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Abstract 

This investigation focuses on a class of rear suspension systems that 
contain both direct and intersecting structural paths from the tire 
contact patches to the vehicle body. The structural paths intersect 
through a dynamically active rear subframe structure. New 
experiments and computational models are developed and analyzed in 
this article to investigate the variability of structure-borne noise and 
vibration due to tire/road interactions in the lower- to mid-frequency 
regimes. Controlled operational experiments are conducted with a 
mass-production minivan on a chassis dynamometer equipped with 
rough road shells. Unlike prior literature, the controlled experiments 
are analyzed for run-run variations in the structure-borne noise up to 
300 Hz in a single vehicle to evaluate the nature of excitations at the 
spindle as the key source of variation in the absence of significant 
manufacturing, assembly and instrumentation errors. Further, a 
deterministic modal expansion approach is used to examine these 
variations. Accordingly, an illustrative eleven-degree-of-freedom 
lumped parameter half vehicle model is developed and analytically 
utilized to demonstrate that left-right spindle excitation phasing 
dictates the participation of the subsystem vibrational modes in the 
system forced response. The findings are confirmed through the 
analysis of a reduced finite element model of the vehicle system with 
a high-fidelity, modally dense suspension model, where the left-right 
rolling excitation phasing at the spindle alone is found to affect the 
component dynamic vibration amplitudes up to ±30 dB depending 
upon the component location and frequency range. These results are in 
qualitative agreement with the type of variations observed in the 
experiments. 
 
Keywords: operational experimental studies, vehicle models, vibration 
modes, vehicle subframes, structural transfer paths 

Introduction 

Variability in vehicle vibration, structure-borne noise and interior 
noise levels due to tire-road interactions has been studied for at least 
two decades [1,2], as evident from the literature survey by Lalor and 
Prieibsch [1]. Several statistical studies have found variability in 
measured noise and vibration data for nominally identical vehicles [3-
8]. In particular, Kompella and Bernhard [3] used a large sample of 99 
nominally identical vehicles to study variations in both structure-borne 
and air-borne frequency response functions; they reported that the 
most significant variations were due to manufacturing and assembly 
differences when measurement variations are controlled. While a 
significant body of literature exists on variations in structural 
frequency responses and modal parameters [4], fewer attempts have 
been made to examine vibro-acoustic variations under operational 

loads [5,6,8]. To fill this void, this article proposes a deterministic 
modal expansion approach to examine variations in structure-borne 
noise at the lower frequency end (from 30 to 300 Hz). Further, this 
article explores the contribution of the left-right rolling excitation 
phasing at the spindle to run-run variations in acoustic-structural 
parameters that occur during operational dynamometer experiments 
and to develop minimal order dynamic and finite element models to 
provide plausible explanations for the underlying physics. 

Problem formulation 

The focus of this article is on a class of rear suspension systems where 
a metallic subframe creates an intersecting structural path between the 
left and right tire contact patches and the vehicle body. A schematic of 
such a system is provided in Fig. 1 with ten multi-dimensional 
structural paths between the tire contact patch and the vehicle body in 
the form of four connections via the subframe and two connections 
each via the left and right trailing arms, dampers and suspension 
springs. A simplified dynamic model, which reduces the number of 
paths to four single-dimension paths while retaining the intersecting 
structural paths via a subframe representation, will be proposed in this 
article. The chief objectives of this article are as follows: 1. Examine 
run-run variations in measured structural-acoustic responses under 
controlled operational rolling-tire experiments on one vehicle; 2. 
Develop and analyze two formulations (a high-fidelity finite element 
and then minimal order lumped parameter model) to examine the role 
of the left-right excitation phasing at the spindles on the subframe 
responses; 3. Provide explanations for variability while examining the 
physics of this problem; and 4. Compare the finite element model with 
operational measurements. 

The subject of this article is limited to linear time-invariant system and 
frequency domain methods with assumed loss factors. The frequency 
range is limited from 30 Hz to 300 Hz, as this is the range within which 
structure-borne road noise and vibration phenomena of interest (from 
the perspective of subframes) occur. Accordingly, both finite element 
and lumped models include only structural representations of 
components from the spindle to the vehicle body and explicitly ignore 
the tires, wheels, and cabin acoustics since there is significant 
complexity involved in the development of accurate models of the 
entire vehicle system. For instance, current tire models described in the 
literature [9] may not be valid over broad-range frequencies, and there 
is a lack of well-established experimental data to validate 
computational models. In this work, the suspension is excited by 
imposing (assumed) motions at the left and right spindles. While the 
inclusion of the vehicle body may provide stronger correlations in the 
lower-frequency ranges, accurate modeling of dynamic interactions 
between the vehicle body, suspension system and tires is beyond the 
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scope of this article. Only the deterministic nature of the variations in 
the operational tests is examined using both sound and vibration 
spectra as well as operational deflection shapes, which serve as good 
visualization tools to study the subframe dynamics under real 
operating conditions. 

 

Figure 1: Schematic of rear suspension (a) top view; (b) side view; key- A, 
subframe; B, suspension spring; C, damper; D, trailing arm; E, spindle center; 
locations for accelerometers on the subframe are given by 1–6. 

Operational vehicle measurements 

Controlled vehicle measurements on a chassis dynamometer are 
conducted on a front wheel drive, mass-production minivan. Only the 
rear wheels of the vehicle are driven over the rough-road textured 
rollers, and both the left and right textures are constructed from 
identical molds and oriented 180 degrees from left-to-right. 
Microphones (TMS T130C21, typical sensitivity - 20 mV/Pa) are 
placed at the driver’s left and right ear positions to measure the cabin 
sound pressures, and tri-axial accelerometers (Dytran instruments, 
32723-A-2, typical sensitivity - 100 mV/g) are placed on many 
locations of the rear suspension, including six on the rear subframe as 
shown in Fig. 1. The placement of 6 accelerometers permits the capture 
of the rigid body modes and first three flexural modes of this particular 
subframe.  Only the steady-state measurements of sound pressure 
levels (Lp, dB re 20 μPa) at the driver’s ears and accelerations (dB re 
1.0 g rms) at the suspension locations are made at roller speeds of 40, 
80, and 120 kph.  Since variations are observed of the same magnitudes 
for each roller speed, only the 80 kph results are shown.  Further, 
constant roller speeds are intentionally selected to remove the 
complexity of speed-dependent rolling-tire properties from the 
analysis.  Each narrow-band spectrum is based on 50 averages of 
signals acquired at a sampling rate of 1024 Hz with a resolution of 2 
Hz up to 512 Hz. 

