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Abstract

This investigation focuses on a class of rear suspension systems that
contain both direct and intersecting structural paths from the tire
contact patches to the vehicle body. The structural paths intersect
through a dynamically active rear subframe structure. New
experiments and computational models are developed and analyzed in
this article to investigate the variability of structure-borne noise and
vibration due to tire/road interactions in the lower- to mid-frequency
regimes. Controlled operational experiments are conducted with a
mass-production minivan on a chassis dynamometer equipped with
rough road shells. Unlike prior literature, the controlled experiments
are analyzed for run-run variations in the structure-borne noise up to
300 Hz in a single vehicle to evaluate the nature of excitations at the
spindle as the key source of variation in the absence of significant
manufacturing, assembly and instrumentation errors. Further, a
deterministic modal expansion approach is used to examine these
variations. Accordingly, an illustrative eleven-degree-of-freedom
lumped parameter half vehicle model is developed and analytically
utilized to demonstrate that left-right spindle excitation phasing
dictates the participation of the subsystem vibrational modes in the
system forced response. The findings are confirmed through the
analysis of a reduced finite element model of the vehicle system with
a high-fidelity, modally dense suspension model, where the left-right
rolling excitation phasing at the spindle alone is found to affect the
component dynamic vibration amplitudes up to £30 dB depending
upon the component location and frequency range. These results are in
qualitative agreement with the type of variations observed in the
experiments.

Keywords: operational experimental studies, vehicle models, vibration
modes, vehicle subframes, structural transfer paths

Introduction

Variability in vehicle vibration, structure-borne noise and interior
noise levels due to tire-road interactions has been studied for at least
two decades [1,2], as evident from the literature survey by Lalor and
Prieibsch [1]. Several statistical studies have found variability in
measured noise and vibration data for nominally identical vehicles [3-
8]. In particular, Kompella and Bernhard [3] used a large sample of 99
nominally identical vehicles to study variations in both structure-borne
and air-borne frequency response functions; they reported that the
most significant variations were due to manufacturing and assembly
differences when measurement variations are controlled. While a
significant body of literature exists on variations in structural
frequency responses and modal parameters [4], fewer attempts have
been made to examine vibro-acoustic variations under operational
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loads [5,6,8]. To fill this void, this article proposes a deterministic
modal expansion approach to examine variations in structure-borne
noise at the lower frequency end (from 30 to 300 Hz). Further, this
article explores the contribution of the left-right rolling excitation
phasing at the spindle to run-run variations in acoustic-structural
parameters that occur during operational dynamometer experiments
and to develop minimal order dynamic and finite element models to
provide plausible explanations for the underlying physics.

Problem formulation

The focus of this article is on a class of rear suspension systems where
a metallic subframe creates an intersecting structural path between the
left and right tire contact patches and the vehicle body. A schematic of
such a system is provided in Fig. 1 with ten multi-dimensional
structural paths between the tire contact patch and the vehicle body in
the form of four connections via the subframe and two connections
each via the left and right trailing arms, dampers and suspension
springs. A simplified dynamic model, which reduces the number of
paths to four single-dimension paths while retaining the intersecting
structural paths via a subframe representation, will be proposed in this
article. The chief objectives of this article are as follows: 1. Examine
run-run variations in measured structural-acoustic responses under
controlled operational rolling-tire experiments on one vehicle; 2.
Develop and analyze two formulations (a high-fidelity finite element
and then minimal order lumped parameter model) to examine the role
of the left-right excitation phasing at the spindles on the subframe
responses; 3. Provide explanations for variability while examining the
physics of this problem; and 4. Compare the finite element model with
operational measurements.

The subject of this article is limited to linear time-invariant system and
frequency domain methods with assumed loss factors. The frequency
range is limited from 30 Hz to 300 Hz, as this is the range within which
structure-borne road noise and vibration phenomena of interest (from
the perspective of subframes) occur. Accordingly, both finite element
and lumped models include only structural representations of
components from the spindle to the vehicle body and explicitly ignore
the tires, wheels, and cabin acoustics since there is significant
complexity involved in the development of accurate models of the
entire vehicle system. For instance, current tire models described in the
literature [9] may not be valid over broad-range frequencies, and there
is a lack of well-established experimental data to validate
computational models. In this work, the suspension is excited by
imposing (assumed) motions at the left and right spindles. While the
inclusion of the vehicle body may provide stronger correlations in the
lower-frequency ranges, accurate modeling of dynamic interactions
between the vehicle body, suspension system and tires is beyond the



scope of this article. Only the deterministic nature of the variations in
the operational tests is examined using both sound and vibration
spectra as well as operational deflection shapes, which serve as good
visualization tools to study the subframe dynamics under real
operating conditions.

I (b)

Figure 1: Schematic of rear suspension (a) top view; (b) side view; key- A,
subframe; B, suspension spring; C, damper; D, trailing arm; E, spindle center;
locations for accelerometers on the subframe are given by 1-6.

