
Measuring Network Latency Variation Impacts to High
Performance Computing Application Performance

Robert Underwood
Clemson University

Clemson, South Carolina
robertu@clemson.edu

Jason Anderson
Clemson University

Clemson, South Carolina
jwa2@clemson.edu

Amy Apon
Clemson University

Clemson, South Carolina
aapon@clemson.edu

ABSTRACT

In this paper, we study the impacts of latency variation versus la-

tencymean on application runtime, library performance, and packet

delivery. Our contributions include the design and implementation

of a network latency injector that is suitable for most QLogic and

Mellanox InfiniBand cards. We fit statistical distributions of latency

mean and variation to varying levels of network contention for

a range of parallel application workloads. We use the statistical

distributions to characterize the latency variation impacts to appli-

cation degradation. The level of application degradation caused by

variation in network latency depends on application characteris-

tics, and can be significant. Observed degradation varies from no

degradation for applications without communicating processes to

3.5 times slower for communication-intensive parallel applications.

We support our results with statistical analysis of our experimental

observations. For communication-intensive high performance com-

puting applications, we show statistically significant evidence that

changes in performance are more highly correlated with changes of

variation in network latency than with changes of mean network

latency alone.

CCS CONCEPTS

• Networks → Network experimentation; Network perfor-

mance analysis;Networkmeasurement; •Hardware→ Test-

ing with distributed and parallel systems;

KEYWORDS

Network Latency Variation; Low Latency Networks; Parallel Appli-

cation Performance; Network Load Injector; Statistical Analysis

ACM Reference Format:

Robert Underwood, Jason Anderson, and Amy Apon. 2018. Measuring

Network Latency Variation Impacts to High Performance Computing Ap-

plication Performance. In ICPE ’18: ACM/SPEC International Conference on

Performance Engineering, April 9–13, 2018, Berlin, Germany. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3184407.3184427

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE ’18, April 9–13, 2018, Berlin, Germany

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5095-2/18/04. . . $15.00
https://doi.org/10.1145/3184407.3184427

1 INTRODUCTION

High performance computing (HPC) depends on the performance of

the underlying network. Indeed, there has been extensive research

on the development of low-latency, highly performing networks

for HPC [7, 8, 28], and research has demonstrated the considerable

effect of average network latency on the performance of HPC appli-

cations [14, 31]. Because compute nodes are increasingly capable,

with larger numbers and types of cores and memory, network re-

sources are under increased contention creating competition for

these resources and increasing the variation in network commu-

nication time. In this paper, we demonstrate that network latency

variation by itself can have a significant effect on HPC workload

runtime. That is, with equal mean latency, a higher variation in the

network latency can result in significantly lower HPC application

performance.

This paper focuses on the effects of network latency variation

on HPC performance degradation. We present the design and im-

plementation of a network latency injector that is suitable for most

QLogic and Mellanox InfiniBand cards. We execute sets of exper-

iments at the packet, library, and application levels to measure

and model the latency distributions. We then synthetically pro-

duce latency using our developed latency injector in a controlled

experimental environment and measure these effects.

Our developed tool and approach confirm prior research that

has focused on the packet and library level. At the packet level,

increasing of mean network latency affects performance, but point-

to-point communication is less affected by the variation in network

latency. At the library level, latency variation affects the runtime

of collective operations, particular those that involve most or all

nodes in the computation [12, 13].

We present new results at the application level. First, we charac-

terize the negative impact that latency variation has to the perfor-

mance of classes of communication-intensive applications. The de-

crease in performance ranges up to 3.5 times slower for LU Decom-

position [3], for example. Next, we show that for communication-

intensive HPC applications, changes in performance are more

highly correlated with changes of variation in network latency

than with changes of mean network latency alone. These results

have implications for the design of HPC applications that must ex-

ecute in a highly shared environment, say, using commercial cloud

resources or in a multi-tenant environment, and suggest that im-

plementation of mechanisms to control network variation latency

may lead to better overall application and system performance

than efforts to reduce average network latency alone. Our main

contributions are:

• the design and implementation of a configurable latency

injector for many Mellanox and QLogic InfiniBand cards,

ICPE ’18, April 9–13, 2018, Berlin, Germany R. Underwood et al.

• characterizing the distributions of network latency for an

InfiniBand network in an HPC environment,

• an experimental methodology using synthetically generated

latency to demonstrate the effects of latency variation on

HPC workloads, and

• statistically significant evidence that latency variation is

more highly correlated with HPC application performance

than latency mean alone.

The remainder of this paper is organized as follows. We present

background information on network latency sources and low-latency

networking in Section 2. We describe our design choices and imple-

mentation tradeoffs of the latency injector in Section 3. We provide

our overall experimental methodology in Section 4, and describe

our workload characterization in Section 5. We show how latency

variation apart from congestion can cause performance degrada-

tion in Section 6. We demonstrate that latency variation can be

more highly correlated with application degradation than latency

mean in Section 7. We present an overview of other works studying

latency variation in Section 8. Finally, we provide conclusions and

future work in Section 9.

2 BACKGROUND

Prior research has shown that congestion-induced latency variation

can have significant effects on application performance [5]. This

is straightforward to observe; for example, in the MPI_Barrier

routine, no process can continue until all of the processes entering

the barrier have completed the synchronization step. Thus, the time

to complete the barrier call is determined by the process that takes

the longest time to enter and complete the barrier [13]. In networks

with high latency variation, the time to synchronize to a barrier

can be considerable [9].

2.1 Sources of Latency Variation

The causes of latency variation in an HPC environment can include

single node hardware and software, operating system policies, and

resource contention. Features of a single compute node that can

be a source of variation of the network latency include differences

in cores and changes in the assignment of tasks to cores during

execution that affect CPU rate or cache locality [25], and proximity

of the network interface card to cores [29].

Operating system resource management policies can affect per-

formance. An example is task scheduling that switches an actively

communicating task, in which case the context switch can take

an order of magnitude more time than sending a message using

user-level networking [32]. The problem is exacerbated in virtual

machine-based multi-tenant environments because the entire vir-

tual machine may be switched [22]. Other factors include con-

tention for system resources such as operating system locks, li-

brary/interprocess locks, device access locks, bus access, and net-

work interface buffers [20].