Three identical runs of this experiment are performed, and the 
measured sound pressure and acceleration levels are compared for 
variations on a narrow-band basis. Fig. 2(a) shows variations in Lp 

measured at the driver’s left ear, and Fig. 2(b) displays a hatch plot 
where the area depicts the variations in Lp observed over the three runs. 
The upper and lower limits of this hatch are formed by computing the 
maximum and minimum Lp levels measured. The difference between 
these two sound pressure levels, ΔLp, is shown in Fig. 2(c). While a 
maximum variation of about 25 dB(A) is found, somewhat minimal 
variations at some of the major peaks in the spectra are observed. The 
vertical acceleration levels for location 1 on the rear subframe and for 
the spindle center are illustrated in Figs. 3 and 4, respectively. The 
hatch plots in Figs. 3(b) and 4(b) follow a trend similar to the sound 
pressure spectra, and this confirms that the structure-borne noise is the 
dominant path. Further, maximum  

 
Figure 2: Measured sound pressure level spectra (Lp, dBA re 20 μPa) at the 
driver’s left ear (DLE) on a 2 Hz narrow-band basis from 30-300 Hz (a) run-
run variations:  , Run 1; ----, Run 2; , Run 3; (b) hatch plot 
representation of the run-run variations; (c) difference between maximum and 
minimum sound pressure levels (ΔLp, dBA) at each frequency. 

variations of 23 dB and 28 dB are observed in the measured 
accelerations at the subframe and spindle, respectively (Figs. 3(c) and 
4(c)); but some of the major peaks remain less sensitive to variations, 
as observed in the sound pressure levels. Since the experiment is 
conducted on the same vehicle without any changes to the 
instrumentation system and setup, the main source of the observed 
changes could be attributed to variation in the orientation of the tires 
on the textured rollers between the three runs. The consistency in the 
peak responses observed in the sound or acceleration spectra for the 
identical three runs further confirms that assembly and measurement 
are not the sources of variations. 

Next, measured operational deflection shapes (ODS) are utilized to 
visualize and understand the physical meaning of these variations. The 
displacement responses, at a selected excitation frequency, acquired at 
six locations on the subframe (shown as 1 to 6 in Fig. 1) are used to 
construct these ODS displays. The forced response is captured in each 
view as a trajectory scaled by a factor for visualization purposes; these 
trajectories are then superimposed on the subframe schematics to 
enhance visualization. The locations at which trajectories are made are 
marked in Fig. 5 by shaded circles, while the open squares indicate the 
starting point. Based on averaged variations between the runs at the six 
different locations on the subframe, ODS at 244 Hz with a high 
variation is selected to illustrate the subframe dynamics. Four views 
(top, front, left and right) are displayed in Fig. 5 for the deflection 
shapes, and a comparison is made between the three runs. In run 1, the 
trajectory of location 2 (subframe cross member) is a motion that can 
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be visualized as a combination of motion seen in the schematic for the 
XY and XZ view. However, in run 2 the rotation in the XZ plane is in 
a different direction and orientation, and the angular motion found in 
runs 1 and 2 is non-existent in run 3. The ODS display further 
establishes the participation of the subframe in the 150-250 Hz 
frequency range of interest and their possible sensitivity to excitation 
variations between the runs. 

Figure 3: Measured acceleration spectra (𝐿𝑧̈, dB re 1.0 g rms) on the rear 
subframe (at location 1 as shown in Fig. 1), on a 2 Hz narrow-band basis from 
30-300 Hz (a) run-run variations: , Run 1; ----, Run 2;      , Run 
3; (b) hatch plot representation of the run-run variations; (c) difference between 
maximum and minimum acceleration response (Δ𝐿𝑧̈, dB) at each frequency. 

Figure 4: Measured acceleration spectra (𝐿𝑧̈, dB re 1.0 g rms) at the spindle 
center at 2 Hz resolution (E in Fig.1). (a) run-run variations: , Run 1; ----
, Run 2;  , Run 3; (b) hatch plot representation of the run-run variations; 
(c) difference between maximum and minimum acceleration response (Δ𝐿𝑧̈, 
dB) at each frequency. 

 
Figure 5: Measured operational deflection shape of subframe at 244 Hz (a) Run 
1 (b) Run 2 (c) Run 3:● ,locations on the subframe where deflections are 
measured; □, trajectory starting point (at t = 0); ― , trajectory. 

Development of high-fidelity finite element 
model 

A high-fidelity computational model of a rear-half vehicle is 
developed to study the physics behind the run-run variations observed 
in operational experiments. The vehicle body is assumed to be rigid 
(ground) and massive relative to the rear suspension components in the 
finite element model shown in Fig. 6. The subframe and other 
suspension components are connected to the rigid  

Figure 6: Finite element model of the rear suspension. 