Operational vehicle measurements

Controlled vehicle measurements on a chassis dynamometer are
conducted on a front wheel drive, mass-production minivan. Only the
rear wheels of the vehicle are driven over the rough-road textured
rollers, and both the left and right textures are constructed from
identical molds and oriented 180 degrees from left-to-right.
Microphones (TMS T130C21, typical sensitivity - 20 mV/Pa) are
placed at the driver’s left and right ear positions to measure the cabin
sound pressures, and tri-axial accelerometers (Dytran instruments,
32723-A-2, typical sensitivity - 100 mV/g) are placed on many
locations of the rear suspension, including six on the rear subframe as
shown in Fig. 1. The placement of 6 accelerometers permits the capture
of'the rigid body modes and first three flexural modes of this particular
subframe. Only the steady-state measurements of sound pressure
levels (Lp, dB re 20 pPa) at the driver’s ears and accelerations (dB re
1.0 g rms) at the suspension locations are made at roller speeds of 40,
80, and 120 kph. Since variations are observed of the same magnitudes
for each roller speed, only the 80 kph results are shown. Further,
constant roller speeds are intentionally selected to remove the
complexity of speed-dependent rolling-tire properties from the
analysis. Each narrow-band spectrum is based on 50 averages of
signals acquired at a sampling rate of 1024 Hz with a resolution of 2
Hz up to 512 Hz.

Three identical runs of this experiment are performed, and the
measured sound pressure and acceleration levels are compared for
variations on a narrow-band basis. Fig. 2(a) shows variations in L,
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measured at the driver’s left ear, and Fig. 2(b) displays a hatch plot
where the area depicts the variations in L, observed over the three runs.
The upper and lower limits of this hatch are formed by computing the
maximum and minimum L; levels measured. The difference between
these two sound pressure levels, ALy, is shown in Fig. 2(c). While a
maximum variation of about 25 dB(A) is found, somewhat minimal
variations at some of the major peaks in the spectra are observed. The
vertical acceleration levels for location 1 on the rear subframe and for
the spindle center are illustrated in Figs. 3 and 4, respectively. The
hatch plots in Figs. 3(b) and 4(b) follow a trend similar to the sound
pressure spectra, and this confirms that the structure-borne noise is the
dominant path. Further, maximum

Ly dBA
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Figure 2: Measured sound pressure level spectra (L, dBA re 20 pPa) at the
driver’s left ear (DLE) on a 2 Hz narrow-band basis from 30-300 Hz (a) run-

-

run variations: — , Run 1; ----, Run 2; --—-—- , Run 3; (b) hatch plot
representation of the run-run variations; (c) difference between maximum and
minimum sound pressure levels (AL,, dBA) at each frequency.

variations of 23 dB and 28 dB are observed in the measured
accelerations at the subframe and spindle, respectively (Figs. 3(c) and
4(c)); but some of the major peaks remain less sensitive to variations,
as observed in the sound pressure levels. Since the experiment is
conducted on the same vehicle without any changes to the
instrumentation system and setup, the main source of the observed
changes could be attributed to variation in the orientation of the tires
on the textured rollers between the three runs. The consistency in the
peak responses observed in the sound or acceleration spectra for the
identical three runs further confirms that assembly and measurement
are not the sources of variations.

Next, measured operational deflection shapes (ODS) are utilized to
visualize and understand the physical meaning of these variations. The
displacement responses, at a selected excitation frequency, acquired at
six locations on the subframe (shown as 1 to 6 in Fig. 1) are used to
construct these ODS displays. The forced response is captured in each
view as a trajectory scaled by a factor for visualization purposes; these
trajectories are then superimposed on the subframe schematics to
enhance visualization. The locations at which trajectories are made are
marked in Fig. 5 by shaded circles, while the open squares indicate the
starting point. Based on averaged variations between the runs at the six
different locations on the subframe, ODS at 244 Hz with a high
variation is selected to illustrate the subframe dynamics. Four views
(top, front, left and right) are displayed in Fig. 5 for the deflection
shapes, and a comparison is made between the three runs. In run 1, the
trajectory of location 2 (subframe cross member) is a motion that can



be visualized as a combination of motion seen in the schematic for the
XY and XZ view. However, in run 2 the rotation in the XZ plane is in
a different direction and orientation, and the angular motion found in
runs 1 and 2 is non-existent in run 3. The ODS display further
establishes the participation of the subframe in the 150-250 Hz
frequency range of interest and their possible sensitivity to excitation
variations between the runs.

