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quately described as it is affected by multiple inherent design features. To further improve
the predictive capability of nonlinear models, this article extends the prior work by includ-
ing two key dissipation effects within the (elastomeric) fluid compliance chambers. First,
the conventional fluid compliance element is replaced by an equivalent mechanical spring
representing the nonlinear elasticity of the pumping chambers. Fractional calculus based
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Dry friction and friction-type damping elements are added in parallel to the nonlinear spring elements
Hydraulic devices of pumping chambers. Second, improved quasi-linear models are proposed at four sinu-
Vibration control soidal excitation amplitudes, demonstrating amplitude sensitivity in model parameters.

Third, new nonlinear models are proposed and numerically simulated, predicting dynamic
stiffness magnitudes and loss angles at multiple excitation amplitudes. The sensitivity of
dynamic properties to the fractional and frictional damping parameters is qualitatively
evaluated. Finally, both quasi-linear and nonlinear models are experimentally validated
and are found to be superior to the ones in the literature.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In a recent paper, Fredette et al. [1] developed hydraulic bushing models with multiple nonlinear elements including a
measurement based compliance model for the elastomeric chambers. While the previous article offered new insight into
the physics of these devices, the results of [1] suggest that there is room for further improvement in dynamic stiffness pre-
dictions which are sensitive to the excitation amplitude. A major deficiency of prior work [1] has been a lack of damping
formulation for the compliance chambers (containing the hydraulic fluid) although the elastomeric material exhibits signif-
icant viscoelasticity which could influence the amplitude sensitive dynamics. Several investigators have studied the low-
frequency dynamics of hydraulic bushings, but the majority of the literature has employed the linear time-invariant system
principles [2-5], despite significant amplitude sensitivity observed in such devices [1,6-8]. A few researchers have proposed
amplitude sensitive models, using either a quasi-linear or nonlinear approach. For instance, Svensson and Hdkansson [6]
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developed a hydraulic bushing model which included a nonlinear elastic element for the rubber path, but used the linear
system principles for the fluid path. Chai et al. [7] proposed a model with a nonlinear fluid resistance term, which introduced
significant amplitude sensitivity. However, this study was limited to a laboratory device which replicated only certain
behavior of a production device. A recent experimental study by Fredette et al. 8] identified pressure dependent compliance
behavior in the fluid system of a production bushing, which led to improved models with both nonlinear fluid resistance and
chamber compliance elements [1,8], but provided limited analysis of the damping.

The major goal of this article is to significantly extend the prior formulation [1] by introducing fractional calculus based
viscoelasticity and additional nonlinear elements. New or improved models of this study are expected to enhance modeling
capabilities and to better understand the underlying physics of hydraulic bushings since they often have complex designs
with interacting features. In particular, the effect of frictionally and fractionally damped compliance chambers will be stud-
ied and a new technique for analyzing this potentially nonlinear feature will be proposed. The literature on this topic is lim-
ited even though the fractional calculus based constitutive laws have been shown to represent the viscoelasticity of many
elastomeric materials in a compact, accurate, and physically meaningful way [9-15]. Such viscoelastic behavior should be
present in many types of elastomeric isolators and hydraulic bushings. In particular, the approach of the current article is
inspired, in part, by the prior work of Sjoberg and Kari [11] who combined nonlinear elasticity, fractional viscoelasticity,
and smoothened dry friction damping to mimic the dynamic behavior of a carbon black filled rubber isolator. Instead, the
focus of this article will be on the damping effects of elastomeric materials on certain fluid system elements in a typical
hydraulic bushing that is commonly employed in vehicle suspension systems [16,17].

2. Problem formulation

The scope of this article is on a class of production grade hydraulic bushings that is schematically described via a baseline
lumped parameter system model in Fig. 1; it is equivalent to the formulation of [1]. Steady-state sinusoidal excitation and
transmitted force response are used to estimate the dynamic stiffness K in the example case used in [1]. Fig. 1 shows a sche-
matic of the component split into two parallel force transmission paths, where x(t) = (x,/2) sin(27Qt) is the inner sleeve’s
displacement excitation, with peak-to-peak amplitude x, and frequency Q with units of Hz. The forces transmitted to the
outer sleeve through the rubber and fluid paths are denoted F, and Fy, respectively. Here, p; and p, represent the dynamic
pressures in each pumping chamber, while g; denotes the volume flow rate in the inertial track. The fluid resistance and iner-
tance of the inertia track are given by R; and I;, and (; is the fluid compliance of the pumping fluid, uniform in both chambers.
The effective pumping area of the inner sleeve is given by A,. Finally, the rubber path stiffness is denoted k;, with rubber path
damping force defined in a function form as g,.(x,x). Typically, viscous damping would be employed, implying that
g.(x,X) = n,x, where 7, is the viscous damping coefficient.

The governing equations of the fluid system are given by the continuity equations for each pumping chamber,

Crpa(t) = Axk(t) — Ay (t) — q;(t), (1a)

Crpa(t) = —Ax(t) — Acya(t) + qi(t), (1b)
and the momentum equation for the inertial track,

liqi(t) = py(t) — pa(t) — Rig(©). (1o)

(a)

k, g, (x,x%)

|

Fig. 1. Schematic of the hydraulic bushing where the (a) fluid path and (b) rubber path subsystems correspond to the analysis of prior work [1]. Here, x(t) is
the inner sleeve’s displacement excitation while F, and F; are the forces transmitted to the outer sleeve through the rubber and fluid paths, respectively. The
pressures in each pumping chamber are denoted by p, and p,, and g; is the volume flow rate in the inertial track. The fluid resistance and inertance of the
inertia track are given by R; and I;, and C; is the combined fluid compliance of the pumping fluid and each chamber. A, is the effective pumping area of the
inner sleeve. The rubber path stiffness is denoted k., with damping force g, (x, X).
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The transmitted force through each path are calculated as,

Fr(t) = Ax(p: (t) — P, (1)), (2)

Fi(t) = k(1) + & (x(£), X(1), 3)

and the total transmitted force is, Fr(t) = F¢(t) + F.(t).