vehicle body via bushings represented by stiffness and damping 
elements. In addition, the tires, wheels, and cabin acoustics are 
explicitly ignored to simplify modeling complexities. Here the 
subframe consists of 63,000 shell elements (in ABAQUS [10]), and 
the other suspension system is described by 155,350 shell and solid 
elements. A component-by-component modal analysis of the rear 
suspension model under free-free boundary conditions reveals that 
certain components, such as the dampers, suspension springs, 
subframe and trailing arms, have a relatively more significant modal 
participation with up to 10 modes in the frequency range of interest 
(30-300 Hz). The eigenvalue analysis of the full rear suspension model 
reveals that this system is modally dense, with as many as 96 modes in 
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the 30-300 Hz range of which 65 modes lie in the 150-300 Hz range, 
where the subframe is found to have significant modes. Based on this 
observation, the finite element model is further reduced to ignore few 
non-participating components, such as the brake pads and rotors, with 
the reduced model consisting of a total of 163,000 elements.  Structural 
damping is the primary damping mechanism considered for the 
suspension model, with the metallic components assigned a nominal 
loss factor of 0.001.   The axial properties of the hydraulic damper are 
assumed to be viscously damped, and the component connector 
elements (such as bushings) are assumed to be damped and thus given 
by a complex-valued stiffness element, where γ is the assumed loss 
factor (1 to 20% depending on the component): 

𝑘̃ = 𝑘(1 + 𝑖𝛾). 
(1) 

Development of an illustrative, reduced order 
model of rear-half vehicle 

Since no significant literature exists on lumped parameter models for 
studies of this nature, an iterative process is adopted to develop a 
lumped model to study the underlying system physics and qualitatively 
correlate with the finite element model. As the excitation from the tire 
is primarily in the vertical direction [11] for road noise and vibration 
problems, a lumped model with only vertical degrees of freedom is 
developed. Since the rear suspension system of interest has intersecting 
transfer paths through a dynamically active subframe, a minimal order 
lumped parameter model of 11 degrees of freedom, which captures two 
of the transfer paths (suspension springs) from the spindle to the 
vehicle body in addition to the subframe, is developed as illustrated in 
Fig. 7. 

 
Figure 7: Lumped model (11 DOF) of the vehicle system (half-car type 
approximation). Refer to the list of symbols in the text for identification of 
symbols, including subscripts. 

The vehicle body is considered as a single (massive/rigid) lumped 
mass (mv) with one translational coordinate (zv) and one rotational 
coordinate (θv), where the subscript v denotes vehicle body. mv is 
assumed to be about 30% of the vehicle mass. The moment of inertia 
of vehicle body (Iv) is calculated as Iv=mvl mvr l2/(mvl +mvr), where mv 
is approximated by two lumped masses (mvl and mvr) on the left 
(subscript l) and right (subscript r) extremities of a massless rod of 
length l. Assuming mvl = mvr = mv/2, the above expression reduces to 
Iv=mv l2/4. The vehicle subframe is approximated by a simple three-
degree-of-freedom semi-definite system with only vertical 
displacements zsl, zsm and zsr, where subscript s denotes the subframe 

and subscripts l, m and r denote left, middle and right, respectively. 
This model consists of masses msl, msm and msr connected by a bushing 
connector element with an elastic stiffness ks. The parameter values are 
chosen such that the first two flexural modes of the subframe are 
captured in terms of both the natural frequencies and dominant vertical 
mode shape. The static stiffness of the subframe must be evaluated 
from the finite element model in order to assess relevant mass and 
stiffness parameters for the subframe lumped model. Four different 
iterations are considered, and the corresponding computed static 
stiffness and the lumped mass values to physical subframe mass (as a 
ratio) are analyzed. The iterations involve different boundary 
conditions and loading schemes at the connection points between the 
subframe, the vehicle body and the other suspension components. The 
subframe is attached to the vehicle body through bushings via four 
connection points, one at each corner of the subframe arms, and it is 
connected to the other suspension components via four connection 
points located at the bottom of the subframe, with two connections 
each to the left and right half of the suspension components. For case 
1, the four connections on the subframe arms and two of the 
connections (one on each side) at the bottom of the subframe, which 
are located farther away from the middle of the subframe, are clamped. 
The other two connections at the bottom, which are closer to the middle 
of the subframe, have their rotational degrees of freedom arrested, and 
two equal amplitude static loads, 0.5P, are applied. The static stiffness 
is calculated by dividing the average of the static load by the average 
of the static deflections δ computed at the driving points. This yields a 
high stiffness and a lumped mass that is 2.5 times the actual subframe 
mass. In case 2, the clamped connections from case 1 are replaced by 
pinned connections, and similar static loads are applied. The pinned 
connections lower the static stiffness, but this value still yields a high 
mass ratio, which is not desirable. In case 3, the pinned connections at 
the lower section of the subframe are changed to free boundary 
conditions, and using the computed stiffness, a mass ratio of 1 is 
achieved. In case 4, the connections on one side are clamped, and the 
vertical static load is applied on the other side, but this results in an 
order of magnitude reduction in the mass ratio, which again is 
undesirable. Hence, case 3 is chosen to be the best case to capture both 
the natural frequencies and the flexural modes of the subframe. 

The left and right subframe masses are connected to the vehicle body 
through bushings represented by masses mbl and mbr, where the 
subscript b denotes bushing. The stiffness elements kvb (= kbs), where 
subscripts vb and bs denote the connections between vehicle and 
bushing, and subframe and bushing, respectively, are calculated as 
kvbkbs/(kvb+kbs) =kvb/2 = kbz1, where kbz1 property is obtained from the 
finite element model. Similarly, the spindle masses, mdl and mdr, where 
subscript d denotes spindle, are connected to the subframe masses 
through bushing stiffness elements ksd (= kd) computed as ksd 
kd/(ksd+kd) = ksd/2 = kbz2, where the parameter kbz2  is obtained from the 
finite element model. Knowing kvb and kbs, and considering a single-
degree-of-freedom approximation for the bushing where the spring 
elements are both connected to the ground, the masses mbl and mbr can 
be calculated using 𝑓𝑛 = 1 2𝜋⁄ √(𝑘𝑣𝑏+𝑘𝑏𝑠) 𝑚𝑏𝑙⁄ , such that the natural 
frequency fn is equal to 500 Hz. 

