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Abstract

Brain extraction from 3D medical images is a common pre-processing step. A variety of approaches exist, but they
are frequently only designed to perform brain extraction from images without strong pathologies. Extracting the brain
from images exhibiting strong pathologies, for example, the presence of a brain tumor or of a traumatic brain injury
(TBI), is challenging. In such cases, tissue appearance may substantially deviate from normal tissue appearance and
hence violates algorithmic assumptions for standard approaches to brain extraction; consequently, the brain may not be
correctly extracted.

This paper proposes a brain extraction approach which can explicitly account for pathologies by jointly modeling
normal tissue appearance and pathologies. Specifically, our model uses a three-part image decomposition: (1) normal
tissue appearance is captured by principal component analysis (PCA), (2) pathologies are captured via a total variation
term, and (3) the skull and surrounding tissue is captured by a sparsity term. Due to its convexity, the resulting
decomposition model allows for efficient optimization. Decomposition and image registration steps are alternated to
allow statistical modeling of normal tissue appearance in a fixed atlas coordinate system. As a beneficial side effect,
the decomposition model allows for the identification of potentially pathological areas and the reconstruction of a quasi-
normal image in atlas space.

We demonstrate the effectiveness of our approach on four datasets: the publicly available IBSR and LPBA40 datasets
which show normal image appearance, the BRATS dataset containing images with brain tumors, and a dataset containing
clinical TBI images. We compare the performance with other popular brain extraction models: ROBEX, BEaST, MASS,
BET, BSE and a recently proposed deep learning approach. Our model performs better than these competing approaches
on all four datasets. Specifically, our model achieves the best median (97.11) and mean (96.88) Dice scores over all
datasets. The two best performing competitors, ROBEX and MASS, achieve scores of 96.23/95.62 and 96.67/94.25
respectively. Hence, our approach is an effective method for high quality brain extraction for a wide variety of images.
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1. Introduction segmentations are time consuming and very labor intensive
and therefore not suitable for large-scale imaging studies.
Moreover, brain extraction is complicated by differences in
image acquisitions and the presence of tumors and other
pathologies that add to inter-expert segmentation varia-
tions.

Brain extractiorﬂ from volumetric magnetic resonance
(MR) or computed tomography images [I] is a common
pre-processing step in neuroimaging as it allows to spa-
tially focus further analyses on the areas of interest. The
most straightforward approach to brain extraction is by

manual expert delineation. Unfortunately, such expert Many methods have been proposed to replace man-

ual delineation by automatic brain extraction. In this
paper, we focus on and compare with the following six
widely-used or recently published brain extraction meth-
ods, which cover a wide range of existing approaches:
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1We avoid the commonly used term skull stripping. We are typi-

cally interested in removing more than the skull from an image and . . .
are instead interested only in retaining the parts of an image corre- e Brain Extraction Tool (BET)'. BET [2] 1s part of FM-

sponding to the brain. RIB Software Library (FSL) [3, 4] and is a widely
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used method for brain extraction. BET first finds
a rough threshold based on the image intensity his-
togram, which is then used to estimate the center-
of-gravity (COG) of the brain. Subsequently, BET
extracts the brain boundary via a surface evolution
approach, starting from a sphere centered at the esti-
mated COG.

e Brain Surface Fxtraction (BSE): BSE [5] is part of
BrainSuite [0 [7]. BSE uses a sequence of low-level op-
erations to isolate and classify brain tissue within T1-
weighted MR images. Specifically, BSE uses a combi-
nation of diffusion filtering, edge detection and mor-
phological operations to segment the brain. Brain-
Suite provides a user interface which allows for hu-
man interaction. Hence better performance may be
obtained by interactive use of BSE. However, our ob-
jective was to test algorithm behavior for a fixed set-
ting across a number of different datasets.

e Robust Learning-based Brain Extraction System
(ROBEX): ROBEX [8, [ is another widely used
method which uses a random forest classifier as the
discriminative model to detect the boundary between
the brain and surrounding tissue. It then uses an ac-
tive shape model to obtain a plausible result. While
a modification of ROBEX for images with brain tu-
mors has been proposed [I0], its implementation is
not available. Hence we use the standard ROBEX
implementation for all our tests.

e Deep Brain FExtraction: We additionally compare
against a recently proposed deep learning approach
for brain extraction [IT], 2] which uses a 3D convolu-
tional neural network (CNN) trained on normal im-
ages and images with mild pathologies. Specifically,
it is trained on the IBSR v2.0f] [13], LPBA40 [14, 15
and OASIS [16] [17] datasets. We use this model as is
without additional fine-tuning for other datasets.

e Brain Extraction Based on mon-local Segmentation
Technique (BEaST): BEaST [I8 [19] is another re-
cently proposed method, which is inspired by patch-
based segmentation. In particular, it identifies brain
patches by assessing candidate patches based on their
sum-of-squared-difference (SSD) distance to known
brain patches. BEaST allows using different image
libraries to guide the brain extraction.

o Multi-Atlas Skull Stripping (MASS): MASS [20], uses
multi-atlas registration and label fusion for brain ex-
traction. It has shown excellent performance on nor-
mal (IBSR, LPBA40) and close to normal (OASIS)
image datasets. One of its main disadvantages is its
runtime. An advantage of MASS, responsible for its

2This is a different dataset than the IBSR dataset that we use in
this paper.

performance and robustness, is that one can easily
make use of dataset-specific brain templates. How-
ever, this requires obtaining such brain masks via
costly manual segmentation. For a fair comparison
to all other methods, and to test the performance of
a given algorithm across a wide variety of datasets,
we select 15 anonymized templates for MASS’s multi-
atlas registration. These templates were obtained
from various studies and are provided along with
the MASS software package [21], as well as through
CBICA’s Tmage Processing Portal [22].

In addition to these methods, many other approaches
have been proposed. For example, Segonne et al. [23] pro-
posed a hybrid approach which combines watershed seg-
mentation with a deformable surface model. Watershed
segmentation is used to obtain an initial estimate of the
brain region which is then refined via a surface evolution
process. 3dSkullStrip is part of the AFNI (Analysis of
Functional Neuro Images) package [24] 25]. It is a modi-
fied version of BET. In contrast to BET, it uses image data
inside and outside the brain during the surface evolution
to avoid segmenting the eyes and the ventricles.

Even though all these brain extraction methods exist
and are regularly used, a number of challenges for auto-
matic brain extraction remain:

e Many methods show varying performances on differ-
ent datasets due to differences in image acquisition
(e.g., slightly different sequences or differing voxel
sizes). Hence, a method which can reliably extract
the brain from images acquired with a variety of dif-
ferent imaging protocols would be desirable.

e Most methods only work for images which appear nor-
mal or show very minor pathologies. Strong patholo-
gies, however, may induce strong brain deforma-
tions or strong localized changes in image appearance,
which can impact brain extraction. For example, for
methods based on registration, the accuracy of brain
extraction will depend on the accuracy of the reg-
istration, which can be severely affected in the pres-
ence of pathologies. Hence, a brain extraction method
which works reliably even in the presence of patholo-
gies (such as brain tumors or traumatic brain injuries)
would be desirable.

Inspired by the low-rank + sparse (LRS) image regis-
tration framework proposed by Liu et al. [26] and our
prior work on image registration in the presence of patholo-
gies [27], we propose a brain extraction approach which can
tolerate image pathologies (by explicitly modeling them)
while retaining excellent brain extraction performance in
the absence of pathologies.

The contributions of our work are as follows:

e (Robust) brain extraction: Our method can reliably
extract the brain from a wide variety of images. We



achieve state-of-the-art results on images with normal
appearance, slight, and strong pathologies. Hence our
method is a generic brain extraction approach.

e Pathology identification:  Our method captures
pathologies via a total variation term in the decom-
position model.

e Quasi-normal estimation: Our model allows the re-
construction of a quasi-normal image, which has
the appearance of a corresponding pathology-free or
pathology-reduced image. This quasi-normal image
also allows for accurate registrations to, e.g., a nor-
mal atlas.

o Fatensive validation: We extensively validate our ap-
proach on four different datasets, two of which exhibit
strong pathologies. We demonstrate that our method
achieves state-of-the-art results on all these datasets
using a single fixed parameter setting.

e Open source: Our approach is available as open-source
software.