Ly.dB
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Figure 3: Measured acceleration spectra (L;, dB re 1.0 g rms) on the rear
subframe (at location 1 as shown in Fig. 1), on a 2 Hz narrow-band basis from
30-300 Hz (a) run-run variations: ==, Run 1; ----, Run 2;  sssuus ,  Run
3; (b) hatch plot representation of the run-run variations; (c) difference between
maximum and minimum acceleration response (AL, dB) at each frequency.
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Figure 4: Measured acceleration spectra (Lz, dB re 1.0 g rms) at the spindle
center at 2 Hz resolution (E in Fig.1). (a) run-run variations: ,Run 1; ----
, Run 2; weeuns , Run 3; (b) hatch plot representation of the run-run variations;
(c) difference between maximum and minimum acceleration response (ALj,
dB) at each frequency.
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Figure 5: Measured operational deflection shape of subframe at 244 Hz (a) Run
1 (b) Run 2 (c) Run 3:e ,locations on the subframe where deflections are
measured; O, trajectory starting point (at t = 0); — , trajectory.

Development of high-fidelity finite element
model

A high-fidelity computational model of a rear-half vehicle is
developed to study the physics behind the run-run variations observed
in operational experiments. The vehicle body is assumed to be rigid
(ground) and massive relative to the rear suspension components in the
finite element model shown in Fig. 6. The subframe and other
suspension components are connected to the rigid

Damper

Suspension spring

Rotor

Rear Lower
Arm

Trailing Front Lower
Arm Arm

Figure 6: Finite element model of the rear suspension.

vehicle body via bushings represented by stiffness and damping
elements. In addition, the tires, wheels, and cabin acoustics are
explicitly ignored to simplify modeling complexities. Here the
subframe consists of 63,000 shell elements (in ABAQUS [10]), and
the other suspension system is described by 155,350 shell and solid
elements. A component-by-component modal analysis of the rear
suspension model under free-free boundary conditions reveals that
certain components, such as the dampers, suspension springs,
subframe and trailing arms, have a relatively more significant modal
participation with up to 10 modes in the frequency range of interest
(30-300 Hz). The eigenvalue analysis of the full rear suspension model
reveals that this system is modally dense, with as many as 96 modes in



the 30-300 Hz range of which 65 modes lie in the 150-300 Hz range,
where the subframe is found to have significant modes. Based on this
observation, the finite element model is further reduced to ignore few
non-participating components, such as the brake pads and rotors, with
the reduced model consisting of a total of 163,000 elements. Structural
damping is the primary damping mechanism considered for the
suspension model, with the metallic components assigned a nominal
loss factor of 0.001. The axial properties of the hydraulic damper are
assumed to be viscously damped, and the component connector
elements (such as bushings) are assumed to be damped and thus given
by a complex-valued stiffness element, where vy is the assumed loss
factor (1 to 20% depending on the component):

k=k(@+iy).
6]

Development of an illustrative, reduced order
model of rear-half vehicle

Since no significant literature exists on lumped parameter models for
studies of this nature, an iterative process is adopted to develop a
lumped model to study the underlying system physics and qualitatively
correlate with the finite element model. As the excitation from the tire
is primarily in the vertical direction [11] for road noise and vibration
problems, a lumped model with only vertical degrees of freedom is
developed. Since the rear suspension system of interest has intersecting
transfer paths through a dynamically active subframe, a minimal order
lumped parameter model of 11 degrees of freedom, which captures two
of the transfer paths (suspension springs) from the spindle to the
vehicle body in addition to the subframe, is developed as illustrated in
Fig. 7.

Figure 7: Lumped model (11 DOF) of the vehicle system (half-car type
approximation). Refer to the list of symbols in the text for identification of
symbols, including subscripts.

The vehicle body is considered as a single (massive/rigid) lumped
mass (my) with one translational coordinate (zv) and one rotational
coordinate (), where the subscript v denotes vehicle body. m, is
assumed to be about 30% of the vehicle mass. The moment of inertia
of vehicle body (1) is calculated as I=nv my- I?/(mv +my:), where m
is approximated by two lumped masses (my and my) on the left
(subscript /) and right (subscript ») extremities of a massless rod of
length 1. Assuming mvw = mvw = my/2, the above expression reduces to
I,=my I’/4. The vehicle subframe is approximated by a simple three-
degree-of-freedom semi-definite system with only vertical
displacements zs/, zsm and zs, where subscript s denotes the subframe
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and subscripts /, m and » denote left, middle and right, respectively.
This model consists of masses msi, msm and ms- connected by a bushing
connector element with an elastic stiffness k5. The parameter values are
chosen such that the first two flexural modes of the subframe are
captured in terms of both the natural frequencies and dominant vertical
mode shape. The static stiffness of the subframe must be evaluated
from the finite element model in order to assess relevant mass and
stiffness parameters for the subframe lumped model. Four different
iterations are considered, and the corresponding computed static
stiffness and the lumped mass values to physical subframe mass (as a
ratio) are analyzed. The iterations involve different boundary
conditions and loading schemes at the connection points between the
subframe, the vehicle body and the other suspension components. The
subframe is attached to the vehicle body through bushings via four
connection points, one at each corner of the subframe arms, and it is
connected to the other suspension components via four connection
points located at the bottom of the subframe, with two connections
each to the left and right half of the suspension components. For case
1, the four connections on the subframe arms and two of the
connections (one on each side) at the bottom of the subframe, which
are located farther away from the middle of the subframe, are clamped.
The other two connections at the bottom, which are closer to the middle
of the subframe, have their rotational degrees of freedom arrested, and
two equal amplitude static loads, 0.5P, are applied. The static stiffness
is calculated by dividing the average of the static load by the average
of the static deflections 6 computed at the driving points. This yields a
high stiffness and a lumped mass that is 2.5 times the actual subframe
mass. In case 2, the clamped connections from case 1 are replaced by
pinned connections, and similar static loads are applied. The pinned
connections lower the static stiffness, but this value still yields a high
mass ratio, which is not desirable. In case 3, the pinned connections at
the lower section of the subframe are changed to free boundary
conditions, and using the computed stiffness, a mass ratio of 1 is
achieved. In case 4, the connections on one side are clamped, and the
vertical static load is applied on the other side, but this results in an
order of magnitude reduction in the mass ratio, which again is
undesirable. Hence, case 3 is chosen to be the best case to capture both
the natural frequencies and the flexural modes of the subframe.