The path through the suspension springs is approximated using masses 
mgl and mgr, where subscript g denotes the suspension spring and 
stiffness kgd and kvg. Similar to the subframe static stiffness 
calculations, the static stiffness of the finite element model of the 
spring is computed. Using a single-degree-of-freedom approximation 
similar to the bushing approximation, the static stiffness value and the 
effective mass of the spring are computed. 
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Real eigensolution of the lumped vehicle model 

The equations of motion of the lumped system of Fig. 7 are as follows: 

𝑚𝑣𝑧̈𝑣 + 2(𝑘𝑣𝑔 + 𝑘𝑣𝑏)𝑧𝑣 − 𝑘𝑣𝑏𝑧𝑏𝑙 − 𝑘𝑣𝑏𝑧𝑏𝑟 − 𝑘𝑣𝑔𝑧𝑔𝑙 − 𝑘𝑣𝑔𝑧𝑔𝑟 = 0 
(2a) 

𝐽𝑣𝜃̈𝑣 + 2(𝑘𝑣𝑔𝑙2
2 + 𝑘𝑣𝑏𝑙1

2)𝜃𝑣 + 𝑘𝑣𝑏𝑙1𝑧𝑏𝑙 − 𝑘𝑣𝑏𝑙1𝑧𝑏𝑟 + 𝑘𝑣𝑔𝑙2𝑧𝑔𝑙 …

− 𝑘𝑣𝑔𝑙2𝑧𝑔𝑟 = 0 
(2b) 

𝑚𝑏𝑙𝑧̈𝑏𝑙 + (𝑘𝑣𝑏 + 𝑘𝑏𝑠)𝑧𝑏𝑙 − 𝑘𝑣𝑏𝑧𝑣 + 𝑘𝑣𝑏𝑙1𝜃𝑣 − 𝑘𝑏𝑠𝑧𝑠𝑙 = 0 
(2c) 

𝑚𝑏𝑟𝑧̈𝑏𝑟 + (𝑘𝑣𝑏 + 𝑘𝑏𝑠)𝑧𝑏𝑟 − 𝑘𝑣𝑏𝑧𝑣 − 𝑘𝑣𝑏𝑙1𝜃𝑣 − 𝑘𝑏𝑠𝑧𝑠𝑟 = 0 
(2d) 

𝑚𝑔𝑙𝑧̈𝑔𝑙 + (𝑘𝑣𝑔 + 𝑘𝑔𝑑)𝑧𝑔𝑙 − 𝑘𝑣𝑔𝑧𝑣 + 𝑘𝑣𝑔𝑙2𝜃𝑣 − 𝑘𝑔𝑑𝑧𝑑𝑙 = 0 
(2e) 

𝑚𝑔𝑟𝑧̈𝑔𝑟 + (𝑘𝑣𝑔 + 𝑘𝑔𝑑)𝑧𝑔𝑟 − 𝑘𝑣𝑔𝑧𝑣 − 𝑘𝑣𝑔𝑙2𝜃𝑣 − 𝑘𝑔𝑑𝑧𝑑𝑟 = 0 
(2f) 

𝑚𝑠𝑙𝑧̈𝑠𝑙 + (𝑘𝑏𝑠 + 𝑘𝑠 + 𝑘𝑠𝑑)𝑧𝑠𝑙 − 𝑘𝑏𝑠𝑧𝑏𝑙−𝑘𝑠𝑧𝑠𝑚 − 𝑘𝑠𝑑𝑧𝑑𝑙 = 0 
(2g) 

𝑚𝑠𝑚𝑧̈𝑠𝑚 + 2(𝑘𝑠)𝑧𝑠𝑚 − 𝑘𝑠𝑧𝑠𝑙 − 𝑘𝑠𝑧𝑠𝑟 = 0 
(2h) 

𝑚𝑠𝑟 𝑧̈𝑠𝑟 + (𝑘𝑏𝑠 + 𝑘𝑠 + 𝑘𝑠𝑑)𝑧𝑠𝑟 − 𝑘𝑏𝑠𝑧𝑏𝑟−𝑘𝑠𝑧𝑠𝑚 − 𝑘𝑠𝑑𝑧𝑑𝑟 = 0 
(2i) 

𝑚𝑑𝑙𝑧̈𝑑𝑙 + (𝑘𝑠𝑑 + 𝑘𝑑 + 𝑘𝑔𝑑)𝑧𝑑𝑙 − 𝑘𝑠𝑑𝑧𝑠𝑙 − 𝑘𝑔𝑑𝑧𝑔𝑙 = 𝑘𝑑𝑧1 
(2j) 

𝑚𝑑𝑟𝑧̈𝑑𝑟 + (𝑘sd + 𝑘𝑑 + 𝑘𝑔𝑑)𝑧𝑑𝑟 − 𝑘𝑠𝑑𝑧𝑠𝑟 − 𝑘𝑔𝑑𝑧𝑔𝑟 = 𝑘𝑑𝑧2, 
(2k) 

where 𝑧̈ and z are the dynamic acceleration and displacements of the 
masses, and 𝜃̈ and θ are the dynamic rotational acceleration and 
displacements, with the other subscripts having the same meaning as 
defined before. Subscripts 1 and 2 in Eqns. (2j) and (2k) denote the 
excitation index corresponding to the dynamic motions applied at the 
spindle masses. The corresponding system parameters are summarized 
in Table 1. All spring elements in the lumped system are assumed to 
be damped modeled by a complex valued stiffness, as given by Eq. (1), 
where γ is the assumed loss factor. For instance, γ is assumed to be 1% 
and 3% for the subframe and suspension springs, respectively, as these 
are typically lightly damped. The γ values for the bushing stiffness and 
spindle stiffness are assumed to be 10% similar to the finite element 
model. Ignoring structural damping in the system, the system 
equations can be written in the form as follows, where 𝑀 is the mass 
matrix, 𝐾 is the stiffness matrix, 𝑧 is the displacement vector, and 𝐹 is 
the excitation force/moment vector: 

𝑀 𝑧̈ + 𝐾 𝑧 = 𝐹. 
(3) 

 
The real eigensolution of Eq. (3) is computed using the values in Table 
1, and the predicted natural frequencies of the system are 11.1, 21.2, 
74.0, 74.0, 131.3, 162.2, 203.5, 377.4, 383.1, 516.9 and 517.6 Hz. It is 
observed that the low frequencies (below 30 Hz) are dominated by the 
vehicle body modes (modes 1 and 2), and the higher frequencies 
(beyond 350 Hz) are dominated by the bushing masses as expected. In 
particular, modes 5 (131.3 Hz), 6 (162.2 Hz) and 7 (203.5 Hz) are 
dominated by the three subframe mass element motion. Specifically, 
modes 5 and 7 are affected by the subframe mass msm, (representative 
of the subframe cross members), and mode 6 is influenced by the other 
two subframe masses msl and msr. 

