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Abstract

This paper introduces Quicksilver, a fast deformable image registration method. Quicksilver registration for image-
pairs works by patch-wise prediction of a deformation model based directly on image appearance. A deep encoder-decoder
network is used as the prediction model. While the prediction strategy is general, we focus on predictions for the Large
Deformation Diffeomorphic Metric Mapping (LDDMM) model. Specifically, we predict the momentum-parameterization
of LDDMM, which facilitates a patch-wise prediction strategy while maintaining the theoretical properties of LDDMM,
such as guaranteed diffeomorphic mappings for sufficiently strong regularization. We also provide a probabilistic version
of our prediction network which can be sampled during the testing time to calculate uncertainties in the predicted
deformations. Finally, we introduce a new correction network which greatly increases the prediction accuracy of an
already existing prediction network. We show experimental results for uni-modal atlas-to-image as well as uni- / multi-
modal image-to-image registrations. These experiments demonstrate that our method accurately predicts registrations
obtained by numerical optimization, is very fast, achieves state-of-the-art registration results on four standard validation
datasets, and can jointly learn an image similarity measure. Quicksilver is freely available as an open-source software.
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1. Introduction

Image registration is a key component for medical im-
age analysis to provide spatial correspondences. Image
registration is typically formulated as an optimization prob-
lem [1], optimizing the parameters of a transformation5

model. The goal is to achieve the best possible agreement
between a transformed source and a target image, subject
to transformation constraints. Apart from simple, low-
dimensional parametric models (e.g., rigid or affine trans-
formations), more complex, high-dimensional parametric10

or non-parametric registration models are able to cap-
ture subtle, localized image deformations. However, these
methods, in particular, the non-parametric approaches,
have a very large numbers of parameters. Therefore, nu-
merical optimization to solve the registration problems be-15

comes computationally costly, even with acceleration by
graphics processing units (GPUs).

While computation time may not be overly critical for
imaging studies of moderate size, rapid registration ap-
proaches are needed to (i) allow for interactive analysis, to20

(ii) allow their use as building blocks for more advanced
image analysis algorithms; and to (iii) time- and cost-
efficiently analyze very large imaging studies. As a case
in point, sample sizes of neuroimaging studies are rapidly
increasing. While, only two decades ago, neuroimaging25

studies with few tens of subjects were not unusual, we are
now witnessing the emergence of truly large-scale imaging
studies. For example, the UK Biobank study is, at the
moment, the world’s largest health imaging study and will
image “the brain, bones, heart, carotid arteries and ab-30

dominal fat of 100,000 participants” using magnetic reso-
nance (MR) imaging within the next few years [2]. Fur-
thermore, image sizes are increasing drastically. While, a
decade ago, structural MR images of human brains with
voxel sizes of 2× 2× 2 mm3 were typical for state-of-the-35

art MR acquisitions, today we have voxel sizes smaller
than 1 × 1 × 1 mm3 as, for example, acquired by the hu-
man connectome project [3]. This increase in image reso-
lution increases the data size by an order of magnitude.
Even more dramatically, the microscopy field now rou-40

tinely generates gigabytes of high-resolution imaging data,
for example, by 3D imaging via tissue clearing [4]. Hence,
fast, memory-efficient, and parallelizable image analysis
approaches are critically needed. In particular, such ap-
proaches are needed for deformable image registration,45

which is a key component of many medical image anal-
ysis systems.

Attempts at speeding-up deformable image registra-
tion have primarily focused on GPU implementations [5],
with impressive speed-ups over their CPU-based counter-50
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parts. However, these approaches are still relatively slow.
Runtimes in the tens of minutes are the norm for pop-
ular deformable image registration solutions. For exam-
ple, a GPU-based registration of a 128 × 128 × 128 im-
age volume using LDDMM will take about 10 minutes55

on a current GPU (e.g., a Nvidia TitanX). This is much
too slow to allow for large-scale processing, the process-
ing of large datasets, or close to interactive registration
tasks. Hence, improved algorithmic approaches are desir-
able. Recent work has focused on better numerical meth-60

ods and approximate approaches. For example, Ashburner
and Friston [6] use a Gauss–Newton method to acceler-
ate convergence for LDDMM and Zhang et al. [7] propose
a finite-dimensional approximation of LDDMM, achiev-
ing a roughly 25× speed-up over a standard LDDMM65

optimization-based solution.

An alternative approach to improve registration speed
is to predict deformation parameters, or deformation pa-
rameter update steps in the optimization via a regres-
sion model, instead of directly minimizing a registration70

energy [8, 9, 10]. The resulting predicted deformation
fields can either be used directly, or as an initialization
of a subsequent optimization-based registration. However,
the high dimensionality of the deformation parameters as
well as the non-linear relationship between the images and75

the parameters pose a significant challenge. Among these
methods, Chou et al. [10] propose a multi-scale linear re-
gressor which only applies to affine deformations and low-
rank approximations of non-linear deformations. Wang et
al. [11] predict deformations by key-point matching using80

sparse learning followed by dense deformation field gener-
ation with radial basis function interpolation. The perfor-
mance of the method heavily depends on the accuracy of
the key point selection. Cao et al. [12] use a semi-coupled
dictionary learning method to directly model the relation-85

ship between the image appearance and the deformation
parameters of the LDDMM model [13]. However, only
a linear relationship is assumed between image appear-
ance and the deformation parameters. Lastly, Gutierrez et
al. [9] use a regression forest and gradient boosted trees [8]90

based on hand-crafted features to learn update steps for a
rigid and a B-spline registration model.

In this work, we propose a deep regression model to
predict deformation parameters using image appearances
in a time-efficient manner. Deep learning has been used95

for optical flow estimation [14, 15] and deformation param-
eter prediction for affine transformations [16]. We investi-
gate a non-parametric image registration approach, where
we predict voxel-wise deformation parameters from image
patches. Specifically, we focus on the initial momentum100

LDDMM shooting model [17], as it has many desirable
properties:

• It is based on Riemannian geometry, and hence in-
duces a distance metric on the space of images.

• It can capture large deformations.105

• It results in highly desirable diffeomorphic spatial
transformations (if regularized sufficiently). I.e., trans-
formations which are smooth, one-to-one and have a
smooth inverse.

• It uses the initial momentum as the registration pa-110

rameter, which does not need to be spatially smooth,
and hence can be predicted patch-by-patch, and from
which the whole geodesic path can be computed.

The LDDMM shooting model in of itself is important for
various image analysis tasks such as principal component115

analysis [18] and image regression [19, 20].

Our contributions are as follows:

• Convenient parameterization: Diffeomorphic trans-
formations are desirable in medical image analysis
applications to smoothly map between fixed and mov-120

ing images, or to and from an atlas image. Meth-
ods, such as LDDMM, with strong theoretical guar-
antees exist, but are typically computationally very
demanding. On the other hand, direct prediction,
e.g., of optical flow [14, 15], is fast, but the regular-125

ity of the obtained solution is unclear as it is not
considered within the regression formulation. We
demonstrate that the momentum-parameterization
for LDDMM shooting [17] is a convenient represen-
tation for regression approaches as (i) the momen-130

tum is typically compactly supported around image
edges and (ii) there are no smoothness requirements
on the momentum itself. Instead, smooth velocity
fields are obtained in LDDMM from the momentum
representation by subsequent smoothing. Hence, by135

predicting the momentum, we retain all the con-
venient mathematical properties of LDDMM and,
at the same time, are able to predict diffeomorphic
transformations fast. As the momentum has com-
pact support around image edges, no ambiguities140

arise within uniform image areas (in which predicting
a velocity or deformation field would be difficult).

• Fast computation: We use a sliding window to lo-
cally predict the LDDMM momentum from image
patches. We experimentally show that by using patch145

pruning and a large sliding window stride, our method
achieves dramatic speedups compared to the opti-
mization approach, while maintaining good registra-
tion accuracy.

• Uncertainty quantification: We extend our network150

to a Bayesian model which is able to determine the
uncertainty of the registration parameters and, as
a result, the uncertainty of the deformation field.
This uncertainty information could be used, e.g., for
uncertainty-based smoothing [21], or for surgical treat-155

ment planning, or could be directly visualized for
qualitative analyses.
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• Correction network: Furthermore, we propose a cor-
rection network to increase the accuracy of the pre-
diction network. Given a trained prediction net-160

work, the correction network predicts the difference
between the ground truth momentum and the pre-
dicted result. The difference is used as a correc-
tion to the predicted momentum to increase pre-
diction accuracy. Experiments show that the cor-165

rection network improves registration results to the
point where optimization-based and predicted regis-
trations achieve a similar level of registration accu-
racy on registration validation experiments.

• Multi-modal registration: We also explore the use170

of our framework for multi-modal image registration
prediction. The goal of multi-modal image registra-
tion is to establish spatial correspondences between
images acquired by different modalities. Multi-modal
image registration is, in general, significantly more175

difficult than uni-modal image registration since im-
age appearance can change drastically between dif-
ferent modalities. General approaches address multi-
modal image registration by either performing im-
age synthesis [22, 23] to change the problem to a180

uni-modal image registration task, or by proposing
complex, hand-crafted [24, 25, 26, 27] or learned [28,
29, 30, 31, 32] multi-modal image similarity mea-
sures. In contrast, we demonstrate that our frame-
work can simultaneously predict registrations and185

learn a multi-modal image similarity measure. Our
experiments show that our approach also predicts
accurate deformations for multi-modal registration.

• Extensive validation: We extensively validate our190

predictive image registration approach for uni-modal
image registration on the four validation datasets of
Klein et al. [33] and demonstrate registration accu-
racies on these datasets on par with the state-of-the-
art. Of note, these registration results are achieved195

using a model that was trained on an entirely differ-
ent dataset (images from the OASIS dataset). Fur-
thermore, we validate our model trained for multi-
modal image registration using the IBIS 3D dataset [34].
Overall, our results are based on more than 2,400 im-200

age registration pairs.

The registration method described here, which we name
Quicksilver, is an extension of the preliminary ideas we
presented in a recent workshop paper [35] and in a con-
ference paper [36]. This paper offers more details of our205

proposed approaches, introduces the idea of improving reg-
istration accuracy via a correction network, and includes a
comprehensive set of experiments for image-to-image reg-
istration.

Organization. The remainder of the paper is organized210

as follows. Sec. 2.1 reviews the registration parameteri-
zation of the shooting-based LDDMM registration algo-

rithm. Sec. 2.2 introduces our deep network architecture
for deformation parameter prediction, the Bayesian for-
mulation of our network, as well as our strategy for speed-215

ing up the deformation prediction. Sec. 2.3 discusses the
correction network and the reason why it improves the
registration prediction accuracy over an existing predic-
tion network. Sec. 3 presents experimental results for
atlas-to-image and image-to-image registration. Finally,220

Sec. 4 discusses potential extensions and applications of
our method.

2. Materials and Methods

2.1. LDDMM Shooting

Given a moving (source) image M and a target image
T , the goal of image registration is to find a deformation
map Φ : Rd → Rd, which maps the moving image to the
target image in such a way that the deformed moving im-
age is similar to the target image, i.e., M ◦Φ−1(x) ≈ T (x).
Here, d denotes the spatial dimension and x is the spatial
coordinate of the fixed target image T . Due to the im-
portance of image registration, a large number of different
approaches have been proposed [1, 37, 38, 39]. Typically,
these approaches are formulated as optimization problems,
where one seeks to minimize an energy of the form

E(Φ) = Reg[Φ] +
1

σ2
Sim[I0 ◦ Φ−1, I1], (1)

where σ > 0 is a balancing constant, Reg[·] regularizes the225

spatial transformation, Φ, by penalizing spatially irregu-
lar (for example non-smooth) spatial transformations, and
Sim[·, ·] is an image dissimilarity measure, which becomes
small if images are similar to each other. Image dissim-
ilarity is commonly measured by computing the sum of230

squared differences (SSD) between the warped source im-
age (I0 ◦ Φ−1) and the target image (I1), or via (normal-
ized) cross-correlation, or mutual information [26, 1]. For
simplicity, we use SSD in what follows, but other similar-
ity measures could also be used. The regularizer Reg[·] en-235

codes what should be considered a plausible spatial trans-
formation1. The form of the regularizer depends on how
a transformation is represented. In general, one distin-
guishes between parametric and non-parametric transfor-
mation models [1]. Parametric transformation models make240

use of a relatively low-dimensional parameterization of the
transformation. Examples are rigid, similarity, and affine
transformations. But also the highly popular B-spline
models [40] are examples of parametric transformation mod-
els. Non-parametric approaches on the other hand pa-245

rameterize a transformation locally, with a parameter (or
parameter vector) for each voxel. The most direct non-
parametric approach is to represent voxel displacements,

