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ABSTRACT

The chief objective of this paper is to explore energy transfer mechanism between the sub-
systems that are coupled by a nonlinear elastic path. In the proposed model (via a minimal
order, two degree of freedom system), both sub-systems are defined as damped harmonic
oscillators with linear springs and dampers. The first sub-system is attached to the ground on
one side but connected to the second sub-system on the other side. In addition, linear elastic
and dissipative characteristics of both oscillators are assumed to be identical, and a harmonic
force excitation is applied only on the mass element of second oscillator. The nonlinear spring
(placed in between the two sub-systems) is assumed to exhibit cubic, hardening type
nonlinearity. First, the governing equations of the two degree of freedom system with a
nonlinear elastic path are obtained. Second, the nonlinear differential equations are solved
with a semi-analytical (multi-term harmonic balance) method, and nonlinear frequency
responses of the system are calculated for different path coupling cases. As such, the nonlinear
path stiffness is gradually increased so that the stiffness ratio of nonlinear element to the linear
element is 0.01, 0.05, 0.1, 0.5 and 1.0 while the absolute value of linear spring stiffness is kept
intact. In all solutions, it is observed that the frequency response curves at the vicinity of
resonant frequencies bend towards higher frequencies as expected due to the hardening effect.
However, at moderate or higher levels of path coupling (say 0.1, 0.5 and 1.0), additional
branches emerge in the frequency response curves but only at the first resonant frequency. This
is due to higher displacement amplitudes at the first resonant frequency as compared to the
second one. Even though the oscillators move in-phase around the first natural frequency, high
amplitudes increase the contribution of the stored potential energy in the nonlinear spring to
the total mechanical energy. The out-of-phase motion around the second natural frequency
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cannot significantly contribute due to very low motion amplitudes. Finally, the governing
equations are numerically solved for the same levels of nonlinearity, and the motion responses
of both sub-systems are calculated. Both in-phase and out-of-phase motion responses are
successfully shown in numerical solutions, and phase portraits of the system are generated in
order to illustrate its nonlinear dynamics. In conclusion, a better understanding of the effect of
nonlinear elastic path on two damped harmonic oscillators is gained.

1 INTRODUCTION

The focus of this paper is on two linear sub-systems that are coupled via a nonlinear path.
Accordingly, the objectives are: 1) Develop a model of the coupled system and obtain
corresponding nonlinear governing equations; 2) Solve the governing equations in frequency
domain with a semi-analytical approach, and generate nonlinear frequency response curves for
different levels of nonlinearity; 3) Calculate the time domain solutions of the system to identify
periodic responses with different excitation frequencies and nonlinearity levels, and investigate
the dynamic behavior of both sub-systems.

Prior work on this topic includes a study by Starosvetsky and Gendelman [1] who examined
the energy absorbing mechanism of a nonlinear energy sink attached to a two degree of freedom
linear system. It was observed that the nonlinear absorber is favorable at higher amplitude
excitations and inefficient at lower amplitude excitations. Furthermore, additional branches in
frequency response curves were detected at lower amplitude excitation cases. In another study,
Kurt et al. [2] investigated two weakly damped oscillators that are coupled through a weak
elastic element. The results were displayed in terms of frequency-energy plots, and various
branches were identified. Jiang et al. [3] examined a similar system using analytical and
experimental methods. They showed that the energy of the primary system can be effectively
absorbed by the secondary system when the coupling between them is nonlinear. Thus, the
vibration amplitudes of the primary system could be minimized over a broad frequency range.
Andersen et al. [4] developed a two degree of freedom system where all elastic and dissipative
elements are linear but this system exhibited geometric nonlinearity due to the angular
configurations of springs and dampers; the system may be dynamically unstable due to its
kinematics.

2 PROBLEM FORMULATION

For the sake of simplicity, two damped harmonic oscillators are coupled via a nonlinear elastic
spring (k,;) as shown in Figure 1. For the two degree of freedom system, it is assumed that both
oscillators are identical, possessing the same inertial (m), dissipative (c) and elastic (k)
characteristics though the first oscillator is grounded on one end while the mass of the second
oscillator is free on the other end. An external dynamic force, F(t) = A sin(wt + ¢), is applied
on the second mass as illustrated in Figure 1.
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Figure 1: Two degree of freedom damped system illustrating two sub-systems that are
coupled via a nonlinear spring (k,;).