Table 1: Parameters for the lumped vehicle model of Fig. 7. 

Parameter (units) Value Parameter (units) Value 

mv (kg) 240  kvb, kbs  (N/mm) 5x104  
mbl (kg) 0.98  ksd, kd  (N/mm) 3x104  
mbr (kg) 0.98  ks, kvg, kgd  (N/mm) 5x102  
mgl (kg) 0.75  γvb, γbs, γsd, γd 0.1 
mgr (kg) 0.75  γs 0.01 
msl (kg) 8  γgd, γvg 0.03 
msm (kg) 8    
msr (kg) 8    
mdl (kg) 30    
mdr (kg) 30    
Iv (kg-m2) 194   

 

In addition to capturing the first two natural frequencies of the 
subframe in the free-free boundary conditions, the lumped model also 
successfully captures the natural frequencies of the subframe under 
realistic boundary conditions. However, the modes from the subframe 
lumped model only approximate the vertical deflections of the flexural 
modes. Since this 11-degree-of-freedom model captures the modal 
properties reasonably well, it will be used to study the subframe 
dynamics under dynamic excitation conditions. 

Forced response analysis using real 
eigensolutions 

The steady-state harmonic response of the lumped model is computed 
by applying sinusoidal displacement excitations z1 and z2 (of unit 
amplitude but varying phase), where subscripts 1 and 2 denote the 
excitation index at the spindle masses mdl and mdr, respectively. The 
system responses are computed for two limiting cases of displacement 
excitations at the left and right spindles: (i) equal in-phase excitations 
(z1 = z2) and (ii) equal out-of-phase excitations (z1 = - z2). Due to left-
right symmetry in the system, the steady-state accelerations of the left 
and right masses of the suspension springs, bushings, subframe and 
spindle are identical. The subframe accelerations for two input 
excitation phasing cases are illustrated in Figs. 8 and 9. Resonance 
peaks are observed at 130 and 204 Hz and an anti-resonance around 
190 Hz for the in-phase excitation. In contrast, for the out-of-phase 
excitation, a resonance peak occurs around 163 Hz, corresponding to 
mode 6, while modes at 130 Hz and 204 Hz are not excited. These 
preliminary results suggest that large variations in response can occur 
due to phasing between excitations at the spindles. This is analyzed 
further using the modal expansion theorem [12]. The solution to Eq. 
(3) is written as a linear combination of vibration modes of the system 
as: 
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𝑧(𝑡) = 𝜂1(𝑡)𝜙
(1) + 𝜂2(𝑡)𝜙

(2) + ⋯+ 𝜂11(𝑡)𝜙
(11), 

(4) 

  

where ηi(t) are the modal participation coefficients for i = 1, 2, 3,…..11 
and 𝜙(𝑖) denotes the ith modal vector, which is assembled into a modal 
matrix as: 

𝜙 = [𝜙(1) 𝜙(2) 𝜙(3) 𝜙(4) … .𝜙(11)]. 

(5) 

Rewrite Eqs. (4) and (5) as follows, where 𝜂(𝑡) =

[𝜂1(𝑡) 𝜂2(𝑡)…… . . 𝜂11(𝑡)]
𝑇 and the superscript T denotes transpose, 

𝑧(𝑡) = 𝜙 𝜂(𝑡). 

(6) 

Figure 8: Computed acceleration spectra at the subframe left mass msl, (𝐿𝑧̈, dB 
re 1.0g rms) using the lumped vehicle model of Fig. 2 shown at 1-Hz resolution: 
(a) results for in-phase ( , 0o) and out-of-phase (---, 180o); (b) hatch plot 
representation of phasing variations; (c) difference between maximum and 
minimum acceleration response at each frequency (Δ𝐿𝑧̈, dB). 

Further define the acceleration vector as:  𝑧̈(𝑡) = 𝜙 𝜂̈(𝑡). The force 

vector in the modal domain, 𝑄 is defined as: 

𝑄 = 𝜙𝑇𝐹(𝑡), 

(7) 

where 𝐹(𝑡) = [0 0 0 0 0 0 0 0 0 𝐹1 𝐹2]
𝑇, with F1 and F2 denoting 

dynamic force excitations at the left and right spindles. Using Eqs. (6) 
and (7), Eq. (3) can be rewritten in terms of uncoupled, undamped 
differential equations of second order: 

𝜂̈(𝑡) + [⋱ Ω𝑖
2 ⋱]𝜂(𝑡) = 𝑄(𝑡), 

(8) 

where Ωi denotes the ith natural frequency of the system. The steady-
state harmonic response for undamped oscillators in the modal domain 
is given by: 

𝜂𝑖 =
𝑄𝑖

Ω𝑖
2 − 𝜔2

  . 