The remainder of the paper is organized as follows. Sec-
tionRlintroduces the datasets that we use and discusses our
proposed model, including the pre-processing, the decom-
position and registration, and the post-processing proce-
dures. Section [ presents experimental results on 3D MRI
datasets demonstrating that our method consistently per-
forms better than BET, BSE, ROBEX, BEaST, MASS and
the deep learning approach for all four datasets. Section [4]
concludes the paper with a discussion and an outlook on
possible future work.

2. Materials and Methods

2.1. Datasets

We use the ICBM 152 non-linear atlas (2009a) [28]
as our normal control atlas. ICBM 152 is a 1x1x1 mm
template with 197x233x189 voxels, obtained from T1-
weighted MRIs. Importantly, it also includes the brain
mask. As the ICBM 152 atlas image itself contains the
skull, we can obtain a brain-only atlas simply by applying
the provided brain mask.

We use five different datasets for our experiments.
Specifically, we use one (OASIS, see below) of the datasets
to build our PCA model and the remaining four to test
our brain extraction approach.

OASIS. We use images from the Open Access Series of
Imaging Studies (OASIS) [16], [I7] to build the PCA model
for our brain extraction approach. The OASIS cross-
sectional MRI dataset consists of 416 sagittal T1-weighted
MRI scans from subjects between 18 and 96 years of age.
In this data corpus, 100 of the subjects over 60 years old
have been diagnosed with very mild to mild Alzheimer’s
disease (AD). The original scans were obtained with in-
plane resolution 1 x 1 mm (256 x 256), slice thickness =

1.25 mm and slice number = 128. For each subject, a
gain-field corrected atlas-registered image and its corre-
sponding masked image in which all non-brain voxels have
been assigned an intensity of zero are available. Each im-
age is resampled to 1 x 1 x 1 mm isotropic voxels and is of
size 176 x 208 x 176.

We evaluate our approach on four datasets, which all
provide brain masks. Although in our study, we focus
on T1-weighted images only, our model can be applied to
other modalities as long as the PCA model is also built
from data acquired by the same modality. The datasets
we use for validation are described below.

IBSR. The Internet Brain Segmentation Repository
(IBSR) [29] contains MR images from 20 healthy sub-
jects of age 29.1£4.8 years including their manual brain
segmentations, provided by the Center for Morphometric
Analysis at Massachusetts General Hospital. All coronal
3D T1-weighted spoiled gradient echo MRI scans were ac-
quired using two different MR systems: ten scans (4 males
and 6 females) were performed on a 1.5T Siemens Mag-
netom MR system (with in-plane resolution of 1 X 1 mm
and slice thickness of 3.1 mm); another ten scans (6 males
and 4 females) were acquired from a 1.5T General Electric
Signa MR system (with in-plane resolution of 1 x 1 mm
and slice thickness of 3 mm).

LPBAA40. The LONI Probabilistic Brain Atlas (LPBA40)
dataset of the Laboratory of Neuro Imaging (LONI) [14]
15] consists of 40 normal human brain volumes. LPBA40
contains images of 20 males and 20 females of age 29.20 +
6.30 years. Coronal T1-weighted images with slice thick-
ness 1.5 mm were acquired using a 1.5T GE system. Im-
ages for 38 of the subjects have in-plane resolution of
0.86 x 0.86 mm; the images for the remaining two sub-
jects have a resolution of 0.78 x 0.78 mm. A manually
segmented brain mask is available for each image.

BRATS: We use twenty T1-weighted image volumes of
low and high grade glioma patients from the Brain Tu-
mor Segmentation (BRATS 2016) dataset [30] that in-
clude cases with large tumors, deformations, or resection
cavities. We do not use the BRATS images available as
part of the BRATS challenge as these have already been
pre-processed (i.e., brain-extracted and co-registered). In-
stead, we obtain a subset of twenty of the originally ac-
quired images. The BRATS dataset is challenging as the
images were acquired with different clinical protocols and
various different scanners from multiple (n = 19) institu-
tions [3I]. Our subset of twenty images is from six dif-
ferent institutions. Furthermore, the BRATS images have
comparatively low resolution and some of them contain
as few as 25 axial slices (with slice thickness as large as
7mm). The in-plane resolutions vary from 0.47x0.47 mm
to 0.94x0.94 mm with image grid sizes between 256 x256
and 512x512 pixels. We manually segment the brain in
these images to obtain an accurate brain mask for valida-
tion.



Figure 1: Illustration of image appearance variability on a selection
of images from each (evaluation) database. From top to bottom:
IBSR, LPBA40, BRATS and TBI.

TBI. Finally, we use our own Traumatic Brain Injury
(TBI) dataset which contains 8 TBI images as well
as manual brain segmentations. These are standard
MPRAGE [32] T1-weighted images with no contrast en-
hancement. They have been resampled to 1x1x1 mm
isotropic voxel size with image size between 192 x 228 x 170
and 256 x 256 x 176. Segmentations are available for
healthy brain, hemorrhage, edema and necrosis. To gener-
ate the brain masks, we always use the union of healthy tis-
sue and necrosis. We also include hemorrhage and edema
if they are contained within healthy brain tissue.

Fig. [1] shows example images from each dataset to illus-
trate image variability. IBSR and LPBA40 contain images
from normal subjects and include large portions of the
neck; BRATS has very low out-of-plane resolution; and
the TBI dataset contains large pathologies and abnormal
skulls.

2.2. Dataset processing

2.2.1. PCA model

We randomly pick 100 images and their brain masks to
build our PCA model of the brain. Specifically, we reg-
ister the brain-masked images to the brain-masked ICBM

atlas using a B-spline registration. We use NiftyReg [33]
to perform the B-spline registration with local normalized
cross-correlation (LNCC) as similarity measure. To nor-
malize image intensities, we apply an affine transform to
the image intensities of the warped images so that the
1st percentile is mapped to 0.01 and 99th percentile is
mapped to 0.99 and then clamp the image intensities to be
within [0, 1]. We then perform PCA on the now registered
and normalized images and retain the top 50 PCA modes,
which preserve 63% of the variance, for our statistical ap-
pearance model. This is similar to an active appearance
model [34].

2.2.2. IBSR refined segmentation

For IBSR, segmentations of the brain images into white
matter, gray matter and cerebrospinal fluid (CSF) are pro-
vided. While, in principle, the union of the segmentations
of white matter, gray matter and CSF should represent the
desired brain mask, this is not exactly the case (see Fig.[2)).
To alleviate this issue for each segmentation, we use mor-
phological closing to fill in remaining gaps and holes inside
the brain mask and, in particular, to disconnect the back-
ground inside the brain mask from the surrounding image
background. The structuring element for closing is a voxel
and its 18 neighborhoodﬁ We then find the connected
component for the background and consider its comple-
ment the brain mask. Fig. |2| shows the pre-processing re-
sult after these refinement steps, compared to the original
IBSR segmentation (i.e., the union of white matter, gray
matter, and the CSF).

(a) (b) (c)

Figure 2: Example coronal slice of (a) an IBSR MR brain image,
(b) the corresponding original IBSR brain segmentation (i.e., union
of white matter, gray matter and CSF) and (c) the refined brain
segmentation result.

2.3. Review of related models

As mentioned previously, brain extraction is challenging
because it requires the identification of all non-brain tis-
sue which can be highly variable (cf. Fig. . Our brain
extraction approach is based on image alignment to an at-
las space where a brain mask is available. However, this
requires a reliable registration approach which can toler-
ate variable image appearance as well as pathologies (i.e.,

3The 18-voxel connectivity is also used for other morphological
operations in this manuscript.



brain tumors, traumatic brain injuries, or general head in-
juries resulting in skull deformations and fractures). In
both cases, no one-to-one mapping between image and at-
las space may be available and a direct application of stan-
dard image similarity measures for image registration may
be inappropriate.

A variety of approaches have been proposed to address
the registration of pathological images. For example, cost
function masking [35] and geometric metamorphosis [30]
exclude the pathological regions when measuring image
similarities. However, these approaches require prior seg-
mentations of the pathologies, which can be non-trivial
and/or labor intensive. A conceptually different approach
is to learn the normal image appearance from population
data and to estimate a quasi-normal image from a patho-
logical image. Then, the quasi-normal image can be used
for registration [37]. The low-rank + sparse (LRS) image
registration framework, proposed by Liu et al. [26], fol-
lows this idea by iteratively registering the low-rank com-
ponents from the input images to the atlas and then re-
computes the low-rank components. After convergence,
the image is well-aligned with the atlas.