1A regularizer is not necessarily required for simple, low-
dimensional transformation models, such as rigid or affine transfor-
mations.
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u(x) = Φ(x) − x. Regularization then amounts to penal-
izing norms involving the spatial derivatives of the dis-250

placement vectors. Regularization is necessary for non-
parametric approaches to avoid ill-posedness of the opti-
mization problem. Optical flow approaches, such as the
classical Horn and Schunck optical flow [41], the more re-
cent total variation approaches [42], or methods based on255

linear elasticity theory [1] are examples for displacement-
based registration formulations. Displacement-based ap-
proaches typically penalize large displacements strongly
and hence have difficulty capturing large image deforma-
tions. Furthermore, they typically also only offer limited260

control over spatial regularity. Both shortcomings can be
circumvented. The first by applying greedy optimization
strategies (for example, by repeating registration and im-
age warping steps) and the second, for example, by ex-
plicitly enforcing image regularity by constraining the de-265

terminant of the Jacobian of the transformation [43]. An
alternative approach to allow for large deformations, while
assuring diffeomorphic transformations, is to parameter-
ize transformations via static or time-dependent velocity
fields [44, 13]. In these approaches, the transformation Φ270

is obtained via time integration. For sufficiently regular
velocity fields, diffeomorphic transformations can be ob-
tained. As the regularizer operates on the velocity field(s)
rather than the displacement field, large deformations are
no longer strongly penalized and hence can be captured.275

LDDMM is a non-parametric registration method which
represents the transformation via spatio-temporal velocity
fields. In particular, the sought-for mapping, Φ, is ob-
tained via an integration of a spatio-temporal velocity field
v(x, t) for unit time, where t indicates time and t ∈ [0, 1],280

such that Φt(x, t) = v(Φ(x, t), t) and the sought-for map-
ping is Φ(x, 1). To single-out desirable velocity-fields, non-
spatial-smoothness at any given time t is penalized by the
regularizer Reg[·], which is applied to the velocity field in-
stead of the transform Φ directly. Specifically, LDDMM285

aims at minimizing the energy2 [13]

E(v) =

∫ 1

0

∥v∥2L dt+
1

σ2
∥M ◦ Φ−1(1)− T∥2,

s.t. Φt(x, t) = v(Φ(x, t), t), Φ(x, 0) = id (2)

where σ > 0, ∥v∥2L = ⟨Lv, v⟩, L is a self-adjoint differen-
tial operator3, id is the identity map, and the differential
equation constraint for Φ can be written in the Eulerian
coordinates as Φ−1

t + DΦ−1v = 0, where Φt(x, t) is the290

derivative of Φ with respect to time t, and D is the Ja-
cobian matrix. In this LDDMM formulation (termed the
relaxation formulation as a geodesic path – the optimal
solution – is only obtained at optimality) the registration

2When clear from the context, we suppress spatial dependencies
for clarity of notation and only specify the time variable. E.g., we
write Φ−1(1) to mean Φ−1(x, 1).

3Note that we define ∥v∥2L here as ⟨Lv, v⟩ instead of ⟨Lv,Lv⟩ =

⟨L†Lv, v⟩ as for example in Beg et al. [13].

is parameterized by the full spatio-temporal velocity field295

v(x, t). From the perspective of an individual particle, the
transformation is simply obtained by following the velocity
field over time. To optimize over the spatio-temporal ve-
locity field one solves the associated adjoint system back-
ward in time, where the final conditions of the adjoint300

system are determined by the current image mismatch as
measured by the chosen similarity measure [13]. This ad-
joint system can easily be determined via a constrained
optimization approach [45] (see [46] for the case of optical
flow). From the solution of the adjoint system one can305

compute the gradient of the LDDMM energy with respect
to the velocity field at any point in time4 and use it to
numerically solve the optimization problem, for example,
by a line-search [49]. At convergence, the optimal solution
will fulfill the optimality conditions of the constrained LD-310

DMM energy of Eq. (2). These optimality conditions can
be interpreted as the continuous equivalent of the Karush-
Kuhn-Tucker conditions of constrained optimization [49].
On an intuitive level, if one were to find the shortest path
between two points, one would (in Euclidean space) ob-315

tain the straight line connecting these two points. This
straight line is the geodesic path in Euclidean space. For
LDDMM, one instead tries to find the shortest path be-
tween two images based on the minimizer of the inexact
matching problem of Eq. (2). The optimization via the320

adjoint equations corresponds to starting with a possible
path and then successively improving it, until the opti-
mal path is found. Again, going back to the example of
matching points, one would start with any possible path
connecting the two points and then successively improve325

it. The result at convergence is the optimal straight line
path.

Convergence to the shortest path immediately suggests
an alternative optimization formulation. To continue the
point matching example: if one knows that the optimal so-330

lution needs to be a straight line (i.e., a geodesic) one can
consider optimizing only over the space of straight lines in-
stead of all possible paths connecting the two points. This
dramatically reduces the parameter space for optimization
as one now only needs to optimize over the y-intercept and335

the slope of the straight line. LDDMM can also be formu-
lated in such a way. One obtains the shooting formula-
tion [17, 19], which parameterizes the deformation via the
initial momentum vector field m0 = m(0) and the initial
map Φ−1(0), from which the map Φ can be computed for340

any point in time. The initial momentum corresponds to
the slope of the line and the initial map corresponds to

4This approach is directly related to what is termed error back-
propagation in the neural networks community [47] as well as the
reverse mode in automatic differentiation [48]. The layers in neural
networks are analogous to discretized time-steps for LDDMM. The
weights which parameterize a neural network are analogous to the
velocity fields for LDDMM. Error-backpropagation via the chain rule
in neural networks corresponds to the adjoint system in LDDMM,
which is a partial differential equation when written in the Eulerian
form in the continuum.
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the y-intercept. The geodesic equations correspond to the
line equation. The geodesic equations, in turn, correspond
to the optimality conditions of Eq. (2). Essentially, the345

shooting formulation enforces these optimality conditions
of Eq. (2) as a constraint. In effect, one then searches
only over geodesic paths, as these optimality conditions
are geodesic equations. They can be written in terms of
the momentum m alone. In particular, the momentum is350

the dual of the velocity v, which is an element in the repro-
ducing kernel Hilbert space V ; m and v are connected by a
positive-definite, self-adjoint differential smoothing opera-
tor K by v = Km and m = Lv, where L is the inverse of
K. Given m0, the complete spatio-temporal deformation355

Φ(x, t) is determined.
Specifically, the energy to be minimized for the shoot-

ing formulation of LDDMM is [50]

E(m0) = ⟨m0,Km0⟩+
1

σ2
||M ◦ Φ−1(1)− T ||2, s.t. (3)

mt + ad∗vm = 0,

m(0) = m0,

Φ−1
t +DΦ−1v = 0,

Φ−1(0) = id,

m− Lv = 0 ,

(4)

where id is the identity map, and the operator ad∗ is the360

dual of the negative Jacobi-Lie bracket of vector fields,
i.e., advw = −[v, w] = Dvw−Dwv. The optimization ap-
proach is similar to the one for the relaxation formulation.
I.e., one determines the adjoint equations for the shooting
formulation and uses them to compute the gradient with365

respect to the unknown initial momentum m0 [50, 17].
Based on this gradient an optimal solution can, for ex-
ample, be found via a line-search or by a simple gradient
descent scheme.

A natural approach for deformation prediction would370

be to use the entire 3D moving and target images as input,
and to directly predict the 3D displacement field. How-
ever, this is not feasible in our formulation because of the
limited memory in modern GPUs. We circumvent this
problem by extracting image patches from the moving im-375

age and target image at the same location, and by then
predicting deformation parameters for the patch. The en-
tire 3D image prediction is then accomplished patch-by-
patch via a sliding window approach. Specifically, in our
framework, we predict the initial momentum m0 given the380

moving and target images in a patch-by-patch manner.
Using the initial momentum for patch-based prediction is
a convenient parameterization because (i) the initial mo-
mentum is generally not smooth, but is compactly sup-
ported at image edges and (ii) the initial velocity is gen-385

erated by applying a smoothing kernel K to the initial
momentum. Therefore, the smoothness of the deforma-
tion does not need to be specifically considered during

the parameter prediction step, but is imposed after the
prediction. Since K governs the theoretical properties or390

LDDMM, a strong K assures diffeomorphic transforma-
tions5, making predicting the initial momentum an ideal
choice. However, predicting alternative parameterizations
such as the initial velocity or directly the displacement
field would make it difficult to obtain diffeomorphic trans-395

formations. Furthermore, it is hard to predict initial ve-
locity or displacement for homogeneous image regions, as
these regions locally provide no information from which
to predict the spatial transformation. In these regions the
deformations are purely driven by regularization. This is400

not a problem for the initial momentum parameterization,
since the initial momentum in these areas, for image-based
LDDMM, is zero. This can be seen as for image-based
LDDMM [17, 19, 45] the momentum can be written as
m(x, t) = λ(x, t)∇I(x, t), where λ is a scalar field and405

∇I is the spatial gradient of the image. Hence, for ho-
mogeneous areas, ∇I = 0 and consequentially m = 0.
Fig. 1 illustrates this graphically. In summary, the initial
momentum parameterization is ideal for our patch-based
prediction method. Note that since the initial momentum410

can be written as m = λ∇I one can alternatively opti-
mize LDDMM over the scalar-valued momentum λ. This
is the approach that has historically been taken for LD-
DMM [13, 45, 17]. However, optimizing over the vector-
valued momentum, m, instead is numerically better be-415

haved [50], which is why we focus on it for our predic-
tions. While we are not exploring the prediction of the
scalar-valued momentum λ here, it would be interesting to
see how scalar-valued and vector-valued momentum pre-
dictions compare. In particular, since the prediction of the420

scalar-valued momentum would allow for simpler predic-
tion approaches (see details in Sec. 2.2).

2.2. Deep network for LDDMM prediction

The overall training strategy for our prediction models
is as follows: We assume that we already have a set of425

LDDMM parameters which result in good registration re-
sults. We obtain these registration results by numerically
optimizing the shooting formulation of LDMMM. The re-
sulting initial momenta serve as training data. The goal
is then to train a model to locally predict initial momenta430

from image patches of the moving and the target images.
These predicted momenta should be good approximations
of the initial momenta obtained via numerical optimiza-
tion. In short, we train our deep learning framework to
predict the initial momenta from image patches based on435

training data obtained from numerical optimization of the
LDDMM shooting formulation. During testing, we predict
the initial momenta for the test image pairs, and gener-
ate the predicted deformation result simply by performing
LDDMM shooting.440

Fig. 2 shows the structure of the initial momentum pre-
diction network. We first discuss the deterministic version

5See [13, 51] for the required regularity conditions.
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Figure 1: Left: The LDDMM momentum parameterization is ideal for patch-based prediction of image registrations. Consider
registering a small square (left) to a large square (middle) with uniform intensity. Only the corner points suggest clear spatial
correspondences. Edges also suggest spatial correspondences, however, correspondences between individual points on edges remain
ambiguous. Lastly, points interior to the squares have ambiguous spatial correspondences, which are established purely based on
regularization. Hence, predicting velocity or displacement fields (which are spatially dense) from patches is challenging in these
interior areas (right), in the absence of sufficient spatial context. Predicting a displacement field as illustrated in the right image
from an interior patch (illustrated by the red square) would be impossible if both the target and the source image patches are
uniform in intensity. In this scenario, the patch information would not provide sufficient spatial context to capture aspects of the
deformation. On the other hand, we know from LDDMM theory that the optimal momentum, m, to match images can be written
as m(x, t) = λ(x, t)∇I(x, t), where λ(x, t) ↦→ R is a spatio-temporal scalar field and I(x, t) is the image at time t [45, 19, 17].
Hence, in spatially uniform areas (where correspondences are ambiguous) ∇I = 0 and consequentially m(x, t) = 0. This is highly
beneficial for prediction as the momentum only needs to be predicted at image edges. Right: Furthermore, as the momentum
is not spatially smooth, the regression approach does not need to account for spatial smoothness, which allows predictions with
non-overlapping or hardly-overlapping patches as illustrated in the figure by the red squares. This is not easily possible for the
prediction of displacement or velocity fields since these are expected to be spatially dense and smooth, which would need to be
considered in the prediction. Consequentially, predictions of velocity or displacement fields will inevitably result in discontinuities
across patch boundaries (i.e., across the red square boundaries shown in the figure) if they are predicted independently of each
other.

of the network without dropout layers. We then introduce
the Bayesian version of our network where dropout layers
are used to convert the architecture into a probabilistic445

deep network. Finally, we discuss our strategy for patch
pruning to reduce the number of patches needed for whole
image prediction.

2.2.1. Deterministic network

Our goal is to learn a prediction function that takes450

two input patches, extracted at the same location6 from
the moving and target image, and predicts a desired ini-
tial vector-valued momentum patch, separated into the x,
y and z dimensions, respectively. This prediction function
should be learned from a set of training sample patches.455

These initial vector-valued momentum patches are obtained
by numerical optimization of the LDDMM shooting formu-
lation. More formally, given a 3D patch of size p × p × p
voxels, we want to learn a function f : R3p × R3p → R9p.
In our formulation, f is implemented by a deep neural net-460

work. Ideally, for two 3D image patches (u,v) = x′, with
u,v ∈ R3p, we want y′ = f(x′) to be as close as possible
to the desired LDDMM optimization momentum patch y
with respect to an appropriate loss function (e.g., the 1-

6The locations of these patches are the same locations with re-
spect to image grid coordinates, as the images are still unregistered
at this point.

norm). Our proposed architecture (for f) consists of two465

parts: an encoder and a decoder which we describe next.