The left and right subframe masses are connected to the vehicle body
through bushings represented by masses ms and msr, where the
subscript b denotes bushing. The stiffness elements kv (= kss), where
subscripts vb and bs denote the connections between vehicle and
bushing, and subframe and bushing, respectively, are calculated as
Fevvks!/ (kvb+kbs) =kv/2 = kiz1, Where koz1 property is obtained from the
finite element model. Similarly, the spindle masses, ma and mar, where
subscript d denotes spindle, are connected to the subframe masses
through bushing stiffness elements ks« (= ka) computed as ks
kal(ksatka) = ksa/2 = kpz2, where the parameter k.2 is obtained from the
finite element model. Knowing kw and k»s, and considering a single-
degree-of-freedom approximation for the bushing where the spring
elements are both connected to the ground, the masses my and ms- can

be calculated using f,, = 1/2m/ (kyp+kps) /My, such that the natural
frequency f» is equal to 500 Hz.

The path through the suspension springs is approximated using masses
mg and mg, Where subscript g denotes the suspension spring and
stiffness kea and kve. Similar to the subframe static stiffness
calculations, the static stiffness of the finite element model of the
spring is computed. Using a single-degree-of-freedom approximation
similar to the bushing approximation, the static stiffness value and the
effective mass of the spring are computed.



Real eigensolution of the lumped vehicle model
The equations of motion of the lumped system of Fig. 7 are as follows:

myZ, + Z(kvg + kvb)Zv - kvbzbl - kvbzbr - kvgzgl - kvgzgr =0
(2a)
]vév + z(kvylg + kvbl%)ev + kvbllzbl - kvbllzbr + kvglzzgl
—kyglyzgr =0

(2b)

My 2y + (kyp + kps)Zp — kppZy + kypli 0, — kpszg =0

(2¢)

My Zpr + (Ryp + kps)Zpr — kypZy — Kypl10y — KpsZg = 0 d
(2d)

mgligl + (k-,;g + kgd)zgl - k,;gZV + kuglzgu - kgdZdl =0
(2e)

MgrZgr + (kug + Kga)Zgr — kugZy — kugla0y — kgazar = 0

(29
Mg Zg + (kps + ks + ksq)Zg — KpsZpi—KsZsm — KsaZa = 0

(2g)

MgmZem + 2(Ks)Zsm — KsZgy — ksZer = 0

(2h)
MgrZsr + (Kps + ks + ksg)Zsr — kpsZpr—ksZgn — KsaZar = 0

(21)

MaZa + (ksa + ka + kgd)Zdl —ksazg — kgazg = kqzy

(2))
MarZar + (ksd +kq+ kgd)zdr —ksqzer — kgdzgr = kaz,,

(2k)

where Z and z are the dynamic acceleration and displacements of the
masses, and 6 and 6 are the dynamic rotational acceleration and
displacements, with the other subscripts having the same meaning as
defined before. Subscripts 1 and 2 in Eqns. (2j) and (2k) denote the
excitation index corresponding to the dynamic motions applied at the
spindle masses. The corresponding system parameters are summarized
in Table 1. All spring elements in the lumped system are assumed to
be damped modeled by a complex valued stiffness, as given by Eq. (1),
where v is the assumed loss factor. For instance, v is assumed to be 1%
and 3% for the subframe and suspension springs, respectively, as these
are typically lightly damped. The y values for the bushing stiffness and
spindle stiffness are assumed to be 10% similar to the finite element
model. Ignoring structural damping in the system, the system
equations can be written in the form as follows, where M is the mass

matrix, K is the stiffness matrix, z is the displacement vector, and F is

the excitation force/moment vector:

=

Z+Kz=F.
©)
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The real eigensolution of Eq. (3) is computed using the values in Table
1, and the predicted natural frequencies of the system are 11.1, 21.2,
74.0,74.0, 131.3, 162.2, 203.5, 377.4, 383.1, 516.9 and 517.6 Hz. It is
observed that the low frequencies (below 30 Hz) are dominated by the
vehicle body modes (modes 1 and 2), and the higher frequencies
(beyond 350 Hz) are dominated by the bushing masses as expected. In
particular, modes 5 (131.3 Hz), 6 (162.2 Hz) and 7 (203.5 Hz) are
dominated by the three subframe mass element motion. Specifically,
modes 5 and 7 are affected by the subframe mass msm, (representative
of the subframe cross members), and mode 6 is influenced by the other
two subframe masses ms and ms.