Variation in the hardware can be a source of variation in net-

work latency, such as when a CPU disables some cores in order to

conserve power when not in use [21]. Factors that affect compute

nodes can also affect intermediate nodes or network devices such

as routers and switches in which buffers used during the routing of

packets can be a source of contention [18]. Network stalls, where a

packet is dropped due to a busy receiver or full buffer, have been evi-

dentially identified as an important predictor in parallel application

performance [6].

2.2 Low-latency Networking

Efforts to reduce the mean latency in HPC networks have resulted

in a lengthy history of research and developed products such as

Myrinet and InfiniBand. In this section, we provide background on

InfiniBand and describe features that reduce both the mean and

variation of network latency.

InfiniBand is the dominant low-latency network fabric for HPC.

There are several factors that make it well suited for low latency

networking. First, InfiniBand utilizes a zero-copy protocol. Tradi-

tional network stacks such as Ethernet are implemented such that

multiple copies of each packet are made into and out of interme-

diate buffers. For example, to send the contents of a buffer from a

user-space application, it is first copied to a kernel buffer, then to a

network interface buffer, transmitted across the network, copied

into a kernel buffer on the destination machine, then copied from

the kernel buffer to a user-space buffer on the destination machine.

With zero-copy protocols, the application allocates memory on

the source and destination network interfaces. It then writes the

information directly to the network interface, transmits it across

the network, then reads it directly from the network interface card.

Since there are fewer copies and buffers involved, the messages

can be transmitted more quickly and with less variation that a

traditional network can provide.

Performance is improved by the kernel bypass feature of Infini-

Band. In an Ethernet stack, the operating system kernel maintains

locks and controls for the network interface. This requires a trap

into the kernel whenever a packet is to be sent. This trap introduces

overhead and provides the kernel an opportunity to call schedule()

or otherwise change contexts. These context switches can be ex-

pensive since registers and other process state must be saved prior

to the trap. In comparison, InfiniBand allows the user to control the

transmission in user-space using a special driver design that moves

all privileged (kernel-mode) operations to the setup and tear down

phases of the card for the process. This allows the user to write to

a memory-mapped register on the card to send a packet. This is

often accomplished by a thin-wrapper library called libibverbs

which delegates to a device specific driver library using a macro

to ensure in-lining of the functions. These optimizations allow for

more efficient transmission of packets because variable length traps

are not required.

Finally, InfiniBand performs network-offloading. Once the user

writes to the register that posts a particular message, the network

interface takes ownership of the task to send the message, and the

CPU can continue to process other instructions. This allows for

the computer to enqueue messages quickly and consistently rather

than waiting for the variable length messages to be sent.

While InfiniBand and similar low-latency networking technolo-

gies remove sources of latency variation that can be attributed to

the OS kernel, contention for the network device by competing

processes introduces nondeterministic access delays that can result

in long-tailed latency distributions in packet delivery.

Measuring Network Latency Variation Impacts to High Performance Computing Application. . .ICPE ’18, April 9–13, 2018, Berlin, Germany

3 DESIGN AND IMPLEMENTATION OF THE

LATENCY INJECTOR

A key contribution of this paper is the design and implementation

of the latency injector that we use in our experiments. This injector

allows us to introduce delay to outgoing packets so that we can

observe the effects on higher level applications. Most importantly,

the delay added to each packet is sampled from a random variable,

the parameters of which can model patterns observed in a real

system.

We implemented the latency injector for InfiniBand cards that

use the ipath and mlx4 drivers. However, the design is reason-

ably portable to any libibverbs compatible driver. The injector is

programmed with four design goals. The injector should:

• avoid unnecessary performance impact to applications,

• support custom latency distributions,

• allow changing distribution parameters without recompiling

the library, and

• not require changes to or recompilation of applications.

3.1 Injection Method

The injector consists of hooks on twomethods, init and post_send.

The names for these methods vary in InfiniBand implementations,

but are responsible for initializing the user-space driver and posting

a packet to the dispatch queue, respectively.

Hooking init. There are three key facets of the hooking init

method, shown in Algorithm 1. First, we only load the distribution

file into static memory at library initialization to avoid the overhead

of kernel operations in later calls. This also allows us to easily

customize the latency distribution for each experiment without

recompilation. Secondly, we also load a seed file. This allows us to

obtain consistent random results between runs of the experiments.

Third, we disable the library if we fail to load the distribution or

the seed file. This allows for easily alternating between injected

and non-injected experiments.

Algorithm 1 init

enabled ← exists(dist_f ile)&&exists(seed_f ile)
if enabled then

dist_table ← load_table(dist_f ile)
seed ← load_seed(seed_f ile)

else

warn_user ()
end if

The distribution file contains 512 lines of eight space-separated

integers. The entries in this file correspond to amounts of delay in

units to add to each request. This design is consistent with the tc

component of the netem command which provides similar behav-

ior for Ethernet networks. The seed file contains a single integer

corresponding to the random seed to be loaded.

Hooking post_send. Despite the name of the method, post_send

does not occur after a send occurs, but rather before. It is called

to add an RDMA instruction to the queue of instructions to be

processed.

Algorithm 2 post_send

if enabled then

index ← random_index()
delay ← dist_table[index]
i ← 0

while i < delay do

i ← i + 1

end while

end if

There are several key facets to the post_send function, shown

in Algorithm 2. First, we do not simply use sleep() or pselect()

+ SIGALRM to implement a micro-second sleep. This is due to the

implementation in the Linux kernel of sleep and select. Both of

these calls trigger a trap into the kernel, defeating the purpose of

user-space InfiniBand networking. Additionally, even if the trap

overhead is insignificant, the kernel calls schedule() during both

of these calls. These operations result in unpredictable sleep times

when events are measured in the microsecond range of InfiniBand

latency. Instead, we implement a busy wait, incrementing a static

volatile variable to ensure that operations to the index are never

optimized. This results in a user-space sleep operation over which

we have reasonably precise control.