The focus of this article is on the quantification of damping effects that result from the deformation of the pumping cham-
ber walls. Accordingly, a more detailed system description is required in order to capture the chamber damping effects and
overcome the deficiencies of prior work [1]. A new computational strategy would also be necessary to incorporate fractional
and friction damping into the new model. The new configuration is proposed in Fig. 2, where all previously defined symbols
retain their meaning. Additionally, A. is the effective piston area of the pumping chamber, and the spring coefficient k. and
effective mass m. represent the elastic and inertial properties of the compliance chamber walls.

Two types of modeling methods are employed in this article to give robust treatment to the amplitude sensitivity which
may be observed in hydraulic bushings [1], and a description of each model used in this article is given in Table 1. Quasi-
linear models are linearized, transfer function type models which employ a set of empirical parameters that depend on
the excitation and are determined from dynamic measurements for a given excitation type and amplitude. The quasi-
linear model used in prior work is designated model I [1] while the new one (developed later in Section 4) is designated
IL. The strength of this approach is that good accuracy can be achieved from curve-fitting, but on the other hand experiments
must be conducted for every excitation type and amplitude of interest. Thus the quasi-linear model’s utility is limited, as it
may be used to assess whether the configuration and order of the model is suitable to capture the linearized dynamics of the
device. Further, nonlinear models contain nonlinear elements which may capture amplitude dependent system properties
directly in the time domain. The nonlinear model used in prior work is designated III [1] while variations of the new one
(developed later in Section 5) are designated IV-0, IV-1, and IV-2. These require a more precise quantitative understanding
of the underlying physics than do quasi-linear models, but predict amplitude sensitive dynamics with a single, unified set of
parameters. Dynamic predictions which agree with measurements over a range of excitation amplitudes and frequencies
suggest a refined characterization of the nonlinear dynamics of hydraulic bushings. Thus a comparative, critical assessment
of the competing models naturally flows from modeling insights and experimental validation, revealing the limitations of
prior models.

The particular objectives of this article are to (1) develop refined quasi-linear models which simulate the pumping cham-
ber damping effects leading to amplitude-dependent dynamic stiffness behavior, (2) Improve the nonlinear models of prior
paper [1] by including fractional calculus and dry-friction type damping elements in the pumping chambers, and (3) validate
the predictions of the new models against dynamic stiffness measurements while critically assessing the strengths and lim-
itations of each model. The significance of chamber damping is therefore demonstrated by the improved performance of

(6)

T —
x(t

) ﬂr’ar

Fig. 2. Schematic of new quasi-linear and nonlinear models of hydraulic bushing with parallel fluid path (a) and rubber path (b) subsystems. Here, A, is the
effective pumping area of the pumping chambers (assumed to be identical). The spring coefficient k. and effective mass m, represent the elastic and inertial
properties of the pumping chamber walls. The fractional damping coefficient and order of the pumping chamber are given by 7, o., respectively. The
friction coefficient is given by y. with smoothing parameter o.. The rubber path stiffness is denoted k., with fractional rubber damping g, (x,X) = #,D;" ().
For other symbols, refer to Fig. 1.
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Table 1
Description of quasi-linear (QL) and nonlinear (NL) models used in this article and comparison with prior work [1]. See Fig. 2 for the system description and
symbols.

Model Type From [1] New Description Rubber Path Pumping Chamber
(Fig. 1) (Fig. 2) &l(x.x) gy.y)

1 QL X Undamped pumping chambers X 0

1l QL x Fractionally damped pumping chamber n,D¥(x) nDHY)

111 NL X Nonlinear Ri(q) and C(p) elements and undamped pumping n,D¥(x) 0
chambers

V-0 NL x Undamped, equivalent mechanical spring in place of C(p) 1,D¥(x) 0

V-1 NL X Fractional and friction-type damping elements for pumping n,D¥(x) nD¥(y) +uc tanh
chamber with constant A, (ocy)

V-2 NL X Fractional and friction chamber damping elements with QL A, =  #,D¥(x) neDZ(y) +p tanh
AdXa) (ocy)

models II and IV over models I and III (which are both directly from [1]) respectively, when compared with measurements.
The scope of this article is limited to component-level, uniaxial, steady-state harmonic analysis of the example case up to a
50 Hz bandwidth with peak-to-peak displacement amplitudes of 0.1, 0.5, 1.0, and 2.0 mm.