Table 1: Parameters for the lumped vehicle model of Fig. 7.

Parameter (units) Value Parameter (units) Value
m, (kg) 240 kb, kps (N/mm) 5x10*
my (kg) 0.98 ksa, kg (N/mm) 3x10*
my, (kg) 0.98 ks, kug ke N/mm) | 5x107
myg (kg) 0.75 Vvbr Vbs Vsd Vd 0.1
mg, (kg) 0.75 Vs 0.01
my (kg) 8 Ved Vg 0.03
Mg (kg) 8

ms (kg) 8

ma (kg) 30

mg, (kg) 30

1, (kg-m?) 194

In addition to capturing the first two natural frequencies of the
subframe in the free-free boundary conditions, the lumped model also
successfully captures the natural frequencies of the subframe under
realistic boundary conditions. However, the modes from the subframe
lumped model only approximate the vertical deflections of the flexural
modes. Since this 11-degree-of-freedom model captures the modal
properties reasonably well, it will be used to study the subframe
dynamics under dynamic excitation conditions.

Forced response analysis using real
eigensolutions

The steady-state harmonic response of the lumped model is computed
by applying sinusoidal displacement excitations z; and z2 (of unit
amplitude but varying phase), where subscripts 1 and 2 denote the
excitation index at the spindle masses ma and mar, respectively. The
system responses are computed for two limiting cases of displacement
excitations at the left and right spindles: (i) equal in-phase excitations
(z1 = z2) and (ii) equal out-of-phase excitations (z; = - z2). Due to left-
right symmetry in the system, the steady-state accelerations of the left
and right masses of the suspension springs, bushings, subframe and
spindle are identical. The subframe accelerations for two input
excitation phasing cases are illustrated in Figs. 8 and 9. Resonance
peaks are observed at 130 and 204 Hz and an anti-resonance around
190 Hz for the in-phase excitation. In contrast, for the out-of-phase
excitation, a resonance peak occurs around 163 Hz, corresponding to
mode 6, while modes at 130 Hz and 204 Hz are not excited. These
preliminary results suggest that large variations in response can occur
due to phasing between excitations at the spindles. This is analyzed
further using the modal expansion theorem [12]. The solution to Eq.
(3) is written as a linear combination of vibration modes of the system
as:



2(8) = 11 (OPD + 1, (PP + -+ 11, (P,
)

where ni(t) are the modal participation coefficients fori=1,2,3,.....11
and (l)(i) denotes the i modal vector, which is assembled into a modal
matrix as:

¢ = [¢(1) ¢(2) ¢(3) ¢(4) ____¢(11)].
- (5)

Rewrite Eqs. (4) and (5) as follows, where n(t) =
[nl(t) nz(t) e

711 (8)]7 and the superscript T denotes transpose,

z(t) = ¢ n(0).

(6)

Ly.dB
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AL . dB
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Figure 8: Computed acceleration spectra at the subframe left mass my, (L3, dB
re 1.0g rms) using the lumped vehicle model of Fig. 2 shown at 1-Hz resolution:
(a) results for in-phase ( =——, 0°) and out-of-phase (---, 180°); (b) hatch plot
representation of phasing variations; (c) difference between maximum and
minimum acceleration response at each frequency (AL, dB).

Further define the acceleration vector as: Z(t) = ¢ ﬁ(t). The force
vector in the modal domain, Q is defined as: B
Q=g¢"F (),
(7
where F(t)=[000000000F; F,]", with F; and F> denoting
dynamic force excitations at the left and right spindles. Using Egs. (6)

and (7), Eq. (3) can be rewritten in terms of uncoupled, undamped
differential equations of second order:

i@ + [ f ~In® = e,
(®)
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where Q; denotes the i natural frequency of the system. The steady-
state harmonic response for undamped oscillators in the modal domain
is given by:

G
m_QiZ—wZ'

©

The steady-state response in the physical domain is then computed
using Eq. (6), which is expanded as follows:

1 2 11

Zy ”nv+¢§ e + - ¢S )ndr
1 2 11

Zgr ér)nv ér)ne +o S )ndr-

(10

The acceleration response is subsequently calculated by the
relation ;, = —w?z;. From Eq. (10), the harmonic response is
dependent on both the modal matrix ¢ and the modal responses 7. To

study this further, each term of Eq. (10) is plotted individually and
compared with the total physical response; minimal damping is
assumed in each case to ensure bounded responses at the resonances.
Fig. 10(a, b) compares the computed accelerations (with a frequency
resolution of 1 Hz) at the left subframe mass ms for the in-phase and
the out-of-phase excitations. Up to 300 Hz, the motion terms
associated with my (only &), ma1, mgi, msi, ms- and ma are dominant for
in-phase excitation. In contrast, the motion terms associated with my
(only zv), msr, mgr, msm and mar are dominant for the out-of-phase case.
In order to further examine why certain modes are not excited for a
particular excitation, the modal force vector is studied by expanding
Eq. (7) as:

01
0
0
0
0
0= [¢(1) ¢(2) ¢(3) ¢(4) ____¢(11)]T 0
- - - = - 0
0
0
Fy
A
(11a)
[ $5F1+ 95 Fo
¢¢(1%)F1 + ¢(2)
G VF; + oSV
(11b)

Observe from Eq. (11b) that the terms influencing the modal force
vector are the eigenvectors corresponding to the left and right spindle
masses ma and mar. It is clear that these eigenvectors are in-phase with



each other at modes 2, 3, 5, 7, 9 and 10 and out-of-phase with the other
modes as shown in Table 2. This implies that for an in-phase excitation
(F1=F2), the modes 1, 4, 6, 8 and 11 (out-of-phase modes) would lead
to a cancellation of forces; in contrast, for an out-of-phase excitation
(F1=-F>), the modes 2, 3, 5,7, 9 and 10 (in-

20r (a) 7
=

(b

A
s LT T Ly,

% 60 e 12 15 130 200 240 270 300
Frequency, Hz

Figure 9: Computed acceleration spectra at the subframe middle mass mgn, (L,
dB re 1.0g rms) using the lumped vehicle model of Fig. 2 shown at 1-Hz
resolution: (a) results for in-phase (——, 0°) and out-of-phase (---, 180°); (b)
hatch plot representation of phasing variations; (c) difference between
maximum and minimum acceleration response at each frequency (AL, dB).

phase modes) would lead to a cancellation of forces. The modal forces
are as shown in Table 3, and this explains why only 6 modes are
present in Fig. 10(a) and the remaining in Fig. 10(b).

Fg (mfs?)

1 (b)y

s
bp®

30 60 120 150 180 210 240 270 300
Frequency, Hz

Figure 10: Computed acceleration spectra of modal masses corresponding to
the lumped vehicle model with minimal possible damping: (a) In-phase

excitation case; (b) Out-of-phase excitation case:—, Zg; ——, Pgrlizp; — —
(/)S'].ﬁHU: L] (psl/ﬁhl.; * d)sl.ﬁ[}R; o ‘d)sl/ﬁgl,; o -qbsl,ﬁgR | ‘d)sl,ﬁs'l.; o
 Dsilism — - Osiiisrs =0 Psiiiars ——0— PsiTiar-
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Table 2: Real and complex eigenvectors for left and right spindles.

Real Real ci " Complex eigenvalues Complex eigenvectors (given
clgen- cal eigenvectors 0% = w2(1+jn) non-proportional damping)
values "

/2
Mode | <" | Lefi | Right on/2m Left Right
(Hz) n - =
bar Par (Hz) Yar Yar
-0.021 -(-0.021
1 11.1 0.002 -0.002 11.1 0.093
+0.003j +0.003j)
0.003 0.003
2 21.1 0.005 0.005 21.1 0.099
-0.068j -0.068j
-0.002 -0.002
3 822 0.003 0.003 822 0.030
+0.001j +0.001j
0.001 -(0.001
4 822 -0.002 0.002 822 0.030
-0.001j -0.001j)
0.342 0.342
5 129.9 0.083 0.083 130.0 0.084
+0.023j +0.023j
0.573 -(0.573
6 160.5 0.114 -0.114 160.5 0.087
+0.412j +0.412j)
-0.272 -0.272
7 200.5 -0.08 -0.08 200.6 0.039
+0.010j +0.010j
0.254 -(0.254
8 376.0 0.06 -0.06 376.0 0.092
+0.005j +0.005§)
-0.219 -0.219
9 381.3 0.056 0.056 381.2 0.087
-0.025j -0.025j
-0.004 -(-0.004
10 515.6 -0.010 0.010 515.6 0.099
+0.011j +0.011j)
0.015 0015
11 516.2 0.010 0.010 516.2 0.099 0.0004} .
-0.0004j

Forced response analysis using complex
eigensolutions

The effect of damping is examined next by evaluating complex
eigensolutions. The system equations are of the form similar to Eq. (7),
except here K is a complex-valued stiffness matrix with elements of
the form k(1+iy) as is assumed in the finite element model. The
complex eigenvalue problem is solved first to obtain the mass
normalized complex eigenvectors 1. Like the previous section, the
modal expansion principle is applied to rewrite Eq. (3) as:

h+Kyn=F

1=
JESN
JES
[

(12)

Pre-multiplying Eq. (12) by the Hermitian transpose (superscript HT)
of the complex modal matrix v to yield:



VM i+ PR =P"E

(13)

which upon simplification yields 11 decoupled equations as:

i + [ 2 In = Q,

(14)

where A7 is the i complex eigenvalue for this system and Q = PHTF.

