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ABSTRACT 
The chief objective of this paper is to explore energy transfer mechanism between the sub-
systems that are coupled by a nonlinear elastic path. In the proposed model (via a minimal 
order, two degree of freedom system), both sub-systems are defined as damped harmonic 
oscillators with linear springs and dampers. The first sub-system is attached to the ground on 
one side but connected to the second sub-system on the other side. In addition, linear elastic 
and dissipative characteristics of both oscillators are assumed to be identical, and a harmonic 
force excitation is applied only on the mass element of second oscillator. The nonlinear spring 
(placed in between the two sub-systems) is assumed to exhibit cubic, hardening type 
nonlinearity. First, the governing equations of the two degree of freedom system with a 
nonlinear elastic path are obtained. Second, the nonlinear differential equations are solved 
with a semi-analytical (multi-term harmonic balance) method, and nonlinear frequency 
responses of the system are calculated for different path coupling cases. As such, the nonlinear 
path stiffness is gradually increased so that the stiffness ratio of nonlinear element to the linear 
element is 0.01, 0.05, 0.1, 0.5 and 1.0 while the absolute value of linear spring stiffness is kept 
intact. In all solutions, it is observed that the frequency response curves at the vicinity of 
resonant frequencies bend towards higher frequencies as expected due to the hardening effect. 
However, at moderate or higher levels of path coupling (say 0.1, 0.5 and 1.0), additional 
branches emerge in the frequency response curves but only at the first resonant frequency. This 
is due to higher displacement amplitudes at the first resonant frequency as compared to the 
second one. Even though the oscillators move in-phase around the first natural frequency, high 
amplitudes increase the contribution of the stored potential energy in the nonlinear spring to 
the total mechanical energy. The out-of-phase motion around the second natural frequency 
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cannot significantly contribute due to very low motion amplitudes. Finally, the governing 
equations are numerically solved for the same levels of nonlinearity, and the motion responses 
of both sub-systems are calculated. Both in-phase and out-of-phase motion responses are 
successfully shown in numerical solutions, and phase portraits of the system are generated in 
order to illustrate its nonlinear dynamics. In conclusion, a better understanding of the effect of 
nonlinear elastic path on two damped harmonic oscillators is gained. 

1 INTRODUCTION 
 
The focus of this paper is on two linear sub-systems that are coupled via a nonlinear path. 
Accordingly, the objectives are: 1) Develop a model of the coupled system and obtain 
corresponding nonlinear governing equations; 2) Solve the governing equations in frequency 
domain with a semi-analytical approach, and generate nonlinear frequency response curves for 
different levels of nonlinearity; 3) Calculate the time domain solutions of the system to identify 
periodic responses with different excitation frequencies and nonlinearity levels, and investigate 
the dynamic behavior of both sub-systems.  
 
Prior work on this topic includes a study by Starosvetsky and Gendelman [1] who examined 
the energy absorbing mechanism of a nonlinear energy sink attached to a two degree of freedom 
linear system.  It was observed that the nonlinear absorber is favorable at higher amplitude 
excitations and inefficient at lower amplitude excitations. Furthermore, additional branches in 
frequency response curves were detected at lower amplitude excitation cases. In another study, 
Kurt et al. [2] investigated two weakly damped oscillators that are coupled through a weak 
elastic element. The results were displayed in terms of frequency-energy plots, and various 
branches were identified. Jiang et al. [3] examined a similar system using analytical and 
experimental methods. They showed that the energy of the primary system can be effectively 
absorbed by the secondary system when the coupling between them is nonlinear. Thus, the 
vibration amplitudes of the primary system could be minimized over a broad frequency range. 
Andersen et al. [4] developed a two degree of freedom system where all elastic and dissipative 
elements are linear but this system exhibited geometric nonlinearity due to the angular 
configurations of springs and dampers; the system may be dynamically unstable due to its 
kinematics. 

2 PROBLEM FORMULATION 
For the sake of simplicity, two damped harmonic oscillators are coupled via a nonlinear elastic 
spring (𝑘𝑛𝑙) as shown in Figure 1. For the two degree of freedom system, it is assumed that both 
oscillators are identical, possessing the same inertial (𝑚), dissipative (𝑐) and elastic (𝑘) 
characteristics though the first oscillator is grounded on one end while the mass of the second 
oscillator is free on the other end. An external dynamic force, 𝐹(𝑡) = 𝐴 sin(𝜔𝑡 + 𝜙), is applied 
on the second mass as illustrated in Figure 1. 
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Figure 1: Two degree of freedom damped system illustrating two sub-systems that are 
coupled via a nonlinear spring (𝑘𝑛𝑙). 