Our proposed brain extraction model builds upon our
previous PCA-based approach for pathological image reg-
istration [27] which, in turn, builds upon and removes
many shortcomings of the low-rank + sparse approach of
Liu et al. [26]. We therefore briefly review the low-rank +
sparse technique in Sec. and the PCA approach for
pathological image registration in Sec. We discuss
our proposed model for brain extraction in Sec.

2.3.1. Low-Rank + Sparse (LRS)

An LRS decomposition aims at minimizing [38]
E(L,S)=rank(L) + A||S]lo st. D=L+S. (1)

ILe., the goal is to find an additive decomposition of a data
matrix D = L+ .S such that L is low-rank and S is sparse.
Here, ||S||o denotes the number of non-zero elements in
S and A > 0 weighs the contribution of the sparse part,
S, in relation to the low-rank part L. Neither rank nor
sparsity are convex functions. Hence, to simplify the so-
lution of this optimization problem it is relaxed: the rank
is replaced by the nuclear norm and the sparsity term is
replaced by the one-norm. As both of these norms are
convex and D = L 4 S is a linear constraint one obtains
the convex approximation to LRS decomposition by min-
imizing the energy

E(L,S) = IL|. + AIS|h, st. D=L+S, (2

where || - ||« is the nuclear norm (i.e., a convex approxi-
mation for the matrix rank). In imaging applications, D
contains all the (vectorized) images: each image is rep-
resented as a column of D. The low-rank term captures
common information across columns. The sparse term,
on the other hand, captures uncommon/unusual informa-
tion. As Eq. is convex, minimization results in a global
minimum.

In practice, applying the LRS model requires forming
the matrix D from all the images. D is of size m X n,
where m is the number of voxels, and n is the number
of images. For 3D images, m > n (typically). Assum-
ing all images are spatially well-aligned, L captures the
quasi-normal appearance of the images whereas S contains
pathologies which are not shared across the images. Of
course, in practice, the objective is image alignment and
hence the images in D cannot be assumed to be aligned a-
priori. Hence, Liu et al. [26] alternate LRS decomposition
steps with image registration steps. Here the registrations
are between all the low-rank images (which are assumed to
be approximately pathology-free) and an atlas image. This
approach is effective in practice, but can be computation-
ally costly, may require large amounts of memory, and has
the tendency to lose fine image detail in the quasi-normal
image reconstructions, L. In detail, the matrix D has a
large number of rows for typical 3D images, hence it can be
costly to store. Furthermore, optimizing the LRS decom-
position involves a singular value decomposition (SVD) at
each iteration with a complexity of O(min{mn? m?n})
[39] for an m x n matrix. While large datasets are benefi-
cial to capturing data variation, the quadratic complexity
renders LRS computationally challenging in these situa-
tions.

However, it is possible to overcome many of these short-
comings while staying close to the initial motivation of the
original LRS approach. The following Section dis-
cusses how this can be accomplished.

2.3.2. Joint PCA-TV model

To avoid the memory and computational issues of the
low-rank 4+ sparse decomposition discussed above, we
previously proposed a joint PCA/Image-Reconstruction
model [27] for improved and more efficient registration of
images with pathologies. In this model, we have a collec-
tion of normal images and register all the normal images to
the atlas once, using a standard image similarity measure.
These normal images do not need to be re-registered dur-
ing the iterative approach. We mimic the low-rank part
of the LRS by a PCA decomposition of the atlas-aligned
normal images from which we obtain the PCA basis and
the mean image. Let us consider the case when we are
now given a single pathological image I. Let I denote the
pathological image after subtracting the mean image M
and B the PCA basis matrix. L and T are images of the
same size as Iﬂ Specifically, we minimize

~ 1 -
E(T,L,a) = §IIL—BaII§+7||VTIIz,1, )
st. [ = ﬁ—i—T

where |[|[VT |21 = Y, [[VT;|l2 and i denotes spatial loca-
tion. This model is similar to the Rudin-Osher-Fatemi

4Images are vectorized for computational purposes, but the spa-
tial gradient V denotes the gradient in the spatial domain.



(ROF) image denoising model [40]. It results in a total
variation (TV) term, T, which captures the parts of I that
are (i) relatively large, (ii) spatially contiguous, and (iii)
cannot be explained by the PCA basis, e.g., pathological
regions. The quasi-low-rank part L remains close to the
PCA space but retains fine image detail. The quasi-normal
image L can then be reconstructed as L = M+L. We refer
to this model as our joint PCA-TV model.

As in the LRS approach, we can register the quasi-
normal image L to atlas space and alternate decompo-
sition and registration steps. However, in contrast to the
LRS model, the PCA-TV model registers only one image
(L) in each registration step and consequently requires less
time and memory to compute. Furthermore, the recon-
structed quasi-normal image, L, retains fine image detail
as pathologies are captured via the total variation term in
the PCA-TV model.

2.4. Proposed brain extraction approach

The following sections describe how our proposed brain
extraction approach builds upon the principles of the
PCA-TV model (Section [2.4.1)), and discusses image pre-

processing (Section [2.4.2]), the overall registration frame-
work (Section [2.4.3)), and post-processing steps (Sec-

tion .

2.4.1. Joint PCA-Sparse-TV model

The PCA-TV model captures the pathological informa-
tion well, but it does not model non-brain regions (such as
the skull) appropriately. The skull is, for example, usually
a thin, shell-shape structure and other non-brain tissue
may be irregularly shaped with various intensities. The
only commonality is that all these structures surround the
brain. Specifically, if a test image is aligned to the atlas
well, these non-brain tissues should all be located outside
the atlas’ brain mask. Hence, we reject these non-brain
regions via a spatially distributed sparse term. We pe-
nalize sparsity heavily inside the brain and relatively lit-
tle on the outside of the brain. This has the effect that
it is very cheap to assign voxels outside the brain to the
sparse term; hence, these are implicitly declared as brain
outliers. Of course, if we would already have a reliable
brain mask we would not need to go through any mod-
eling. Instead, we assume that our initial affine registra-
tion provides a good initial alignment of the image, but
that it will be inaccurate at the boundaries. We there-
fore add a constant penalty close to the boundary of the
atlas brain mask. Specifically, we create two masks: a two-
voxel-eroded brain mask, which we are confident is within
the brain and a one-voxel-dilated brain mask, which we
are confident includes the entire brain. We then obtain

the following model:

~ 1 4
E(S,T,L,a) = 5||L = Ba[ + 4[|V T]|2,
+lAeS);, &
st.I=L+S+T

where A = A(x) > 0 is a spatially varying weight

00, x € Eroded Mask (inside)

Ae) = A, x € Dilated Mask and
B x ¢ Eroded Mask (at boundary)
0, x ¢ Dilated Mask (outside)

with & denoting the spatial location. Further, in Eq. (),
©® indicates an element-wise product and v > 0 weighs the
total variation term.

We refer to this model as our joint PCA-Sparse-TV
model. It decomposes the image into three parts. Sim-
ilar to the PCA-TV model, the quasi-low-rank part L re-
mains close to the PCA space and the TV term, T, cap-
tures pathological regions. Here, the PCA basis is gener-
ated from normal images that have been already brain-
extracted. Therefore L only contains the brain tissue.
Different from the previous model, we add a spatially dis-
tributed sparse term, S, which captures tissue outside the
brain, e.g., the skull. In effect, since A is very large in-
side the eroded mask, none of the image inside the eroded
mask will be assigned to the sparse part. Conversely, all
of the image outside the dilated mask will be assigned to
the sparse part. We then integrate this PCA-Sparse-TV
model into the low-rank registration framework. This in-
cludes three parts: pre-processing, iterative registration
and decomposition, and post-processing as we will discuss
in the following.

2.4.2. Pre-processing

Fig. [3] shows a flowchart of our pre-processing approach
as discussed in the following paragraphs.

Intensity normalization. Given a test image from
which we want to extract the brain, we first affinely trans-
form the image intensities to standardize the intensity
range to [0,1000]. Note that our PCA model of sec-
tion is build based on images with intensities stan-
dardized to [0,1]. The different standardization is neces-
sary here as the bias field correction algorithm removes
negative and small intensity values (< 1) followed by a log
transform of the intensities. Specifically, we first compute
the 1st and the 99th percentile of the voxel intensities.
We then affinely transform the image intensities of the en-
tire image such that the intensity of the 1st percentile is
mapped to 100 and of the 99th percentile to 900. As this
may result in intensities smaller than zero or larger than
1000 for the extreme ends of the intensity distribution, we
clamp the intensities to be within [0,1000].
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Figure 3: Preprocessing flow chart:
tion/decomposition framework.