Secondly, instead of using a kernel-based source of randomness

we utilize a constant time linear congruential pseudo-random gen-

erator. This is to avoid a trap into the kernel for entropy, but also

to ensure a consistent length operation. Linear congruential gen-

erators also have the nice property of requiring little state, thus

leaving the cache clean for other variables.

We then use the lower 12 bits to index into the distribution table,

letting us avoid an expensive division operation. This also allows us

to customize the distribution of latency without having to compute

values from this distribution at runtime.

We generate distribution files off-line using a Python application

and SciPy distributions [17]. This gives access to a variety of high

quality distribution sampling routines for various distributions.

We choose to add the latency to the top of the post_sendmethod

for two reasons. First, the lock for interacting with the RDMA

memory is not grabbed until later in the function. This allows

for multiple threads to use RDMA without waiting on a locked

thread that is busy waiting. Secondly, this happens after our timing

instrumentation occurs so that the time spent in the busy wait is

included in the measurements of the InfiniBand verb latency.

3.2 Validation

To verify that the latency injector works as intended, we collected

measurements of synthetic background load as described in Sec-

tion 4, fitted both uniform and log-normal distributions to each

collected dataset, generated distribution tables according to the

fit parameters, and then performed the same measurement while

substituting injected latency for background load. The mean in-

jected latency closely emulates the measured characteristics of each

background load pattern.

ICPE ’18, April 9–13, 2018, Berlin, Germany R. Underwood et al.

3.3 Applicability to Other Networks and

Hardware

One possible alternative design is to instrument libibverbs. All

InfiniBand implementations use the libibverbs abstraction to

have a common interface to the user-space drivers. However, the

post_send method is implemented as a macro, which means that

applications would need to be recompiled in order to be able to use

our version of the library. Since many InfiniBand applications have

closed source components, we did not choose this option.

One other possible design is to simply use a longer cable to

create higher latency. We did not choose this alternative for the

obvious inconvenience of requiring more than 40 different cables

for our experimental suite. In addition, the various required lengths

of cable required are not available as commercial–off–the–shelf

products, and cables do not allow us to artificially inject latency

variation that is needed for our final suite of experiments.

One question that arises is how much effort is required to port

these changes to other InfiniBand libraries. We ported our library

to Mellanox cards that use the mlx4 driver. This case required

finding the names of the init and post_send methods, adding the

instrumentation code to the library, and recompiling.

4 ENVIRONMENT AND METHODOLOGY

In this section we describe the methodology used to create a con-

trolled test environment for later experiments. Measurements of

low-latency networks are fine-grained and sensitive to perturba-

tions by other systems. Our goal is to minimize or eliminate noise

in our testbed and to collect high quality measurements to ensure

that relationships between independent and dependent variables

are correctly characterized.

4.1 Experimentation Environment

4.1.1 Hardware Configuration. We ran our experiments onCloud-

lab c8220 nodes [30], which were equipped as outlined in Table 1.

This particular hardware was chosen to provide enough cores to

support our MPI experiment configurations with one core per pro-

cess, and adequate memory per process for each benchmark. To

allow addition of an artificial latency generator in the network de-

vice driver, we chose hardware with QLogic InfiniBand cards that

have an open source user-space driver.

We additionally validated our experiments on Cloudlab c6320

nodes. These nodes share the characteristics we identify as ideal for

our experiments, and are equipped as outlined in Table 2. Results

were similar and produced identical conclusions between the two

hardware types, so the c6320 results have been omitted for brevity.

Cloudlab provides a means of specifying a desired network topol-

ogy that it constructs using software defined networking (SDN).

However, at the time of writing the Cloudlab InfiniBand experi-

mental network is not managed by SDN. We accounted for any

variation in the InfiniBand network by ensuring that all nodes were

connected to the same InfiniBand switch. The Cloudlab control

network, using 1Gb/s Ethernet, uses top-of-rack switches that may

introduce artifacts in non-Infiniband communication in certain con-

ditions, such as nodes being in different racks. We accounted for

this variation by testing the latency between all nodes. If a node

was found to have statistically higher latency than its neighbors

Table 1: Cloudlab c8220 Nodes

Hardware Description

CPU Two Intel E5-2660 v2 10-core CPUs at 2.20 GHz (Ivy

Bridge)

RAM 256GB ECC Memory (16x 16 GB DDR4 1600MT/s dual

rank RDIMMs

Disk Two 1 TB 7.2K RPM 3G SATA HDDs

NIC Dual-port Intel 10Gbe NIC (PCIe v3.0, 8 lanes)

NIC QLogic QLE 7340 40 Gb/s InfiniBand HCA (PCIe v3.0,

8 lanes)

Table 2: Cloudlab c6320 Nodes

Hardware Description

CPU Two Intel E5-2683 v3 14-core CPUs at 2.00 GHz

(Haswell)

RAM 256GB ECC Memory

Disk Two 1 TB 7.2K RPM 3G SATA HDDs

NIC Dual-port Intel 10Gbe NIC (X520)

NIC QLogic QLE 7340 40 Gb/s InfiniBand HCA (PCIe v3.0,

8 lanes)

(to the level of α = 0.05), that node was removed from testing and

another was selected.

4.1.2 So�ware stack. Given the sensitive nature of latency mea-

surements below 10µs and awareness of the impact of OS noise on

parallel computer performance [27], the software configuration was

carefully tuned to minimize noise and eliminate extraneous vari-

ables. To avoid introducing traffic over the processor interconnect

in a dual-socket system, we designed our experiments to use the

cores of a single CPU package with the shortest electrical distance

to the network interface over the PCIe bus. We also required that

core "0" was not used for experiment processes, as the operating

system always assigns certain critical tasks to that core. As our

MPI experiments required 8 processes per node, the hardware was

required to have more than 8 physical cores per CPU package.