The nonlinear elastic path is assumed to exhibit cubic nonlinearity. Thus, the nonlinear
governing equations of the system of Figure 1 are:

mjél + 2C5C1 - CX'Z + kal - ka - knl(xz - x1)3 == O, (1)
mjéz + CX'Z - C)'Cl + ka - kx1 + knl (xZ - x1)3 = F(t) (2)

In order to simplify the above governing equations, the following non-dimensional parameters
are defined:

w, =+ k/m, {(=c/2mw,, T=wyt, x,=A/k, (3a-g)
X1 =x1/%9, Xp=%x3/%, a= anXg/k-

Hence, the nonlinear governing equations are obtained in non-dimensional form as follows:

X!+ 40X, — 20X +2X, — X, —a(X, — X;)? =0, 4)
XY +20X5 = 20X] + X, = Xy + a(X, — X;)° = sin (27 + @), (5)

where X{ = dX;/dt and X{' = d*X;/dt?.

3 NONLINEAR FREQUENCY RESPONSES USING SEMI-ANALYTICAL
METHOD

The multi-term harmonic balance method (MHBM) is applied to construct the steady-state
response of the nonlinear system excited by a harmonic function. In order to simplify the
formulation, first the nonlinear governing equations (Egs. (4-5)) are transformed to spatial
domain with a linear independent variable transformation, 6 = wt. Consequently, the
derivatives with respect to T in Egs. (4) and (5) are defined again with respect to the new
independent variable 8. As a result, the following nonlinear governing equations are obtained
in 8 domain:

2 82X, x axp —X, — -X,)3 =
4 400 200 Y2 4 oK, — X, — alX, — )P = 0, 6)
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5 d%X,
de2

dx. dx . 1
D2 20w S X, — Xy + a(X, — Xp)P =sin (-0 + ¢). (7)

+ 2¢w o
The solutions for the non-dimensional dependent variables X; and X, are assumed in the forms
of truncated Fourier series where Nj represents the number of harmonics retained in the
expansion:

X,00) = Ao+ 2221 A1,2n-1 sin(nf) + QA1,2n cos(nf), (3a)
X,(0) = azo + 2221 a3,2n-1SIN(nO) + a; 5, cos(nh). (8b)

The assumed solutions given with Egs. (8a) and (8b) are discretized as X; = 'a; and X, =Ta,
where T is the discrete Fourier transform matrix, and a; and a, are the unknown Fourier
coefficient vectors of the dependent variables x; and x,, respectively. For the discretization
process, the matrix I is defined as:

1 sin(6,) cos(6y) -+ sin(Ny6,) cos(N,8,)
r— 1 sin(6,) cos(6;) - sin(Ny6;) cos(N,0,) ©)
1 sin(Oy_,) cos(Oy-1) - sin(N,6y_;) cos(N,Oy_1)

where N is the number of discrete points. Here, it should be noted that the condition N > 2N,
should be satisfied in order to prevent any aliasing problems. Furthermore, the non-dimensional
governing equations (Egs. (6-7)) are written in discrete form as:

w?TD?a; + 4{wl'Da; — 2{wl'Da, + 2l'a; —Ta, — a(Ta, —Ta;)3 =0, (10)
w?TD?a, + 2{wI'Da, — 2{wl'Da, + l'a, — Ta,; + a(Ta, —Ta;)3 =TQ, (11)

where D is the differential operator and Q is the Fourier coefficients vector for the external
force excitation. The differential operator matrix is defined as:

00 0 - 0 0 7
00 -1 0 0

e (12
00 0 ~ 0 —N,
00 0 "N, 0 |

Observe that, Egs. (10) and (11) are a set of coupled nonlinear algebraic equations. Hence, the
unknowns a; and a, are calculated by minimizing the following residue functions:

R, = w?D?a, + 4{wDa, — 2{wDa, + 2a; — a, — al'*(Ta, — 'a; )3, (13)
Rz = szzaZ + ZCwDaZ - ZCwDal + az - al + ar+(raz - Fa1)3 - Q, (14)

where I'* is the pseudo-inverse of the discrete Fourier transform matrix, 't = (I''I")~'I'T. The
residue minimization is done with Newton-Raphson scheme iteratively where m =