Encoder. The Encoder consists of two parallel encoders
which learn features from the moving/target image patches
independently. Each encoder contains two blocks of three
3×3×3 3D convolution layers and PReLU [52] activation470

layers, followed by another 2× 2× 2 convolution+PReLU
with a stride of two, cf. Fig. 2. The convolution layers
with a stride of two reduce the size of the output patch,
and essentially perform pooling operations. PReLU is an
extension of the ReLU activation [53], given as475

PReLU(x) =

{
x, if x > 0

ax, otherwise ,

where a is a parameter that is learned when training the
network. In contrast to ReLU, PReLU avoids a zero gradi-
ent for negative inputs, effectively improving the network
performance. The number of features in the first block is
64 and increases to 128 in the second block. The learned480

features from the two encoders are then concatenated and
sent to three parallel decoders (one per dimension x, y, z).

Decoder. Each decoder’s structure is the inverse of the
encoder, except that the number of features is doubled485

(256 in the first block and 128 in the second block) as the
decoder’s input is obtained from the two encoder branches.
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In: B × 256× 53Out: B × 128× 83Out: B × 1× 153

Figure 2: 3D (probabilistic) network architecture. The network takes two 3D patches from the moving and target image as the
input, and outputs 3 3D initial momentum patches (one for each of the x, y and z dimensions respectively; for readability, only
one decoder branch is shown in the figure). In case of the deterministic network, see Sec. 2.2.1, the dropout layers, illustrated by
■, are removed. Conv: 3D convolution layer. Conv⊺: 3D transposed convolution layer. Parameters for the Conv and Conv⊺ layers:
In: input channel. Out: output channel. Kernel: 3D filter kernel size in each dimension. Stride: stride for the 3D convolution.
Pad: zero-padding added to the boundaries of the input patch. Note that in this illustration B denotes the batch size.

We use 3D transposed convolution layers [54] with a stride
of 2, which are shown as the cyan layers in Fig. 2 and can
be regarded as the backward propagation of 3D convolu-490

tion operations, to perform “unpooling”. We also omit the
non-linearity after the final convolution layer, cf. Fig. 2.

The idea of using convolution and transpose of convo-
lution to learn the pooling/unpooling operation is moti-
vated by [55], and it is especially suited for our network495

as the two encoders perform pooling independently which
prevents us from using the pooling index for unpooling
in the decoder. During training, we use the 1-norm be-
tween the predicted and the desired momentum to mea-
sure the prediction error. We chose the 1-norm instead500

of the 2-norm as our loss function to be able to tolerate
outliers and to generate sharper momentum predictions.
Ultimately, we are interested in predicting the deforma-
tion map and not the patch-wise momentum. However,
this would require forming the entire momentum image505

from a collection of patches followed by shooting as part
of the network training. Instead, predicting the momen-
tum itself patch-wise significantly simplifies the network
training procedure. Also note that, while we predict the
momentum patch-by-patch, smoothing is performed over510

the full momentum image (reassembled from the patches)
based on the smoothing kernel, K, of LDDMM. Specifi-
cally, when predicting the deformation parameters for the
whole image, we follow a sliding window strategy to pre-

dict the initial momentum in a patch-by-patch manner and515

then average the overlapping areas of the patches to obtain
the final prediction result.

The number of 3D filters used in the network is 975,360.
The overall number of parameters 21,826,344. While this
is a large number of parameters, we also have a very large520

number of training patches. For example, in our image-
to-image registration experiments (see Sec. 3), the total
number of 15 × 15 × 15 3D training patches to train the
prediction network is 1,002,404. This amounts to approxi-
mately 3.4 billion voxels and is much larger than the total525

number of parameters in the network. Moreover, recent re-
search [56] suggests that the degrees of freedom for a deep
network can be significantly smaller than the number of
its parameters.

One question that naturally arises is why to use in-530

dependent encoders/decoders in the prediction network.
For the decoder part, we observed that an independent
decoder structure is much easier to train than a network
with one large decoder (3 times the number of features
of a single decoder in our network) to predict the initial535

momentum in all dimensions simultaneously. In our exper-
iments, such a combined network easily got stuck in poor
local minima. As to the encoders, experiments do not
show an obvious difference in prediction accuracy between
using two independent encoders and one single large en-540

coder. However, such a two-encoder strategy is beneficial

7



when extending the approach to multi-modal image reg-
istration [36]. Hence, using a two-encoder strategy here
will make the approach easily retrainable for multi-modal
image registration. In short, our network structure can be545

viewed as a multi-input multi-task network, where each
encoder learns features for one patch source, and each de-
coder uses the shared image features from the encoders to
predict one spatial dimension of the initial momenta. We
remark that, if one were to predict the scalar-valued mo-550

mentum, λ, instead of the vector-valued momentum, m,
the network architecture could remain largely unchanged.
The main difference would be that only one decoder would
be required. Due to the simpler network architecture such
an approach could potentially speed-up predictions. How-555

ever, it remains to be investigated how such a network
would perform in practice as the vector-valued momentum
has been found to numerically better behave for LDDMM
optimizations [50].

2.2.2. Probabilistic network560

We extend our architecture to a probabilistic network
using dropout [57], which can be viewed as (Bernoulli) ap-
proximate inference in Bayesian neural networks [58, 59].
In the following, we briefly review the basic concepts, but
refer the interested reader to the corresponding references565

for further technical details.

In our problem setting, we are given training patch
tuples xi = (ui,vi) with associated desired initial momen-
tum patches yi. We denote the collection of this train-
ing data by X and Y. In the standard, non-probabilistic,570

setting we aim for predictions of the form y′ = f(x′),
given a new input patch x′, where f is implemented by
the proposed encoder-decoder network. In the probabilis-
tic setting, however, the goal is to make predictions of the
form p(y′|x′,X,Y). As this predictive distribution is in-575

tractable for most underlying models (as it would require
integrating over all possible models, and neural networks
in particular), the idea is to condition the model on a set
of random variables w. In case of (convolutional) neural
networks with N layers, these random variables are the580

weight matrices, i.e., w = (Wi)
N
i=1. However, evaluation

of the predictive distribution p(y′|x′,X,Y) then requires
the posterior over the weights p(w|X,Y) which can (usu-
ally) not be evaluated analytically. Therefore, in varia-
tional inference, p(w|X,Y) is replaced by a tractable vari-585

ational distribution q(w) and one minimizes the Kullback-
Leibler divergence between q(w) and p(w|X, Y ) with re-
spect to the variational parameters w. This turns out to
be equivalent to maximization of the log evidence lower
bound (ELBO). When the variational distribution is de-590

fined as

q(Wi) = Mi · diag([zi,j ]Ki
j=1), zi,j ∼ Bernoulli(d) , (5)

whereMi is the convolutional weight, i = 1, . . . , N , d is the
probability that zi,j = 0 and Ki is chosen appropriately to
match the dimensionality of Mi, Gal et al. [58] show that

ELBO maximization is achieved by training with dropout595

[57]. In the case of convolutional neural networks, dropout
is applied after each convolution layer (with dropout prob-
ability d)7. In Eq. (5), Mi is the variational parame-
ter which is optimized during training. Evaluation of the
predictive distribution p(y′|x′,X,Y) can then be approx-600

imated via Monte-Carlo integration, i.e.,

p(y′|x′,X,Y) ≈ 1

T

T∑
t=1

f̂(x′, ŵ) . (6)

In detail, this corresponds to averaging the output of T
forward passes through the network with dropout enabled.
Note that f̂ and ŵ now correspond to random variables,
as dropout means that we sample, in each forward pass,605

which connections are dropped. In our implementation,
we add dropout layers after all convolutional layers except
for those used as pooling/unpooling layers (which are con-
sidered non-linearities applied to the weight matrices [58]),
as well as the final convolution layer in the decoder, which610

generates the predicted momentum. We train the network
using stochastic gradient descent (SGD).

Network evaluation. For testing, we keep the dropout
layers enabled to maintain the probabilistic property of
the network, and sample the network to obtain multiple615

momentum predictions for one moving/target image pair.
We then choose the sample mean as the prediction result,
see Eq. (6), and perform LDDMM shooting using all the
samples to generate multiple deformation fields. The lo-
cal variance of these deformation fields can then be used620

as an uncertainty estimate of the predicted deformation
field. When selecting the dropout probability, d, a prob-
ability of 0.5 would provide the largest variance, but may
also enforce too much regularity for a convolutional net-
work, especially in our case where dropout layers are added625

after every convolution layer. In our experiments, we use
a dropout probability of 0.2 (for all dropout units) as a
balanced choice.

2.2.3. Patch pruning

As discussed in Sec. 2.2.1, we use a sliding-window ap-630

proach to predict the deformation parameters (the mo-
menta for Quicksilver) patch-by-patch for a whole image.
Thus, computation time is proportional to the number of
the patches we need to predict. When using a 1-voxel slid-
ing window stride, the number of patches to predict for a635

whole image could be substantial. For a typical 3D im-
age of size 128× 128× 128 using a 15× 15× 15 patch for
prediction will require more than 1.4 million patch predic-
tions. Hence, we use two techniques to drastically reduce
the number of patches needed for deformation prediction.640

First, we perform patch pruning by ignoring all patches
that belong to the background of both the moving image

7with additional l2 regularization on the weight matrices of each
layer.
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Figure 3: The full prediction + correction architecture for LDDMM momenta. First, a rough prediction of the initial momentum,
mLP , is obtained by the prediction network (LP) based on the patches from the unaligned moving image, M and target image,
T , respectively. The resulting deformation maps Φ−1 and Φ are computed by shooting. Φ is then applied to the target image to
warp it to the space of the moving image. A second correction network is then applied to patches from the moving image M and
the warped target image T ◦ Φ to predict a correction of the initial momentum, mC in the space of the moving image, M . The
final momentum is then simply the sum of the predicted momenta, m = mLP +mC , which parameterizes a geodesic between the
moving image and the target image.

and the target image. This is justified, because accord-
ing to LDDMM theory the initial momentum in constant
image regions, and hence also in the image background,645

should be zero. Second, we use a large voxel stride (e.g.,
14 for 15 × 15 × 15 patches) for the sliding window oper-
ations. This is reasonable for our initial momentum pa-
rameterization because of the compact support (at edges)
of the initial momentum and the spatial shift invariance650

we obtain via the pooling/unpooling operations. By us-
ing these two techniques, we can reduce the number of
predicted patches for one single image dramatically. For
example, by 99.995% for 3D brain images of dimension
229× 193× 193.655

2.3. Correction network

There are two main shortcomings of the deformation
prediction network. (i) The complete iterative numeri-
cal approach typically used for LDDMM registration is
replaced by a single prediction step. Hence, it is not possi-660

ble to recover from any prediction errors. (ii) To facilitate
training a network with a small number of images, to make
predictions easily parallelizable, and to be able to perform
predictions for large 3D image volumes, the prediction net-
work predicts the initial momentum patch-by-patch. How-665

ever, since patches are extracted at the same spatial grid
locations from the moving and target images, large defor-
mations may result in drastic appearance changes between
a source and a target patch. In the extreme case, corre-
sponding image information may no longer be found for a670

given source and target patch pair. This may happen, for
example, when a small patch-size encounters a large defor-
mation. While using larger patches would be an option,
this would require a network with substantially larger ca-
pacity (to store the information for larger image patches675

and all meaningful deformations) and would also likely re-

quire much larger training datasets8.

To address these shortcomings, we propose a two-step
prediction approach to improve overall prediction accu-
racy. The first step is our already described prediction680

network. We refer to the second step as the correction
network. The task of the correction network is to com-
pensate for prediction errors of the first prediction step.
The idea is grounded in two observations: The first ob-
servation is that patch-based prediction is accurate when685

the deformation inside the patch is small. This is sen-
sible as the initial momentum is concentrated along the
edges, small deformations are commonly seen in training
images, and less deformation results in less drastic mo-
mentum values. Hence, more accurate predictions are ex-690

pected for smaller deformations. Our second observation
is that, given the initial momentum, we are able to gen-
erate the whole geodesic path using the geodesic shooting
equations. Hence, we can generate two deformation maps:
the forward warp Φ−1 that maps the moving image to the695

coordinates of the target image, and the backward warp Φ
mapping the target image back to the coordinates of the
moving image. Hence, after the first prediction step us-
ing our prediction network, we can warp the target image
back to the moving image M via T ◦Φ. We can then train700

the correction network based on the difference between the
moving image M and the warped-back target image T ◦Φ,
such that it makes adjustments to the initial momentum
predicted in the first step by our prediction network. Be-
cause M and T ◦Φ are in the same coordinate system, the705

differences between these two images are small as long as
the predicted deformation is reasonable, and more accu-
rate predictions can be expected. Furthermore, the cor-
rection for the initial momentum is then performed in the

8In fact, we have successfully trained prediction models with as
little as ten images using all combinations of pair-wise registrations
to create training data [36]. This is possible, because even in such
a case of severely limited training data the number of patches that
can be used for training is very large.
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original coordinate space (of the moving image) which al-710

lows us to obtain an overall corrected initial momentum,
m0. This is for example a useful property when the goal is
to do statistics with respect to a fixed coordinate system,
for example, an atlas coordinate system.