Atlas registration. Next, we first align the intensity-
normalized input image to the non brain-extracted atlas.
Then, we affinely register the result from the first step to
the brain-extracted atlas, but this time using a one-voxel-
dilated brain mask in atlas space; this step has the effect
of ignoring parts of the image which are not close to the
brain in the registration and it gives us a better alignment
in the brain region. For both steps we use reg_aladin of
NiftyReg [41] disabling symmetric registration (-noSym).
The first registration initializes the transformation using
the center of gravity (CoG) of the image. Note that the
differing intensity range of the atlas and the image is im-
material in this step as the registration uses local normal-
ized cross-correlation as the similarity measure.

Bias field correction. Next, we use NAITK [42], a vari-
ant of the popular non-parametric non-uniform intensity
normalization (N3) algorithm [43], to perform bias field
correction. As the image has been affinely aligned to the
atlas in the previous step, we use our two-voxel-eroded
brain mask as the region for bias field estimation. Specif-
ically, we use the N4BiasFieldCorrection function in
SimpleITK [44], with its default settings.

Histogram matching: The final step of the pre-
processing is histogram matching. We match the his-
tograms of the bias corrected image with the histogram
of the mean image of the population data only within the
two-voxel-eroded brain mask. This histogram matched im-
age is then the starting point for our brain extraction al-
gorithm and it is now in an intensity range comparable to

the PCA model.

2.4.3. Registration framework

Similar to the PCA-TV model, we alternate between im-
age decomposition steps using the PCA-Sparse-TV model
and registration to the brain-extracted atlas. We use a to-
tal of six iterations in our framework. In the first iteration
(k 1), the images are in the original space. We de-

Brain-Extracted
Atlas

A\

Intensity Affine Affine Bias Histogram
Normalize Register Register Correct Match
R _ - > R

Input image is the original image.

PCA
Mean

Eventually, the output image will be fed into the registra-

compose the input image I; = I, into the quasi-normal
(Ly = Ly + M), sparse (S1), and total variation (7)) im-
ages by minimizing the energy from Eq. . We then
obtain a pathology-free or pathology-reduced image, R,
by adding the sparse and the quasi-normal images of the
decomposition: Ry = Ly + 5.

For the next two iterations (k = {2, 3}), we first find the
affine transform (I>,;1 by affinely registering the pathology-
reduced images from the previous iteration, Ry_1 (i.e.,
Rr—1 = Lg_1 + Sk—1), to the brain-extracted atla&ﬂ
We use the one-voxel-dilated brain mask for cost-function
masking which allows the registration to focus only on the
brain tissue. This is important as the first few registra-
tions will not be very precise as they are only based on
an affine deformation model. The main objective is to
reduce the pathology within the brain. Only after these
initial steps, when a good initial alignment has already
been obtained, we use the quasi-normal image (excluding
the non-brain regions) to perform the registration. We
then apply the transform <I>,;1 to transform the previous
input images to atlas space and obtain new input images,
Iy, (e, Iy = Ix_1 0 @;1). We minimize Eq. again
to obtain new decomposition results (Lg, Sk, Tk). These
decomposition/affine-registration steps are repeated two
times, which is empirically determined to be sufficient for
convergence. These affine registration steps result in a sub-
stantially improved alignment in comparison to the initial
affine registration by itself.

The last three iterations (k = {4, 5,6}) repeat the same
process, but are different in the following aspects: (i) we
now use a B-spline registration instead of the affine regis-
tration; (ii) we use the pathology-reduced image and cost

5We follow standard image-registration notation. Ie., a map ®~1
is defined in the space an image is deformed to. For us this is the
space of the atlas image. Conversely, ® maps an image from the
atlas space back into the original image space and hence is defined
in the original image coordinate space.



function masking only for the first B-spline registration
step, as we did in the previous affine steps. For the remain-
ing two steps, we use the quasi-normal images Ly.,—¢5,6) as
the moving images and we do not use the mask during the
registrations. The use of the mask is no longer necessary
as registrations are now performed using the quasi-normal
image; (iii) we use the non-greedy registration strategy of
the original low-rank + sparse framework [45], in which we
deform the quasi-normal image back to the image space of
the third iteration (after the affine steps) in order to avoid
accumulating deformation errors.

These steps further refine the alignment, in particular,
close to the boundary of the brain mask. After the last
iteration, the image is well-aligned to the atlas and we
have all the transforms from the original image space to
atlas space. As a side effect, the algorithm also results in a
quasi-normal reconstruction of the image, Lg, an estimate
of the pathology, T4, and an image of the non-brain tissue
Sg, all in atlas space.

2.4.4. Post-processing

Post-processing consists of applying to the atlas mask
the inverse transforms of the affine registrations in the pre-
processing step and the inverse transforms of the registra-
tions generated in the framework described in section [2.4.3]
The warped-back atlas mask is the brain mask for the
original image. To extract the brain in the original im-
age space, we simply apply the brain mask on the original
input image. All subsequent validations are performed in
the original image space.

Algorithm [I| summarizes these steps as pseudo-code.

3. Experimental results

The following experiments are for brain-extraction from
T1-weighted MR images. However, our method can be
easily adapted to images from other modalities, as long as
the atlas image and the images from which the PCA basis
is computed are from the same modality.

3.1. Experimental setup

We evaluate our method on all four evaluation datasets.
For comparison, we also assess the performance of BET,
BSE, ROBEX, BEaST, MASS and CNN on these datasets.
We use BET v2.1 as part of FSL 5.0, BSE v.17a from
BrainSuite, ROBEX v1.2, BEaST (mincbeast) v1.90.00,
and MASS v1.1.0. We solve our PCA model via a primal-
dual hybrid gradient method [46]. In addition, we imple-
ment the decomposition on the GPU and run it on an
NVIDIA Titan X GPU [47] [48].

3.2. Evaluation Measures

We evaluate the brain extraction approaches using the
measures listed below.

Dice coefficient. Given two sets X and Y (containing the
spatial voxel positions of a segmentation), the Dice coeffi-
cient D(X,Y) is defined as

21X NY|

DX,)Y)= ——— (6)

X[+ Y]
where X N'Y denotes set intersection between X and Y
and | X| denotes the cardinality of set X.

Average, mazimum and 95% surface distance. We also
measure the symmetric surface distances between the au-
tomatic brain segmentation and the gold-standard brain
segmentation. This is defined as follows: the distance of a
point x to a set of points (or set of points of a triangulated
surface S4) is defined as

d(xz,S4) = min d(z,y), (7)
yESaA
where d(x,y) is the Euclidean distance between the point
x and y. The average symmetric surface distances between
two surfaces S4 and Sp is then defined as

ASD(S4,Sp) =

e < (2 e se 4 3 dwsa). @

r€SA yESB

where |S4| denotes the cardinality of S4 [49] (i.e., num-
ber of elements if represented as a set or surface area if
represented in the continuum). To assess behavior at the
extremes, we also report the maximum symmetric surface
distance as well as the 95th percentile symmetric surface
distance, which is less prone to outliers. These are defined
in analogy, i.e., by computing all distances from surface
S4 to Sp and vice versa followed by the computation of
the maximum and the 95th percentile of these distances.

Sensitivity and specificity. We also measure sensitivity,
i.e., true positive (TP) rate and specificity, i.e., true neg-
ative (TN) rate. Here TP denotes the brain voxels which
are correctly labeled as brain; TN denotes the non-brain
voxels correctly labeled as such. Furthermore, the false
negatives (FN) are the brain voxels incorrectly labeled as
non-brain and the false positives (FP) are the non-brain
voxels which are incorrectly labeled as brain. Let V be
the set of all voxels of an image, and X and Y the au-
tomatic brain segmentation and gold-standard brain seg-
mentation, respectively. The sensitivity and specificity are
then defined as follows [50] :

TP IXNY|

senSitivity:7TP+FN: v 9)
TN V|- |XUY]
speci ficity TN EP V=Y (10)

3.8. Datasets of normal images: IBSR/LPBA40

IBSR results: Fig. shows the box-plots summariz-
ing the results for the IBSR dataset. Overall, ROBEX,



Algorithm 1: Algorithm for Brain Extraction

Input: Image I, Brain-Extracted Atlas A, Atlas Mask A,

Output: Brain-Extracted Image Ip and mask I

1 I, &7 = pre-processing(I);
2 for k< 1 to 6 do
3 if k> 2 then
4 if £k <3 then
5 find <I>,;1, s.t., Rp_1 0 <I>l:1 = A and @,;1 is affine;
6 else if kK == 4 then
7 ‘ find q),;l, s.t., Rp—1 0 @;1 = A and <I>,;1 is B-spline;
8 else
9 | find @', s.t., (Lg—10®p_1) 0P, ' = A and ®;' is B-spline;
10 end
11 Ik:Ik,loq),;l;
12 Decompose Iy, s.t., Iy = Ly + Si + Ty;
13 if £k <3 then
14 ‘ Ry = L + Sk;
15 end
16 end
17 Ip, Iny = post-processing(Apr, {®;11).