 
The nonlinear elastic path is assumed to exhibit cubic nonlinearity. Thus, the nonlinear 
governing equations of the system of Figure 1 are: 
 

𝑚𝑥̈1 + 2𝑐𝑥̇1 − 𝑐𝑥̇2 + 2𝑘𝑥1 − 𝑘𝑥2 − 𝑘𝑛𝑙(𝑥2 − 𝑥1)
3 = 0, (1) 

𝑚𝑥̈2 + 𝑐𝑥̇2 − 𝑐𝑥̇1 + 𝑘𝑥2 − 𝑘𝑥1 + 𝑘𝑛𝑙(𝑥2 − 𝑥1)
3 = 𝐹(𝑡). (2) 

 
In order to simplify the above governing equations, the following non-dimensional parameters 
are defined: 
 

𝜔𝑛 = √𝑘 𝑚⁄ ,     𝜁 = 𝑐 2𝑚𝜔𝑛⁄ ,     𝜏 = 𝜔𝑛𝑡,     𝑥0 = 𝐴 𝑘⁄ ,      
𝑋1 = 𝑥1 𝑥0⁄ ,     𝑋2 = 𝑥2 𝑥0⁄ ,     𝛼 = 𝑘𝑛𝑙𝑥0

2 𝑘⁄ . 
(3a-g) 

 
Hence, the nonlinear governing equations are obtained in non-dimensional form as follows: 
 

𝑋1
′′ + 4𝜁𝑋1

′ − 2𝜁𝑋2
′ + 2𝑋1 − 𝑋2 − 𝛼(𝑋2 − 𝑋1)

3 = 0, (4) 
𝑋2

′′ + 2𝜁𝑋2
′ − 2𝜁𝑋1

′ + 𝑋2 − 𝑋1 + 𝛼(𝑋2 − 𝑋1)
3 = sin (

𝜔

𝜔𝑛
𝜏 + 𝜙), (5) 

 
where 𝑋𝑖

′ = d𝑋𝑖 d𝜏⁄  and 𝑋𝑖
′′ = d2𝑋𝑖 d𝜏2⁄ . 

 

3 NONLINEAR FREQUENCY RESPONSES USING SEMI-ANALYTICAL 
METHOD 

The multi-term harmonic balance method (MHBM) is applied to construct the steady-state 
response of the nonlinear system excited by a harmonic function. In order to simplify the 
formulation, first the nonlinear governing equations (Eqs. (4-5)) are transformed to spatial 
domain with a linear independent variable transformation, 𝜃 = 𝜔𝜏. Consequently, the 
derivatives with respect to 𝜏 in Eqs. (4) and (5) are defined again with respect to the new 
independent variable 𝜃. As a result, the following nonlinear governing equations are obtained 
in 𝜃 domain: 
 

𝜔2 d2𝑋1

d𝜃2 + 4𝜁𝜔
d𝑋1

d𝜃
− 2𝜁𝜔

d𝑋2

d𝜃
+ 2𝑋1 − 𝑋2 − 𝛼(𝑋2 − 𝑋1)

3 = 0, (6) 
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𝜔2 d2𝑋2

d𝜃2
+ 2𝜁𝜔

d𝑋2

d𝜃
− 2𝜁𝜔

d𝑋1

d𝜃
+ 𝑋2 − 𝑋1 + 𝛼(𝑋2 − 𝑋1)

3 = sin (
1

𝜔𝑛
𝜃 + 𝜙). (7) 

 
The solutions for the non-dimensional dependent variables 𝑋1 and 𝑋2 are assumed in the forms 
of truncated Fourier series where 𝑁ℎ represents the number of harmonics retained in the 
expansion: 
 

𝑋1(𝜃) = 𝑎1,0 + ∑ 𝑎1,2𝑛−1 sin(𝑛𝜃) + 𝑎1,2𝑛 cos(𝑛𝜃)𝑁ℎ
𝑛=1 , (8a) 

