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We find the conditions for the existence of fermionic zero modes of the fundamental representation in the
background of a Kaluza-Klein (KK) monopole. We show that while there is no zero mode without a real
mass, a normalizable zero mode appears once the real mass is sufficiently large. This provides an elegant
explanation for the known decoupling of KK monopole effects in supersymmetric theories when a large
real mass term is added. We also present an application where the correct counting of KK zero modes plays
an essential role in understanding the nonperturbative effects determining the low-energy dynamics.
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Introduction.—Magnetic monopoles can have important
dynamical and phenomenological consequences under a
wide variety of circumstances. They can appear as massive
extended objects in grand unified theories (GUTs), their
existence can explain charge quantization, or they can be
responsible for nonperturbative effects in strongly coupled
gauge theories. Most of the recent advances in understand-
ing the dynamics of monopoles arose in supersymmetric
gauge theories, where monopoles can become light under
controlled circumstances, as for example in the famous
Seiberg-Witten solution to A" = 2 SUSY gauge theories [1].
Monopoles can arise as static 4D objects, but if the
dimension along their worldline is compactified, then the
monopoles play the role of instantons in the resulting 3D
theory. These so-called monopole-instantons are essential
for understanding the dynamics of 3D SUSY gauge theories,
as well as theories on R3 x S!, which can interpolate
between the 4D and the 3D theories [2—7]. In fact, many
of the nonperturbative effects in the 4D SUSY gauge
theories can be best understood by considering the theory
on the circle, and eventually taking the infinitely large radius
limit. (Monopole condensation can be used to break super-
symmetry [8], while monopole contributions can sometimes
be under control even in non-SUSY theories when one
introduces a center-stabilizing double-trace deformation or
boundary conditions [9]. An underlying reason for the
calculability of monopole operators in non-SUSY theories
is explored in Ref. [10].) The reason for this is that the
dynamics of the monopole-instantons can be studied
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systematically, and various dynamical effects of the 4D
theory [such as gaugino condensation or the general
Affleck-Dine-Seiberg (ADS) superpotential [11]] can be
understood in terms of monopole [3,12] and multimonopole
[13] effects in the compactified theory. The essential
property of monopoles that largely determines the structure
of the induced superpotential terms is the number of
fermionic zero modes in a given monopole background.
The Callias index theorem [14,15] specifies the number of
fermionic zero modes in different gauge group representa-
tions for a given monopole background. However, for the
compactified theory there is a twisted embedding of the
monopole solution called the Kaluza-Klein (KK) monopole.
This KK monopole is obtained by performing an antiperi-
odic gauge transformation along the compactified circle.
The effects of the KK monopole are crucial for obtaining the
correct interpolation between the 4D and 3D theories. Thus,
it is essential to understand how the number of fermionic
zero modes of the KK monopole can change. The goal of this
paper is to give a simple intuitive accounting for fermion
zero modes in a KK monopole background. KK monopoles
were first introduced by Lee and Yi [16], though their
contribution to the superpotential was anticipated by Seiberg
and Witten [2]. Using the Nahm construction, KK monopole
configurations were found explicitly in Refs. [17,18].
Aharony et al. [3] already contains a brief comment on
the number of fermionic zero modes. The number of
fermionic zero modes was also inferred in Ref. [15], using
the fact that all the independent monopoles together make up
a 4D instanton in the large radius limit [17]. The analogs of
the KK monopoles for finite temperature field theories were
introduced in Ref. [19], while an analysis of the zero modes
of the finite temperature version was presented in Ref. [20].
Here we give a detailed explanation of why a fermion in the
fundamental representation has a zero mode in a KK
monopole background only when the real mass m satisfies
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|m| > (v/2), where v is the asymptotic adjoint scalar
vacuum expectation value (VEV) of the monopole back-
ground. This is the exact opposite of the condition for the
existence of a zero mode in the ordinary monopole back-
ground: |m| < (v/2). Onthe other hand, the condition for the
existence of an adjoint fermion (gaugino) zero mode is the
same for both the ordinary monopole and the KK monopole.
The root cause for the unusual behavior of the fundamental
zero modes is the fact that the fundamental carries a single
gauge index, and hence the usual zero mode would become
antiperiodic under the large gauge transformation that
connects the KK monopole to the ordinary monopole.
The true KK zero mode originates in a configuration that
is antiperiodic around the circle before the gauge trans-
formation is performed. Since the adjoint carries two
indices, its zero mode is periodic in either case, so there
is no difference in the conditions for gaugino zero modes.
Our results provide an intuitive explanation of KK monop-
ole decoupling in the limit of a large real mass: for a
sufficiently large real mass the KK monopole acquires
additional fundamental fermion zero modes, and as a result
the KK monopole cannot correspond to a superpoten-
tial term.