(9) 

The steady-state response in the physical domain is then computed 
using Eq. (6), which is expanded as follows: 

𝑧𝑣 = 𝜙𝑣
(1)

𝜂𝑣 + 𝜙𝑣
(2)

𝜂𝜃 + ⋯ 𝜙𝑣
(11)

𝜂𝑑𝑟 
         ⋮          ⋮              ⋮         ⋮ 

𝑧𝑑𝑟 = 𝜙𝑑𝑟
(1)

𝜂𝑣 + 𝜙𝑑𝑟
(2)

𝜂𝜃 + ⋯ 𝜙𝑑𝑟
(11)

𝜂𝑑𝑟. 
(10) 

The acceleration response is subsequently calculated by the 
relation 𝑧̈𝑖 = −𝜔2𝑧𝑖. From Eq. (10), the harmonic response is 
dependent on both the modal matrix 𝜙 and the modal responses 𝜂. To 

study this further, each term of Eq. (10) is plotted individually and 
compared with the total physical response; minimal damping is 
assumed in each case to ensure bounded responses at the resonances. 
Fig. 10(a, b) compares the computed accelerations (with a frequency 
resolution of 1 Hz) at the left subframe mass msl for the in-phase and 
the out-of-phase excitations. Up to 300 Hz, the motion terms 
associated with mv (only θv), mbl, mgl, msl, msr and mdl are dominant for 
in-phase excitation. In contrast, the motion terms associated with mv 
(only zv), mbr, mgr, msm and mdr are dominant for the out-of-phase case. 
In order to further examine why certain modes are not excited for a 
particular excitation, the modal force vector is studied by expanding 
Eq. (7) as: 

𝑄 = [𝜙(1) 𝜙(2) 𝜙(3) 𝜙(4) … .𝜙(11)]𝑇

[
 
 
 
 
 
 
 
 
 
 
0
0
0
0
0
0
0
0
0
𝐹1

𝐹2]
 
 
 
 
 
 
 
 
 
 

 

(11a) 

=

[
 
 
 
 
 
 
 
 
 
 
 𝜙𝑑𝑙

(1)
𝐹1 + 𝜙𝑑𝑟

(1)
𝐹2

𝜙𝑑𝑙
(2)

𝐹1 + 𝜙𝑑𝑟
(2)

𝐹2

⋮

⋮

⋮

⋮

𝜙𝑑𝑙
(11)

𝐹1 + 𝜙𝑑𝑟
(11)

𝐹2]
 
 
 
 
 
 
 
 
 
 
 

. 

(11b) 

Observe from Eq. (11b) that the terms influencing the modal force 
vector are the eigenvectors corresponding to the left and right spindle 
masses mdl and mdr. It is clear that these eigenvectors are in-phase with 
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each other at modes 2, 3, 5, 7, 9 and 10 and out-of-phase with the other 
modes as shown in Table 2. This implies that for an in-phase excitation 
(F1 = F2), the modes 1, 4, 6, 8 and 11 (out-of-phase modes) would lead 
to a cancellation of forces; in contrast, for an out-of-phase excitation 
(F1 = -F2), the modes 2, 3, 5, 7, 9 and 10 (in- 

 
Figure 9: Computed acceleration spectra at the subframe middle mass msm, (𝐿𝑧̈, 
dB re 1.0g rms) using the lumped vehicle model of Fig. 2 shown at 1-Hz 
resolution: (a) results for in-phase ( , 0o) and out-of-phase (---, 180o); (b) 
hatch plot representation of phasing variations; (c) difference between 
maximum and minimum acceleration response at each frequency (Δ𝐿𝑧̈, dB). 

phase modes) would lead to a cancellation of forces. The modal forces 
are as shown in Table 3, and this explains why only 6 modes are 
present in Fig. 10(a) and the remaining in Fig. 10(b). 

 
Figure 10: Computed acceleration spectra of modal masses corresponding to 
the lumped vehicle model with minimal possible damping: (a) In-phase 
excitation case; (b) Out-of-phase excitation case:―, 𝑧̈𝑠𝐿; ――, 𝜙𝑠𝐿𝜂̈𝑧𝑣; – –, 
𝜙𝑠𝐿𝜂̈𝜃𝑣; …, 𝜙𝑠𝐿𝜂̈𝑏𝐿;    ∗      , 𝜙𝑠𝐿𝜂̈𝑏𝑅;  –□– , 𝜙𝑠𝐿𝜂̈𝑔𝐿; – –□–, 𝜙𝑠𝐿𝜂̈𝑔𝑅 –𝜙𝑠𝐿𝜂̈𝑠𝐿; –o ,–׀–;

, 𝜙𝑠𝐿𝜂̈𝑠𝑀; – –׀– ,  𝜙𝑠𝐿𝜂̈𝑠𝑅; –◊–, 𝜙𝑠𝐿𝜂̈𝑑𝐿; – –◊– , 𝜙𝑠𝐿𝜂̈𝑑𝑅 . 

Table 2: Real and complex eigenvectors for left and right spindles. 

 
Real 

eigen-
values 

Real eigenvectors  Complex eigenvalues 
Ω2 = 𝜔𝑛

2(1 + 𝑗𝜂) 
Complex eigenvectors (given 
non-proportional damping) 

Mode ωn / 2π 
(Hz) Left 

𝜙𝑑𝑙 
Right 
𝜙𝑑𝑟 

ωn / 2π 
(Hz) η Left 

𝜓̃𝑑𝑙 
Right 
𝜓̃𝑑𝑟 

1 11.1 0.002 -0.002 11.1 0.093 
-0.021 

+0.003j 

-(-0.021 

+0.003j) 

2 21.1 0.005 0.005 21.1 0.099 
0.003 

-0.068j 

0.003 

-0.068j 

3 82.2 0.003 0.003 82.2 0.030 
-0.002 

+0.001j 

-0.002 

+0.001j 

4 82.2 -0.002 0.002 82.2 0.030 
0.001 

-0.001j 

-(0.001 

-0.001j) 

5 129.9 0.083 0.083 130.0 0.084 
0.342 

+0.023j 

0.342 

+0.023j 

6 160.5 0.114 -0.114 160.5 0.087 
0.573 

+0.412j 

-(0.573 

+0.412j) 

7 200.5 -0.08 -0.08 200.6 0.039 
-0.272 

+0.010j 

-0.272 

+0.010j 

8 376.0 0.06 -0.06 376.0 0.092 
0.254 

+0.005j 

-(0.254 

+0.005j) 