𝑋2(𝜃) = 𝑎2,0 + ∑ 𝑎2,2𝑛−1 sin(𝑛𝜃) + 𝑎2,2𝑛 cos(𝑛𝜃)𝑁ℎ
𝑛=1 . (8b) 

 
The assumed solutions given with Eqs. (8a) and (8b) are discretized as 𝑋1 = 𝚪𝐚1 and 𝑋2 = 𝚪𝐚2 
where 𝚪 is the discrete Fourier transform matrix, and 𝐚1 and 𝐚2 are the unknown Fourier 
coefficient vectors of the dependent variables 𝑥1 and 𝑥2, respectively. For the discretization 
process, the matrix 𝚪 is defined as: 
 

𝚪 = [

1
1
⋮
1

    

sin(𝜃0)

sin(𝜃1)
⋮

sin(𝜃𝑁−1)

    

cos(𝜃0)

cos(𝜃1)
⋮

cos(𝜃𝑁−1)

    

⋯
⋯
⋱
⋯

    

sin(𝑁ℎ𝜃0)

sin(𝑁ℎ𝜃1)
⋮

sin(𝑁ℎ𝜃𝑁−1)

    

cos(𝑁ℎ𝜃0)

cos(𝑁ℎ𝜃1)
⋮

cos(𝑁ℎ𝜃𝑁−1)

], (9) 

 
where 𝑁 is the number of discrete points. Here, it should be noted that the condition 𝑁 ≥ 2𝑁ℎ 
should be satisfied in order to prevent any aliasing problems. Furthermore, the non-dimensional 
governing equations (Eqs. (6-7)) are written in discrete form as: 
 

𝜔2𝚪𝐃2𝐚1 + 4𝜁𝜔𝚪𝐃𝐚1 − 2𝜁𝜔𝚪𝐃𝐚2 + 2𝚪𝐚1 − 𝚪𝐚2 − 𝛼(𝚪𝐚2 − 𝚪𝐚1)
3 = 0, (10) 

𝜔2𝚪𝐃2𝐚2 + 2𝜁𝜔𝚪𝐃𝐚2 − 2𝜁𝜔𝚪𝐃𝐚1 + 𝚪𝐚2 − 𝚪𝐚1 + 𝛼(𝚪𝐚2 − 𝚪𝐚1)
3 = 𝚪𝐐, (11) 

 
where 𝐃 is the differential operator and 𝐐 is the Fourier coefficients vector for the external 
force excitation. The differential operator matrix is defined as: 
 

𝐃 =

[
 
 
 
 
 
0
0
0
⋮
0
0

   

0
0
1
⋮
0
0

   

0
−1
0
⋮
0
0

  

⋯
⋯
⋯
⋱
⋯
⋯

  

0
0
0
⋮
0
𝑁ℎ

   

0
0
0
⋮

−𝑁ℎ

0 ]
 
 
 
 
 

. (12) 

 
Observe that, Eqs. (10) and (11) are a set of coupled nonlinear algebraic equations. Hence, the 
unknowns 𝐚1 and 𝐚2 are calculated by minimizing the following residue functions: 
 

𝐑1 = 𝜔2𝐃2𝐚1 + 4𝜁𝜔𝐃𝐚1 − 2𝜁𝜔𝐃𝐚2 + 2𝐚1 − 𝐚2 − 𝛼𝚪+(𝚪𝐚2 − 𝚪𝐚1)
3, (13) 

𝐑2 = 𝜔2𝐃2𝐚2 + 2𝜁𝜔𝐃𝐚2 − 2𝜁𝜔𝐃𝐚1 + 𝐚2 − 𝐚1 + 𝛼𝚪+(𝚪𝐚2 − 𝚪𝐚1)
3 − 𝐐, (14) 

 
where 𝚪+ is the pseudo-inverse of the discrete Fourier transform matrix, 𝚪+ = (𝚪T𝚪)−1𝚪T. The 
residue minimization is done with Newton-Raphson scheme iteratively where 𝛈 =
[𝐚1 𝐚2 𝜔]T and 𝐑 = [𝐑1 𝐑2]

T are the vectors of unknowns and residue, respectively, and 
𝑖 is the iteration index: 
 