The paper is organized as follows: First, we briefly
review the construction of the KK monopole solution,
and then remind the reader of the form of the fermionic
zero modes in ordinary monopole backgrounds. Rather
than relying on index theorems [14,15], we analyze the
properties of the solutions of the Dirac equation in the
monopole background in the manner of Jackiw and
Rebbi [21], while allowing for a real mass term. Next,
we present our main result: the condition for the
existence of fermionic zero modes in the fundamental
representation in the KK monopole background. We
apply our result to explain the decoupling of the effects
of the KK monopole in N =1 SUSY (four super-
charges) theories on R* x S'. Finally, we show a neat
example based on the SU(2) x SU(2) theory with a
bifundamental, where the interplay between the funda-
mental fermion zero modes of the KK monopole and the
ordinary monopoles exactly reproduces the answers
expected from the 4D analysis of Ref. [22].

BPS vs KK monopoles.—The fundamental BPS monop-
ole is nothing but the usual 't Hooft—Polyakov monopole of
the Georgi-Glashow model. For simplicity, we will only
consider the SU(2) case, but all results can be readily
generalized to SU(N) by the embedding of SU(2) sub-
groups. Since we have the application to SUSY gauge
theories in mind, we will use the holomorphic normaliza-
tion of the gauge fields (where the gauge coupling g
appears only in the gauge kinetic terms). The explicit
expression of the monopole background is

A4(X) = ¢ 56"@

ija o

¢ (X) = vx%h(r), (1)

where v is the asymptotic adjoint scalar VEV, r = |X|, and
(since there is no scalar potential) the functions h, f are
f(r) = (1 ={(vr)/[sinh(vr)]}), h(r)=[coth(vr)—(1/vr)],
where both f, h —» 1 for r - co. In the compactified
Euclidean theory, the scalar ¢ can be thought of as the
fourth component of the gauge field A4 = ¢. In the
following, we use o' to denote the Pauli matrices.
The construction of the KK monopole on the interval
0 < x4 < 27R requires three steps [17]. First, one replaces
the asymptotic adjoint VEV v with v = 1/R — v. Then,
one performs a large gauge transformation ~e =%/ (@R’
which is antiperiodic along the compact x, dimension. This
transformation shifts the VEV by —1/R. Finally, one can
restore the original VEV v by a Weyl transform that takes
v — —v. The result of the combined transformations takes
the form [17]
A, =U'A,(X,v)U+iUd,U, (2)
where A, is the gauge field (with Ay = ¢) of the BPS
monopole, and the gauge transformation U is given by [17]

X, 63
U= Uycte ™ U}, (3)
where

S - - . !
o° cosh % + G - X sinh -

/coshv'r + %3 sinh v'r

(4)

h

In Eq. (3), U, is trivial at the origin while implementing a
transformation between hedgehog and singular gauges at
infinity. It is only needed to make sure that the behavior of
¢* at infinity is the same for both KK and BPS monopoles.
The global transformation o> implements Weyl reflection.
Finally, ~e~%+/R)le" is the antiperiodic gauge transforma-
tion that flips the magnetic charge of the monopole.

Zero modes of the BPS monopole.—According to the
Callias index theorem, a chiral fermion in the fundamental
representation has one zero mode in the background of the
BPS monopole. To explicitly find this zero mode, we need
to solve the Dirac equation in the manner of Jackiw and
Rebbi. We are taking the 3D theory obtained by compac-
tifying the theory on a circle in the timelike direction, and
Wick-rotated to Euclidean space with x4 = —ix,
A, = —iAy. The equation is given by

(V- G754+ iA" - GPTYm = 5P T4 — msP 5 Yy, = 0,
(5)

where m is the real mass of the fundamental, obtained
from the time component of a four-dimensional back-
ground gauge field, which weakly gauges “baryon” number
[implying that it is SU(2) color invariant, hence the
additional color Kronecker delta].
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We will look for solutions of the form

an®) = () = k() + (P02l V(2. 6)