We ran the experiments on a patched Ubuntu 16.04. To pre-

vent OS scheduling of tasks on the same cores as our experiment

processes, we controlled the CPU affinity of tasks by isolating

physical cores 2-9 on CPU 0 of each node with the kernel flag

isolcpus=4-27, and then forcing MPI to distribute processes only

among those cores. This required a minor change to the Linux

kernel to prevent scheduling kernel tasks on the isolated cores, a

known issue that is detailed in [10].

Other OS configurations included disabling hyperthreading and

disabling CPU low power states to prevent clock speed throttling.

We achieved this using the kernel commandline options

processor.max_cstate=1 and intel_idle.max_cstate=0.

We compiled our experimental codes using gcc version 5.4.0.

When flags were not provided by the benchmark code, we used

the flags -O3 -march=native. When build flags were provided, we

used the provided flags.

Measuring Network Latency Variation Impacts to High Performance Computing Application. . .ICPE ’18, April 9–13, 2018, Berlin, Germany

We chose OpenMPI 1.10.2 from the Ubuntu repositories as our

MPI implementation because of its performance on InfiniBand in-

terconnects. At the application level we chose the NASA Advanced

Supercomputing (NAS) Parallel Benchmarks (NPB) version 3.3.1

[3].

We also modified the ipathverbs user-space driver version 1.3

to introduce a latency injector. More information on these modifi-

cations can be found in Section 3.

The entire environment was deployed and managed using Ansi-

ble [11]. The playbooks and helper scripts are available at [34].

4.2 Common Methodology

Packet level. We conducted experiments to measure the per-

formance of the network interfaces with a minimal amount of

overhead. We chose codes from the perftest package from the

Open Fabrics Enterprise Distribution (OFED) [2], which is well–

established for testing InfiniBand performance at the packet level.

In particular, we used ib_write_latwith Reliable Connection (RC)

transport protocol. This tool uses raw InfiniBand commands (called

verbs) to measure the time to send remote write commands with

delivery confirmation, and forms a low level pingpong test.

We did not consider other tests from OFED such as atomic or

send operations because they introduce additional operations above

and beyond that of ib_write_lat, and have higher latency and

latency variation because they require additional CPU assistance to

complete. Our preliminary experiments indicated use of a software

MTU of 2048 bytes as the most efficient configuration without

message fragmentation.

Library level. The purpose of these tests is to capture the per-

formance in a more realistic scenario where a well–established

abstraction such as MPI is used. We used two codes: ping-pong,

which times a sequence of MPI_Send and MPI_Recv calls between

two processes, and barrier, which tests the efficiency of collective

communications by calling MPI_Barrier on eight nodes. In each

of tests, the time to complete a single operation was considered the

runtime.

Application level. The NPB consist of a suite of codes designed

to test many features of a high performance computing cluster,

including its network, based on problems seen in computational

fluid dynamics. It consists of five benchmarks: Integer Sort (IS),

Embarrassingly Parallel (EP), Conjugate Gradiant (CG), MultiGrid

(MG), and 3D Fast Fourier Transform (FT). Of these benchmarks,

three of them have high communication volume: CG, MG, and

FT [3]. The NPB also include three pseudo applications: a block

tri-diagonal solver (BT), a scalar penta-diagonal solver (SP), and a

lower-upper Gauss-Seidel solver (LU). These tests stress the net-

work interconnect and provide a model of latency variation similar

to real-world network conditions.

Table 3: NAS Parallel Benchmarks Tests

Name size procs nodes Mpkts GB

Conjugate

Gradient

CG C 64 8 9.30 3.92

3D fast Fourier

Transform

FT C 64 8 22.34 9.76

Integer Sort IS C 64 8 2.77 1.22

Lower-Upper

Gause-Seidel

LU B 64 8 4.75 0.62

Multi-Grid MG C 64 8 1.47 0.55

To examine the effects of increased latency variation on real

applications, we executed the NAS Parallel Benchmarks across the

eight nodes in our cluster. We ran five of the eight included tests,

detailed in Table 3. NPB problem sizes were chosen to ensure a long

enough runtime for repeatable results, and the number of processors

was chosen to fit each test’s particular requirements while being

evenly divisible by our eight nodes. In Table 3, size corresponds

to the NPB problem size (e.g., A-F, where C is a “medium” size)

we configured for our cluster, procs corresponds to the number of

processes used at that size, nodes is the number of compute nodes

the processes were divided between, Mpackets corresponds to the

number of millions of packets sent across the network, and GB

corresponds to the number of gigabytes of traffic generated during

the experiment.

5 WORKLOAD CHARACTERIZATION

In this section we describe our methodology for simulating and

characterizing the effects of network resource contention (i.e., con-

gestion). Our goal is to measure the effect of network device con-

tention on latency at the packet level, so that we can create a latency

model for controlled emulation of congested network resources.

This model allows us to configure our latency injector to match

various levels of congestion without introducing other effects of

real congestion such as high CPU or memory usage.

5.1 Characterization Procedure

To simulate network congestion, we created an MPI-based network

load generator to send data between pairs of compute nodes, satu-

rating the one-way bandwidth between the network interfaces. We

then controlled the level of congestion by altering the proportion of

time that the sending node was transmitting. By having each node

run the application twice in both sending and receiving mode, we

were able to saturate a fraction of the node’s maximum transmis-

sion rate. For each measurement of congested performance, we ran

the load generator on all involved nodes, as illustrated in Figure 1.

The sending application, detailed in Algorithm 3, is based on the

"leaky bucket" rate control mechanism first described in [33]. To

simulate the transmission characteristics of applications competing

for network resources, we sampled the delays between messages

from an exponential distribution, which models the long-tailed and

highly variable inter-message gaps in large flow background traffic

observed in [1]. Samples were provided by a Mersenne Twister

ICPE ’18, April 9–13, 2018, Berlin, Germany R. Underwood et al.

Figure 1: Send/receive pairs of background load generating

processes on four compute nodes. Each pair saturates a con-

trollable fraction of the one-way bandwidth between two

compute nodes.

19937 pseudo-random number generator, which provides high qual-

ity entropy for its performance [23].