𝛈𝑖+1 = 𝛈𝑖 − 𝐉𝑖
−1𝐑𝑖. (15) 
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Observe that the excitation frequency 𝜔 is also treated as an unknown in the Newton-Raphson 
scheme. Hence, the dynamic behavior of the system at the turning points of the frequency 
response curve is better understood. Furthermore, the matrix 𝐉 in Eq. (15) is the Jacobian matrix 
and defined as follows: 
 

𝐽 =

[
 
 
 
𝜕𝐑1

𝜕𝐚1

𝜕𝐑1

𝜕𝐚2

𝜕𝐑1

𝜕𝜔
𝜕𝐑2

𝜕𝐚1

𝜕𝐑2

𝜕𝐚2

𝜕𝐑2

𝜕𝜔 ]
 
 
 

 (16) 

 
Based on the residue minimization procedure of Eq. (15), Eqs. (13) and (14) are solved 
iteratively for selected values of parameter 𝛼 and the calculated nonlinear frequency response 
curves are displayed in Figures 2 and 3. The response of the first sub-system (𝑋1) is shown in 
Figures 2(a) and 2(b) in the vicinity of first and second natural frequencies, respectively. Note 
that the natural frequencies mentioned are defined in terms the linear system when 𝛼 = 0. As 
seen in Figure 2(a), the backbone response curve simply bends towards higher frequencies at 
lower 𝛼 values (𝛼 = 0.0001 and 𝛼 =  0.0005). This result is expected for a weak hardening 
type nonlinearity. However, as the value of 𝛼 is increased, the effect of nonlinearity on the 
system dynamics becomes more pronounced, thereby generating additional branches. But, the 
emergence of additional branches is not observed at the vicinity of the second natural frequency 
(Figure 2(b)). Over this frequency range, only a simple bending of the backbone curve towards 
higher frequencies is seen. Obviously, the backbone curve bends more as the value of 𝛼 is 
increased. Similar claims can be made regarding the response of the second sub-system as 
illustrated in Figures 3(a) and 3(b). Again, additional branches emerge only in the vicinity of 
the first natural frequency and the effect of nonlinearity is pronounced with an increase in 𝛼. 
 

 
 

Figure 2: Nonlinear frequency response curves of the first sub-system. (a) Around the first 
natural frequency; (b) Around the second natural frequency. Key: +, 𝛼 = 0.0001, , 𝛼 =

0.0005, x, 𝛼 = 0.001, , 𝛼 = 0.005, , 𝛼 = 0.01. 
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Figure 3: Nonlinear frequency response curves of the second sub-system. (a) Around the first 
natural frequency; (b) Around the second natural frequency. Key: +, 𝛼 = 0.0001, , 𝛼 =

0.0005, x, 𝛼 = 0.001, , 𝛼 = 0.005, , 𝛼 = 0.01. 
 

4 PHASE PORTRAITS BASED ON NUMERICAL SOLUTIONS 
To further understand the dynamic behavior, the non-dimensional governing equations (Eqs. 
(4) and (5)) are numerically solved at selected values of 𝜔 and 𝛼. As an example, system with 
the strongest nonlinearity (𝛼 = 0.01) is first investigated at three different values of non-
dimensional frequency. The first study is carried around 𝜔 𝜔𝑛⁄ = 0.677 which corresponds to 
a point on the stable branch in the nonlinear frequency response curve. The second non-
dimensional frequency is chosen as 𝜔 𝜔𝑛⁄ = 0.692, which is indeed the turning point where 
the solutions move from a stable branch to an unstable branch. Finally, the last non-dimensional 
frequency is 𝜔 𝜔𝑛⁄ = 0.663, which corresponded to another turning point where the solutions 
move from an unstable branch to a stable branch. Corresponding phase portrait of the relative 
motion between two sub-systems (𝑋1 − 𝑋2 vs. 𝑋̇1 − 𝑋̇2) and kinetic energies are displayed in 
Figures 4, 5 and 6. 
 

 

 
 

Figure 4: Phase portraits of the system for 𝛼 = 0.01 at 𝜔 𝜔𝑛⁄ = 0.677. (a) Phase portrait of 
relative motion between 2 sub-systems; (b) Phase portrait of kinetic energies. 
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Figure 5: Phase portraits of the system for 𝛼 = 0.01 at 𝜔 𝜔𝑛⁄ = 0.692. (a) Phase portrait of 
relative motion between 2 sub-systems; (b) Phase portrait of kinetic energies. 