Fig. 3 shows a graphical illustration of the resulting715

two-step prediction framework. In the framework, the cor-
rection network has the same structure as the prediction
network, and the only difference is the input of the net-
works and the output they produce. Training the overall
framework is done sequentially:720

1. Train the prediction network using training images
and the ground truth initial momentum obtained by
numerical optimization of the LDDMM registration
model.

2. Use the predicted momentum from the prediction725

network to generate deformation fields to warp the
target images in the training dataset back to the
space of the moving images.

3. Use the moving images and the warped-back target
images to train the correction network. The correc-730

tion network learns to predict the difference between
the ground truth momentum and the predicted mo-
mentum from the prediction network.

Using the framework during testing is similar to the train-
ing procedure, except here the outputs from the predic-735

tion network (using moving and target images as input)
and the correction network (using moving and warped-
back target images as input) are summed up to obtain
the final predicted initial momentum. This summation is
justified from the LDDMM theory as it is performed in a740

fixed coordinate system (a fixed tangent space), which is
the coordinate system of the moving image. Experiments
show that our prediction+correction approach results in
lower training and testing error compared with only using
a prediction network, as shown in Sec. 2.4 and Sec. 3.745

2.4. Datasets / Setup

We evaluate our method using three 3D brain image
registration experiments. The first experiment is designed
to assess atlas-to-image registration. In this experiment,
the moving image is always the atlas image. The second750

experiment addresses general image-to-image registration.
The final experiment explores multi-modal image registra-
tion; specifically, the registration of T1-weighted (T1w)
and T2-weighted (T2w) magnetic resonance images.

For the atlas-to-image registration experiment, we use755

3D image volumes from the OASIS longitudinal dataset [60].
Specifically, we use the first scan of all subjects, resulting
in 150 brain images. We select the first 100 images as our
training target images and the remaining 50 as our test
target images. We create an unbiased atlas [61] from all760

training data using PyCA9 [50, 62], and use the atlas as the
moving image. We use the LDDMM shooting algorithm
to register the atlas image to all 150 OASIS images. The
obtained initial momenta from the training data are used
to train our network; the remaining momenta are used for765

validation.

For the image-to-image registration experiment, we use
all 373 images from the OASIS longitudinal dataset as the
training data, and randomly select target images from dif-
ferent subjects for every image, creating 373 registrations770

for the training of our prediction and correction networks.
For testing, we choose the four datasets (LPBA40, IBSR18,
MGH10, CUMC12) evaluated in [33]. We perform LDDMM
shooting for all training registrations, and follow the eval-
uation procedure described in [33] to perform pairwise reg-775

istrations within all datasets, resulting in a total of 2168
registration (1560 from LPBA40, 306 from IBSR18, 90 from
MGH10, 132 from CUMC12) test cases.

For the multi-modal registration experiment, we use
the IBIS 3D Autism Brain image dataset [34]. This dataset780

contains 375 T1w/T2w brain images from 2 years old sub-
jects. We select 359 of the images for training and use
the remaining 16 images for testing. For training, we ran-
domly select T1w-T1w image pairs and perform LDDMM
shooting to generate the optimization momenta. We then785

train the prediction and correction networks to predict the
momenta obtained from LDDMM T1w-T1w optimization
using the image patches from the corresponding T1w mov-
ing image and T2w target image as network inputs. For
testing, we perform pair-wise T1w-T2w registrations for all790

16 test images, resulting in 250 test cases. For comparison,
we also train a T1w-T1w prediction+correction network
that performs prediction on the T1w-T1w test cases. This
network acts as the “upper-bound” of the potential perfor-
mance of our multi-modal networks as it addresses the uni-795

modal registration case and hence operates on image pairs
which have very similar appearance. Furthermore, to test
prediction performance when using very limited training
data, we also train a multi-modal prediction network and
a multi-modal prediction+correction network using only800

10 of the 365 training images which are randomly chosen
for training. In particular, we perform pair-wise T1w-T1w
registration on the 10 images, resulting in 90 registration
pairs. We then use these 90 registration cases to train the
multi-modal prediction networks.805

For skull stripping, we use FreeSurfer [63] for the OA-
SIS dataset and AutoSeg [64] for the IBIS dataset. The
4 evaluation datasets for image-to-image experiment are
already skull stripped as described in [33]. All images
used in our experiments are first affinely registered to the810

ICBM MNI152 nonlinear atlas [65] using NiftyReg10 and
intensity normalized via histogram equalization prior to
atlas building and LDDMM registration. All 3D volumes

9https://bitbucket.org/scicompanat/pyca
10https://cmiclab.cs.ucl.ac.uk/mmodat/niftyreg
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Figure 4: Log10 plot of l1 training loss per patch. The loss is averaged across all iterations for every epoch for both the Atlas-
to-Image case and the Image-to-Image case. The combined prediction + correction networks obtain a lower loss per patch than
the loss obtained by simply training the prediction networks for more epochs.

are of size 229 × 193 × 193 except for the LPBA dataset
(229 × 193 × 229), where we add additional blank image815

voxels for the atlas to keep the cerebellum structure. LD-
DMM registration is done using PyCA11 [50] with SSD as
the image similarity measure. We set the parameters for
the regularizer of LDDMM12 to L = −a∇2 − b∇(∇·) + c
as [a, b, c] = [0.01, 0.01, 0.001], and σ in Eqn. 3 to 0.2.820

We use a 15 × 15 × 15 patch size for deformation pre-
diction in all cases, and use a sliding window with step-
size 14 to extract patches for training. The only excep-
tion is for the multi-modal network which is trained us-
ing only 10 images, where we choose a step-size of 10 to825

generate more training patches. Note that using a stride
of 14 during training means that we are in fact discard-
ing available training patches to allow for reasonable net-
work training times. However, we still retain a very large
number of patches for training. To check that our num-830

ber of patches for training is sufficient, we performed ad-
ditional experiments for the image-to-image registration
task using smaller strides when selecting training patches.
Specifically, we doubled and tripled the training size for
the prediction network. These experiments indicated that835

increasing the training data size further only results in
marginal improvements, which are clearly outperformed
by a combined prediction + correction strategy. Explor-
ing alternative network structures, which may be able to

11https://bitbucket.org/scicompanat/pyca
12This regularizer is too weak to assure a diffeomorphic transfor-

mation based on the sufficient regularity conditions discussed in [13].
For these conditions to hold in 3D, L would need to be at least a
differential operator of order 6. However, as long as the obtained
velocity fields v are finite over the unit interval, i.e.,

∫ 1
0 ∥v∥2L dt < ∞

for an L of at least order 6, we will obtain a diffeomorphic trans-
form [51]. In the discrete setting, this condition will be fulfilled for
finite velocity fields. To side-step this issue, models based on Gaus-
sian or multi-Gaussian kernels [66] could also be used instead.

utilize larger training datasets, is beyond the scope of this840

paper, but would be an interesting topic for future re-
search.

The network is implemented in PyTorch13, and opti-
mized using Adam [67]. We set the learning rate to 0.0001
and keep the remaining parameters at their default val-845

ues. We train the prediction network for 10 epochs for
the image-to-image registration experiment and the multi-
modal image registration experiment, and 20 epochs for
the atlas-to-image experiment. The correction networks
are trained using the same number of epochs as their cor-850

responding prediction networks. Fig. 4 shows the l1 train-
ing loss per patch averaged for every epoch for the atlas-
to-image and the image-to-image experiments. For both,
using a correction network in conjunction with a predic-
tion network results in lower training error compared with855

training the prediction network for more epochs.

3. Results

3.1. Atlas-to-Image registration

For the atlas-to-image registration experiment, we test
two different sliding window strides for our patch-based860

prediction method: stride = 5 and stride = 14. We trained
additional prediction networks predicting the initial veloc-
ity v0 = Km0 and the displacement field Φ(1) − id of
LDDMM to show the effect of different deformation pa-
rameterizations on deformation prediction accuracy. We865

generate the predicted deformation map by integrating the
shooting equation 4 for the initial momentum and the ini-
tial velocity parameterization respectively. For the dis-
placement parameterization we can directly read-off the

13https://github.com/pytorch/pytorch
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Deformation Error for each voxel [mm] detJ > 0

Data percentile for all voxels 0.3% 5% 25% 50% 75% 95% 99.7%
Affine 0.0613 0.2520 0.6896 1.1911 1.8743 3.1413 5.3661 N/A

D, velocity, stride 5 0.0237 0.0709 0.1601 0.2626 0.4117 0.7336 1.5166 100%
D, velocity, stride 14 0.0254 0.075 0.1675 0.2703 0.415 0.743 1.5598 100%

D, deformation, stride 5 0.0223 0.0665 0.1549 0.2614 0.4119 0.7388 1.5845 56%
D, deformation, stride 14 0.0242 0.0721 0.1671 0.2772 0.4337 0.7932 1.6805 0%

P, momentum, stride 14, 50 samples 0.0166 0.0479 0.1054 0.1678 0.2546 0.4537 1.1049 100%
D, momentum, stride 5 0.0129 0.0376 0.0884 0.1534 0.2506 0.4716 1.1095 100%

D, momentum, stride 14 0.013 0.0372 0.0834 0.1359 0.2112 0.3902 0.9433 100%
D, momentum, stride 14, 40 epochs 0.0119 0.0351 0.0793 0.1309 0.2070 0.3924 0.9542 100%

D, momentum, stride 14 + correction 0.0104 0.0309 0.0704 0.1167 0.185 0.3478 0.841 100%

Table 1: Test result for atlas-to-image registration. The table shows the distribution of the 2-norm of the deformation error of
the predicted deformation with respect to the deformation obtained by numerical optimization. Percentiles of the displacement
errors are shown to provide a complete picture of the error distribution over just reporting the mean or median errors over all
voxels within the brain mask in the dataset. D: deterministic network; P: probabilistic network; stride: stride length of the sliding
window for whole image prediction; velocity: predicting initial velocity; deformation: predicting the deformation field; momentum:
predicting the initial momentum; correction: using the correction network. The detJ > 0 column shows the ratio of test cases
with only positive-definite determinants of the Jacobian of the deformation map to the overall number of registrations (100%
indicates that all registration results were diffeomorphic). Our initial momentum networks are highlighted in bold. The best
results are also highlighted in bold.

map from the network output. We quantify the deforma-870

tion errors per voxel using the voxel-wise two-norm of the
deformation error with respect to the result obtained via
numerical optimization for LDDMM using PyCA. Table 1
shows the error percentiles over all voxels and test cases.

We observe that the initial momentum network has875

better prediction accuracy compared to the results ob-
tained via the initial velocity and displacement parame-
terization in both the 5-stride and 14-stride cases. This
validates our hypothesis that momentum-based LDDMM
is better suited for patch-wise deformation prediction. We880

also observe that the momentum prediction result using
a smaller sliding window stride is slightly worse than the
one using a stride of 14. This is likely the case, because
in the atlas-to-image setting, the number of atlas patches
that extract features from the atlas image is very limited,885

and using a stride of 14 during the training phase further
reduces the available data from the atlas image. Thus,
during testing, the encoder will perform very well for the
14-stride test cases since it has already seen all the in-
put atlas patches during training. For a stride of 5 how-890

ever, unseen atlas patches will be input to the network,
resulting in reduced registration accuracy14. In contrast,
the velocity and the displacement parameterizations result
in slightly better predictions for smaller sliding window
strides. That this is not the case for the momentum pa-895

rameterization suggests that it is easier for the network to
learn to predict the momentum, as it indeed has become
more specialized to the training data which was obtained
with a stride of 14. One of the important properties of

14This behavior could likely be avoided by randomly sampling
patch locations during training instead of using a regular grid. How-
ever, since we aim at reducing the number of predicted patches we
did not explore this option and instead maintained the regular grid
sampling.

LDDMM shooting is its ability to generate diffeomorphic900

deformations. To assess this property, we calculate the
local Jacobians of the resulting deformation maps. As-
suming no flips of the entire coordinate system, a diffeo-
morphic deformation map should have positive Jacobian
determinants everywhere, otherwise foldings occur in the905

deformation maps. We calculate the ratio of test cases
with positive Jacobian determinants of the deformation
maps to all test cases, shown as detJ > 0 in Table 1. We
observe that the initial momentum and the initial veloc-
ity networks indeed generate diffeomorphic deformations910

in all scenarios. However, the deformation accuracy is sig-
nificantly worse for the initial velocity network. Predicting
the displacement directly cannot guarantee diffeomorphic
deformations even for a small stride. This is unsurpris-
ing as, similar to existing optical flow approaches [14, 15],915

directly predicting displacements does not encode defor-
mation smoothness. Hence, the initial momentum param-
eterization is the preferred choice among our three tested
parameterizations as it achieves the best prediction ac-
curacy and guarantees diffeomorphic deformations. Fur-920

thermore, the initial momentum prediction including the
correction network with a stride of 14 achieves the best
registration accuracy overall among the tested methods,
even outperforming the prediction network alone trained
with more training iterations (D, stride 14, 40 epochs).925

This demonstrates that the correction network is capable
of improving the initial momentum prediction beyond the
capabilities of the original prediction network.