BEaST*, BSE, BET and our model perform well on this
dataset, with a median Dice coefficient above 0.95. BEaST
does not work well when applied directly on the IBSR im-
ages. This is due to failures with the initial spatial nor-
malization (in 5 cases the computations themselves fail
and in 10 cases the results are poor). Therefore, in our
experiment, we first applied the same affine registration
to atlas space as in the pre-processing step for our PCA
model for all images. This affine transformation corre-
sponds to a composition of the two affine transformations
in Fig. ] BEaST is then applied to the affinely aligned
images. We use the same strategy for BRATS. We refer
to the resulting approach as BEaST*. BEaST* performs
well on most cases with high Dice scores and low surface
distances. MASS works well on some cases, but performs
poorly on many cases. CNN does not perform satisfacto-
rily, with low Dice scores, low sensitivity, large distance
errors, and overall high variance. Our PCA model has
similar performance to BEaST*, but does not result in
extreme outliers and hence results in higher mean Dice
scores than BEaST*. Both methods outperform all oth-
ers with respect to Dice scores (median close to 0.97) and
distance measures in most cases. BSE also works well on
most cases, but it shows larger variability and exhibits two
outliers which represent failure cases. ROBEX and BET
show the highest sensitivity, but reduced specificity. Con-
versely, our PCA model, BEaST*, BSE, and CNN have
high specificity but reduced sensitivity (the CNN model
dramatically so).

Table |2| (top) shows medians, means and standard de-
viations for the test results on this dataset. Our PCA
model achieves the highest median and mean Dice overlap
scores (both at 0.97) with the smallest standard devia-

tion. BEaST* also shows high median Dice scores, but
results in reduces mean scores due to the presence of out-
liers. ROBEX and BET show slightly reduced Dice overlap
measures (mean and median around 0.95). BSE also shows
slightly reduced median Dice scores, but greatly reduced
mean scores. MASS show reduced median Dice scores.
CNN shows the lowest performance. Our PCA model also
performs best for the surface distance measures; it has the
lowest mean and median surfaces distances. Overall our
PCA model performs best.

In addition, we perform a one-tailed paired Wilcoxon
signed-rank test (to safeguard against deviations from nor-
mality) to compare results between methods. We test the
null hypothesis that the paired differences for the results
of our PCA model and of the compared method come
from a distribution with zero median, against the alter-
native that the median of the paired differences is non-
zeroﬂ Table 1| (top) shows the corresponding results. We
apply the Benjamini-Hochberg procedure [5I] for all the
tests, in order to reduce the false discovery rate for multi-
ple comparisons. We select an overall false discovery rate
of 0.05 which results in an effective significance level of
a =~ 0.0351. Our model outperforms all other methods
on Dice and surface distances except for BEaST* which is
significant only in Dice and average surface distance. In
addition, our approach performs better than MASS, BSE
and CNN on sensitivity and better than ROBEX, BEaST*,
MASS, and BET on specificity.

LPBA40 results: Fig. [5| shows the box-plots summa-
rizing the validation results for the LPBA40 dataset. All

SWe perform a one-tailed test, thus we test for greater than zero
for the Dice overlap scores, sensitivity and specificity, and less than
zero for the surface distances.
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Figure 4: Box plot results for the IBSR normal dataset. We show the results from seven methods: PCA, RBX (ROBEX), BST* (BEaST*),
MAS (MASS), BET, BSE and CNN. Due to the poor results of MASS and CNN, and the outliers of BSE on this dataset, we limit the range
of the plots for better visibility. On each box, the center line denotes the median, and the top and the bottom edge denote the 75th and
25th percentile, respectively. The whiskers extend to the most extreme points that are not considered outliers. The outliers are marked with
‘+’ signs. In addition, we mark the mean with green ‘“*’ signs. ROBEX, BET, and BSE show similar performance, but BSE exhibits two
outliers. MASS works well on most images, but fails on many cases. BEaST fails on the original images. We therefore show the BEaST*
results using the initial affine registration of our PCA model. BEaST* performs well with high Dice scores and low surface distances, but
with low mean values. CNN performs poorly on this dataset. Our PCA model has similar performance to BEaST* but with higher mean
values. Both methods perform better than other methods on the Dice scores and surface distances.
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Figure 5: Box plot results for the LPBA40 normal dataset. All seven methods work well on this dataset. Our PCA model has the best
Dice and surface distances. ROBEX, BEaST, MASS, BET and BSE show similar performance, but BET exhibits larger variance and BSE
exhibits two outliers indicating failure. The CNN model shows overall slightly worse performance than the other methods.
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seven methods perform well. ROBEX, BEaST, BET and
BSE all have a median Dice score between 0.96 and 0.97.
MASS has a median Dice score slightly above 0.97. Our
PCA model obtains the highest median Dice score (0.974).
All methods except for the CNN approach have a median
average surface distance smaller than 1 mm. Table [2] (sec-
ond top) shows the medians, means and standard devia-
tions for all validation measures for this dataset. Again,
all methods have satisfactory median, mean Dice scores
and surface distances with low variances. Compared with
other methods, the PCA model achieves the best results.

Table (second top) shows the one-sided paired
Wilcoxon signed-rank test results. Again we use the
Benjamini-Hochberg procedure, resulting in a significance
level a =~ 0.0351. All methods perform well on this
dataset, but our PCA approach still shows statistically sig-
nificant improvement. We outperform other methods on
Dice and all surface distances with statistical significance
except for BEaST on maximum surface distance and for
MASS on 95% surface distance. We perform better than
all other methods except BET on sensitivity and better
than BET and ROBEX on specificity.

Fig. [0] (left) visualizes the average brain mask errors for
IBSR and LPBA40. All images are first affinely regis-
tered to the atlas. Then we transform the gold-standard
expert segmentations as well as the automatically ob-
tained brain masks of the different methods to atlas space.
We compare the segmentations by counting the average
over- and under-segmentation errors over all cases at each
voxel. This results in a visualization for areas of likely
mis-segmentation. Our PCA model, ROBEX, BEaST
(BEaST*) and BET perform well on these two datasets.
Compareed to our model, ROBEX, BEaST (BEaST*) and
BET show larger localized errors, e.g., at the boundary of
the parietal lobe, the occipital lobe and the cerebellum.
While MASS, BSE and CNN perform well on the LPBA40
dataset, they perform poorly on the IBSR dataset. This
is in particular the case for the CNN approach.

3.4. Datasets with strong pathologies: BRATS/TBI

BRATS results: Fig. [(] shows the box-plots for the
validation measures for the BRATS dataset. BSE and
CNN, using their default settings, do not work well on
the BRATS dataset. This may be because of the data
quality of the BRATS data. Many of the BRATS images
have relatively low out-of-plane resolutions. BSE results
may be improved by a better parameter setting. How-
ever, as our goal is to evaluate all methods with the same
parameter setting across all datasets, we do not explore
dataset specific parameter tuning. BEaST also fails on
the original BRATS images due to the spatial normaliza-
tion. As for the IBSR dataset, we therefore use BEaST*,
our adaptation of BEaST using the affine transformation
of our PCA model. BET shows good performance, but
suffers from a few outliers. ROBEX and BEaST* work
generally well, with a median Dice score around 0.95 and
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an average distance error of 1.3 mm. MASS also works
well on most cases. However, as for IBSR and LPBAA40,
our PCA model performs generally the best with a median
Dice score 0.96 and a 1 mm average distance error. The
PCA model results also show lower variance, as shown in
table [2| (second bottom), underlining the very consistent
behavior of our approach.