With this ansatz, the zero mode must satisfy the equations

2_
v+ 2=y Uy —omx,
r 2
X’+J—CX+§hX:mY. (7)
r

For m = 0, the two equations are decoupled and can be
integrated. The requirement that the solution be normal-
izable implies that ¥ = 0. The single zero mode in this case
is then given by [21]

X(r) = Ce_ﬁ)r [(”/2)h(">+(f(r’)/r’)]dr" ®)
which is normalizable, since h(r) — 1, [(f(r))/r] = 0 as

r — oo. For the case with a real mass m, we need to solve
the second-order differential equation

d 2—-f w d f v o,
(dr+ p +2h)(dr+r+2h>X—mX. 9)

When X is normalizable, the asymptotic behavior is
X ~e™, with 1>0. Equation (9) then implies
((v/2) —2)*> = m?. There is a positive solution for A
provided that

v v

5 <m<s, (10)
which exactly agrees with the Callias index theorem
[14,15].

Zero modes of the KK monopole.—It is well known that
for a vanishing real mass, the KK monopole does not have a
normalizable zero mode for fermions in the fundamental
representation. Next, we explain why this is so and show
that for sufficiently large real masses, normalizable zero
modes do exist. The essential physics insight is the fact that
a fundamental fermion behaves differently under an anti-
periodic gauge transformation than an adjoint fermion
due to the fact that it carries only a single SU(2) index.
A large gauge transformation on adjoints introduces a
periodic dependence on the coordinate along the compac-
tified circle. However, fields in the fundamental pick up an
additional sign, and thus would become antiperiodic. Thus,
the expectation is that while gaugino zero modes in the KK
monopole background exist and can be obtained by a large
gauge transformation (3), the fundamental fermion has
no zero modes. However, a careful examination of the
properties of the antiperiodic solution suggests that a new,
twisted zero mode of the fundamental fermion exists for

sufficiently large mass. Since the large gauge transforma-
tion introduces an additional antiperiodic phase for the
fundamental fermion, we need to look for an antiperiodic
solution to the Dirac equation in the BPS monopole
background, with the VEV shifted to v’ = (1/R) — v.
Thus, we look for an ansatz of the form

ixy

wlx.xs) = ey (x), (11)

which is antiperiodic for both sign choices. For this ansatz,
the 0 derivative shifts the fermion mass by £1/(2R); thus,
the three-dimensional part of the Dirac equation has an
effective mass

1
meff:miliﬁ. (12)

The condition for the existence of a normalizable zero
mode solution |m.g| < (v'/2) is translated to |m F (1/2R)| <
(1/2R) — (v/2), which can be satisfied provided

v v
m>sor m< =z (13)
While this solution is antiperiodic and not physical in the
BPS monopole background, after the application of the
large gauge transformation it becomes periodic and pro-
vides the proper zero mode in the KK monopole back-
ground. Note that the final form of the solution will be

. X,
n—

e R u > (14)

ll/(x’ X4) B (ei(nJrl)xl‘;d

where n = 0 corresponds to the choice of the + sign in
Eq. (11) and n = —1 to the — sign. It is easy to generalize
this result to the case of a fundamental representation of
SU(N). In this case, there is a monopole solution for each
simple root a;, where i = 1,..., N — 1. Writing an adjoint
VEV as diag(vy, v, ..., vy) with >_,v; = 0 and v; > v;, 4,
the fundamental zero mode lives on the monopole asso-
ciated with «; if v;,,1/2 <m <wv;/2, and on the KK
monopole for m > v1/2 or m < vy/2. We note finally that
the KK monopole acquires a zero mode exactly as the zero
mode disappears from the BPS monopole. This means that
the total number of zero modes in N-monopole back-
grounds is independent of the real mass and always
matches the number of fermionic zero modes of the 4D
instanton.

KK monopole decoupling.—The physical importance of
KK monopole zero modes becomes obvious if we consider
gauge theories with /' = 1 SUSY (four supercharges) on
R3 x S!. (Another interesting case was recently studied in
Ref. [23], where KK monopoles were shown to play a role
in chiral symmetry breaking.) This theory can be used to
interpolate between the 4D theory (taking the radius of the
circle R — o0) and the 3D theory (by taking R very small).