3. Fractional damping formulation

Fractional dampers are governed by fractional calculus constitutive laws[9-15]. In particular, the damping force in each
fractional damper is given by F(t) = nD?z(t), where z(t) is the displacement of the element, « is the fractional order, and D? is
a differential operator defined,

Di() =4z () (4)

It should be noted that viscous damping is a special case of fractional damping where o = 1, and structural (material)
damping is the case when o = 0 and the coefficient # is purely imaginary. In general, the Caputo definition of a fractional
derivative is the Cauchy integral [9,10],

0
Di2(0) ~ s [ (-1 G )

which has the convenient Laplace transform, £{D?z(t)} = s*Z(s). This facilitates the frequency-domain quasi-linear models
(as developed in Section 4). For numerical integration, however, the Caputo definition is prohibitively cumbersome. There-
fore the numerical, time-domain analysis of Section 5 uses the Griinwald-Letnikov definition [9,10],

Dz( f) =limh" Z( ) 1)iz(t — jh), (6)

where h is the length of one time-step. This formulation is easily converted to a difference equation,

~h Z( )1 -1, @)

where square brackets denote indexing a discrete vector, the overbar denotes a history variable such that z[j] is a vector of
the history of z(t), sampled with a period of h, such that z[0] = z(t, — N;h) and Z[N;] = z(to). Eq. (7) accurately approximates
the fractional derivative of the signal at time to, given a sufficiently large number of history points, N;, and a sufficiently small
h.

4. Development of a quasi-linear model (II)

The quasi-linear model framework utilizes a linearized model with empirical parameters that discretely vary with exci-
tation amplitude, and the system description of Fig. 2 is employed to extend the prior work [1]. The fractional damping coef-
ficient and order of the pumping chamber are given by 7., o, respectively. The dry friction element is characterized by a
coefficient (x.) and smoothing parameter (a.); it will be discussed in more detail later since it is a nonlinear element and
cannot therefore be captured in the quasi-linear model.

The general governing equations of a refined (and yet a more general) fluid system of Fig. 2 are given by

Cfpl = Axx - chh -4, (83)
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Crp2 = —Ak — A2 + q;, (8b)
mcy1 = Acpy — keyy — 8V, 91), (8¢c)
Mcy2 = APy — ks — 8(¥2,¥2), (8d)
igi = py — p, — Rig;. (8e)

The chamber and rubber path damping forces in model II (corresponding to Fig. 2) are defined using the fractional
derivative,

gc(yy) = ’/’CD?Cyv (9)

gr(X,X) = i’[rD%Y(X). (]0)

Certain simplifications enhance the tractability of quasi-linear and nonlinear analyses of these equations. For instance, it
has been previously demonstrated that the compliance of the fluid medium is much smaller than the compliance associated
with the container [1,8]; this suggests that C; =~ 0 would be a reasonable assumption. Finally, since the upper frequency of
interest (50 Hz) is relatively low, the effect of chamber wall mass is negligible, m. ~ 0. The computational implications of this
assumption for nonlinear models will be discussed in Section 5.

The quasi-linear analysis is based on the linear-time-invariant system theory, so there is an inherent assumption that any
nonlinearity present is weak. Using linearized (constant) model parameters, the dynamic stiffness of model II is defined in
the Laplace domain as,

Ru(s) = "1 (5) = 5515) +24.5), (1)

where X(s) = £{x(t)}. The K(s) transfer function is derived,

B]0$2+“' + BgSer“E + BgSZ + B7S] tor BGS] e 4 355 + B4S%+% + B:,;SO(r + std( + B]

Ky(s) = . 12
n(s) $2 + By3S + Bi25% + By ’ (122)
where
(=2 g, 2k p, 2 (12b.c.d)
LLA? LLA? IA?
2n.1 Ri 2A%k, 2RA%N
By="10, Bs=" ke + A7), Bg=""Cxle 12e.f,
* I,'A? T ( r AZ 6 I,'A? ( g)
R 2A%k, A .
B; = L Bs = | k, + T , Bo= 2’75/??7 (12h,1,)
2k, 2n R;
Bio=19.,, Bi=—, Bp==—", Biz=-—. 12k,1,m,n
10=", Bn A2 12 A2 3= ( )

Thus model II has ten independent physical parameters: Ay, kc, 1., 0c, ks, 1,., 0, I;, R, and A, compared with only six phys-
ical parameters in model I. Also, the transfer function of model I was third-order system over second-order system with 6
coefficients, whereas Model II is has a fractional-order lead term in the numerator and 13 coefficients.

With a reasonable initial guess, the parameters are empirically optimized using measured dynamic stiffness spectra at
several excitation amplitudes [1] and a Levenberg-Marquardt least-squares curve fitting algorithm [17]. Model II's
parameters are tabulated and normalized by the baseline values (corresponding to a 0.1 mm excitation amplitude) in
Table 2 to evaluate each one’s amplitude sensitivity. It may be observed that three parameters (A, k., and #.) param-
eters are only found in the ratios given by k./A? or 5,./AZ. Specifying all three parameters is therefore redundant, and
thus k. and 7. are scaled such that A. remains constant for all amplitudes. Figs. 3 and 4 compare the calculated dynamic
stiffness spectra of model I [1] and model II at each amplitude with the measurement in terms of magnitude and phase,
respectively. To better assess models, Table 3 compares the root mean squared (RMS) error of the two quasi-linear mod-
els (I and II) defined as,

o= o\ i@~ () (13a)
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Table 2
Amplitude sensitivity in the parameters of quasi-linear model II. Each parameter is normalized by the baseline value at 0.1 mm peak-to-peak excitation. See
Figs. 1 and 2 for symbols.