The steady-state harmonic solution to each of the decoupled equ_ations
of motion in Eq. (14) is given as follows, where i =1, 2, 3... 11:
i
="
- w?

(15)

Table 3. Modal force vectors for in-phase and out-of-phase cases.

Mass element in | Vector for in-phase | Vector for out-of-phase
Fig. 7 case case

m, 0 204 Fy
mg 202, 0

my 205)F, 0

My 0 2¢$) F
Mg 2080F, 0

Mgy 0 2¢¢§?) F
my 205 Fy 0

Mg 0 2650,
my, 20, 0

M 2¢0509F, 0

mar 0 204" F,

The steady-state physical response of the damped system is then
calculated using a formula similar to Eq. (6). Like the undamped case,
each term of the response is compared against the total physical
domain response. The addition of damping reduces the amplitude of
the resonant peaks as expected; only 6 modes participate for the in-
phase case, and the remaining 5 modes participate for the out-of-phase
case, as observed in the undamped case. The eigenvectors
corresponding to the spindle masses are analyzed, and the
corresponding force vectors Q; are found to be similar to the minimally
damped case. From Table 2 it can also be observed that due to the left-
right symmetry in the system, the eigenvectors corresponding to ma
and mar are always equal in magnitude and remain unaffected by the
damping. The dynamic forces at the modes either add or cancel each
other out to produce modal forces as reported in Table 3, explaining
the participation of the modes and excitation phasing for different
excitation cases. Additionally, the harmonic responses are studied for
3 additional phase angles between 0 and 180 degrees between the left
and right spindles, given equal amplitudes of excitation. It is expected
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that changing the excitation phasing would directly influence the way
the modes participate, similar to what was observed with the in-phase
and out-of-phase cases.

Next, the acceleration hatch plots at the subframe left mass mp are
displayed in Fig. 11 for two cases: (i) only the in-phase and out-of-
phase responses and (ii) for 5 phasing cases (0, 45, 90, 135, 180
degrees). The in-phase and out-of-phase responses overlap with the
hatch plots using all five phasing cases, with the exception of a few
small frequency bands. This implies that the in-phase and the out-of-
phase cases are sufficient to predict the upper and lower bounds of
harmonic responses.

10!

1004 [

Zgp(m/s?)

100

1005
L L I L L
30 60 920 120 150 180 210 240 270 300

Frequency, Hz

Figure 11: Comparison between in-phase and out-of-phase hatch plots against
all phasing hatch plots for the lumped vehicle model: Il in-phase and out-
of-phase; EZZZ4 | all phasing cases.

Forced response from finite element model
under harmonic excitation

Forced response studies are conducted using the reduced order finite
element model. Five cases of excitation phase differences (0, 45, 90,
135 and 180 degrees) are considered for this finite element model.
Upon comparing the hatch plots in Fig. 12, it is observed that the
response from the in-phase and out-of-phase cases encompass all the
other phasing cases. Fig. 13(a) displays the spectra for the vertical



10!

1001

Z (m/s?)

101

L L L 1 L 1
30 60 90 120 150 130 210 240 270 300

Frequency, Hz

Figure 12: Comparison between in-phase and out-of-phase hatch plots against
all phasing hatch plots for the acceleration spectra (Z, m/s?) at location 1 on the
subframe from finite element analyses: Illl, in-phase and out-of-phase case;
E2ZZ4, all phasing cases.

acceleration response at location 1 of the subframe for both in-phase
and out-of-phase cases. Like Fig. 3(b), Fig. 13(b) is a hatch plot where
the upper and lower limits are formed by computing the maximum and
minimum responses from the in-phase and out-of-phase excitation
cases (with a 1-Hz resolution). Note that the input phasing significantly
affects the acceleration responses at the subframe with variations as
large as 30 dB from 180 to 250 Hz, as shown in Fig. 13(c). These
results correlate reasonably well with variations predicted by the
lumped model, thus verifying the minimal order vehicle model.

Frequency. Hz

Figure 13: Computed acceleration spectra from finite element model (L3, dB re
1.0 g rms) at location 1 on the subframe for different phasing cases shown at 2-
Hz resolution: (a) phase variations: ——, 0% ----,180° (b) hatch plot
representation of phasing variations; (c) difference between maximum and
minimum acceleration response at each frequency.
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Comparison of predicted and measured results

Since the tires and wheels are being ignored in this model, measured
operational displacements at a roller speed of 80 kph are used as
excitations and implemented as follows: 1. First, the dynamic
excitations are described by harmonic vertical displacements z; and
z, of unit amplitudes at the left and right spindle centers at any
frequency of calculation; 2. A steady-state dynamic analysis (with the
same damping assumptions as before) is over the frequency range of
30-300 Hz; 3. Assuming the linear system theory, the corresponding
harmonic acceleration responses are calculated at the body connections
and normalized by the excitation acceleration amplitudes
(—w?z; or — w?z,) at each frequency; 4. The normalized acceleration
response is then scaled by the acceleration measured at the spindle
center for one of the runs,Z;, from the chassis dynamometer
experiment. This is needed to compare the computed responses with
measurements.