[a; a; w]TandR =[R; R,]T are the vectors of unknowns and residue, respectively, and
i is the iteration index:

i1 =M — Ji 'Ry (15)
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Observe that the excitation frequency w is also treated as an unknown in the Newton-Raphson
scheme. Hence, the dynamic behavior of the system at the turning points of the frequency
response curve is better understood. Furthermore, the matrix J in Eq. (15) is the Jacobian matrix
and defined as follows:

[aRl JR, 0R1]
_|0a; 0da, Ow |
/= [aR2 dR, OR, (16)
da, Oda, OJdw

Based on the residue minimization procedure of Eq. (15), Egs. (13) and (14) are solved
iteratively for selected values of parameter @ and the calculated nonlinear frequency response
curves are displayed in Figures 2 and 3. The response of the first sub-system (X;) is shown in
Figures 2(a) and 2(b) in the vicinity of first and second natural frequencies, respectively. Note
that the natural frequencies mentioned are defined in terms the linear system when @ = 0. As
seen in Figure 2(a), the backbone response curve simply bends towards higher frequencies at
lower a values (@ = 0.0001 and & = 0.0005). This result is expected for a weak hardening
type nonlinearity. However, as the value of « is increased, the effect of nonlinearity on the
system dynamics becomes more pronounced, thereby generating additional branches. But, the
emergence of additional branches is not observed at the vicinity of the second natural frequency
(Figure 2(b)). Over this frequency range, only a simple bending of the backbone curve towards
higher frequencies is seen. Obviously, the backbone curve bends more as the value of « is
increased. Similar claims can be made regarding the response of the second sub-system as
illustrated in Figures 3(a) and 3(b). Again, additional branches emerge only in the vicinity of
the first natural frequency and the effect of nonlinearity is pronounced with an increase in a.

(2) ‘ ‘ . ‘ . (b)

X1 Amplitude [-]
X1 Amplitude [-]
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Figure 2: Nonlinear frequency response curves of the first sub-system. (a) Around the first
natural frequency; (b) Around the second natural frequency. Key: +, « = 0.0001,0, a =
0.0005, x, @ = 0.001, 0, « = 0.005, ¢, @ = 0.01.
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Figure 3: Nonlinear frequency response curves of the second sub-system. (a) Around the first
natural frequency; (b) Around the second natural frequency. Key: +, a = 0.0001, O, a =
0.0005, x, @ = 0.001, 0, « = 0.005, ©, @ = 0.01.

4 PHASE PORTRAITS BASED ON NUMERICAL SOLUTIONS

To further understand the dynamic behavior, the non-dimensional governing equations (Egs.
(4) and (5)) are numerically solved at selected values of w and a. As an example, system with
the strongest nonlinearity (a@ = 0.01) is first investigated at three different values of non-
dimensional frequency. The first study is carried around w/w, = 0.677 which corresponds to
a point on the stable branch in the nonlinear frequency response curve. The second non-
dimensional frequency is chosen as w/w, = 0.692, which is indeed the turning point where
the solutions move from a stable branch to an unstable branch. Finally, the last non-dimensional
frequency is w/w, = 0.663, which corresponded to another turning point where the solutions
move from an unstable branch to a stable branch. Corresponding phase portrait of the relative
motion between two sub-systems (X; — X, vs. X; — X,) and kinetic energies are displayed in
Figures 4, 5 and 6.
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Figure 4: Phase portraits of the system for « = 0.01 at w/w,, = 0.677. (a) Phase portrait of
relative motion between 2 sub-systems; (b) Phase portrait of kinetic energies.
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Figure 5: Phase portraits of the system for « = 0.01 at w/w,, = 0.692. (a) Phase portrait of
relative motion between 2 sub-systems; (b) Phase portrait of kinetic energies.
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Figure 6: Phase portraits of the system for « = 0.01 at w/w,, = 0.663. (a) Phase portrait of
relative motion between 2 sub-systems; (b) Phase portrait of kinetic energies.