Parameter Peak-to-peak amplitude (x,)
(baseline) 0.1 mm 0.5 mm 1.0 mm 2.0 mm

A, (m?) 1.00 0.99 1.02 1.19
ke (N/m) 1.00 1.04 0.94 0.64
Ne (Ns%/m) 1.00 0.36 0.44 0.42
Olc 1.00 1.38 1.28 1.15
kr (N/m) 1.00 1.00 0.98 0.95
7y (Ns®/m) 1.00 0.85 0.83 1.14
ol 1.00 0.80 0.67 0.52
I; (kg/m*) 1.00 0.95 0.88 0.65
R; (kg/m* s) 1.00 1.73 2.16 2.08
Ac (m?) 1.00 1.00 1.00 1.00

KVK,

>
=
X
0 ; ; ) ; 0 ; ; ; ;
0 10 20 30 40 50 0 10 20 30 40 50
Q(Hz) Q (Hz)
Fig. 3. Dynamic stiffness magnitudes showing improved accuracy of new quasi-linear models compared with measurement at (a) 0.1 mm, (b) 0.5 mm, (c)
1.0 mm, and (d) 2.0 mm peak-to-peak excitation amplitudes. Key: x — measurement; - model I [1]; --- - model II.
100 (b)
o0
3
= 50
0 , ¢

100} (¢) 1 10| (o)
£
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Fig. 4. Loss angles showing improved accuracy of new quasi-linear models compared with measurement at (a) 0.1 mm, (b) 0.5 mm, (c¢) 1.0 mm, and (d) 2.0
mm peak-to-peak excitation amplitudes. Key: x — measurement; - model I [1]; --- - model II.
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Table 3

Errors in the quasi-linear models with respect to measured dynamic stiffness spectra, revealing a substantial improvement in accuracy.
Model RMS error at peak-to-peak amplitude (x,)

0.1 mm 0.5 mm 1.0 mm 2.0 mm
Model I, from [1] 20.28% 18.29% 18.57% 20.45%
Model 11 3.77% 5.33% 4.67% 4.10%
. 1zka)k(mf (13b)
11— I<0 NQ Q I M ’

using model II as an example where Ky (Q) is the measured dynamic stiffness spectrum, N, is the number of frequencies
considered, and Kj is the static stiffness. Observe that model II achieves a dramatic improvement in accuracy over model
I [1], suggesting that the higher- and fractional-order dynamics which result from fractional calculus viscoelastic elements
are necessary (or at least appropriate) to describe the measured behavior.

Several insights emerge from the quasi-linear models when the amplitude dependence of each parameter is studied. First,
it is apparent that certain parameters are much more amplitude sensitive than others, indicating that not all nonlinearities in
the system are weak; for instance, R;, 7., and o, all change by a factor of two between the minimum and maximum ampli-
tudes while k,, #,, and A, vary by less than 20%. Second, certain parameters tend to interact in ways which obfuscates their
true nature from a curve-fitting analysis. For example, the denominator natural frequency is related to k./I;. While the curve-
fitting procedure is effective at locating the value of the k./I; ratio, it may tend to target either the k. or I; parameter to do so.
Though the inertance should be relatively insensitive to changes in amplitude [ 1], the quasi-linear model shows a decrease in
I; by 35%, suggesting that the numerical procedure may have arbitrarily reduced I; rather than increasing k.. The resulting
quasi-linear model parameters may not reflect the true amplitude sensitive physics in the device, but this would be difficult
to verify in the quasi-linear model framework. A time-domain approach which directly captures the nonlinearities in the
system is needed to better predict the amplitude sensitivity and thereby to understand the governing physics of this device.

5. Development of the nonlinear model (IV)
5.1. Nonlinear elements

Two nonlinear elements employed in model IV are inherited from the prior nonlinear model (III) [1]. The fluid resistance
element, R;(q;), assumes turbulent flow in the inertial track where g; captures the geometric and fluid properties of the iner-
tial track [1,7,18],

Ri(q) = &r e lail"". (14)

Here, & > 1is added as an empirical correction factor to account for well-known entrance/exit effects, bends in the chan-
nel, and other losses [19]. A nonlinear fluid compliance element has been used [1,8] to capture the elastic behavior of the
pumping chambers where the . coefficients are experimentally determined, C(p) = 38p? + 22D + Bci- While this formu-
lation proved useful in prior analysis, an equivalent, nonlinear, mechanical spring allows for a more flexible modeling
framework.

To establish equivalence with the compliance model, the nonlinear spring must satisfy the volume relation, from which
fluid compliance is derived:

Ve(p) = 563172 + ﬂcng + BerPe + Beo = Vo + Ay, (15)

where V is the volume of a single pumping chamber at rest with a static pressure, p,. Ignoring damping forces (as in the
quasi-static compliance experiment [8]), the elastic force is related to the chamber pressure as, F. = A.p,, leading to the fol-
lowing equation,

&F2+&

A3 Az F?+&F6+ﬁCO:VCO+ACyc' (16)

Ac

This equation must be solved for F.(y,) to characterize the spring, which yields three solutions. The real-valued solution is
given by the following, while the meaning of the complex-valued solutions is left for future study,

G -G
Gs(ye)

substituting the following G terms for brevity,

Fe(ye) = Gs(ve) ~ G, (17a)
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GO (ﬂCO ) c G] 7ﬂC1Ac G 7[)7C2A

17b,c,d
2ﬁc3 3fcs 3fcs (17b.c.d)
ﬁaﬂczAc o 3 A4
G3 65(3 G4( c) 760+G2 G3 Zﬂ 57 Yoo (17e7f)
2 2,3 ke

— (Ve + 6 - 6" - Gatw) (17g)

The nonlinear stiffness of the pumping chamber is given by,

Fee)

ke(y. 7 18
V) = m (18)

The above expression would not be used as such in the simulation since it contains a singularity at y. = 0. Rather, the
ke(yc)y. product is always used together, such that ke(y,)ycl,._o = Fc(0) = Acpo, Where py is the static pressure in the chambers
when the device is at rest. For this example case, p, equals one atmospheric plus a small positive pressure which results from
the assembly process. The equivalence may be mathematically verified at the element level by simply evaluating,

vC(F;\(f”) Vo —Ay=0. (19)