Table [1|shows (via a one-sided paired Wilcoxon signed-
rank test with a correction for multiple comparisons us-
ing a false discovery rate of 0.05) that our model has sta-
tistically significantly better performance than ROBEX,
BEaST*, BET, BSE, CNN on most measures. The im-
provement over MASS, however, is not statistically signif-
icant.

TBI results: Fig. [7] shows the box-plots for the results
on our TBI dataset. Our PCA model still outperforms
all other methods. Our method achieves the largest Dice
scores, and the lowest surface distances among all methods
with best mean and lowest variance as shown in table
(bottom). Table [1| shows the one-sided paired Wilcoxon
signed-rank test results with multiple comparisons cor-
rection with a false discovery rate of 0.05. Our model
performs significantly better than ROBEX, BEaST, BET,
BSE and CNN on most measures. The improvement over
MASS is only statistically significant on Dice and 95% sur-
face distance.

Finally, Fig. |§| (right) shows the average segmenta-
tion errors on the BRATS and TBI datasets: our PCA
method shows fewer errors than most other methods in
these two abnormal datasets. MASS also shows few er-
rors, while ROBEX, BEaST (BEaST*) and BET exhibit
slightly larger errors at the boundary of the brain. CNN
and BSE particularly show large errors for the BRATS
dataset presumably again due to the coarse resolution of
the BRATS data.

In addition to extracting the brain from pathological
datasets, our method also allows for the estimation of a
corresponding quasi-normal image in atlas space, although
this is not the main goal of this paper. Fig[8|shows an ex-
ample of the reconstructed quasi-normal image (L) for an
image of the BRATS dataset, as well as an estimation of
the pathology (pathology image T and non-brain image .S).
Compared to the original image, the pathology shown in
the quasi-normal image has been greatly reduced. Hence
this image can be used for the registration with a normal
image or a normal atlas. This has been shown to improve
registration accuracy for the registration of pathological
images [27]. Furthermore, an estimate of the pathology
(here a tumor) is also obtained which may be useful for
further analysis. Note that in this example image the to-
tal variation term captures more than just the tumor. This
may be due to inconsistencies in the image appearance be-
tween the normal images (obtained from OASIS data) and
the test dataset. As our goal is atlas alignment rather than
quasi-normal image reconstruction or pathology segmen-
tation, such a decomposition is acceptable, although we



BRATS-Dice (%)

BRATS-95%Dist (mm)

BRATS-Sensitivity (%)

100 — : . . 20 — . . 100 — . h . . .
o]
95} _¢_ -'— —4’_ 15} 95} ‘% ‘*‘ 1
o o
° [e]
I [e]
°
90} ! 10} 20} 1
o] I o]
o o
85} 5f _# *» A%» ‘%‘ 85 o 1
80— . . . . ol— , , , . , , 80— . . . . ,
PCA RBX BST* MAS BET BSE CNN PCA RBX BST* MAS BET BSE CNN PCA RBX BST* MAS BET BSE CNN
BRATS-AvgDist (mm) BRATS-MaxDist (mm) BRATS-Specificity (%)
10 o : - 50 — : . . 100 — . : 4
o o ° ° _?_ _;P_
¢ —T ’ _._
8t a0t 98} 1
! (o]
o
6} 30} %} o ° 1
o
at 20t ot 1
° [e]
1
2t o # _*_ ° 10F 92} 1
\ \ , \ , , , ol— , , , , , , , \ . \ . \ \
PCA RBX BST* MAS BET BSE CNN PCA RBX BST* MAS BET BSE CNN PCA RBX BST* MAS BET BSE CNN

Figure 6: Box plot results for the BRATS tumor dataset. BSE and CNN fail on this dataset. BEaST also fails when applied directly to
the BRATS dataset due to spatial normalization failures. We therefore show results for BEaST* here, our modification which uses the affine
registration of the PCA model first. BET shows better performance, but also exhibits outliers. ROBEX, BEaST*, MASS, and our PCA
model work well on this dataset. Overall our model exhibits the best performance scores.
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Figure 7: Box plot results for the TBI dataset.
perform reasonably well. BSE and CNN exhibit

could improve this by tuning the parameters or applying

regularization steps as in [27].

3.5. Runtime and memory consumption

Decomposition is implemented on the GPU. Each de-
composition takes between 3 to 5 minutes. Currently, the

Our PCA model shows the best evaluation scores. BET, BEaST, MASS and ROBEX also

inferior performance on this dataset.

registration steps are the most time-consuming parts of

the overall algorithm. We use NiftyReg on the CPU for
registrations. Each affine registration step takes less than
3 minutes and the B-spline step takes 5 minutes. How-
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ever, in the current version of NiftyReg a B-spline reg-
istration can take up to 15 minutes when cost function



(a)
Figure 8: Example BRATS image with its decomposition result in
atlas space. (a) Input image after pre-processing; (b) quasi-normal
image L + M; (c) non-brain image S; (d) pathology image T

(b) () (d)

masking is used. Overall our brain extraction approach
takes around 1 hour to 1.5 hours for each case, including
the pre-processing step.

Storing the PCA basis requires the most memory. Each
197x232x189 3D image (stored as double) consumes
about 66MB of memory. Hence it requires less than 7
GB to store the 100 PCA basis images, in addition to
the atlases and masks. As our model only uses 50 PCA
bases, stored in B, and requires two variable copies during
runtime, our overall algorithm requires less than 7 GB of
memory and hence can easily be run on modern GPUs.

4. Discussion

We presented a PCA-based model specifically designed
for brain extraction from pathological images. The model
decomposes an image into three parts. Non-brain tissue
outside of the brain is captured by a sparse term, normal
brain tissue is reconstructed as a quasi-normal image close
to a normal PCA space, and brain pathologies are cap-
tured by a total-variation term. The quasi-normal image
allows for registration to an atlas space, which in turn al-
lows registering the original image to atlas space and hence
to perform brain extraction. Although our approach is de-
signed for reliable brain extraction from strongly patholog-
ical images, it also performs well for brain extraction from
normal images, or from images with subtle pathologies.

This is in contrast to most of the existing methods,
which assume normal images or only slight pathologies.
These algorithms are either not designed for pathological
data (BET, BSE, BEaST) or use normal data for train-
ing (e.g., ROBEX and CNN). Consequently, as we have
demonstrated, these methods may work suboptimally or
occasionally fail when presented with pathological data.
While our PCA model is built on OASIS data which con-
tains abnormal images (from patients with Alzheimer’s
disease), OASIS data does not exhibit strong pathologies
as, for example, seen in the BRATS and the TBI datasets.
However, as our algorithm is specifically modeling patholo-
gies on top of a statistical model of normal tissue appear-
ance, it can tolerate pathological data better and, in par-
ticular, does not require pathology-specific training.

In fact, one of the main advantages of our method is
that we can use a fized set of parameters (without addi-
tional tuning or dataset-specific brain templates) across
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a wide variety of datasets. This can, for example, be
beneficial for small-scale studies, where obtaining dataset-
specific templates may not be warranted, or for more clin-
ically oriented studies, where image appearance may be
less controlled. We validated our brain extraction method
using four different datasets (two of them with strong
pathologies: brain tumors and traumatic brain injuries).
On all four datasets our approach either performs best
or is among the best methods. Hence, our approach can
achieve good brain extraction results on a variety of dif-
ferent datasets.

There are a number of ways in which our method could
be improved. For example, our decomposition approach is
a compromise between model realism and model simplicity
to allow for efficient computational solutions. However, it
may be interesting to explore more realistic modeling as-
sumptions to improve its quality. While the total varia-
tion term succeeds at capturing the vast majority of large
tumor masses and would likely work well for capturing
volumes of resected tissue, the texture of pathological re-
gions will not be appropriately captured and will remain in
the quasi-normal image. To obtain a more faithful quasi-
normal image reconstruction would require more sophisti-
cated modeling of the pathology. A possible option could
be to train a form of auto-encoder (i.e., a non-linear gener-
alization of PCA) to remove the pathology as in our prior
work [37]. A natural approach could also be to perform
this in the setting of a general adversarial network [52]
(GAN) to truly produce normal-looking quasi-normal im-
ages. As tumor images, for example, frequently exhibit
mass effects, training and formulating such a model could
be highly interesting as one could attempt to model the
expected mass effect as part of the GAN architecture.