Algorithm 3 Congestion Simulator

clock_gettime(CLOCK_MONOTONIC, &last_time);

nsec_delay← 0;

while !stopping do

if nsec_bucket ≥ nsec_delay then

MPI_Send(. . .)

nsec_bucket -= nsec_delay;

nsec_delay = random_from_exponential();

end if

clock_gettime(CLOCK_MONOTONIC, &cur_time);

diff_time← cur_time - last_time;

last_time← cur_time;

nsec_bucket += diff_time

end while

A key feature to observe from Algorithm 3 is that we used the

POSIX interface clock_gettime to measure time. It has two impor-

tant characteristics: clock_gettime is the highest performing and

most precise clock available on most POSIX systems, and it does not

require a trap into the kernel to measure the time as gettimeofday

and other interfaces do. On the x86_64 hardware that we used, it is

implemented using a read of a timing register on the processor.

5.2 Characterization Results

Figures 2 and 3 illustrate the effects of background load on network

packet latency for our topology, expressed as a percentage of the

network interface’s bandwidth. As the simulated network load

increases from 0% to 100%, latency mean and variation increase as

the sending applications compete for the network device queues.

There are two conditions to notice about the characterization

results. First, for congestion above 80%, the latency mean and stan-

dard deviation become highly chaotic. For that reason we restrict

the remainder of the measurement studies to simulated congestions

below 80%. We leave studies of the higher region for future work.

Secondly, we observe that our results of increasing mean and stan-

dard deviation of latency are consistent with the existing work on

congestion. While the particular distribution collected is hardware

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Congestion Level

0

20

40

60

80

100

120

M
ea
n
R
o
u
n
d
tr
ip

T
im

e
µ
s

Figure 2: Mean round trip time in a congested environment.

As congestion increases, so does the mean latency.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Congestion Level

0

50

100

150

200

S
ta
n
d
a
rd

D
ev
ia
ti
o
n
R
o
u
n
d
tr
ip

T
im

e
µ
s

Figure 3: Round trip time standard deviation in a congested

environment. As congestion increases, so does the standard

deviation.

and software dependent, the general shape center, and spread are

consistent across hardware.

5.3 Modeling the Existing Distribution

To create synthetic latency that models the observations of work-

load congestion, we fit statistical distributions to the measured

latency at each workload level. For an example distribution with-

out background congestion, refer to Figure 4. We observe that the

distribution is skew-right. Preliminary curve fitting showed that

it is best modeled by a log–normal function, which is intuitive

because of the unique property of the log–normal distribution to

model a combination of many random variables. The dominant

mode is at approximately 6.1µs with a minor mode of 7.2µs . When

plotted against cumulative packet count, the higher latency values

are correlated with harmonics of the CPU and PCIe bus frequencies

occurring approximately every 45 to 50µs .

Measuring Network Latency Variation Impacts to High Performance Computing Application. . .ICPE ’18, April 9–13, 2018, Berlin, Germany

6 8 10 12 14 16 18 20

Latency, µs

10
0

10
1

10
2

10
3

10
4

F
re
q
u
en
cy

Figure 4: Distribution of latency of packets is tight, and

highly skew right in an environment with no background

congestion. Note the outlier observation above 20µs.

For each level of synthetic background load, we fit five distri-

butions to the observed network latency: a lognormal distribution

that closely fits the observations, a uniform distribution that fits

the mean of the observations (note that this is equivalent to a log-

normal distribution with zero variance), and three intermediate

lognormal distributions with altered shape and scale that retain the

observed mean. This set of distributions allow us to test the hypoth-

esis that an increase in latency variance is more highly correlated

with application runtime than latency mean.

The uniform distribution only has one parameter, mean, which

was computed directly from the observations. The lognormal dis-

tribution has three parameters: shape, scale, and location. We es-

timated the parameters by using SciPy’s lognormal.fit method

for the corresponding level of congestion [17]. For intermediate

distributions, we varied the scale parameter to values at 25%, 50%,

and 75% of the observed scale, and then used binary search to iden-

tify a shape parameter that resulted in a mean equivalent to the

observations.

Finally, we wrote a generator that uses the distributions from the

statistical functions included in SciPy 0.16.1 to generate the distri-

bution files for use with the latency injector. The distribution files

generated along with the distribution file generator are included

with the source code distribution [34].

6 EXPERIMENTAL SUITE 1: LATENCY

VARIATION, APART FROM CONGESTION,

CAUSES APPLICATION DEGRADATION

In this section, we use the results of our workload characteriza-

tion to show that even without congestion or contention, latency

variation is sufficient to cause application degradation. We accom-

plish this by simulating latencies along the distributions caused by

congestion and contention. By injecting the latencies, no network

resources are constrained during these tests.

We use the same tests that we utilized in workload characteriza-

tion, except that instead of running a background process to induce

Figure 5: Mean observed latency of InfiniBand packets with

injected delay. The distributions have equivalent means at

each level of simulated latency. This validates the choice of

distributions from the workload classification.

load, we use the latency injector. Ideally, we would just increase

the standard deviation of the distribution. However, by virtue of

increasing the standard deviation of a distribution with a strong

lower bound, we would also raise its mean. Therefore, we must also

consider a distribution where we just increase the mean but leave

the spread unperturbed.

We consider two distributions: 1) one where we increase only

the mean (Uniform), and 2) one where we increase the mean and

standard deviation (Lognorm). The means of these distributions

were chosen to correspond to the means of the distributions caused

by synthetic workload congestion.

Packet level. At the packet level, we have results that are as ex-

pected. In Figure 5 we observe that the two distributions have very

similar mean values. That is, mean latency of network packets is the

same mean (Uniform) as compared to when latency is injected to

increase the mean and variance (Lognorm). This validates the calcu-

lation of distributions from the measured congestion distributions

and also validates the functionality of the latency injector.

We also observe in Figure 6 some of the differences between

these distributions. Here we see that the median latency is signifi-

cantly higher for the uniform distribution at higher load levels than

the lognorm distribution. This suggests as we observe that there

are a few very large latencies that were measured in the lognorm

distribution that were not present in the uniform distribution. We

finally observe that there is little difference between the uniform

distribution mean and median.