In addition, a nonlinear dry friction element is added to capture the amplitude dependence in chamber damping.
Although fractional calculus based damping elements capture viscoelastic effects, D¥(-) is a linear operator and therefore
will not exhibit amplitude dependence except by interacting with other, nonlinear elements. Many definitions exist for
“smoothened” or “soft” friction laws, which affect the dynamic properties [11]. For simplicity, a smoothened kinetic friction
element is employed in parallel with the fractional damping element,

g.(v,y) =n.Dfy + u tanh(o.y), (20)

where the friction coefficient is y, and the smoothing (regularizing) factor is o.. The friction element is nonlinear and
directly exhibits amplitude sensitive behavior as well as capturing hysteresis effects that are not described by the viscoelas-
tic terms. The unique effects of frictional and fractional damping elements will be discussed in Section 6.

5.2. Numerical simulation

Numerical solution of the nonlinear model IV is accomplished using a 4th order Runge-Kutta (RK4) numerical integration
algorithm [20]. This method solves the initial value problem,

2 =g(tn,zn), 2(to) = 2o, (21a,b)
using the following increments (kj,) at each time-step (n) where z is the state and h is the step time:

Kin = g(tn7zn)7 (223)
h h

Kan :g<tn +§7zn +§K1H>7 (22b)
h h

K3p = g( 2 yZn + 5 2 KZn) (22C)

Kan = &(tn + h,zy + hicsp), (22d)

tnp1 =ty + 0, (22e)

h
Zni1 =Zn + é (Kln + 2K2n + 2K3n + K4n)- (22f)

The time resolution is defined in terms of the desired number of points per period, N, and the excitation frequency, Q in
rad/s. Step time is calculated as,
2n

h= N (23)

Given the simplifying assumptions stated in Section 2, the governing equations may be rewritten as,
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. Ax—g;

b % | (24a)

. AX — q;

b % | (24b)
1 .

Pi = 7 (kely)y1 + 1D 1] + i tanh(acin)), e
C
1 .

P2 = - (ke02)3> + 1D ] + i tamh(cy)), e
C

. 1

qi = I (P1 — P2 — Ri(q1)qy)- 249

1

The state vector is {y;,¥,,q;}" since the pressures are not calculated from the differential equations and therefore do not
require integration.
The significance of the simplifying assumptions made in Section 4 (C; = 0, m. = 0) is highlighted by consideration of the

expanded state vector, which would become {y,,¥1,¥,,¥2,P1,P1,P5,P2,q;} without these assumptions. The reduction in
dimension from 9 to 3 speeds up the algorithm to some extent, but the principal benefit lies in the reduction from
second-order system type behavior to the first order type system dynamics. With nonzero chamber wall mass, oscillatory
behavior emerges in the y; and y, states which compromises the numerical stability of the simulation. This is due to numer-
ical “stiffness” [21,22] which arises (in this case) from a wide range of local eigenvalues of the Jacobian matrix. Here, the
eigenvalues are dependent on the selected value of non-zero m.. The numerical stiffness imposes severe restrictions on
the step size, which tends to interfere with an efficient computation of fractional derivatives as well as the overall calculation
time. Two options are available to overcome the numerical stability problem. The first option would be to add numerical
damping to stabilize the second-order systems across varying amplitudes and frequencies [23]. However, this option is
not utilized since such artificial damping parameters may greatly exceed the magnitude of physical damping, thus obscuring
the physical dissipation effects. The second option (that is employed in this article) would be to assume that m. = 0 and
Cr; = 0; this resolves the computational difficulties by avoiding the second-order system type dynamics in the pumping
chamber subsystems.

The fractional derivatives in equations (24c,d) are calculated using the Griinwald-Letnikov difference equation (7), which
has inherent history dependence. Efficiently incorporating this term into the 4th order Runge-Kutta algorithm is non-trivial,
and many canned numerical integration solvers would be unable to handle this feature [18]. Typically, implicit solvers are
used for stiff systems, but these may be incompatible with a direct application of the Griinwald-Letnikov derivative approx-
imation. With an explicit solver, a single step time can be used in both the integration and fractional derivative algorithms
and then the history of the variable can align with previous time-steps of the state vector. This obviates the need for inter-
polation or estimation of the history, which could substantially slow the algorithm. However, the 4th order Runge-Kutta
algorithm evaluates slopes at the midpoints between time-steps for the x;,, k3, terms and the endpoint for the x4, term,
requiring a unique specification of the state history for each chamber and for each x term,

Kin 0y = {y(t = Njh), -, y(t = jh),---,y(O)}, (252)

{J/(f —Nih) +y(t+h-N;h) — y(t—jh) +y(t+h—jh)  yt—h)+y(t)

- h
Kuy:y= 2 2 E) 2 7y(t)+§Kln}7 (25b)

Kan 1 § = {y(t — Njh) +§(t +h—N;h) . 7y(t —jh) +)2’(t + h —jh) . 7y(t - hz) +y(t) O +gK2n}7 (250)

Kan :5’ = {y(t+ h _Njh)v.}’(t"'h _]h) o ’y(t)y(t) +hK3"}v (25d)

to produce a uniformly sampled history ending at ¢, t, + h/2, or t, + h, respectively. Early in the simulation when t < Njh,
this required history extends before the initial condition. In this case, the state is assumed to have been at the initial con-
dition for all t < to. This would create a contradiction simulating a second order system in state space with nonzero initial
conditions since both y and y would be included in the state. However, the governing differential equations (24a,b,e) are first
order type (ignoring the fractional derivatives in equations (24c,d)). Therefore, the only notable result of this assumption is
an artificial transient effect near t, which is indistinguishable from the other transients generated by the initial condition.