071603-3



PHYSICAL REVIEW LETTERS 120, 071603 (2018)

However, the R — 0 limit is not sufficient to obtain a truly
3D theory since, as noted in Ref. [3], rather than repro-
ducing a truly 3D SUSY gauge theory, one arrives at the
theory deformed by a tree-level superpotential Y, where Y
is the KK monopole operator parametrizing the Coulomb
branch. While 7 vanishes in the R — 0 limit, the presence
of such an operator is problematic for 3D duality, since KK
monopole operators appear on both sides of the duality and
force the duality scale to zero. The appearance of KK
monopole zero modes resolves the problem and allows for
the derivation of 3D dualities. Generically, there are several
monopole operators Y; corresponding to the simple roots of
the gauge group. Semiclassically, these monopole operators
are given by Y, ~ e¥(v1=0)/%i where the v;’s are the
adjoint VEVs (which can be promoted to chiral super-
fields), and g5 is the 3D gauge coupling. Whenever there
are exactly two fermionic zero modes for a BPS monopole,
a superpotential term of the form 1/Y; is generated. On
the other hand, the action of a KK monopole is propor-
tional to 4x[1/R — (v; — vy)]/g3, thus giving a contribu-
tion ~e~*"ReT],Y,. The first factor, § = e~**R%  can be
thought of as the analog of the 4D instanton factor A} if
one matches the 3D and 4D gauge couplings: 27Rg3 = gj.
It is conventional to define Y = [[;Y;. It is the presence
of the additional #Y term upon compactification that
enforces some of the 4D properties on the 3D theory,
and therefore it is essential that one properly decouple this
term in order to arrive at a true 3D theory without
deformations.

The proposal of Ref. [6] was to add a large real mass to
one of the quark flavors. Naively, one could think that
decoupling a single flavor would just change the 7Y term of
the KK monopole to an effective 7 ¥ of the theory with the
number of quark flavors reduced by 1. Aharony et al,
however, argued [6] that a large real mass for a single flavor
completely removes the 7Y term: an effective 77 ¥ would
necessarily depend upon the real mass of the flavor that was
decoupled, but the real mass cannot appear in a holomor-
phic quantity, and hence there can be no 7 Y in the effective
superpotential. However, the dynamical origin of the KK
monopole decoupling from the superpotential is not intui-
tively clear from this argument. Indeed, the KK monopole
itself obviously still exists even when one flavor becomes
heavy. Thus, it can only decouple if the number of fermion
zero modes changes. Since gaugino zero modes exist
independently of the real mass for the fundamental flavor,
the decoupling would require an appearance of new zero
modes, and this is precisely what we found. Once the real
mass is raised above v/2, the KK monopole no longer
contributes to a chiral fermionic two-point correlation
function and thus does not generate a superpotential term.
This provides a dynamical explanation for the decoupling
of the effects of the KK monopole and hence the explan-
ation of how the undeformed 3D theory is approached in
this limit.

SU(2) x SU(2) with a bifundamental.—In this section,
we illustrate the importance of KK monopole zero modes
by considering a supersymmetric SU(2) x SU(2) theory
with four supercharges and matter Q in the bifundamental
representation. (A nonsupersymmetric theory with similar
matter content has been analyzed in Ref. [24]). The
superpotential of this theory was found to be [22]

(A?/Z + A§/2)2

W=

(15)

where Q7 is a gauge invariant meson constructed out of the
bifundamental. In 4D, the origin of this superpotential can
be understood as follows: both SU(2) factors have the right
number of flavors to produce an instanton generated ADS
superpotential term. Along the Higgs branch parametrized
by the meson VEV Q2 the gauge group is broken to a
diagonal SU(2),, and there are no charged light fields
remaining. Gaugino condensation in the low-energy gauge
group contributes another +2A3, term to the superpotential.
The superpotential (15) arises as a combination of these
three effects.

Let us now consider the dynamics of this model on
R3 x S' and then recover 4D physics by taking R — co.
The classical moduli space contains a Coulomb branch
parametrized by the adjoint VEVs vy, v,, as well as a Higgs
branch parametrized by the squark VEV Q. The adjoint
VEVs break SU(2), x SU(2), to U(1), x U(1),, while the
squark VEV breaks SU(2), x SU(2), to the diagonal
subgroup SU(2) . For concreteness, we will assume that
v; > vy > Q. It is important to note that from the point of
view of the SU(2),; dynamics, the v, VEV serves as a real
mass term for the SU(2), doublets. Similarly, the v; VEV
serves as a real mass for the SU(2), doublets. We can see
that the BPS monopole of SU(2), and the KK monopole of
SU(2), have two gaugino and two quark zero modes, while
the KK monopole of SU(2), and the BPS monopole of
SU(2), only have two gaugino zero modes.