When we examined the results from the packet and library levels,

we determined that their runtime distributions were not normally

distributed. We confirmed our suspicions using the Kolmogorov-

Smirnov test for Normality [26] (p=0.0, α = .05)1. With non–normal

distributions we cannot use parametric statistical methods for eval-

uation. Instead, we rely on the nonparametric Mann–Whitney U

1due to limited precision of the hardware the result rounds to 0

ICPE ’18, April 9–13, 2018, Berlin, Germany R. Underwood et al.

Figure 6: Median observed latency of InfiniBand packets

with injected delay. Observe that lognorm has a lower me-

dian at higher simulated latencies, but matched mean. This

indicates there are a small number of large latencies at

higher simulated latency levels.

Figure 7: Mean round trip time of MPI ping pong, similar to

the results from the packet level. Themean is slightly higher

than the packet level tests which represents overhead at the

library level.

test, in which the null hypothesis states that neither sample stochas-

tically dominates the other. Nonparametric tests do not require the

values to be sampled from a normal distribution.

Library level. At the MPI library level, we see a slightly more

interesting picture. First, we consider the results from the MPI

pingpong test. We observe in Figures 7 and 8 that the MPI results

have the same shape, centers, and spreads as the packet level results,

with a slightly higher latency. This is consistent with a small amount

of constant overhead introduced by the MPI framework.

Secondly, we consider the results from the MPI barrier test. As

opposed to the packet level test, we see in Figure 9 that the mean

latencies diverge at higher synthetic latencies (Note the higher

range on the y-axis). We also observe that the lognorm distribution

results in higher mean values of latency. This is to be expected as the

Figure 8: Median round trip time of MPI ping pong. Again,

the results at the packet level carry over to the library level.

The lower median time of lognorm compared to the mean

indicates higher variance.

Figure 9: Mean time to synchronize in an MPI barrier. Un-

like the packet level test, the means diverge. This is to be ex-

pected as synchronization time is determined by the slowest

member.

lognorm distribution produces a small number of extremely large

latencies. The mean, being sensitive to these extremes, is pulled to

the largest values. The median displays a shape and spread that is

similar to that of the pingpong test (Figure 10). This is consistent

with the robustness of the median to a few extreme values. The vast

majority of the latencies in the lognormal are shorter than the mean,

resulting in a smaller median latency than uniform distribution.

Application level. Unlike the packet and library level, the applica-

tion runtimes follow normal distributions. As such we are justified

in using traditional statistical parametric methods to evaluate these

results. We show only the results for the mean; there are no sub-

stantive differences between the mean and median for these results.

This can be explained in part by the central limit theorem [19]

which states that the sum of independent random variables tends

towards normality when the sample is suitably large. Secondly,

Measuring Network Latency Variation Impacts to High Performance Computing Application. . .ICPE ’18, April 9–13, 2018, Berlin, Germany

Figure 10: Median time to synchronize in an MPI barrier,

where the results are similar to ping pong with slightly

higher latency. This is consistent with the medians robust-

ness to extreme values.

Figure 11: NPB runtimes with a uniform distribution of

injected latency. The increased mean results in noticeably

higher runtimes in LU only.

unlike the previous levels, we are measuring total application run

time as opposed to a particular message delivery time. Both of

these factors drive the overall distribution towards normality and,

in effect, the mean towards the median.

There are some interesting results at this level. First, observe

in Figure 11 that the majority of the applications are relatively

unaffected by the increases in latency mean at higher synthetic

latencies. The principal exception is the LU solver code runtime

which roughly doubles at higher latency values. This can be ex-

plained by the communication–intensive nature of the LU solver.

Then, observe in Figure 12 that several of the applications in-

crease run times at higher levels of variation in synthetic latency.

The LU code roughly increases its runtime by a factor of 3.5. The

communication intensive CG, FT, andMG codes also show increases

in runtime that are not apparent in Figure 11. This suggests that

Figure 12: NPB runtimeswith a lognormal distribution of in-

jected latency. The increased spread results in significantly

greater runtime for LU, but also greater run times for the

communication intensive CG, FT, and MG.

the latency variation has a significant effect on the runtime of

applications beyond that of mean latency.

In Experimental Suite I we have demonstrated that increased

latency variation is sufficient to cause application degradation. We

have traced these effects from the packet level up to the application

level, and have shown that this phenomenon is reproducible even

without other effects of contention or congestion.

7 EXPERIMENTAL SUITE 2: LATENCY

VARIATION IS MORE HIGHLY

CORRELATED WITH APPLICATION

DEGRADATION THAN LATENCY MEAN

In this section we examine the claim that latency variation better

explains application degradation than latency mean.We analyze the

results from the previous section, focusing on the application layer

– NPB tests. For each test from the NPB, we plot its application

runtime against latency mean for the injected distribution. We

assess the strength of a linear relationship between runtime and

mean using Pearson’s Coefficient of Correlation [19]. Similarly, for

each test from the NPB, we plot its application runtime against

latency standard deviation for the injected distribution. Again, we

assess the strength of a linear relationship between runtime and

standard deviation using Pearson’s Coefficient of Correlation. We

carefully choose the underlying distributions to inject so as to hold

the mean constant for subset of experiments that correspond to a

given simulated congestion level. We vary the standard deviation

of the latency in each subset of experiments by adjusting the scale

parameter of the injected distribution.

Figure 13 shows the relationship between the mean latency and

application runtimes. We observe that a linear relationship is a

plausible model for explaining application runtimes with respect to

latency mean. Similarly, Figure 14 shows the relationship between

the latency standard deviation and application runtimes. Again, a

linear relationship is a plausible model for explaining application

ICPE ’18, April 9–13, 2018, Berlin, Germany R. Underwood et al.

Figure 13: Mean runtime of NPB tests vs. increased mean

latency. Random scatter above and below the line of best

fit indicates the suitability of a linear model. High and low

spreads about the line of best fit correspond to different stan-

dard deviations.