9 381.3 0.056 0.056 381.2 0.087 
-0.219 

-0.025j 

-0.219 

-0.025j 

10 515.6 -0.010 0.010 515.6 0.099 
-0.004 

+0.011j 

-(-0.004 

+0.011j) 

11 516.2 0.010 0.010 516.2 0.099 -0.015-
0.0004j 

-0.015 

-0.0004j 

 

Forced response analysis using complex 
eigensolutions 

The effect of damping is examined next by evaluating complex 
eigensolutions. The system equations are of the form similar to Eq. (7), 
except here 𝐾 is a complex-valued stiffness matrix with elements of 
the form k(1+iγ) as is assumed in the finite element model.  The 
complex eigenvalue problem is solved first to obtain the mass 
normalized complex eigenvectors  𝜓̃. Like the previous section, the 
modal expansion principle is applied to rewrite Eq. (3) as: 

𝑴 𝝍̃ 𝜼̈ + 𝑲̃ 𝝍̃ 𝜼 = 𝑭. 

(12) 

Pre-multiplying Eq. (12) by the Hermitian transpose (superscript HT) 
of the complex modal matrix 𝜓̃ to yield: 
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𝝍̃𝑯𝑻𝑴 𝝍̃ 𝜼̈ + 𝝍̃𝑯𝑻𝑲̃ 𝝍̃ 𝜼 = 𝝍̃𝑯𝑻𝑭 , 
(13) 

which upon simplification yields 11 decoupled equations as:  

𝜼̈  + [⋱ 𝝀̃𝒊
𝟐 ⋱]𝜼 = 𝑸, 

(14) 

where 𝜆̃𝑖
2 is the ith complex eigenvalue for this system and 𝑄 = 𝜓̃𝐻𝑇𝐹. 

The steady-state harmonic solution to each of the decoupled equations 
of motion in Eq. (14) is given as follows, where i =1, 2, 3… 11: 

𝜂𝑖 =
𝑄𝑖

𝜆𝑖
2 − 𝜔2

 . 

(15) 

Table 3. Modal force vectors for in-phase and out-of-phase cases. 

Mass element in 
Fig. 7 

Vector for in-phase 
case 

Vector for out-of-phase 
case 

mv 0 2𝜙𝑑𝑙
(1)

𝐹1 

mθ 2ϕ𝑑𝑙
(2)

𝐹1 0 

mbl 2ϕ𝑑𝑙
(3)

𝐹1 0 

mbr 0 2𝜙𝑑𝑙
(4)

𝐹1 

mgl 2ϕ𝑑𝑙
(5)

𝐹1 0 

mgr 0 2𝜙𝑑𝑙
(6)

𝐹1 

msl 2𝜙𝑑𝑙
(7)

𝐹1 0 

msm 0 2𝜙𝑑𝑙
(8)

𝐹1 

msr 2𝜙𝑑𝑙
(9)

𝐹1 0 

mdl 2𝜙𝑑𝑙
(10)

𝐹1 0 

mdr 0 2𝜙𝑑𝑙
(11)

𝐹1 

 

The steady-state physical response of the damped system is then 
calculated using a formula similar to Eq. (6).  Like the undamped case, 
each term of the response is compared against the total physical 
domain response. The addition of damping reduces the amplitude of 
the resonant peaks as expected; only 6 modes participate for the in-
phase case, and the remaining 5 modes participate for the out-of-phase 
case, as observed in the undamped case. The eigenvectors 
corresponding to the spindle masses are analyzed, and the 
corresponding force vectors Qi are found to be similar to the minimally 
damped case. From Table 2 it can also be observed that due to the left-
right symmetry in the system, the eigenvectors corresponding to mdl 
and mdr are always equal in magnitude and remain unaffected by the 
damping.  The dynamic forces at the modes either add or cancel each 
other out to produce modal forces as reported in Table 3, explaining 
the participation of the modes and excitation phasing for different 
excitation cases. Additionally, the harmonic responses are studied for 
3 additional phase angles between 0 and 180 degrees between the left 
and right spindles, given equal amplitudes of excitation. It is expected 

that changing the excitation phasing would directly influence the way 
the modes participate, similar to what was observed with the in-phase 
and out-of-phase cases. 

Next, the acceleration hatch plots at the subframe left mass mbl are 
displayed in Fig. 11 for two cases: (i) only the in-phase and out-of-
phase responses and (ii) for 5 phasing cases (0, 45, 90, 135, 180 
degrees). The in-phase and out-of-phase responses overlap with the 
hatch plots using all five phasing cases, with the exception of a few 
small frequency bands. This implies that the in-phase and the out-of-
phase cases are sufficient to predict the upper and lower bounds of 
harmonic responses. 

 

Figure 11: Comparison between in-phase and out-of-phase hatch plots against 
all phasing hatch plots for the lumped vehicle model: , in-phase and out-
of-phase;  , all phasing cases. 

Forced response from finite element model 
under harmonic excitation 

Forced response studies are conducted using the reduced order finite 
element model. Five cases of excitation phase differences (0, 45, 90, 
135 and 180 degrees) are considered for this finite element model. 
Upon comparing the hatch plots in Fig. 12, it is observed that the 
response from the in-phase and out-of-phase cases encompass all the 
other phasing cases. Fig. 13(a) displays the spectra for the vertical 
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Figure 12: Comparison between in-phase and out-of-phase hatch plots against 
all phasing hatch plots for the acceleration spectra (𝑧̈, m/s2) at location 1 on the 
subframe from finite element analyses: , in-phase and out-of-phase case; 

, all phasing cases. 

acceleration response at location 1 of the subframe for both in-phase 
and out-of-phase cases. Like Fig. 3(b), Fig. 13(b) is a hatch plot where 
the upper and lower limits are formed by computing the maximum and 
minimum responses from the in-phase and out-of-phase excitation 
cases (with a 1-Hz resolution). Note that the input phasing significantly 
affects the acceleration responses at the subframe with variations as 
large as 30 dB from 180 to 250 Hz, as shown in Fig. 13(c). These 
results correlate reasonably well with variations predicted by the 
lumped model, thus verifying the minimal order vehicle model. 