Since a steady-state harmonic solution is desired, the system is integrated until consecutive periods are identical to
within a certain threshold. The amount of time required varies depending on the excitation frequency and initial condition.
For this example case, when two consecutive periods of Fr(t) compare with an RMS error of less than 0.1% of the peak-to-
peak amplitude, a discrete Fourier transform (DFT) of the final period is taken to find the amplitude and phase of the
response at the excitation frequency,
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Fig. 5. Predicted time domain response of forces from the nonlinear model IV-1 at 8 Hz with a 2.0 mm peak-to-peak amplitude. Here, F; exhibits a
significantly non-harmonic response, demonstrating the nonlinearity in the system. Key: === — F,; = « = — Fy; ====== - Fr(t) response; - Fr(t)
sinusoidal fit.

50
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Fig. 6. Effect of fractional damping coefficient (#.) on the dynamic stiffness magnitude at (a) 0.1 mm and (b) 2.0 mm peak-to-peak excitation and loss angle
at (c) 0.1 mm and (d) 2.0 mm peak-to-peak excitation. Key: ====== - baseline #; - N/2; === -21,.
~ Nh .
Fr(Q) = — Fr(nh)e™, (26)
Nh =1

where the overhead tilde represents a complex-valued quantity. Fig. 5 shows an example of the simulated response, com-
paring the DFT sinusoidal fit with the total response and illustrating the fluid and rubber constituents. The force transmitted
through the fluid path exhibits a relatively non-sinusoidal waveform, indicating relatively high harmonic distortion. How-
ever, the sinusoidal approximation of the total force (combining rubber and fluid constituents) achieves a high degree of
accuracy at all amplitudes and frequencies (suggesting a much lower harmonic distortion) and is used in the calculation
of the dynamic stiffness,

Fr@)

Kn(Q) = .
a

(27)

It would also be possible to analytically examine the transmitted force superharmonics, but this is left to future work
since the amplitudes are relatively small compared to the first harmonic.

6. Sensitivity of fractional and friction damping parameters
6.1. Fractional damping parameters
Two fractional damping parameters have been introduced to model IV (#,, o), and their effects on the dynamic prop-

erties of the system must be understood. To this end, a sensitivity study is carried out, showing the effect of each damp-
ing parameter on the dynamic stiffness at each excitation amplitude. Fig. 6 shows the effect of parameter #, on the
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Fig. 7. Effect of fractional damping order (o) on the dynamic stiffness magnitude at (a) 0.1 mm and (b) 2.0 mm peak-to-peak excitation and loss angle at (c)
0.1 mm and (d) 2.0 mm peak-to-peak excitation. Key: ====== - baseline o; -0 /2; === = 20.
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Fig. 8. Effect of dry friction coefficient (1.) on the dynamic stiffness magnitude at (a) 0.1 mm and (b) 2.0 mm peak-to-peak displacement and loss angle at
(c) 0.1 mm and (d) 2.0 mm peak-to-peak excitation. Key: ====== - baseline u,; - /2y === =20,

dynamic stiffness magnitude and loss angle for both a small and large amplitude excitation. Several insights emerge.
First, the effect is insensitive to excitation amplitude, as expected. For both cases, the loss angle is raised slightly and
the dynamic stiffness magnitude increases at frequencies beyond the peak frequency (when the loss angle is maximum).
Additionally, a stiffening effect is observed in both the magnitude and phase spectra due to the combined stiffness and
damping effects present in a fractional derivative based element. Fig. 7 shows the effect of c., which is also similar for
each amplitude. A factor of 2 decrease in o, produces a minimal effect at both amplitudes, while doubling the parameter
significantly flattens the peak in stiffness magnitude and substantially increases the loss angle at higher frequencies. This
effect is predictable given the nature of the fractional element and limiting cases, where the baseline value of «. = 0.3
represents light damping. As o — 0, the fractional damper becomes more like a spring element, but the coefficient 7, is
much smaller than the elastic spring coefficient k., so any resulting effect is minimal. On the other hand, the limiting
case as o — 1 is a purely dissipative viscous damper (physically distinct from the elastic element) and thus produces
a more significantly different effect.
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Fig. 9. Effect of friction smoothing coefficient (¢.) on the dynamic stiffness magnitude at (a) 0.1 mm and (b) 2.0 mm peak-to-peak excitation and loss angle
at (c) 0.1 mm and (d) 2.0 mm peak-to-peak excitation. Key: ====== - baseline o; -0./10; === -10u,.

g,0) (N)

Fig. 10. Predicted dissipation force-displacement (dynamic hysteresis type) curves of the chamber given by, g,(y) at (a) 0.1 mm and (b) 1.0 mm peak-to-
peak displacement excitation. Key: - Q=8Hz; =====- -Q2=16Hz; ---- Q=32Hz