The way we integrate our PCA model into the decom-
position could also be improved. Specifically, for compu-
tational simplicity we only use the eigenspace created by
a chosen number of PCA modes, but we do not use the
strength of these eigenmodes. This is a simple, yet rea-
sonable strategy, to form a low-dimensional subspace cap-
turing normal tissue appearance as long as a pathology
remains reasonably orthogonal to this subspace and hence
would get assigned to the total variation part of the de-
composition.

We effectively constructed a form of robust PCA decom-
position, which prefers outliers that jointly form regions
of low total variation. Instead of modeling the decomposi-
tion in this way, it could be interesting to explore an LRS
model which uses a partially-precomputed L matrix and
gets adapted for a given single image. Such a strategy may
allow more efficient computations of the LRS decomposi-
tion, but would require keeping the entire training dataset
in memory (instead of only a basis of reduced dimension).
Such an approach could likely also be extended to a form
of low-rank-total variation decomposition if desired.

Regarding our PCA decomposition, it would be natu-
ral to use a reconstruction that makes use of a form of
Mahalanobis distance [53]. This would then emphasize



the eigendirections that explain most of the variance in
the training data. Note, however, that our model is rela-
tively insensitive to the number of chosen PCA modes. In
fact, while different numbers of chosen PCA modes may
affect how well the quasi-normal image is reconstructed,
the number of PCA modes has only slight effects on the
brain extraction results.

Tumors or general pathologies may also affect some of
the pre-processing steps. For example, we perform his-
togram matching over the entire initial brain mask which
includes the pathology. In practice, we visually assessed
that such a histogram matching strategy produced reason-
able intensity normalizations. However, this step could be
improved, for example, by coupling it or alternating it with
the decomposition in such a way that regions that likely
correspond to pathologies are excluded from the histogram
computations for histogram matching.

While our model’s simplicity allowed it to work well
across a wide variety of datasets, this generality likely im-
plies suboptimality. For example, a likely reason why the
CNN approach performs poorly on some of the datasets
is because these datasets do not correspond well to the
data the CNN was trained on. Dataset-specific fine-tuning
of the model would likely help improve the CNN perfor-
mance. Similarly, approaches, including our own, relying
on some form of registration and a model of what a well-
extracted brain looks like would likely also benefit from a
dataset-specific atlas (including a dataset-specific PCA ba-
sis in our case) or dataset-specific registration templates.
Such dataset-specific templates can, for example, easily be
used within MASS and improve performance slightly. Sim-
ilarly, we observed that the performance for BEaST can be
improved if we use dataset-specific libraries. In practice,
large-scale studies may warrant the additional effort of ob-
taining dataset-specific manually segmented brain masks
for training. However, in many cases such manual segmen-
tation may be too labor-intensive. In this latter case our
proposed approach is particularly attractive as it is only
moderately affected by differing image appearances and
works well with a generic model for brain extraction.

Runtime of the algorithm is currently still in the order
of an hour. It could be substantially reduced by using a
faster registration method. For example, it may be pos-
sible to use one of the recently proposed deep learning
approaches for fast registration [54] [55]. Furthermore, to
speed-up the decompositions one could explore numerical
algorithms with faster convergence or reformulations of the
decomposition itself, as discussed above.

Exploring formulations for different image sequences or
modalities (or combination of modalities) would be inter-
esting future work as well. It would also be interesting to
explore if the generated quasi-normal image and the iden-
tified pathology could be used to help assess longitudinal
image changes, for example for comparing the chronic and
the acute phases of TBI.

Our software is freely available as open source code at
https://github.com/uncbiag/pstrip.
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Appendix A. NiftyReg settings

This section introduces the settings for NiftyReg used
in this paper. We mainly use the affine registration
reg_aladin and the B-spline registration reg_£3d.

Affine Registration:. For affine registration, we use
reg-aladin in NiftyReg. The options for affine regis-
tration are -ref, -flo, -aff, -res, which stand for
reference image, floating image, affine transform output,
warped result image, respectively. If the symmetric ver-
sion is disabled, we add ”-noSym”. If center of gravity is
used for the initial transformation, we add ”-cog”.

B-spline Registration:. For B-spline registration, we use
reg_£3d in NiftyReg. In addition to the options as shown
in affine (except for reg_£3d we use —cpp for output trans-
form), we also use options -sx 10, --lncc 40, -pad O,
which include local normalized cross-correlation with stan-
dard deviation of the Gaussian kernel of 40, grid spacing
of 10 mm along all axes, and padding 0.

Appendix B. Methods settings

This section introduces the settings that are used for all
methods.

PCA. We use A = 0.1 for the sparse penalty and v = 0.5
for the total variation penalty.

ROBEX/CNN. ROBEX and CNN do not require param-
eter tuning. Therefore, we use the default settings, and
for ROBEX we add a seed value of 1 for all datasets.

BET. We use the parameter settings suggested in the lit-
erature [§][II] for the IBSR and LPBA40 datasets. For
the BRATS and TBI datasets, we choose the option "-B"
for BET, which corrects the bias field and “cleans-up” the
neck.

BSE. We use the parameter settings suggested in the lit-
erature [§][I1] for the IBSR and LPBA40 datasets. For
the BRATS and TBI datasets, we use the default settings.


https://github.com/uncbiag/pstrip

BEaST. We use the ICBM and ADNI BEaST libraries to
run all our experiments. We first normalize the images
to the icbm152 model _09c template in the BEaST folder.
Then, we run BEaST with options "-fill", "-median"

and with configuration file "default.lmm.conf".

The

spatial normalization step does not work reliably on the

original IBSR and BRATS data.

Thus, for these two

datasets, we first apply the same affine transform as in
our PCA pre-processing and then perform BEaST on the
affine aligned images.

MASS. We use the default parameters for MASS and use
the 15 anonymized templates, provided with the MASS
software package.
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Dataset: IBSR

ROBEX | BEaST* | MASS BET BSE CNN

Dice 4.78e-5 1.20e-2 | 2.77e-4 | 4.78e-5 | 7.55e-b | 4.78e-5
Avg Dist 4.78e-5 2.73e-2 | 1.82e-4 | 4.78e-5 | 4.78e-5 | 4.78e-5
95% Dist | 4.74e-5 5.91e-2 | 1.05e-4 | 4.71e-5 | 4.74e-5 | 4.78e-5
Max Dist | 4.78e-5 5.36e-2 | 4.78e-5 | 4.78e-5 | 1.58e-4 | 5.58¢e-5
Sensitivity 0.994 0.448 3.40e-3 | 0.829 | 4.78e-5 | 4.78e-5
Specificity | 5.58e-5 2.97e-2 | 2.41e-3 | 4.78e-5 | 0.894 1.000

Dataset: LPBA40

ROBEX | BEaST | MASS BET BSE CNN

Dice 1.47e-7 2.51e-8 | 1.89e-3 | 9.58e-5 | 2.24e-7 | 1.85e-8
Avg Dist 1.36e-7 2.51e-8 | 2.75e-3 | 1.60e-6 | 6.31e-7 | 1.85e-8
95% Dist 2.90e-8 3.29e-7 | 5.69e-2 | 2.71e-8 | 1.02e-5 | 1.85e-8
Max Dist 2.16e-8 1.000 2.58e-2 | 2.92e-8 | 3.0le-5 | 2.51e-8
Sensitivity | 4.13e-3 1.27e-7 | 1.60e-6 | 1.000 | 6.14e-8 | 1.85e-8
Specificity | 5.70e-6 0.998 1.000 | 2.00e-8 | 1.000 1.000

Dataset: BRATS

ROBEX | BEaST* | MASS BET BSE CNN

Dice 1.58e-4 3.18e-4 | 7.02e-2 | 4.78e-5 | 4.78e-5 | 4.78e-5
Avg Dist 1.36e-4 2.77e-4 | 9.89e-2 | 4.78e-5 | 4.78e-5 | 4.78e-5
95% Dist 8.41e-5 4.17e-4 0.266 | 1.53e-3 | 4.78e-5 | 7.15e-5
Max Dist 1.91e-2 7.38e-4 0.222 | 2.41e-4 | 1.18e-4 | 4.78e-5
Sensitivity | 3.5le-2 0.981 2.09e-4 | 8.08e-2 | 5.58e-5 | 4.78e-5
Specificity | 6.53e-2 1.82¢-4 0.999 | 4.73e-3 | 0.999 1.000