Fig. 5 shows one example atlas-to-image registration
case. The predicted deformation result is very similar to930

the deformation from LDDMM optimization. We compute
the square root of the sum of the variance of the deforma-
tion in the x, y and z directions to quantify deformation
uncertainty, and visualize it on the rightmost column of
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(a) Moving image (b) Target image (c) LDDMM (d) Predict (probabilistic) (e) Uncertainty

Figure 5: Atlas-to-image registration example. From left to right : (a): moving (atlas) image; (b): target image; (c): deformation
from optimizing LDDMM energy; (d): deformation from using the mean of 50 samples from the probabilistic network with
stride=14 and patch pruning; (e): the uncertainty map as square root of the sum of the variances of the deformation in x, y,
and z directions mapped onto the predicted deformation result. The coloring indicates the level of uncertainty, with red = high
uncertainty and blue = low uncertainty. Best-viewed in color.

the figure. The uncertainty map shows high uncertainty935

along the ventricle areas where drastic deformations occur,
as shown in the moving and target images.

3.2. Image-to-Image registration

In this experiment, we use a sliding window stride
of 14 for both the prediction network and the correction940

network during evaluation. We mainly compare the fol-
lowing three LDDMM-based -methods: (i) the numerical
LDDMM optimization approach (LO) as implemented in
PYCA, which acts as an upper bound on the performance of
our prediction methods; and two flavors of Quicksilver:945

(ii) only the prediction network (LP) and (iii) the predic-
tion+correction network (LPC).

3.2.1. LDDMM energy

To test the ability of our prediction networks to re-
place numerical optimization, we compare the LDDMM950

energies obtained using optimization from LO with the en-
ergies corresponding to the predicted momenta from LP

LDDMM energy for image-to-image test datasets

LPBA40

initial LO LP LPC

0.120± 0.013 0.027± 0.004 0.036± 0.005 0.030± 0.005

IBSR18

initial LO LP LPC

0.214± 0.032 0.037± 0.008 0.058± 0.013 0.047± 0.011

CUMC12

initial LO LP LPC

0.246± 0.015 0.044± 0.003 0.071± 0.004 0.056± 0.004

MGH10

initial LO LP LPC

0.217± 0.012 0.039± 0.003 0.062± 0.004 0.049± 0.003

Table 2: Mean and standard deviation of the LDDMM energy
for four image-to-image test datasets. initial: the initial LD-
DMM energy between the original moving image and the target
image after affine registration to the atlas space, i.e. the orig-
inal image matching energy. LO: LDDMM optimization. LP:
prediction network. LPC: prediction+correction network.
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Dataset: MGH10

Figure 6: Overlap by registration method for the image-to-image registration case. The boxplots illustrate the mean target
overlap measures averaged over all subjects in each label set, where mean target overlap is the average of the fraction of the
target region overlapping with the registered moving region over all labels. The proposed LDDMM-based methods in this paper
are highlighted in red. LO = LDDMM optimization; LP = prediction network; LPC = prediction network + correction network.
LPP: prediction network + using the prediction network for correction. LPC2/LPC3: prediction network + iteratively using the
correction network 2/3 times. Horizontal red lines show the LPC performance in the lower quartile to upper quartile (best-viewed
in color). The medians of the overlapping scores for [LPBA40, IBSR18, CUMC12, MGH10] for LO, LP and LPC are: LO: [0.702, 0.537,
0.536, 0.563]; LP: [0.696, 0.518, 0.515, 0.549]; LPC: [0.702, 0.533, 0.526, 0.559]. Best-viewed in color.

and LPC. Low energies for the predicted momenta, which
are comparable to the energies obtained by numerical op-
timization (LO), would suggest that our prediction models955

can indeed act as replacements for numerical optimiza-
tion. However, note that, in general, a low energy will only
imply a good registration result if the registration model
is fully appropriate for the registration task. Ultimately,
registration quality should be assessed based on a partic-960

ular task: most directly by measuring landmark errors or
(slightly more indirectly) by measuring overlaps of corre-
sponding regions as done in Section 3.2.2. Table 2 shows

the results for four test datasets. Compared with the ini-
tial LDDMM energy based on affine registration to the965

atlas space in the initial column, both LP and LPC have
drastically lower LDDMM energy values; further, these
values are only slightly higher than those for LO. Further-
more, compared with LP, LPC generates LDDMM energy
values that are closer to LO, which indicates that using the970

prediction+correction approach results in momenta which
are closer to the optimal solution than the ones obtained
by using the prediction network only.
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3.2.2. Label overlap

For image-to-image registration we follow the approach975

in [33] and calculate the target overlap (TO) of labeled
brain regions after registration: TO = lm∩lt

lt
, where lm and

lt indicate the corresponding labels for the moving image
(after registration) and the target image. We then evalu-
ate the mean of the target overlap averaged first across all980

labels for a single registration case and then across all reg-
istration cases within one dataset. The evaluation results
for other methods tested in [33] are available online. We
compare our registration approaches to these results. An
interesting question is if the prediction network and the985

correction network are identical, and whether the predic-
tion network can be used in the correction step. Another
question is if the correction network can be applied multi-
ple times in the correction step to further improve results.
Thus, to test the usefulness of the correction network in990

greater depth, we also create three additional formulations
of our prediction framework: (i) prediction network + us-
ing the same prediction network to replace the correction
network in the correction step (LPP); (ii) applying the cor-
rection network twice (LPC2) and (iii) applying the correc-995

tion network three times (LPC3).
Fig. 6 shows the evaluation results. Several points

should be noted: first, the LDDMM optimization perfor-
mance is on par with SyN [68], ART [69] and the SPM5
DARTEL Toolbox (SPM5D) [70]. This is reasonable as1000

these methods are all non-parametric diffeomorphic or home-
omorphic registration methods, allowing the modeling of
large deformations between image pairs. Second, using
only the prediction network results in a slight performance
drop compared to the numerical optimization results (LO),1005

but the result is still competitive with the top-performing
registration methods. Furthermore, also using the cor-
rection network boosts the deformation accuracy nearly
to the same level as the LDDMM optimization approach
(LO). The red horizontal lines in Fig. 6 show the lower and1010

upper quartiles of the target overlap score of the predic-
tion+correction method. Compared with other methods,
our prediction+correction network achieves top-tier per-
formance for label matching accuracy at a small fraction
of the computational cost. Lastly, in contrast to many1015

of the other methods Quicksilver produces virtually no
outliers. One can speculate that this may be the benefit of
learning to predict deformations from a large population of
data, which may result in a prediction model which con-
servatively rejects unusual deformations. Note that such a1020

population-based approach is very different from most ex-
isting registration methods which constrain deformations
based on a regularizer chosen for a mathematical regis-
tration model. Ultimately, a deformation model for image
registration should model what deformations are expected.1025

Our population-based approach is a step in this direction,
but, of course, still depends on a chosen regularizer to gen-
erate training data. Ideally, this regularizer itself should
be learned from data.

An interesting discovery is that LPP, LPC2 and LPC31030

produce label overlapping scores that are on-par with LPC.
However, as we will show in Sec. 3.2.3, LPP, LPC2 and LPC3

deviate from our goal of predicting deformations that are
similar to the LDDMM optimization result (LO). In fact,
they produce more drastic deformations that can lead to1035

worse label overlap and even numerical stability problems.
These problems can be observed in the LPBA40 results
shown in Fig. 6, which show more outliers with low over-
lapping scores for LPP and LPC3. In fact, there are 12 cases
for LPP where the predicted momentum cannot generate1040

deformation fields via LDDMM shooting using PyCA, due
to problems related to numerical integration. These cases
are therefore not included in Fig. 6. PyCA uses an explicit
Runge-Kutta method (RK4) for time-integration. Hence,
numerical instability is likely due to the use of a fixed step1045

size for this time-integration which is small enough for the
deformations expected to occur for these brain registration
tasks, but which may be too large for the more extreme
momenta LPP and LPC3 create for some of these cases. Us-
ing a smaller step-size would regain numerical stability in1050

this case.

To study the differences among registration algorithms
statistically, we performed paired t-tests15 with respect to
the target overlap scores between our LDDMM variants
(LO, LP, LPC) and the methods in [33]. Our null-hypothesis1055

is that the methods show the same target overlap scores.
We use a significance level of α = 0.05/204 for rejection
of this null-hypothesis. We also computed the mean and
the standard deviation of pair-wise differences between our
LDDMM variants and these other methods. Table 3 shows1060

the results. We observe that direct numerical optimization
of the shooting LDDMM formulation via PyCA (LO) is a
highly competitive registration method and shows better
target overlap scores than most of the other registration
algorithms for all four datasets (LPBA40, IBSR18, CUMC12,1065

and MGH10). Notable exceptions are ART (on LPBA40), SyN
(on LBPA40), and SPM5D (on IBSR18). However, perfor-
mance decreases are generally very small: −0.017, −0.013,
and −0.009 mean decrease in target overlap ratio for the
three aforementioned exceptions, respectively. Specifically,1070

a similar performance of LO to SyN, for example, is ex-
pected as SyN (as used in [33]) is based on a relaxation
formulation of LDDMM, whereas LO is based on the shoot-
ing formulation of LDDMM. Performance differences may
be due to differences in the used regularizer and the image1075

similarity measure. In particular, where SyN was used with
Gaussian smoothing and cross-correlation, we used SSD as

15To safe-guard against overly optimistic results due to multi-
ple comparisons, we used Bonferroni correction for all statistical
tests in the paper (paired t-tests and paired TOST) by dividing
the significance level α by the total number (204) of statistical
tests we performed. This resulted in an effective significance level
α = 0.05/204 ≈ 0.00025. The Bonferroni correction is likely overly
strict for our experiments as the different registration results will be
highly correlated, because they are based on the same input data.
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Dataset: LPBA40

FLIRT AIR ANIMAL ART Demons FNIRT Fluid SLICE

LO 0.108 ± 0.054 0.049 ± 0.021 0.039 ± 0.029 −0.017±0.013 0.012 ± 0.014 0.001 ± 0.014 0.001 ± 0.013 0.097 ± 0.1
LP 0.102 ± 0.054 0.043 ± 0.02 0.033 ± 0.029 −0.024±0.013 0.006 ± 0.014 −0.006±0.014 −0.005±0.013 0.091 ± 0.1
LPC 0.106 ± 0.054 0.046 ± 0.021 0.037 ± 0.029 −0.02 ± 0.013 0.009 ± 0.014 −0.002±0.014 −0.002±0.013 0.095 ± 0.1

SyN SPM5N8 SPM5N SPM5U SPM5D LO LP LPC

LO −0.013 ± 0.05 0.032 ± 0.018 0.13 ± 0.07 0.015 ± 0.017 0.03 ± 0.16 N/A 0.006 ± 0.003 0.003 ± 0.002
LP −0.02 ± 0.05 0.025 ± 0.018 0.124 ± 0.07 0.009 ± 0.017 0.023 ± 0.16 −0.006±0.003 N/A −0.004±0.002
LPC −0.016 ± 0.05 0.029 ± 0.018 0.127 ± 0.07 0.012 ± 0.017 0.027 ± 0.16 −0.003±0.002 0.004 ± 0.002 N/A

Dataset: IBSR18

FLIRT AIR ANIMAL ART Demons FNIRT Fluid SLICE

LO 0.136 ± 0.025 0.119 ± 0.03 0.07 ± 0.027 0.018 ± 0.022 0.064 ± 0.034 0.057 ± 0.026 0.044 ± 0.019 0.088 ± 0.029
LP 0.118 ± 0.022 0.101 ± 0.028 0.052 ± 0.025 0 ± 0.021 0.047 ± 0.032 0.039 ± 0.023 0.026 ± 0.018 0.07 ± 0.027
LPC 0.129 ± 0.024 0.112 ± 0.03 0.063 ± 0.027 0.01 ± 0.022 0.058 ± 0.033 0.049 ± 0.025 0.036 ± 0.019 0.08 ± 0.029

SyN SPM5N8 SPM5N SPM5U SPM5D LO LP LPC

LO 0.005 ± 0.024 0.112 ± 0.034 0.161 ± 0.042 0.08 ± 0.030 −0.009±0.035 N/A 0.018 ± 0.007 0.007 ± 0.004
LP −0.013±0.024 0.094 ± 0.032 0.144 ± 0.042 0.062 ± 0.027 −0.026±0.035 −0.018±0.007 N/A −0.01 ± 0.004
LPC −0.002±0.024 0.105 ± 0.034 0.154 ± 0.043 0.073 ± 0.029 −0.016±0.035 −0.007±0.004 0.01 ± 0.004 N/A