At first sight, one might conclude that there is a super-
potential contribution from the first KK monopole and
the second BPS monopole, but the actual dynamics is
somewhat more intricate. Since there is a squark VEV
turned on, it will break the two U(1)’s to the diagonal
U(1), xU(1), - U(1),, and monopoles which carry the
broken U(1) charge are confined. Thus, only multimono-
pole configurations neutral under the broken U(1) will
contribute to the superpotential. There are four such
multimonopole configurations made out of two confined
monopoles: the first BPS and the first KK monopoles, the
second BPS and the second KK monopoles, the two BPS
monopoles, and the two KK monopoles. While these
multimonopole solutions each have several zero modes,
some of them can be soaked up using the squark VEV, each
eventually yielding contributions to the superpotential.
Which zero modes are lifted is determined by the pattern
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of U(1) breaking, since the corresponding gaugino
gets a mass with a quark via the squark VEV as required
by SUSY.

For example, the double monopole made of the first BPS
and first KK monopoles generates the expected ADS term
in the superpotential,

M
_@,

In fact, this two monopole configuration is equivalent
[17] to a periodic instanton on R?® x S!. Similarly, the
configuration made up of the second BPS and KK
monopoles leads to the instanton-generated ADS super-
potential in SU(2), even though the distribution of
fermion zero modes between BPS and KK monopoles
is different here:

W, (16)

M
f@_

Finally, the configurations with the two BPS and the two
KK monopoles [which act as the monopoles of SU(2),]
produce the superpotential

W, (17)

1 1
Wis :Qz(ﬂ1ﬂ2Y1Y2+Y1Y2>- (18)

Solving the equations of motion for the composite monop-
ole Y,Y,, we find that (18) will contribute £(2./7117,/Q%),
which together with (16) and (17) results in the correct
superpotential (15).

Conclusions.—Fermionic zero modes of monopoles
largely determine the structure of the dynamical monop-
ole-induced effects in supersymmetric theories. We have
found the condition for the existence of fermionic zero
modes in the fundamental representation in the KK
monopole background, and showed that such zero modes
will be present for a sufficiently large real mass term. This
explains the previously mysterious decoupling of the
effects of KK monopoles in theories with four supercharges
in the presence of a large real mass, which allows one to
explore the dynamics of a truly 3D theory. We have applied
our results to the SU(2) x SU(2) model with a bifunda-
mental and shown that the terms attributed to gaugino
condensation in 4D originate from multimonopole terms in
the 3D theory.

We thank Ken Intriligator, Mario Martone, Kimyeong
Lee, and Mithat Unsal for helpful discussions and com-
ments on the manuscript. C. C. is supported in part by NSF
Grant No. PHY-1316222. Y. S. is supported in part by NSF
Grant No. PHY-1620638. J.T. is supported in part by
DOE Grant No. DE-SC0009999. We thank the hospitality
and partial support of the Mainz Institute for Theoretical
Physics (MITP) during the completion of this work.

[1] N. Seiberg and E. Witten, Electric-magnetic duality,
monopole condensation, and confinement in AN =2
supersymmetric Yang-Mills theory, Nucl. Phys. B426, 19
(1994).

[2] N. Seiberg and E. Witten, Gauge dynamics and compacti-
fication to three-dimensions, in The Mathematical Beauty of
Physics: A Memorial Volume for Claude Itzykson Saclay,
Advanced Series in Mathematical Physica Vol. 24 (World
Scientific, Singapore, 1997), pp. 333-366.

[3] O. Aharony, A. Hanany, K. A. Intriligator, N. Seiberg,
and M.J. Strassler, Aspects of N =2 supersymmetric
gauge theories in three dimensions, Nucl. Phys. B499, 67
(1997).

[4] J. de Boer, K. Hori, H. Ooguri, and Y. Oz, Mirror symmetry
in three-dimensional gauge theories, quivers and d-branes,
Nucl. Phys. B493, 101 (1997).