 

Figure 13: Computed acceleration spectra from finite element model (𝐿𝑧̈, dB re 
1.0 g rms) at location 1 on the subframe for different phasing cases shown at 2-
Hz resolution: (a) phase variations: , 0o;  ----,180o; (b) hatch plot 
representation of phasing variations; (c) difference between maximum and 
minimum acceleration response at each frequency. 

Comparison of predicted and measured results 

Since the tires and wheels are being ignored in this model, measured 
operational displacements at a roller speed of 80 kph are used as 
excitations and implemented as follows: 1. First, the dynamic 
excitations are described by harmonic vertical displacements 𝑧1 and 
 𝑧2 of unit amplitudes at the left and right spindle centers at any 
frequency of calculation; 2. A steady-state dynamic analysis (with the 
same damping assumptions as before) is over the frequency range of 
30-300 Hz; 3. Assuming the linear system theory, the corresponding 
harmonic acceleration responses are calculated at the body connections 
and normalized by the excitation acceleration amplitudes 
(−𝜔2𝑧1 𝑜𝑟 − 𝜔2𝑧2) at each frequency; 4. The normalized acceleration 
response is then scaled by the acceleration measured at the spindle 
center for one of the runs, 𝑧̈𝑑, from the chassis dynamometer 
experiment. This is needed to compare the computed responses with 
measurements. 

The predicted acceleration responses from the finite element model are 
now compared with the measurements. The computed hatch plots from 
the in-phase and out-of-phase responses are compared with 
measurements in Fig. 14 at locations 1, 2 and 3 on the subframe. The  

 

 

Figure 14: Comparison of measured and computed vertical acceleration spectra 
(𝐿𝑧̈ , dB re 1.0g rms) at different locations on the subframe (hatch plot using in-
phase and out of phase cases): (a) location 1; (b) location 2; (c) location 3:  -o-
, Measured response; , Computed response from the finite element 
model. 
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measured spectral points are observed to fall within the computed 
hatch plots with discrepancies at some narrow-frequency bands, 
suggesting that the calculation method yields a reasonable prediction. 
However, in Fig. 14(b), note that the simulation provides resonant 
peaks well, but the computations do not fall within the measured range 
at other frequencies. This could imply that damping values in the finite 
element model need to be refined, as this component has a dominant 
participation in this particular frequency range of study. 

The finite element operational deflection shapes are examined to 
visualize the subframe dynamics corresponding to the response 
variations associated with excitation phasing.  Based on average 
variations due to phasing at six different locations on the subframe, 
two particular frequencies (220 Hz and 236 Hz) are chosen – one 
where variations due to phasing are large and the second where 
variations are relatively small. Four views (top, front, left and right) 
are displayed for the deflection shapes, and a comparison is made 
between the in-phase and out-of-phase deflection shapes in Fig. 15.  
The subframe has small deflections for the in-phase case (Fig. 15(a)), 
whereas the subframe exhibits a large rocking motion when viewed 
from the top for the out-of-phase condition shown in Fig. 15(b).  In 
contrast, the subframe has minimal variation in the deflection shapes 
for both in-phase and out-of-phase excitation at 236 Hz. Overall, the 
participation of the subframe is qualitatively similar to that observed 
experimentally, suggesting that the ODS displays are an efficient way 
to evaluate subframe dynamics. 

 

 

Figure 15: Calculated operational deflection shape of the subframe from finite 
element simulation at 220 Hz: (a) in-phase; (b) out-of-phase: ●, locations on the 
subframe where deflections are calculated; □, trajectory starting point (at t = 0); 
―, trajectory. 

Conclusion 

This article has contributed to the state-of-the-art by providing an in-
depth investigation and explanation of the role of the left-right rolling 
excitation phasing at the spindles in the variability of automotive 
structure-borne vibration and noise (over the lower-frequency regime). 
Unlike prior literature, by limiting the operational experiments on a 
single vehicle, relationships between spindle excitations and run-run 

variations could be analyzed using a deterministic approach. A 
minimal order lumped parameter model of the rear-half vehicle, 
capturing the subframe transfer path, is successfully developed and is 
utilized to study the contribution of the subframe dynamics under 
dynamic loading conditions. Through the forced response analysis of 
this lumped parameter model using a deterministic modal expansion 
method, it is demonstrated that system vibration modes may cancel or 
add depending upon the left-right magnitude and phasing of 
excitations going into the system through the spindle (i.e., this is a 
deterministic phenomenon), which in turn has variations up to +/- 30 
dB.  In addition to this, both the lumped model and the finite element 
models are consistent in suggesting that two cases of phasing, namely 
in-phase and out-of-phase, are necessary and sufficient to predict a 
range for the system response. Operational deflection shapes have 
successfully been employed to qualitatively compare the variations 
due to phasing observed in the finite element results and the run-run 
variations observed in the steady-state vehicle measurements. This 
suggests that the run-run variations could be significantly influenced 
by the magnitude and phase of the tire-road interactions, which in turn 
control the magnitude and phase at which the excitations travel through 
the suspension system starting at the spindle. As part of future work, 
this deterministic left-right phasing phenomenon could be further 
validated by conducting operational experiments, with focus on 
controlling the excitation phasing. Currently, the post-processing and 
windowing techniques used during data acquisition to compute the 
frequency spectra use as high as 50 averages on data acquired over 25 
seconds to account for the probabilistic nature of the excitations. The 
sensitivity of the run-run variations to the type of signal processing 
(including windowing techniques) needs to be examined in the future. 
In addition, measurements may be acquired over a longer period of 
time, with minimal or no averaging, to study the deterministic nature 
of the excitations. 
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