Dataset: CUMC12

FLIRT AIR ANIMAL ART Demons FNIRT Fluid SLICE

LO 0.14 ± 0.02 0.111 ± 0.019 0.108 ± 0.031 0.031 ± 0.01 0.072 ± 0.012 0.071 ± 0.019 0.073 ± 0.017 0.115 ± 0.03
LP 0.12 ± 0.017 0.092 ± 0.017 0.089 ± 0.031 0.012 ± 0.01 0.052 ± 0.01 0.052 ± 0.017 0.053 ± 0.015 0.096 ± 0.031
LPC 0.131 ± 0.018 0.102 ± 0.018 0.1 ± 0.031 0.023 ± 0.01 0.063 ± 0.011 0.062 ± 0.018 0.064 ± 0.016 0.107 ± 0.031

SyN SPM5N8 SPM5N SPM5U SPM5D LO LP LPC

LO 0.020 ± 0.011 0.169 ± 0.029 0.114 ± 0.019 0.1 ± 0.015 0.022 ± 0.049 N/A 0.02 ± 0.004 0.009 ± 0.002
LP 0.001 ± 0.011 0.149 ± 0.028 0.095 ± 0.017 0.076 ± 0.013 0.003 ± 0.048 −0.02 ± 0.004 N/A −0.011±0.003
LPC 0.012 ± 0.011 0.16 ± 0.028 0.106 ± 0.018 0.087 ± 0.013 0.013 ± 0.048 0.009 ± 0.002 0.011 ± 0.003 N/A

Dataset: MGH10

FLIRT AIR ANIMAL ART Demons FNIRT Fluid SLICE

LO 0.104 ± 0.016 0.087 ± 0.015 0.062 ± 0.022 0.005 ± 0.016 0.044 ± 0.013 0.071 ± 0.018 0.043 ± 0.016 0.083 ± 0.017
LP 0.091 ± 0.016 0.073 ± 0.016 0.049 ± 0.023 −0.008±0.017 0.03 ± 0.013 0.058 ± 0.018 0.03 ± 0.015 0.07 ± 0.017
LPC 0.098 ± 0.016 0.081 ± 0.015 0.057 ± 0.022 0 ± 0.016 0.038 ± 0.013 0.065 ± 0.018 0.037 ± 0.016 0.077 ± 0.017

SyN SPM5N8 SPM5N SPM5U SPM5D LO LP LPC

LO −0.002±0.015 0.069 ± 0.02 0.135 ± 0.041 0.07 ± 0.024 0.023 ± 0.047 N/A 0.013 ± 0.004 0.006 ± 0.002
LP −0.015±0.016 0.055 ± 0.02 0.121 ± 0.041 0.057 ± 0.025 0.01 ± 0.048 −0.013±0.004 N/A −0.008±0.003
LPC −0.008±0.015 0.063 ± 0.02 0.129 ± 0.041 0.065 ± 0.024 0.018 ± 0.047 −0.006±0.002 0.008 ± 0.003 N/A

Table 3: Mean and standard deviation of the difference of target overlap score between LDDMM variants (LDDMM optimization
(LO), the proposed prediction network (LP) and prediction+correction network (LPC)) and all other methods for the image-to-image
experiments. The cell coloring indicates significant differences calculated from a pair-wise t-test: green indicates that the row-
method is statistically significantly better than the column-method; red indicates that the row-method is statistically significantly
worse than the column-method, and blue indicates the difference is not statistically significant (best-viewed in color). We use
Bonferroni correction to safe-guard against spurious results due to multiple comparisons by dividing the significance level α by
204 (the total number of statistical tests). The significance level for rejection of the null-hypothesis is α = 0.05/204. Best-viewed
in color.

Dataset: LPBA40

ART SyN LO LP LPC

LO N/A ✓ ✓
LP ✓ N/A ✓

LPC ✓ ✓ N/A

Dataset: IBSR18

ART SyN LO LP LPC

LO ✓ N/A ✓
LP ✓ N/A

LPC ✓ ✓ N/A

Dataset: CUMC12

ART SyN LO LP LPC

LO N/A ✓
LP ✓ N/A

LPC ✓ N/A

Dataset: MGH10

ART SyN LO LP LPC

LO ✓ N/A ✓
LP N/A ✓

LPC ✓ ✓ ✓ N/A

Table 4: Pairwise TOST, where we test the null-hypothesis that for the target overlap score for each row-method, trow, and the
target overlap score for each column-method, tcolumn,

trow
tcolumn

< 0.98, or trow
tcolumn

> 1.02. Rejecting the null-hypothesis indicates
that the row-method and column-method are statistically equivalent. Equivalence is marked as ✓s in the table. We use Bonferroni
correction to safe-guard against spurious results due to multiple comparisons by dividing the significance level α by 204 (the total
number of statistical tests). The significance level for rejection of the null-hypothesis is α = 0.05/204.

the image similarity measure and a regularizer involving
up to second order spatial derivatives.

LO is the algorithm that our predictive registration ap-1080

proaches (LP and LPC) are based on. Hence, LP and LPC are
not expected to show improved performance with respect
to LO. However, similar performance for LP and LPC would

indicate high quality predictions. Indeed, Table 3 shows
that our prediction+correction approach (LPC) performs1085

similar (with respect to the other registration methods) to
LO. A slight performance drop with respect to LO can be
observed for LPC and a slightly bigger performance drop
for LP, which only uses the prediction model, but no cor-
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rection model.1090

To assess statistical equivalence of the top perform-
ing registration algorithms we performed paired two one-
sided tests (paired TOST) [71] with a relative threshold
difference of 2%. In other words, our null-hypothesis is
that methods show a relative difference of larger than 2%.1095

Rejection of this null-hypothesis at a significance level of
α = 0.05/204 then indicates evidence for statistical equiv-
alence. Table 4 shows the paired TOST results. For a
relative threshold difference of 2% LPC can be considered
statistically equivalent to LO for all four datasets and to1100

many of the other top methods (e.g., LPC vs. SyN on MGH10

and IBSR18).
Overall, these statistical tests confirm that our pre-

diction models, in particular LPC, are highly competitive
registration algorithms. Computational cost, however, is1105

very small. This is discussed in detail in Sec. 3.4.

3.2.3. Choosing the correct “correction step”

As shown in Sec. 3.2.2, LPP, LPC2 and LPC3 all result in
label overlapping scores which are similar to the label over-
lapping scores obtained via LPC. This raises the question1110

which method should be preferred for the correction step.
Note that among these methods, only LPC is specifically
trained to match the LDDMM optimization results and in
particular to predict corrections to the initial momentum
obtained by the prediction model (LP) in the tangent space1115

of the moving image. In contrast, LPP, LPC2 and LPC3 lack
this theoretical motivation. Hence, it is unclear for these
methods what the overall optimization goal is. To show
what this means in practice, we computed the determi-
nant of the Jacobian of the deformation maps (Φ−1) for1120

all voxels for all four registration cases of [33] inside the
brain mask and calculated the histogram of the computed
values. Our goal is to check the similarity (in distribution)
between deformations generated by the prediction models
(LP, LPC, LPP, LPC2, LPC3) in comparison to the results1125

obtained via numerical LDDMM optimization (LO).
As an example, Fig. 7 shows the result for the LPBA40

dataset. The other three datasets show similar results.
Fig. 7(left) shows the histogram of the logarithmically
transformed determinant of the Jacobian (log10detJ) for1130

all the methods. A value of 0 on the x-axis indicates no
deformation or a volume preserving deformation, > 0 in-
dicates volumetric shrinkage and < 0 indicates volumetric
expansion. We can see that LPC is closest to LO. LP gen-
erates smoother deformations compared with LO, which is1135

sensible as one-step predictions will likely not be highly ac-
curate and, in particular, may result in predicted momenta
which are slightly smoother than the ones obtained by nu-
merical optimization. Hence, in effect, the predictions may
result in a more strongly spatially regularized deforma-1140

tion. LPP, LPC2 and LPC3 generate more drastic deforma-
tions (i.e., more spread out histograms indicating areas of
stronger expansions and contractions). Fig. 7(right) shows
this effect more clearly; it shows the differences between
the histogram of the prediction models and the registration1145

result obtained by numerical optimization (LO). Hence, a
method which is similar to LO in distribution will show a
curve close to y = 0.

This assessment also demonstrates that the correction
network (of LPC) is different from the prediction network1150

(LP): the correction network is trained specifically to cor-
rect minor errors in the predicted momenta of the pre-
diction network with respect to the desired momenta ob-
tained by numerical optimization (LO), while the predic-
tion network is not. Thus, LPC is the only model among1155

the prediction models (apart from LP) that has the explicit
goal of predicting the behavior of the LDDMM optimiza-
tion result (LO). When we use the prediction network in
the correction step, the high label overlapping scores are
due to more drastic deformations compared with LP, but1160

there is no clear theoretical justification of LPP. In fact,
it is more reminiscent of a greedy solution strategy, albeit
still results in geodesic paths as the predicted momenta
are added in the tangent space of the undeformed moving
image. Similar arguments hold for LPC2 and LPC3: using1165

the correction network multiple times (iteratively) in the
correction step also results in increasingly drastic deforma-
tions, as illustrated by the curves for LPC, LPC2 and LPC3 in
Fig. 7. Compared to the label overlapping accuracy boost
from LP to LPC, LPC2 and LPC3 do not greatly improve the1170

registration accuracy, and may even generate worse results
(e.g., LPC3 on LPBA40). Furthermore, the additional com-
putation cost for more iterations of the correction network
+ LDDMM shooting makes LPC2 and LPC3 less favorable,
in comparison to LPC.1175

3.2.4. Predicting various ranges of deformations

Table 5 shows the range of deformations and associ-
ated percentiles for the deformation fields generated by
LDDMM optimization for the four image-to-image test
datasets. All computations were restricted to locations1180

inside the brain mask. Table 5 also shows the means and
standard deviations of the differences of deformations be-
tween the results for the prediction models and the results
obtained by numerical optimization (LO). As shown in the
table, the largest deformations that LDDMM optimiza-1185

tion generates are 23.393 mm for LPBA40, 36.263 mm for
IBSR18, 18.753 mm for CUMC12 and 18.727 mm for MGH10.

Among the prediction models, LPC improves the pre-
diction accuracy compared with LP, and generally achieves
the highest deformation prediction accuracy for up to 80%1190

of the voxels. It is also on-par with other prediction models
for up to 99% of the voxels, where the largest deformations
are in the range between 7.317 mm-9.026 mm for the four
datasets. For very large deformations that occur for 1% of
the total voxels, LPC does not drastically reduce the defor-1195

mation error. This is due to the following three reasons:
First, the input patch size of the deep learning framework
is 15 × 15 × 15, which means that the receptive field for
the network input is limited to 15 × 15 × 15mm3. This
constrains the network’s ability to predict very large de-1200

formations, and can potentially be solved by implementing
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Figure 7: Distribution of the determinant of Jacobian of the deformations for LPBA40 dataset registrations. Left : histograms
of the log-transformed determinant of Jacobian for the deformation maps (log10detJ) for all registration cases. Right : difference
of the histograms of log10detJ between prediction models (LP, LPC, LPP, LPC2, LPC3) and LO. For the right figure, the closer a
curve is to y = 0, the more similar the corresponding method is to LO. A value of 0 on the x-axis indicates no deformation, or a
volume-preserving deformation, > 0 indicates shrinkage and < 0 indicates expansion. Best-viewed in color.

a multi-scale input network for prediction. Second, the de-
formations in the OASIS training images have a median of
2.609 mm, which is similar to the median observed in the
four testing datasets. However, only 0.2% of the voxels in1205

the OASIS training dataset have deformations larger than
10 mm. Such a small number of training patches contain-
ing very large deformations makes it difficult to train the
network to accurately predict these very large deforma-
tions in the test data. If capturing these very large defor-1210

mations is desired, a possible solution could be to provide a
larger number of training examples for large deformations
or to weight samples based on their importance. Third,
outliers in the dataset whose appearances are very differ-
ent from the other images in the dataset can cause very1215

large deformations. For example, in the IBSR18 dataset,
only three distinct images are needed as moving or tar-
get images to cover the 49 registration cases that generate
deformations larger than 20 mm. These large deforma-
tions created by numerical LDDMM optimization are not1220

always desirable; and consequentially registration errors of
the prediction models with respect to the numerical opti-
mization result are in fact sometimes preferred. As a case
in point, Fig. 8 shows a registration failure case from the
IBSR18 dataset for LDDMM optimization and the corre-1225

sponding prediction result. In this example, the brain ex-
traction did not extract consistent anatomy for the moving
image and the target image. Specifically, only inconsis-
tent parts of the cerebellum remain between the moving
and the target images. As optimization-based LDDMM1230

does not know about this inconsistency, it attempts to
match the images as well as possible and thereby creates a
very extreme deformation. Our prediction result, however,

still generates reasonable deformations (where plausibility
is based on the deformations that were observed during1235

training) while matching the brain structures as much as
possible. This can be regarded as an advantage of our
network, where the conservative nature of patch-wise mo-
mentum prediction is more likely to generate reasonable
deformations.1240
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(a) Moving (b) Target (c) LDDMM (d) LPC (e) Deformation Error

Figure 8: Failure case for IBSR18 dataset where LDDMM
optimization generated very extreme deformations. From left
to right : (a): moving image; (b): target image; (c): LDDMM
optimization result; (d): prediction+correction result (LPC);
(e): heatmap showing the differences between the optimization
deformation and predicted deformation in millimeters. Most
registration errors occur in the area of the cerebellum, which
has been inconsistently preserved in the moving and the target
images during brain extraction. Hence, not all the retained
brain regions in the moving image have correspondences in the
target image. Best-viewed in color.
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3.3. Multi-modal image registration

In this task, a sliding window stride of 14 is used for
the test cases. Table 6 shows the prediction results com-
pared to the deformation results obtained by T1w-T1w
LDDMM optimization. The multi-modal networks (T1w-1245

T2w, LP/LPC) significantly reduce deformation error com-
pared to affine registration, and only suffer a slight loss in
accuracy compared to their T1w-T1w counterparts. This
demonstrates the capability of our network architecture to
implicitly learn the complex similarity measure between1250

two modalities. Furthermore, for the networks trained us-
ing only 10 images, the performance only decreases slightly
in comparison with the T1w-T2w multi-modal networks
trained with 359 images. Hence, even when using very
limited image data, we can still successfully train our pre-1255

diction networks when a sufficient number of patches is
available. Again, using a correction network improves the
prediction accuracy in all cases. Fig. 10 shows one multi-
modal registration example. All three networks (T1w-
T1w, T1w-T2w, T1w-T2w using 10 training images) gen-1260

erate warped images that are similar to the LDDMM op-
timization result.