The predicted acceleration responses from the finite element model are
now compared with the measurements. The computed hatch plots from
the in-phase and out-of-phase responses are compared with
measurements in Fig. 14 at locations 1, 2 and 3 on the subframe. The

o

Ly.dB

s 1
“30 60 % 120 150 180 210 240 270 300

(c)
40+
2 s b |
: A
-1 4 1
114
50 L 14 i
il
j
70 )
© , . . . |
30 60 %0 120 1% 180 il 240 270 300

Frequency, Hz

Figure 14: Comparison of measured and computed vertical acceleration spectra
(L3 ,dBre 1.0g rms) at different locations on the subframe (hatch plot using in-
phase and out of phase cases): (a) location 1; (b) location 2; (c) location 3: -o-
, Measured response; BEZZZ2, Computed response from the finite element
model.



measured spectral points are observed to fall within the computed
hatch plots with discrepancies at some narrow-frequency bands,
suggesting that the calculation method yields a reasonable prediction.
However, in Fig. 14(b), note that the simulation provides resonant
peaks well, but the computations do not fall within the measured range
at other frequencies. This could imply that damping values in the finite
element model need to be refined, as this component has a dominant
participation in this particular frequency range of study.

The finite element operational deflection shapes are examined to
visualize the subframe dynamics corresponding to the response
variations associated with excitation phasing. Based on average
variations due to phasing at six different locations on the subframe,
two particular frequencies (220 Hz and 236 Hz) are chosen — one
where variations due to phasing are large and the second where
variations are relatively small. Four views (top, front, left and right)
are displayed for the deflection shapes, and a comparison is made
between the in-phase and out-of-phase deflection shapes in Fig. 15.
The subframe has small deflections for the in-phase case (Fig. 15(a)),
whereas the subframe exhibits a large rocking motion when viewed
from the top for the out-of-phase condition shown in Fig. 15(b). In
contrast, the subframe has minimal variation in the deflection shapes
for both in-phase and out-of-phase excitation at 236 Hz. Overall, the
participation of the subframe is qualitatively similar to that observed
experimentally, suggesting that the ODS displays are an efficient way
to evaluate subframe dynamics.

Z z

S o] L.

(b)

Figure 15: Calculated operational deflection shape of the subframe from finite
element simulation at 220 Hz: (a) in-phase; (b) out-of-phase: e, locations on the
subframe where deflections are calculated; 0, trajectory starting point (at t = 0);
—, trajectory.

Conclusion

This article has contributed to the state-of-the-art by providing an in-
depth investigation and explanation of the role of the left-right rolling
excitation phasing at the spindles in the variability of automotive
structure-borne vibration and noise (over the lower-frequency regime).
Unlike prior literature, by limiting the operational experiments on a
single vehicle, relationships between spindle excitations and run-run
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variations could be analyzed using a deterministic approach. A
minimal order lumped parameter model of the rear-half vehicle,
capturing the subframe transfer path, is successfully developed and is
utilized to study the contribution of the subframe dynamics under
dynamic loading conditions. Through the forced response analysis of
this lumped parameter model using a deterministic modal expansion
method, it is demonstrated that system vibration modes may cancel or
add depending upon the left-right magnitude and phasing of
excitations going into the system through the spindle (i.e., this is a
deterministic phenomenon), which in turn has variations up to +/- 30
dB. In addition to this, both the lumped model and the finite element
models are consistent in suggesting that two cases of phasing, namely
in-phase and out-of-phase, are necessary and sufficient to predict a
range for the system response. Operational deflection shapes have
successfully been employed to qualitatively compare the variations
due to phasing observed in the finite element results and the run-run
variations observed in the steady-state vehicle measurements. This
suggests that the run-run variations could be significantly influenced
by the magnitude and phase of the tire-road interactions, which in turn
control the magnitude and phase at which the excitations travel through
the suspension system starting at the spindle. As part of future work,
this deterministic left-right phasing phenomenon could be further
validated by conducting operational experiments, with focus on
controlling the excitation phasing. Currently, the post-processing and
windowing techniques used during data acquisition to compute the
frequency spectra use as high as 50 averages on data acquired over 25
seconds to account for the probabilistic nature of the excitations. The
sensitivity of the run-run variations to the type of signal processing
(including windowing techniques) needs to be examined in the future.
In addition, measurements may be acquired over a longer period of
time, with minimal or no averaging, to study the deterministic nature
of the excitations.
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