The system exhibits limit cycle behavior for all frequencies as seen from Figures 4-6.
Furthermore, period doubling (or halving) also occurs as the excitation frequency is changed.
From the kinetic energy perspective, several observations can be made. The system exhibits
different regimes within one period as seen in Figure 4(b). At the lower and higher energy
levels, the kinetic energy of the first sub-system changes, but it is almost constant for the second
sub-system. Further, at a certain kinetic energy level of the first sub-system, the kinetic energy
of the second sub-system changes, while the first sub-system stays at almost constant energy
level. The behavior at the vicinity of the first turning point is simpler (Figure 5(b)), 1.e. kinetic
energies of both systems change concurrently. More complex behavior is indeed seen for the
last case (Figure 6(b)). Observe that at some part of the period, kinetic energy of one sub-system
increases while the kinetic energy of the other sub-system decreases, and at some part of the
period the kinetic energy of the first system changes while the kinetic energy of the second
subsystem stays intact.

The phase portraits are depicted in Figures 7, 8, 9 and 10 for weakly (&« = 0.0001) and strongly
(o = 0.01) nonlinear cases. Observe that solutions are obtained at several values of w, and
corresponding phase portraits of relative motion are given in Figures 7(a)-10(a). Likewise, the
phase portraits of the kinetic energies are shown in Figures 7(b)-10(b). First, the system
response is always similar around the second natural frequency irrespective of the level of
nonlinearity (Figures 8 and 10). Second, the kinetic energy change in sub-systems occurs
consecutively at a weaker nonlinearity. In other words, while the kinetic energy of one sub-
system changes, the kinetic energy of the other one is intact (Figure 7). However, the kinetic
energy exchange mechanism becomes more complex at stronger nonlinearities (Figure 9) as
explained previously.

171785 -7



(2)

220 T T | T T
200
180
160

140

120

100

80

60

X1 and X, Amplitude [-]

40

20

0
0.6 0.605 0.61 0.615 0.62 0.625 0.63 0.635 0.64 0.645 0.65

w/wy [-]

220 T T T T
200

180

160

140

120

100

80

40 u-" = n

X, and X, Amplitude [-]

++H @]
e A oo
20 f+++++° °0 0 o g

| 1 1 1 | | | | |

0
0.6 0.605 0.61 0.615 0.62 0.625 0.63 0.635 0.64 0.645 0.65
w/ wp, [-]

Figure 7: Nonlinear frequency response curves in the vicinity of first natural frequency for
a = 0.0001. (a) Phase portraits of relative motion; (b) Phase portraits of kinetic energies.
Key: +, X1 amplitude, O, X, amplitude.
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Figure 8: Nonlinear frequency response curves in the vicinity of second natural frequency for
a = 0.0001. (a) Phase portraits of relative motion; (b) Phase portraits of kinetic energies.

Key: +, X; amplitude, O, X, amplitude.
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Figure 9: Nonlinear frequency response curves in the vicinity of first natural frequency for

a = 0.01. (a) Phase portraits of relative motion; (b) Phase portraits of kinetic energies. Key:
+, X, amplitude, O, X, amplitude.

171785 - 10



10 T T

@
7 O + g
+
5
+
* °

8
@
|
22

X1 and X, Amplitude [-]

\D o NarRE

24 2.6

(b)

* [}
+ o

e
. "

1.2 1.4 1.6 1.8 2 2.2 24 2.6

w/wp []

Xl and X2 Amplltude [_]

Figure 10: Nonlinear frequency response curves in the vicinity of second natural frequency
for @ = 0.01. (a) Phase portraits of relative motion; (b) Phase portraits of kinetic energies.
Key: +, X; amplitude, O, X, amplitude.

5 CONCLUSION

In this study, dynamic behavior of two sub-systems that are connected through a nonlinear
elastic path is investigated. First, the nonlinear governing equations are converted into non-
dimensional form, and the nonlinear frequency response curves at different levels of
nonlinearity are constructed using the multi-term harmonic balance method. It is observed that
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additional branches in the frequency response curves emerge at strong nonlinearities, though
these occur only around the first natural frequency. The behavior around the second natural
frequency is a simple bending of the backbone response curve toward higher frequencies due
to the hardening type stiffness. Finally, the nonlinear governing equations (in the non-
dimensional form) are numerically solved at selected excitation frequencies and nonlinearity
levels. The period doubling (or halving) behavior is observed with a change in the excitation
frequency. Furthermore, the kinetic energy exchange mechanism between two sub-systems also
changes with respect to the excitation frequency and/or level of nonlinearity. In conclusion, an
improved insight into the energy exchange within a nonlinear system is obtained depending on
the excitation frequency and/or the extent of nonlinearity.
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