 

 
 

Figure 6: Phase portraits of the system for 𝛼 = 0.01 at 𝜔 𝜔𝑛⁄ = 0.663. (a) Phase portrait of 
relative motion between 2 sub-systems; (b) Phase portrait of kinetic energies. 

 
The system exhibits limit cycle behavior for all frequencies as seen from Figures 4-6. 
Furthermore, period doubling (or halving) also occurs as the excitation frequency is changed. 
From the kinetic energy perspective, several observations can be made. The system exhibits 
different regimes within one period as seen in Figure 4(b). At the lower and higher energy 
levels, the kinetic energy of the first sub-system changes, but it is almost constant for the second 
sub-system. Further, at a certain kinetic energy level of the first sub-system, the kinetic energy 
of the second sub-system changes, while the first sub-system stays at almost constant energy 
level. The behavior at the vicinity of the first turning point is simpler (Figure 5(b)), i.e. kinetic 
energies of both systems change concurrently. More complex behavior is indeed seen for the 
last case (Figure 6(b)). Observe that at some part of the period, kinetic energy of one sub-system 
increases while the kinetic energy of the other sub-system decreases, and at some part of the 
period the kinetic energy of the first system changes while the kinetic energy of the second 
subsystem stays intact. 
The phase portraits are depicted in Figures 7, 8, 9 and 10 for weakly (𝛼 = 0.0001) and strongly 
(𝛼 = 0.01) nonlinear cases. Observe that solutions are obtained at several values of 𝜔, and 
corresponding phase portraits of relative motion are given in Figures 7(a)-10(a). Likewise, the 
phase portraits of the kinetic energies are shown in Figures 7(b)-10(b). First, the system 
response is always similar around the second natural frequency irrespective of the level of 
nonlinearity (Figures 8 and 10). Second, the kinetic energy change in sub-systems occurs 
consecutively at a weaker nonlinearity. In other words, while the kinetic energy of one sub-
system changes, the kinetic energy of the other one is intact (Figure 7). However, the kinetic 
energy exchange mechanism becomes more complex at stronger nonlinearities (Figure 9) as 
explained previously. 



171785 - 8 

 

 

 
 

Figure 7: Nonlinear frequency response curves in the vicinity of first natural frequency for 
𝛼 = 0.0001. (a) Phase portraits of relative motion; (b) Phase portraits of kinetic energies. 

Key: +, 𝑋1 amplitude, , 𝑋2 amplitude. 
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Figure 8: Nonlinear frequency response curves in the vicinity of second natural frequency for 
𝛼 = 0.0001. (a) Phase portraits of relative motion; (b) Phase portraits of kinetic energies. 

Key: +, 𝑋1 amplitude, , 𝑋2 amplitude. 
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Figure 9: Nonlinear frequency response curves in the vicinity of first natural frequency for 
𝛼 = 0.01. (a) Phase portraits of relative motion; (b) Phase portraits of kinetic energies. Key: 

+, 𝑋1 amplitude, , 𝑋2 amplitude. 
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Figure 10: Nonlinear frequency response curves in the vicinity of second natural frequency 
for 𝛼 = 0.01. (a) Phase portraits of relative motion; (b) Phase portraits of kinetic energies. 

Key: +, 𝑋1 amplitude, , 𝑋2 amplitude. 
 

5 CONCLUSION 
In this study, dynamic behavior of two sub-systems that are connected through a nonlinear 
elastic path is investigated. First, the nonlinear governing equations are converted into non-
dimensional form, and the nonlinear frequency response curves at different levels of 
nonlinearity are constructed using the multi-term harmonic balance method. It is observed that 
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additional branches in the frequency response curves emerge at strong nonlinearities, though 
these occur only around the first natural frequency. The behavior around the second natural 
frequency is a simple bending of the backbone response curve toward higher frequencies due 
to the hardening type stiffness. Finally, the nonlinear governing equations (in the non-
dimensional form) are numerically solved at selected excitation frequencies and nonlinearity 
levels. The period doubling (or halving) behavior is observed with a change in the excitation 
frequency. Furthermore, the kinetic energy exchange mechanism between two sub-systems also 
changes with respect to the excitation frequency and/or level of nonlinearity. In conclusion, an 
improved insight into the energy exchange within a nonlinear system is obtained depending on 
the excitation frequency and/or the extent of nonlinearity. 
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