that we are along ~r = rẑ direction, and the origin is at ~x0, so at large distances we have

~r1 = rẑ − 1

2
ρd̂ = rẑ

(
1− ρ

2r
cos θ

)
− 1

2
ρ sin θ (x̂ cosφ+ ŷ sinφ) . (E.10)

|~r1| =
∣∣∣∣rẑ − 1

2
ρd̂

∣∣∣∣ ≈√r2 − rρ cos θ ≈ r
(

1− ρ

2r
cos θ

)
. (E.11)
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So the radial magnetic field is

Ba
3T

a ≈ Q1

g r2

(
1− ρ

r
cos θ

)
+
Q2

g r2

(
1 +

ρ

r
cos θ

)
, (E.12)

The local kinetic terms for the massless gauge fields are

2TrF aµνT
aF bµνT b = 2Tr(F(1)µνQ1 + F(2)µνQ2)(F

µν
(1)Q1 + Fµν(2)Q2) (E.13)

= F(1)µνF
µν
(1) + F(2)µνF

aµν
(2) − F(1)µνF

µν
(2) . (E.14)

Changing basis to the Q and X generators given in (3.4) and (3.5) we find:

AµQQ+AµXX = Aµ(1)Q1 +Aµ(2)Q2 (E.15)

AµQ =
1

2

(
Aµ(1) +Aµ(2)

)
, AµX =

√
3

2

(
Aµ(1) −A

µ
(2)

)
. (E.16)

Fµν(1) = FµνQ +
1√
3
FµνX , Fµν(2) = FµνQ −

1√
3
FµνX . (E.17)

So the kinetic term becomes

F(1)µνF
µν
(1) + F(2)µνF

aµν
(2) − F(1)µνF

µν
(2) = FAµνF

µν
A + FXµνF

µν
X . (E.18)

In the Q-X basis the magnetic field is

Ba
3T

a ≈ 1

g r2

(
1− ρ

r
cos θ

)(
Q+

1√
3
X

)
+

1

g r2

(
1 +

ρ

r
cos θ

)(
Q− 1√

3
X

)
≈ 2

Q

g r2
+

2√
3
ρ cos θ

X

g r3
. (E.19)

while at ~r = 0 we have

Ba
3T

a =
−1

2ρ cos θ

g
∣∣∣12ρd̂∣∣∣3

(
Q+

1√
3
X

)
+

1
2ρ cos θ

g
∣∣∣12ρd̂∣∣∣3

(
Q− 1√

3
X

)
(E.20)

=
−4 cos θ

gρ2

(
Q+

1√
3
X

)
r̂i +

4 cos θ

gρ2

(
Q− 1√

3
X

)
(E.21)

=
−8 cos θ

gρ2
1√
3
X . (E.22)

Thus the X gaugino component of the zero mode is much more localized that the A gaugino

component.
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