3.4. Runtime study

We assess the runtime of Quicksilver on a single
Nvidia TitanX (Pascal) GPU. Performing LDDMM op-1265

timization using the GPU-based implementation of PyCA
for a 229× 193× 193 3D brain image takes approximately
10.8 minutes. Using our prediction network with a sliding
window stride of 14, the initial momentum prediction time
is, on average, 7.63 seconds. Subsequent geodesic shooting1270

to generate the deformation field takes 8.9 seconds, result-
ing in a total runtime of 18.43 seconds. Compared to the
LDDMM optimization approach, our method achieves a
35× speed up. Using the correction network together with
the prediction network doubles the computation time, but1275

the overall runtime is still an order of magnitude faster
than direct LDDMM optimization. Note that, at a stride
of 1, computational cost increases about 3000-fold in 3D,
resulting in runtimes of about 51/2 hours for 3D image
registration (eleven hours when the correction network is1280

also used). Hence the initial momentum parameterization,
which can tolerate large sliding window strides, is essential
for fast deformation prediction with high accuracy while
guaranteeing diffeomorphic deformations.

Since we predict the whole image initial momentum1285

in a patch-wise manner, it is natural to extend our ap-
proach to a multi-GPU implementation by distributing
patches across multiple GPUs. We assess the runtime
of this parallelization strategy on a cluster with multiple
Nvidia GTX 1080 GPUs; the initial momentum prediction1290

result is shown in Fig. 11. As we can see, by increasing the
number of GPUs, the initial momentum prediction time
decreases from 11.23 seconds (using 1 GPU) to 2.41 sec-
onds using 7 GPUs. However, as the number of GPUs
increases, the communication overhead between GPUs be-1295

comes larger which explains why computation time does

not equal to 11.23/number of GPUs seconds. Also, when
we increase the number of GPUs to 8, the prediction time
slightly increases to 2.48s. This can be attributed to the
fact that PyTorch is still in Beta-stage and, according to1300

the documentation, better performance for large numbers
of GPUs (8+) is being actively developed16. Hence, we ex-
pect faster prediction times using a large number of GPUs
in the future. Impressively, by using multiple GPUs, the
runtime can be improved by two orders of magnitude over1305

a direct (GPU-based) LDDMM optimization. Thus, our
method can readily be used in a GPU-cluster environment
for ultra-fast deformation prediction.

4. Discussion

We proposed a fast registration approach based on the1310

patch-wise prediction of the initial momentum parameter-
ization of the LDDMM shooting formulation. The pro-
posed approach allows taking large strides for patch-wise
prediction, without a substantial decrease in registration
accuracy, resulting in fast and accurate deformation pre-1315

diction. The proposed correction network is a step to-
wards highly accurate deformation prediction, while only
decreasing the computation speed by a factor of 2. Our
method retains all theoretical properties of LDDMM and
results in diffeomorphic transformations if appropriately1320

regularized, but computes these transformations an order
of magnitude faster than a GPU-based optimization for
the LDDMM model. Moreover, the patch-wise prediction
approach of our methods enables a multi-GPU implemen-
tation, further increasing the prediction speed. In effect,1325

our Quicksilver registration approach converts a noto-
riously slow and memory-hungry registration approach to
a fast method, while retaining all of its appealing mathe-
matical properties.

Our framework is very general and can be directly1330

applied to many other registration techniques. For non-
parametric registration methods with pixel/voxel wise reg-
istration parameters (e.g., elastic registration [1], or sta-
tionary velocity field [44] registration approaches), our ap-
proach can be directly applied for parameter prediction.1335

For parametric registration methods with local control such
as B-splines, we could attach fully connected layers to the
decoder to reduce the network output dimension, thereby
predicting low-dimensional registration parameters for a
patch. Of course, the patch pruning techniques may not1340

be applicable for these methods if the parameter locality
cannot be guaranteed.

In summary, the presented deformation prediction ap-
proach is the first step towards more complex tasks where
fast, deformable, predictive image registration techniques1345

16http://pytorch.org/docs/notes/cuda.html/

#cuda-nn-dataparallel-instead
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Dataset: LPBA40

Voxel% 0%-10% 10%-20% 20%-30% 30%-40% 40%-50% 50%-60% 60%-70% 70%-80%
# of Test Cases 1560(100%) 1560(100%) 1560(100%) 1560(100%) 1560(100%) 1560(100%) 1560(100%) 1560(100%)
Imain 40 40 40 40 40 40 40 40
Deform (mm) 0.001-0.999 0.999-1.400 1.400-1.751 1.751-2.093 2.093-2.450 2.450-2.840 2.840-3.295 3.295-3.873
LP 0.478 ± 0.323 0.564 ± 0.361 0.623 ± 0.393 0.675 ± 0.425 0.728 ± 0.461 0.786 ± 0.503 0.853 ± 0.556 0.941 ± 0.630
LPC 0.415 ± 0.287 0.469 ± 0.327 0.509 ± 0.359 0.546 ± 0.390 0.584 ± 0.424 0.626 ± 0.464 0.676 ± 0.514 0.742 ± 0.583
LPP 0.543 ± 0.554 0.605 ± 0.613 0.650 ± 0.684 0.691 ± 0.823 0.733 ± 0.783 0.778 ± 0.852 0.830 ± 0.922 0.898 ± 1.055
LPC2 0.510 ± 0.339 0.551 ± 0.378 0.582 ± 0.409 0.611 ± 0.439 0.642 ± 0.471 0.676 ± 0.508 0.716 ± 0.553 0.770 ± 0.617
LPC3 0.637 ± 0.410 0.674 ± 0.451 0.703 ± 0.486 0.732 ± 0.516 0.762 ± 0.550 0.795 ± 0.588 0.834 ± 0.638 0.886 ± 0.713

Voxel% 80%-90% 90%-99% 99%-100% 99.9%-100% 99.99%-100% 99.999%-100% 99.9999%-100% 99.99999%-100%
# of Test Cases 1560(100%) 1560(100%) 1560(100%) 1474(94.5%) 417(26.7%) 72(4.6%) 30(1.9%) 8(0.5%)
Imain 40 40 40 38 31 8 2 1
Deform (mm) 3.873-4.757 4.757-7.317 7.317-23.393 9.866-23.393 12.435-23.393 14.734-23.393 16.835-23.393 19.090-23.393
LP 1.079 ± 0.752 1.418 ± 1.056 2.579 ± 1.869 4.395 ± 2.667 6.863 ± 3.657 9.220 ± 4.829 11.568 ± 6.340 14.475 ± 7.145
LPC 0.847 ± 0.696 1.101 ± 0.976 1.961 ± 1.761 3.431 ± 2.656 5.855 ± 3.711 8.408 ± 4.780 10.484 ± 6.148 14.041 ± 6.879
LPP 1.001 ± 1.396 1.229 ± 1.558 1.760 ± 2.965 2.514 ± 5.845 4.127 ± 7.988 7.097 ± 3.566 10.509 ± 5.093 11.436 ± 5.688
LPC2 0.856 ± 0.721 1.064 ± 0.979 1.765 ± 1.726 3.012 ± 2.644 5.351 ± 3.698 8.362 ± 4.765 11.310 ± 6.117 15.957 ± 6.458
LPC3 0.968 ± 0.835 1.166 ± 1.176 1.829 ± 2.880 3.019 ± 4.688 5.680 ± 10.450 11.434 ± 23.727 18.939 ± 33.953 24.152 ± 38.466

Dataset: IBSR18

Voxel% 0%-10% 10%-20% 20%-30% 30%-40% 40%-50% 50%-60% 60%-70% 70%-80%
# of Test Cases 306(100%) 306(100%) 306(100%) 306(100%) 306(100%) 306(100%) 306(100%) 306(100%)
Imain 18 18 18 18 18 18 18 18
Deform (mm) 0.003-1.221 1.221-1.691 1.691-2.101 2.101-2.501 2.501-2.915 2.915-3.370 3.370-3.901 3.901-4.580
LP 0.573 ± 0.401 0.670 ± 0.448 0.742 ± 0.489 0.810 ± 0.532 0.879 ± 0.580 0.957 ± 0.637 1.053 ± 0.711 1.182 ± 0.815
LPC 0.450 ± 0.343 0.521 ± 0.393 0.577 ± 0.435 0.631 ± 0.479 0.687 ± 0.526 0.751 ± 0.582 0.829 ± 0.655 0.936 ± 0.756
LPP 0.624 ± 0.553 0.698 ± 0.623 0.755 ± 0.678 0.809 ± 0.729 0.863 ± 0.782 0.923 ± 0.843 0.996 ± 0.918 1.094 ± 1.022
LPC2 0.505 ± 0.383 0.566 ± 0.437 0.614 ± 0.480 0.660 ± 0.522 0.707 ± 0.568 0.761 ± 0.622 0.827 ± 0.691 0.917 ± 0.788
LPC3 0.606 ± 0.446 0.666 ± 0.504 0.713 ± 0.549 0.757 ± 0.594 0.803 ± 0.640 0.854 ± 0.694 0.915 ± 0.763 1.001 ± 0.860

Voxel% 80%-90% 90%-99% 99%-100% 99.9%-100% 99.99%-100% 99.999%-100% 99.9999%-100% 99.99999%-100%
# of Test Cases 306(100%) 306(100%) 306(100%) 125(40.8%) 46(15.0%) 12(3.9%) 3(1.0%) 3(1.0%)
Imain 18 18 18 10 3 2 1 1
Deform (mm) 4.580-5.629 5.629-9.026 9.026-36.263 14.306-36.263 19.527-36.263 23.725-36.263 27.533-36.263 29.154-36.263
LP 1.397 ± 0.988 2.007 ± 1.451 5.343 ± 3.868 13.103 ± 4.171 20.302 ± 2.287 24.666 ± 1.688 28.081 ± 1.190 30.436 ± 1.807
LPC 1.114 ± 0.924 1.609 ± 1.367 4.485 ± 3.862 11.928 ± 4.800 19.939 ± 2.549 24.457 ± 1.877 27.983 ± 1.218 30.000 ± 1.796
LPP 1.249 ± 1.184 1.621 ± 1.572 2.894 ± 2.798 5.054 ± 4.387 9.631 ± 6.406 13.541 ± 7.744 17.600 ± 7.317 15.553 ± 6.339
LPC2 1.068 ± 0.951 1.488 ± 1.375 3.917 ± 3.730 10.437 ± 5.395 19.345 ± 3.061 24.154 ± 2.173 27.834 ± 1.403 29.654 ± 1.909
LPC3 1.141 ± 1.022 1.521 ± 1.432 3.596 ± 3.555 8.962 ± 5.690 18.252 ± 4.077 23.673 ± 2.583 27.681 ± 1.641 29.460 ± 2.227

Dataset: CUMC12

Voxel% 0%-10% 10%-20% 20%-30% 30%-40% 40%-50% 50%-60% 60%-70% 70%-80%
# of Test Cases 132(100%) 132(100%) 132(100%) 132(100%) 132(100%) 132(100%) 132(100%) 132(100%)
Imain 12 12 12 12 12 12 12 12
Deform (mm) 0.004-1.169 1.169-1.602 1.602-1.977 1.977-2.341 2.341-2.717 2.717-3.126 3.126-3.597 3.597-4.189
LP 0.617 ± 0.433 0.709 ± 0.480 0.784 ± 0.524 0.856 ± 0.570 0.929 ± 0.621 1.010 ± 0.680 1.109 ± 0.758 1.239 ± 0.868
LPC 0.525 ± 0.391 0.587 ± 0.441 0.640 ± 0.486 0.694 ± 0.534 0.750 ± 0.586 0.813 ± 0.646 0.890 ± 0.724 0.995 ± 0.834
LPP 0.653 ± 0.538 0.717 ± 0.607 0.772 ± 0.667 0.829 ± 0.727 0.888 ± 0.789 0.953 ± 0.859 1.032 ± 0.948 1.138 ± 1.068
LPC2 0.605 ± 0.444 0.653 ± 0.496 0.696 ± 0.543 0.739 ± 0.591 0.787 ± 0.645 0.839 ± 0.704 0.905 ± 0.782 0.996 ± 0.891
LPC3 0.730 ± 0.519 0.775 ± 0.575 0.815 ± 0.625 0.857 ± 0.675 0.903 ± 0.732 0.954 ± 0.793 1.019 ± 0.872 1.107 ± 0.984