Figure 14: Mean runtime of NPB tests vs. increased latency

variation. Tight fitting about the line of best fit indicates the

strength of the model. Unlike the mean, variations above

and below the line are not correlated with different means.

runtimes with respect to latency standard deviation. We further

observe that of the five applications tested, the performance of the

LU Decomposition application suffers the most radical effects of

changes in latency. In the worst case in with a latency standard

deviation above 400µs , the application runs 3.5 times slower than

when the standard deviation near zero.

To access the strength of the relationship between latency mean

and latency standard deviation vs. runtime, we Pearson’s correlation

coefficient for each test. These results are summarized in Table 4.

A sample correlation coefficient (usually labeled r) above 0.7 is

evidence of a linear relation, and a correlation coefficient above

0.9 is evidence of a strong linear relationship [19]. As shown in

Table 4: Correlation Results Rounded to the Nearest.01

Test rmean rstd Significant?

FT 0.70 .89 p = 7.89 × 10−33
CG 0.73 .91 p = 4.94 × 10−39
IS 0.76 .93 p = 8.89 × 10−50
MG 0.73 .95 p = 1.31 × 10−93
LU 0.76 .97 p = 5.24 × 10−148

Table 4, the correlation coefficient, rmean , that tests the strength

of the linear relationship between the FT application runtimes and

latency mean is rmean = 0.70. The correlation coefficient, rstd ,

that tests the strength of the linear relationship between the FT

application runtimes and latency standard deviation is rstd = 0.89.

The correlation coefficients for four other NPB applications are also

shown in Table 4.

The values in the column labeled “Significant?” are calculated

using the Fisher z transform[19], derived as:

1
√
2π

∫

z

−∞
e
−t2
2 dt

where,

z =
arctanh(rmean) − arctanh(rstd)

√

2
n−3

The very small values (close to zero) in the column labeled “Sig-

nificant?” indicate that the difference between rmean and rstd is

highly statistically significant (to the level of α = 0.05) for all appli-

cations tested, meaning that the network latency variation is more

highly correlated with application runtimes than network latency

mean values. Pearson’s coefficient is not considered to be robust to

outliers; however, as illustrated in Figure 14, the residuals between

the line of best fit and observed values are sufficiently small. Thus,

outliers are not a primary factor in the correlation coefficients.

Finally, we examine the performance impact of latency variation

on application runtime. We examine two sets of experiments. In

each set the mean network latency is fixed and there are several

values for the network latency variation. We chose experiment

sets with network mean latency that correspond to a congestion

level of 20% and a congestion level of 70%, which are typically-

observed means in cluster networks. In Figure 15, we see that for

a fixed mean corresponding to a congestion of 20%, changes in

the standard deviation of network latency have a limited effect.

However, in Figure 16, we see that for a fixed mean corresponding

to a network congestion of 70%, increases in standard deviation

cause a substantial increase to application runtimes. In particular,

LU shows a nearly 25% increase in runtime with the larger latency

variation, while CG andMG showmoremodest increases in runtime

of 5% to 10%. Together, these charts suggests future work to study

at which level of latency mean that latency variation begins to have

a substantial effect on application runtime.

Based on the results of Experimental Suite II, we conclude that

the mean latency is strictly less correlated with application runtime

than latency standard deviation for all tests we considered. We

Measuring Network Latency Variation Impacts to High Performance Computing Application. . .ICPE ’18, April 9–13, 2018, Berlin, Germany

Figure 15: Difference in mean NPB runtime relative to zero

injected latency. At the 20% level of network congestion, in-

creases in standard deviation have a limited effect to appli-

cation runtimes.

Figure 16: Difference in mean NPB runtime relative to zero

injected latency. At the 70% level of network congestion, in-

creases in standard deviation correspond to significant in-

creases in application runtime.

calculated the significance of the difference in the correlation coeffi-

cient results using Fisher’s Z transformation. We find the results to

be statistically significant (to the level of α = 0.05), indicating that

measurements that are this different are unlikely to occur by chance.

The key result is that latency variation is more highly correlated

with application runtime than latency mean.

8 RELATED WORK

Network latency is a fundamental concern in HPC system design,

and there exists a large body of knowledge on its role in appli-

cation performance. In this section, we highlight the work that

complements this paper, and clarify our specific contributions.

Alizadeh et al [1] explored the effects of high bandwidth con-

sumption on network latency, and found that increased competition

for buffers in Ethernet switches could lead to long-tailed latency

distributions with measurements as high as 1000 times the median.

Our work is partly inspired by theirs, as we questioned whether

the latency variation would also impact HPC workloads using MPI

and zero-copy networks like InfiniBand.

One of the earliest papers to examine the effects of latency vari-

ation on network protocols was the done by Zhang et al in [36]. In

their work, they observed that the throughput of TCP streams could

degrade if ACK packets were significantly delayed and triggered

congestion control mechanisms. They proposed some adjustments

to the TCP congestion control protocol to reduce the effects of ACK

clustering. Unlike their work on the effects of latency on network

control algorithms, our work focuses on the impact of this variation

on applications supported by the network.

There have been many studies of the effect of congestion on net-

work latency. [4, 5, 15] and [16] observed that increased bandwidth

contention on links between nodes in a large cluster resulted in

larger mean latencies and significant impact on HPC workloads.

These studies essentially show that congestion introduces addi-

tional latency, and that latency variation increases when conges-

tion is present as there is additional contention for the hardware.

Our work asserts that latency variation can have negative effects

in and of itself, and the impacts of latency variation can be more

significant than mean latency.

One other aspect that our work intersects is tooling for synthetic

load. Our approach induces CPU spin at the InfiniBand driver level,

similar to [35]. However, we modeled the interface on the traffic

control (tc) tool, a component of which uses a distribution input

file for adding randomized latency on outgoing IP packets passing

through the Linux kernel packet scheduler. Our work complements

tc by allowing latency control on a subset of QLogic and Mellanox

InfiniBand cards at sub-microsecond resolution, and builds on prior

work by providing an interface and support tools that enable future

work with artificial latency.