[5] E. Poppitz and M. Unsal, Seiberg-Witten and “Polyakov-
like”, magnetic bion confinements are continuously con-
nected, J. High Energy Phys. 07 (2011) 082.

[6] O. Aharony, S. S. Razamat, N. Seiberg, and B. Willett, 3D
dualities from 4D dualities, J. High Energy Phys. 07 (2013)
149.

[7] C. Csaki, M. Martone, Y. Shirman, P. Tanedo, and J.
Terning, Dynamics of 3D SUSY gauge theories with
antisymmetric matter, J. High Energy Phys. 08 (2014)
141; A. Amariti, C. Csaki, M. Martone, and N. R. L. Lorier,
From 4D to 3D chiral theories: Dressing the monopoles,
Phys. Rev. D 93, 105027 (2016).

[8] C. Cséki, D. Curtin, V. Rentala, Y. Shirman, and J. Terning,
Supersymmetry breaking triggered by monopoles, Phys.
Rev. D 85, 045014 (2012).

[9] M. Unsal, Magnetic bion condensation: A new mechanism
of confinement and mass gap in four dimensions, Phys. Rev.
D 80, 065001 (2009); M. Unsal and L. G. Yaffe, Center-
stabilized Yang-Mills theory: Confinement and large N
volume independence, Phys. Rev. D 78, 065035 (2008).

[10] Z. Komargodski, T. Sulejmanpasic, and M. Unsal (private
communication).

[11] 1. Affleck, M. Dine, and N. Seiberg, Dynamical supersym-
metry breaking in supersymmetric QCD, Nucl. Phys. B241,
493 (1984).

[12] I. Affleck, J. A. Harvey, and E. Witten, Instantons and
(super)symmetry breaking in (2 + 1) dimensions, Nucl.
Phys. B206, 413 (1982).

[13] C. Csaki, M. Martone, Y. Shirman, and J. Terning, Pre-ADS
superpotential ~ from  confined monopoles, arXiv:
1711.11048.

[14] C. Callias, Index theorems on open spaces, Commun. Math.
Phys. 62, 213 (1978).

[15] T.M.W. Nye and M. A. Singer, An L? index theorem
for Dirac operators on S' x R3, arXiv:math/0009144; E.
Poppitz and M. Unsal, Index theorem for topological
excitations on R? x S! and Chern-Simons theory, J. High
Energy Phys. 03 (2009) 027.

[16] K. M. Lee and P. Yi, Monopoles and instantons on partially
compactified d-branes, Phys. Rev. D 56, 3711 (1997).

[17] K. M. Lee, Instantons and magnetic monopoles on R? x S!
with arbitrary simple gauge groups, Phys. Lett. B 426, 323
(1998); K. M. Lee and C. Lu, SU(2) calorons and magnetic
monopoles, Phys. Rev. D 58, 025011 (1998).

071603-5



PHYSICAL REVIEW LETTERS 120, 071603 (2018)

[18] N.M. Davies, T.J. Hollowood, V.V. Khoze, and M.P.
Mattis, Gluino condensate and magnetic monopoles in
supersymmetric gluodynamics, Nucl. Phys. B559, 123
(1999); N.M. Davies, T.J. Hollowood, and V. V. Khoze,
Monopoles, affine algebras and the gluino condensate,
J. Math. Phys. (N.Y.) 44, 3640 (2003).

[19] T.C. Kraan and P. van Baal, Periodic instantons with
nontrivial holonomy, Nucl. Phys. B533, 627 (1998).

[20] F. Bruckmann, D. Nogradi, and P. van Baal, Constituent
monopoles through the eyes of fermion zero modes,
Nucl. Phys. B666, 197 (2003).

[21] R. Jackiw and C. Rebbi, Solitons with fermion number 1/2,
Phys. Rev. D 13, 3398 (1976).

[22] K. A. Intriligator, R.G. Leigh, and N. Seiberg, Exact
superpotentials in four dimensions, Phys. Rev. D 50,
1092 (1994).

[23] A. Cherman, T. Schifer, and M. Unsal, Chiral Lagrangian
from Duality and Monopole Operators in Compactified
QCD, Phys. Rev. Lett. 117, 081601 (2016).

[24] M. Shifman and M. Unsal, On Yang-Mills theories with
chiral matter at strong coupling, Phys. Rev. D 79, 105010
(2009).

071603-6