Voxel% 80%-90% 90%-99% 99%-100% 99.9%-100% 99.99%-100% 99.999%-100% 99.9999%-100% 99.99999%-100%
# of Test Cases 132(100%) 132(100%) 132(100%) 132(100%) 75(56.8%) 18(13.6%) 1(0.8%) 1(0.8%)
Imain 12 12 12 12 9 6 1 1
Deform (mm) 4.189-5.070 5.070-7.443 7.443-18.753 9.581-18.753 12.115-18.753 14.383-18.753 16.651-18.753 18.297-18.753
LP 1.448 ± 1.050 1.955 ± 1.490 3.340 ± 2.412 4.882 ± 3.106 7.281 ± 3.378 9.978 ± 3.211 14.113 ± 1.211 15.868 ± 0.315
LPC 1.163 ± 1.017 1.571 ± 1.451 2.676 ± 2.386 3.930 ± 3.125 5.976 ± 3.646 8.527 ± 3.889 13.009 ± 1.584 14.908 ± 0.437
LPP 1.305 ± 1.258 1.683 ± 1.686 2.484 ± 2.503 3.047 ± 3.048 3.511 ± 3.287 2.999 ± 3.150 1.196 ± 0.327 1.277 ± 0.178
LPC2 1.142 ± 1.072 1.494 ± 1.494 2.405 ± 2.388 3.392 ± 3.055 5.003 ± 3.702 7.176 ± 4.218 11.155 ± 2.470 13.456 ± 0.812
LPC3 1.248 ± 1.165 1.581 ± 1.581 2.383 ± 2.434 3.165 ± 3.015 4.422 ± 3.629 6.283 ± 4.370 9.607 ± 3.120 11.757 ± 1.492

Dataset: MGH10

Voxel% 0%-10% 10%-20% 20%-30% 30%-40% 40%-50% 50%-60% 60%-70% 70%-80%
# of Test Cases 90(100%) 90(100%) 90(100%) 90(100%) 90(100%) 90(100%) 90(100%) 90(100%)
Imain 10 10 10 10 10 10 10 10
Deform (mm) 0.003-1.122 1.122-1.553 1.553-1.929 1.929-2.294 2.294-2.674 2.674-3.089 3.089-3.567 3.567-4.163
LP 0.578 ± 0.422 0.680 ± 0.471 0.757 ± 0.514 0.829 ± 0.559 0.904 ± 0.610 0.986 ± 0.671 1.082 ± 0.748 1.207 ± 0.858
LPC 0.486 ± 0.382 0.558 ± 0.436 0.615 ± 0.481 0.669 ± 0.528 0.726 ± 0.580 0.790 ± 0.640 0.865 ± 0.715 0.963 ± 0.820
LPP 0.624 ± 0.556 0.701 ± 0.624 0.761 ± 0.680 0.819 ± 0.737 0.881 ± 0.796 0.948 ± 0.865 1.026 ± 0.948 1.127 ± 1.061
LPC2 0.562 ± 0.436 0.623 ± 0.493 0.670 ± 0.541 0.716 ± 0.589 0.766 ± 0.643 0.821 ± 0.703 0.886 ± 0.778 0.971 ± 0.881
LPC3 0.684 ± 0.512 0.745 ± 0.574 0.792 ± 0.625 0.838 ± 0.677 0.887 ± 0.734 0.942 ± 0.797 1.007 ± 0.874 1.091 ± 0.979

Voxel% 80%-90% 90%-99% 99%-100% 99.9%-100% 99.99%-100% 99.999%-100% 99.9999%-100% 99.99999%-100%
# of Test Cases 90(100%) 90(100%) 90(100%) 89(98.9%) 37(41.1%) 7(7.8%) 3(3.3%) 2(2.2%)
Imain 10 10 10 9 6 3 1 1
Deform (mm) 4.163-5.047 5.047-7.462 7.462-18.727 9.833-18.727 12.607-18.727 15.564-18.727 17.684-18.727 18.534-18.727
LP 1.408 ± 1.041 1.924 ± 1.499 3.348 ± 2.341 4.873 ± 2.704 7.299 ± 3.256 10.503 ± 4.049 11.764 ± 3.005 13.041 ± 1.691
LPC 1.120 ± 0.998 1.526 ± 1.444 2.627 ± 2.275 3.674 ± 2.621 5.283 ± 3.272 8.492 ± 4.088 9.336 ± 3.738 10.499 ± 2.692
LPP 1.289 ± 1.250 1.676 ± 1.705 2.430 ± 2.415 2.707 ± 2.403 2.998 ± 2.214 2.695 ± 1.419 2.377 ± 1.063 2.226 ± 0.365
LPC2 1.109 ± 1.055 1.455 ± 1.482 2.361 ± 2.270 3.138 ± 2.585 4.267 ± 3.133 6.603 ± 3.760 7.444 ± 3.657 8.415 ± 3.053
LPC3 1.225 ± 1.153 1.551 ± 1.570 2.358 ± 2.306 3.023 ± 2.588 3.755 ± 2.957 5.214 ± 3.486 6.240 ± 3.357 7.569 ± 3.283

Table 5: Deformation ranges and mean+standard deviation of the deformation errors between the prediction models (LP, LPC,

LPP, LPC2, LPC3) and the optimization model (LO) for the image-to-image registration case. All measures are evaluated within
the brain mask only. All deformation values and deformation errors are evaluated in millimeters (mm). Voxel%:
percentile range of voxels that fall in a particular deformation range based on the optimization model (LO). # of Test cases: The
number of registration cases that contain voxels within a given percentile range. Imain: Minimum number of distinct images
required to cover all registration test cases in a particular deformation range either as the moving or the target image. This
measure is meant to quantify the influence of few images on very large deformations. For example, for the four registration cases
A-B, B-C, B-D and E-A, Imain = 2 as it is sufficient to select images A and B to cover all four registrations. The results show that
a comparatively small subset of images is responsible for most of the very large deformations. Of course, all images of a particular
dataset are involved in the small deformation ranges. Deform: range of deformations within a given percentile range. The cells
with the lowest mean deformation errors for every deformation range are highlighted. Best-viewed in color.
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(1) Moving (2) Target (3) LDDMM (4) LP (5) LPC

(a) LPBA40

(1) Moving (2) Target (3) LDDMM (4) LP (5) LPC

(b) IBSR18

(1) Moving (2) Target (3) LDDMM (4) LP (5) LPC

(c) CUMC12

(1) Moving (2) Target (3) LDDMM (4) LP (5) LPC

(d) MGH10

Figure 9: Example test cases for the image-to-image registration. For every figure from left to right : (1): moving image; (2):
target image; (3): registration result from optimizing LDDMM energy; (4): registration result from prediction network (LP); (5):
registration result from prediction+correction network (LPC).

are required. It opens up possibilities for various exten-
sions and applications. Exciting possibilities are, for ex-
ample, to use Quicksilver as the registration approach
for fast multi-atlas segmentation, fast image geodesic re-
gression, fast atlas construction, or fast user-interactive1350

registration refinements (where only a few patches need
to be updated based on local changes). Furthermore, ex-
tending the deformation prediction network to more com-
plex registration tasks could also be beneficial; e.g., to
further explore the behavior of the prediction models for1355

multi-modal image registration [36]. Other potential ar-
eas include joint image-label registration for better label-
matching accuracy; multi-scale-patch networks for very
large deformation prediction; deformation prediction for
registration models with anisotropic regularizations; and1360

end-to-end optical flow prediction via initial momentum
parameterization. Other correction methods could also be
explored, by using different network structures, or by re-
cursively updating the deformation parameter prediction

using the correction approach (e.g., with a sequence of cor-1365

rection networks where each network corrects the momenta
predicted from the previous one). Finally, since our uncer-
tainty quantification approach indicates high uncertainty
for areas with large deformation or appearance changes,
utilizing the uncertainty map to detect pathological areas1370

could also be an interesting research direction.

Source code. To make the approach readily available to
the community, we open-sourced Quicksilver at https:
//github.com/rkwitt/quicksilver. Our long-term goal
is to make our framework the basis for different variants of1375

predictive image registration; e.g., to provide Quicksilver
variants for various organs and imaging types, as well as
for different types of spatial regularization.
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Deformation Error w.r.t LDDMM optimization on T1w-T1w data [mm]
Data percentile for all voxels 0.3% 5% 25% 50% 75% 95% 99.7%

Affine (Baseline) 0.1664 0.46 0.9376 1.4329 2.0952 3.5037 6.2576
T1w-T1w LP 0.0348 0.0933 0.1824 0.2726 0.3968 0.6779 1.3614

T1w-T1w LPC 0.0289 0.0777 0.1536 0.2318 0.3398 0.5803 1.1584
T1w-T2w LP 0.0544 0.1457 0.2847 0.4226 0.6057 1.0111 2.0402

T1w-T2w LPC 0.0520 0.1396 0.2735 0.4074 0.5855 0.9701 1.9322
T1w-T2w LP, 10 images 0.0660 0.1780 0.3511 0.5259 0.7598 1.2522 2.3496

T1w-T2w LPC, 10 images 0.0634 0.1707 0.3356 0.5021 0.7257 1.1999 2.2697

Table 6: Evaluation result for multi-modal image-to-image tests. Deformation error (2-norm) per voxel between predicted
deformation and optimization deformation. Percentiles over all deformation errors are shown to illustrate the error distribution.
LP: prediction network. LPC: prediction+correction network. 10 images: network is trained using 10 images (90 registrations as
training cases).

(a) T1w moving image (b) T2w target image (c) T1w-T1w LDDMM (d) T1w-T1w LPC (e) T1w-T2w LPC (f) T1w-T2w LPC, 10 images

Figure 10: Example test case for multi-modal image-to-image tests. (a): T1w moving image; (b): T2w target image; (c):
T1w-T1w LDDMM optimization (LO) result; (d)-(f): deformation prediction+correction (LPC) result using (d) T1w-T1w data; (e)
T1w-T2w data; (f) T1w-T2w data using only 10 images as training data.
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Figure 11: Average initial momentum prediction time (in
seconds) for a single 229×193×193 3D brain image case using
various number of GPUs.
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References

[1] J. Modersitzki, Numerical methods for image registration, Ox-
ford University Press on Demand, 2004.

[2] Biobank website: www.ukbiobank.ac.uk.
[3] D. C. Van Essen, S. M. Smith, D. M. Barch, T. E. Behrens,1390

E. Yacoub, K. Ugurbil, WU-Minn HCP Consortium, The WU-
Minn human connectome project: an overview, NeuroImage 80
(2013) 62–79.

[4] K. Chung, K. Deisseroth, CLARITY for mapping the nervous
system, Nature methods 10 (6) (2013) 508–513.1395

[5] R. Shams, P. Sadeghi, R. A. Kennedy, R. I. Hartley, A survey
of medical image registration on multicore and the GPU, IEEE
Signal Processing Magazine 27 (2) (2010) 50–60.

[6] J. Ashburner, K. J. Friston, Diffeomorphic registration using
geodesic shooting and Gauss–Newton optimisation, NeuroIm-1400

age 55 (3) (2011) 954–967.
[7] M. Zhang, P. Fletcher, Finite-dimensional Lie algebras for fast

diffeomorphic image registration, in: IPMI, 2015, pp. 249–260.
[8] B. Gutierrez-Becker, D. Mateus, L. Peter, N. Navab, Guiding

multimodal registration with learned optimization updates, Me-1405

dIA, DOI: https://doi.org/10.1016/j.media.2017.05.002.
[9] B. Gutiérrez-Becker, D. Mateus, L. Peter, N. Navab, Learning

optimization updates for multimodal registration, in: MICCAI,
2016, pp. 19–27.

[10] C.-R. Chou, B. Frederick, G. Mageras, S. Chang, S. Pizer,1410

2D/3D image registration using regression learning, CVIU
117 (9) (2013) 1095–1106.

[11] Q. Wang, M. Kim, Y. Shi, G. Wu, D. Shen, Predict brain MR
image registration via sparse learning of appearance & transfor-
mation, MedIA 20 (1) (2015) 61–75.1415

[12] T. Cao, N. Singh, V. Jojic, M. Niethammer, Semi-coupled dic-
tionary learning for deformation prediction, in: ISBI, 2015, pp.
691–694.

[13] M. F. Beg, M. Miller, A. Trouvé, L. Younes, Computing large
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