6.2. Friction damping parameters

The sensitivity of the two dry friction parameters is also of interest, particularly since the behavior of a nonlinear element
may be less intuitive than with the linear fractional dampers. Fig. 8 displays the effect of increasing or decreasing p, by a
factor of 2. The plots demonstrate substantial amplitude dependence since the 2.0 mm simulation shows virtually no sen-
sitivity to the y, parameter, while the 0.1 mm dynamic stiffness magnitude is strongly affected near its peak in the spectrum.
Similarly, altering the ¢, parameter by a factor of 10 only affects the low amplitude results to any significant degree, as seen
in Fig. 9. Here, the peaks in dynamic stiffness magnitude and loss angle spectra decrease with a higher value of o, but the
loss angle increases substantially at frequencies beyond the peak frequency. This behavior results directly from the local
amplitude sensitivity of the dry friction element. In other words, the particular behavior which exists at amplitudes near
a certain operating point is not representative of the global behavior at all amplitudes. This is illustrated in Fig. 10, which
presents a force displacement curve across the chamber damping elements at three frequencies and two amplitudes. It is
clear that the friction element induces substantially different behavior at alternate excitation amplitudes.
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Fig. 11. Dynamic stiffness magnitude of nonlinear models Il and IV-0 compared with measurement at (a) 0.1 mm, (b) 0.5 mm, (c¢) 1.0 mm, and (d) 2.0 mm
peak-to-peak excitation amplitude. Model IV-0 matches model III, verifying the equivalent nonlinear spring element. Key: x — measurement; - model
Il [1]; - - - - model IV-0.

¢ (deg)

¢ (deg)

2%

0 10 20 30 40 50 0 10 20 30 40 50
Q(Hz) Q(Hz)

Fig. 12. Loss angle of nonlinear models IIl and IV-0 compared with measurement at (a) 0.1 mm, (b) 0.5 mm, (c) 1.0 mm, and (d) 2.0 mm peak-to-peak
excitation amplitude. Model IV-0 matches model II, verifying the equivalent nonlinear spring element. Key: x - measurement; -model Il [1]; ===~
model IV-0.

7. Experimental validation and computational verification of new nonlinear models

Model 1V is verified (as model IV-0) by using the same parameters as model III [1], so the only differences would be in the
integration algorithms used. Figs. 11 and 12 compare the model IV-0 dynamic stiffness spectra with the spectra of model III
given previously [1] and the measurement, showing virtually complete agreement, as expected. Two minor discrepancies
justify some discussion. First, the loss angle spectra near the peaks show a small discrepancy between the two nonlinear
models. This is due to the fact that a different phase estimation algorithm was employed in model IV (DFT) vs. model III (least
squares regression). The new DFT algorithm is more precise, whereas the resolution of the regression method was directly
dependent on N,. Second, small peaks exist in the loss angle spectra at higher frequencies, particularly at the 0.1 mm ampli-
tude. These are numerical artifacts of the integration algorithm and the errors may be reduced by enhanced resolution but at
the cost of increased computational time. For most practical purposes these errors may simply be ignored. The new model
has more of these erroneous points than the former since the 4th order Runge-Kutta algorithm uses a fixed step whereas the
previous method allowed for an adaptive step size [1], and thus would require lower resolution.

Having successfully reproduced the results of 1], a new parameter set can be employed with model IV-1 to improve its
predictive accuracy compared with measured dynamic stiffness spectra. Figs. 13 and 14 show the resulting dynamic stiffness
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Fig. 13. Dynamic stiffness magnitude of nonlinear models at (a) 0.1 mm, (b) 0.5 mm, (¢) 1.0 mm, and (d) 2.0 mm peak-to-peak excitation amplitude. Model
IV-1 shows improved accuracy compared with model III indicating the importance of chamber damping in predictions of dynamic amplitude sensitivity.
— model Il [1]; - -- - model IV-1.
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Fig. 14. Loss angle of nonlinear models at (a) 0.1 mm, (b) 0.5 mm, (¢) 1.0 mm, and (d) 2.0 mm peak-to-peak excitation amplitude. Model IV-1 shows
improved accuracy compared with model Il indicating the importance of chamber damping in predictions of dynamic amplitude sensitivity. Key: x —
measurement; - model Il [1]; = -- - model IV-1.

magnitude and loss angle with nonzero fractional and friction damping in the pumping chambers. Observe that model V-1
achieves improved accuracy over model III at all amplitudes in terms of both magnitude and phase. This demonstrates that
the inclusion of compliance chamber damping terms provides necessary dynamic interaction(s) with the other nonlinear
features to accurately predict the bushing’s response over a range of excitation amplitudes. Additional insights are obtained
from a careful examination of the magnitude spectra across the range of amplitudes. In particular, model IV-1 tends to

under-predict |Kyy| at the lower excitation amplitudes, and over-predict it at the higher ones, balancing with an excellent
prediction near 1.0 mm. Since the over/under-prediction vs. amplitude relationship appears nearly linear, it would suggest
that at least one amplitude-dependent parameter is being linearized in model IV.

It has been previously suggested [1,8] that a nonlinear characterization of pumping area might improve model accuracy.
Therefore, a quasi-linear A,(x,) parameter is numerically introduced to conceptually demonstrate the potential effectiveness
of model IV with limited further refinement. Figs. 15 and 16 depict the resulting stiffness magnitude and phase spectra,
showing excellent agreement at all amplitudes. Table 4 compares the RMS error of each nonlinear model, showing a general
improvement over model Il and exceptional accuracy with model IV-2, particularly at the higher amplitudes where the error
is reduced by over half. This suggests a clear need to characterize the physical (and complicated) nature of A,(x) in future
studies.
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Fig. 15. Dynamic stiffness magnitude of nonlinear models with quasi-linear Ay(x,) at (a) 0.1 mm, (b) 0.5 mm, (¢) 1.0 mm, and (d) 2.0 mm peak-to-peak
excitation amplitude. Model V-2 achieves a substantial improvement in accuracy over model IIl when compared with the measurement, suggesting that
the amplitude sensitivity of the A, parameter is also significant to the nonlinear dynamics. Key: x — measurement; - model Il [1]; = = = - model IV-2.
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Fig. 16. Loss angle of nonlinear models with quasi-linear A,(x,) at (a) 0.1 mm, (b) 0.5 mm, (c) 1.0 mm, and (d) 2.0 mm peak-to-peak excitation amplitude.
Model IV-2 achieves a substantial improvement in accuracy over model III when compared with the measurement, suggesting that the amplitude
sensitivity of the A, parameter is also significant to the nonlinear dynamics. Key: x - measurement; - model IIl [1]; = - - - model IV-2.