Dataset: TBI

ROBEX | BEaST | MASS BET BSE CNN

Dice 3.91e-3 1.95e-2 | 2.73e-2 | 7.81e-3 | 3.91e-3 | 3.91e-3
Avg Dist 3.91e-3 1.95e-2 | 3.91e-2 | 7.81e-3 | 3.91e-3 | 3.91e-3
95% Dist 3.91e-3 7.81e-3 | 7.81e-3 | 3.91e-3 | 3.91e-3 | 3.91e-3
Max Dist 1.17e-2 9.77e-2 0.344 | 5.47e-2 | 3.91e-3 | 3.91e-3
Sensitivity 0.980 3.91e-3 0.961 | 3.91e-3 | 3.91e-3 | 3.91e-3
Specificity | 3.91e-3 1.000 2.73e-2 | 1.000 0.926 1.000

Table 1: p-values for all datasets, computed by the signed-rank test. We perform a one-tailed paired Wilcoxon signed-rank test, where the
null-hypothesis (Ho) is that the paired differences for the results of our PCA model and of the compared method come from a distribution
with zero median, against the alternative (#1) that the paired differences have a non-zero median (greater than zero for Dice, sensitivity and
specificity, and less than zero for surface distances). In addition, we use the Benjamini-Hochberg procedure to reduce the false discovery rate
(FDR). We highlight, in , the results where our PCA model performs statistically significantly better. The results show that our PCA
model outperforms other methods on most of the measures.
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Dataset: IBSR
PCA ROBEX BEaST* MASS BET BSE CNN
97.07 95.09 96.94 92.23 95.66 95.68 84.50
Dice(%) 96.9940.53 | 94.984+1.17 95.0747.50 86.76+11.06 95.16+0.96 89.54421.76 | 81.10+£12.07
0.71 1.52 0.74 2.50 1.31 1.18 4.62
Avg Dist(mm) 0.7940.27 1.5140.56 1.4842.76 4.84+44.54 1.4940.47 4.16£10.53 5.59+3.10
2.83 4.18 3.00 8.73 3.61 5.00 20.05
95% Dist(mm) 2.84+0.43 4.501+1.58 5.1949.79 13.66+11.81 4.22+1.39 12.274+20.83 22.254+9.41
9.30 15.55 11.74 24.20 15.68 16.57 39.10
Max Dist(mm) 11.974+8.14 17.3048.40 15.60413.41 25.76+£12.94 17.914+7.85 24.93+23.32 41.10+8.14
99.06 99.47 98.98 98.77 99.57 97.08 74.87
Sensitivity (%) 98.9940.46 | 99.334+0.54 | 96.704+10.12 98.5240.77 99.0940.93 88.684+22.86 | 70.96+15.89
99.48 98.89 99.48 97.88 99.12 99.58 99.85
Specificity (%) 99.4440.21 | 98.9040.51 99.3240.37 96.11£3.81 98.98+0.46 99.154+1.67 99.80+0.19
Dataset: LPBA40
PCA ROBEX BEaST MASS BET BSE CNN
97.41 96.74 96.80 97.08 96.92 96.77 95.80
Dice(%) 97.324+0.42 | 96.7440.24 | 94.254+15.29 97.03£0.57 96.70£0.78 96.294+2.26 95.70£0.74
0.76 0.97 0.97 0.85 0.97 0.92 1.34
Avg Dist(mm) 0.79+£0.12 0.97+0.07 3.36+14.83 0.88+0.21 1.0640.27 1.11+0.81 1.3940.37
2.28 2.98 2.86 2.36 3.46 2.62 3.11
95% Dist(mm) 2.2740.32 2.97+0.26 6.45+23.19 2.504+0.97 3.92+1.24 3.46+3.38 3.56+1.56
9.73 12.89 8.80 10.71 14.44 13.61 16.91
Max Dist(mm) | 10.83+3.76 | 13.81+3.47 | 12.89+24.44 11.534+4.04 15.1443.75 15.5447.74 19.5548.17
97.10 96.15 94.76 95.05 98.70 94.85 92.79
Sensitivity (%) 96.81+1.23 96.33+£0.85 92.70+£15.12 95.15+1.08 98.66+0.54 94.02+4.10 92.62+1.46
99.62 99.54 99.80 99.86 99.09 99.81 99.85
Specificity (%) 99.614+0.16 | 99.49+0.16 99.704+0.21 99.83£0.12 99.04+0.34 99.7940.09 99.83£0.07
Dataset: BRATS
PCA ROBEX BEaST* MASS BET BSE CNN
96.34 95.15 94.99 96.20 94.40 84.21 1.75
Dice(%) 96.164+0.92 | 94.834+1.49 93.2947.00 95.71£1.39 90.95+13.41 84.9148.89 21.89429.54
0.97 1.31 1.38 1.03 1.68 4.65 55.88
Avg Dist(mm) 1.00£0.31 1.54+0.70 2.284+3.34 1.1740.56 7.584+25.30 4.37+3.61 44.87429.05
4.15 5.23 5.01 4.62 5.87 13.52 78.45
95% Dist(mm) 4.354+1.27 6.03+£2.50 7.71+£9.29 4.87+2.04 6.18+3.53 13.924+13.00 73.854+38.77
12.03 12.83 15.03 13.29 17.49 33.95 87.73
Max Dist(mm) | 15.264+9.32 | 16.424+8.80 | 20.32+14.57 16.43+8.97 22.784+22.61 | 32.02+22.38 | 86.60+36.92
96.16 95.82 97.45 94.46 94.92 74.28 0.89
Sensitivity (%) 96.174+1.84 | 94.95+2.88 97.06+2.66 93.62+2.87 94.77+3.82 77.80+13.43 | 16.17+£24.73
99.33 99.16 98.68 99.73 98.90 99.82 100.00
Specificity (%) 99.2940.25 | 98.984+0.65 97.2845.46 99.62+0.28 93.69+22.08 99.2942.38 99.97+0.05
Dataset: TBI
PCA ROBEX BEaST MASS BET BSE CNN
96.40 93.71 95.04 95.11 95.40 92.64 91.51
Dice(%) 96.28+0.85 93.60+£1.00 95.06+£0.96 95.42+0.96 95.14+1.12 91.00+4.31 90.40+5.07
1.20 2.12 1.60 1.61 1.50 2.23 3.20
Avg Dist(mm) 1.22+0.30 2.2040.40 1.62+0.33 1.534+0.33 1.5740.40 3.15+1.66 3.46+1.75
3.37 6.20 6.24 4.90 5.06 9.46 14.97
95% Dist(mm) 3.41+0.85 5.9940.97 5.86+1.44 4.59+0.77 5.57+1.91 13.07+7.11 16.04+8.72
16.13 18.25 15.09 15.65 17.46 27.16 41.49
Max Dist(mm) | 15.544+5.03 | 18.89+5.12 17.27+4.60 16.08+4.16 18.5344.59 31.96+12.71 | 37.06+£10.09
97.82 98.91 92.12 98.74 93.98 87.51 85.69
Sensitivity (%) 97.764+0.92 | 98.6440.93 92.89+2.44 98.68+0.66 93.65+1.87 85.654+8.17 83.77+8.58
99.03 98.09 99.63 98.64 99.41 99.82 99.80
Specificity (%) 99.07+0.26 97.75+£0.93 99.57+0.22 98.59+0.47 99.4440.11 99.54+0.86 99.81+0.07

Table 2: Medians (top), and means with standard deviations (bottom) for validation measures for all the methods and all the datasets. We
highlight the best results in based on the median values. Among all datasets, our PCA model has the best median on Dice overlap
scores and generally on surface distances. Exception is BEaST which achieves a lower maximum surface distances on the LPBA40 and the
TBI datasets. In addition, our model also has the best mean and variance for the Dice overlap scores and the surface distances on most of
these datasets.
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Figure 9: Examples of 3D volumes of average errors for the normal IBSR and LPBA40 datasets, as well as for the pathological BRATS
and TBI datasets. For IBSR/BRATS, we show results for BEaST*. Images and their brain masks are first affinely aligned to the atlas. At
each location we then calculate the proportion of segmentation errors among all the segmented cases of a dataset (both over- and under-
segmentation errors). Lower values are better (a value of 0 indicates perfect results over all images) and higher values indicate poorer
performance (a value of 1 indicates failure on all cases). Clearly, BSE and CNN struggle with the BRATS dataset whereas our PCA method
shows good performance across all datasets.
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