Table 4
Error of the new nonlinear models with respect to measured dynamic stiffness spectra. Each new model (IV-1 or IV-2) achieves a substantial improvement.
Model RMS error at peak-to-peak amplitude (x,)
0.1 mm 0.5 mm 1.0 mm 2.0 mm
Model III, from [1] 49.28% 28.31% 19.16% 12.92%
Model IV-1 28.94% 15.86% 7.99% 10.59%
Model IV-2 21.84% 13.75% 7.99% 6.10%

8. Conclusion

This article significantly extends the prior article [ 1] by incorporating new damping elements in amplitude sensitive, non-
linear hydraulic bushing models under steady state harmonic excitation up to 50 Hz between 0.1 and 2.0 mm peak-to-peak
amplitudes. Fractional calculus viscoelastic elements as well as smoothened dry friction dampers have been introduced to
the fluid pumping chambers; new models capture unique dynamic behavior which is beyond the nonlinear dissipative



144 L. Fredette, R. Singh/Mechanical Systems and Signal Processing 112 (2018) 129-146

elements used in prior models [1,7,8]. Careful assessments of new or improved empirical quasi-linear and analytical nonlin-
ear models reveal that the fractional calculus viscoelasticity contributes a necessary, or at least appropriate, influence on the
linearized and amplitude sensitive dynamics, respectively. In particular, the fractional order transfer functions of model II
reduce the RMS error of model I by 77%, averaged across all amplitudes. Nonlinear model IV-1 reduces the RMS error of
model III by 40%, demonstrating not only significant improvement, but superior predictive performance than even a
curve-fit of measured data under the formulation of prior work [1].

Overall, this article identifies new, significant, amplitude sensitive damping elements in a typical hydraulic bushing and
proposes an analytical technique (based on fractional calculus) to accurately simulate its dynamic behavior. In particular,
this article offers three distinct contributions to the state of the literature. First, improved quasi-linear models which include
fractionally damped pumping chambers substantially reduce the RMS error in dynamic stiffness at all amplitudes compared
with the prior work [1], suggesting that proposed model features are indeed relevant in terms of linearized system dynamics.
Second, new nonlinear models exhibit accurate amplitude sensitive behavior which matches very well with dynamic stiff-
ness measurements at multiple excitation amplitudes, suggesting a reasonable and nuanced characterization of the physics.
Third, experimental validation of both quasi-linear and nonlinear models at several amplitudes lends credence to physical
insights derived from these models, such as the observed interactions between the new damping elements and other non-
linear elements in the system or the need to characterize the nonlinear nature of the A, parameter. The proposed models
could be extended to other hydraulic devices [24].

The scope of this article has been limited to uniaxial, steady-state harmonic excitation up to 50 Hz with 0.1, 0.5, 1.0, and
2.0 mm peak-to-peak excitation amplitudes. Physical effects not included in the new models (II, IV) may become dominant
in other loading directions, or beyond the 2.0 mm amplitude, or at a higher frequency range. For example, a nonlinear stiff-
ness element (stopper) would engage at very high amplitudes, altering the dynamic properties substantially. Additionally,
internal resonances of both the rubber material and fluid system would be observed at very high frequencies (say around
1 kHz) [12,13], and thus the lumped parameter modeling framework [1-8] would be inadequate. Finally, this article suggests
the need for improved characterization of pumping area, (Ay) as it indeed exhibits amplitude sensitivity. A new experimental
study (perhaps similar to the fluid compliance experiment of [8]) would be needed to better characterize the nonlinear
behavior of Ay(x, p).
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Appendix A. List of symbols

effective pumping area (m?)
transfer function coefficient
fluid compliance (m®/N)
derivative operator

force (N)

elastic model parameter
damping forcing function (N-s/m)
time step (s)

fluid inertance (N-s?/m®)
fractional derivative history term index
dynamic stiffness (N/m)
elastic spring coefficient (N/m)
Laplace transform

effective mass (kg)

number of terms

time step index

pressure (Pa)

volume flow rate (m?/s)

fluid resistance (N-s/m®)
Laplace domain variable (1/s)
time (s)
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1% volume (m?)
X displacement of inner sleeve in the Laplace domain (m)
X displacement of inner sleeve in the time domain (m)
y effective displacement of pumping chamber wall (m)
Z arbitrary displacement in Laplace domain (m)
z arbitrary displacement in time domain (m)
o fractional derivative order
B model parameter
r the gamma function
€ root mean squared error
n fractional/viscous damping coefficient
K Runge-Kutta increment
u friction coefficient (N)
13 empirical correction factor
g smoothing factor (1/s)
T variable of integration (s)
13 loss angle (rad)
Q excitation frequency (rad/s)
Subscripts
0 initial or static value
1,2 pumping chambers 1 and 2
a amplitude (peak-to-peak)
c compliance chamber
f fluid path
i inertia track
M measured
r rubber path
T total transmitted force
Superscripts
- history
~ complex-valued variable
Abbreviations
DFT discrete Fourier transform
NL nonlinear
RMS root mean squared
QL quasi-linear
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