9 CONCLUSIONS AND FUTUREWORK

In this paper we have presented the design and implementation

of a configurable latency injector for many Mellanox and QLogic

InfiniBand cards. The latency injector offers features not found in

prior similar work, and can be extended to include network cards

beyond the original implementations. We have presented measure-

ment and workload characterization studies of the distributions of

latency in network performance for an InfiniBand network in an

HPC environment. These distributions are utilized directly in two

experimental suites. We have presented an experimental method-

ology using synthetically-generated latency to demonstrate the

effects of latency variation on HPC workloads. In the worst case,

we measured that the LU application runs 3.5 times slower for high

variation than when the standard deviation is near zero.

We found statistically significant evidence that latency variation

is more highly correlated with HPC application performance than

latency mean alone. This result is somewhat surprising, since stud-

ies that focus on mean latency alone have shown the strong impacts

of low message latency to applications in an HPC environment.

ICPE ’18, April 9–13, 2018, Berlin, Germany R. Underwood et al.

We believe that these results may be important to consider in

the design of scalable HPC systems and applications. As multite-

nancy becomes increasingly common in dedicated HPC systems

and as HPC applications are more commonly run on cloud archi-

tectures, competition for network resources could lead to increased

levels of network latency variation. We have demonstrated that

serious degradation of application performance can result from

high variation in latency.

Future work is to consider how to manage variation in latency

in HPC networks that implement low latency protocols, and to

consider the impacts and management of latency variation in enter-

prise or cloud environments where low latency protocols are not

implemented, but where high variation in latency can occur due to

sharing of network resources across user applications. The ultimate

control over these factors that affect the variation of latency is to

move to a real-time operating system and application environment.

We do not advocate that here, since the slowdown imposed by the

real-time constraints may impact performance more than network

latency variation alone. Investigation of which factors have the

most impact and systematically evaluating the resolution of the

factors are aspects of future work.

ACKNOWLEDGMENTS

Funding for this research was provided by the National Science

Foundation under award numbers 1642542 and 1633608. We utilized

Cloudlab hardware for these experiments[30]. We utilized Pandas

and SciPy extensively for statistical analysis [17, 24].

REFERENCES
[1] MohammadAlizadeh, Albert Greenberg, David AMaltz, Jitendra Padhye, Parveen

Patel, Balaji Prabhakar, Sudipta Sengupta, andMurari Sridharan. 2010. Data center
TCP (DCTCP). InACM SIGCOMMComputer Communication Review, Vol. 40. ACM,
63–74.

[2] OpenFabrics Alliance. 2012. Openfabrics Enterprise Distribution. (2012). https:
//www.openfabrics.org/index.php/openfabrics-software.html

[3] David H Bailey, Eric Barszcz, John T Barton, David S Browning, Robert L Carter,
Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson, Thomas A Lasinski, Rob S
Schreiber, et al. 1991. The NAS parallel benchmarks. The International Journal of
Supercomputing Applications 5, 3 (1991), 63–73.

[4] Abhinav Bhatelé and Laxmikant V Kalé. 2009. Quantifying network contention
on large parallel machines. Parallel Processing Letters 19, 04 (2009), 553–572.

[5] Abhinav Bhatelé, Kathryn Mohror, Steven H Langer, and Katherine E Isaacs.
2013. There goes the neighborhood: performance degradation due to nearby jobs.
In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. ACM, 41.

[6] Abhinav Bhatelé, Andrew R Titus, Jayaraman J Thiagarajan, Nikhil Jain, Todd
Gamblin, Peer-Timo Bremer, Martin Schulz, and Laxmikant V Kalé. 2015. Identify-
ing the culprits behind network congestion. In Parallel and Distributed Processing
Symposium (IPDPS), 2015 IEEE International. IEEE, 113–122.

[7] Mark S Birrittella, Mark Debbage, Ram Huggahalli, James Kunz, Tom Lovett,
Todd Rimmer, Keith D Underwood, and Robert C Zak. 2015. Intel® Omni-path
architecture: Enabling scalable, high performance fabrics. In High-Performance
Interconnects (HOTI), 2015 IEEE 23rd Annual Symposium on. IEEE, 1–9.

[8] Nanette J Boden, Danny Cohen, Robert E Felderman, Alan E. Kulawik, Charles L
Seitz, Jakov N Seizovic, and Wen-King Su. 1995. Myrinet: A gigabit-per-second
local area network. IEEE Micro 15, 1 (1995), 29–36.

[9] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser,
Eunice Santos, Ramesh Subramonian, and Thorsten Von Eicken. 1993. LogP:
Towards a realistic model of parallel computation. In ACM Sigplan Notices, Vol. 28.
ACM, 1–12.

[10] Daniel Bristot de Oliveira. 2015. [RFC] workqueue: avoiding unbounded wq on
isolated CPUs by default. (2015). https://lists.gt.net/linux/kernel/2218495

[11] Michael DeHaan. 2012. Ansible. (2012). https://www.github.com/ansible/ansible
[Online].

[12] Corbin Higgs and Jason Anderson. 2016. Narrowing the Gap: Effects of Latency
with Docker in IP Networks. In The International Conference for High Performance
Computing, Networking, Storage and Analysis, Student Poster.

[13] Torsten Hoefler, Lavinio Cerquetti, Torsten Mehlan, Frank Mietke, and Wolfgang
Rehm. 2005. A practical approach to the rating of barrier algorithms using the
LogP model and Open MPI. In Parallel Processing, 2005. ICPP 2005 Workshops.
International Conference Workshops on. IEEE, 562–569.

[14] Keith R Jackson, Lavanya Ramakrishnan, Krishna Muriki, Shane Canon, Shreyas
Cholia, John Shalf, Harvey J Wasserman, and Nicholas J Wright. 2010. Perfor-
mance analysis of high performance computing applications on the AmazonWeb
Services cloud. In Cloud Computing Technology and Science (CloudCom), 2010
IEEE Second International Conference on. IEEE, 159–168.

[15] Van Jacobson. 1988. Congestion avoidance and control. In ACM SIGCOMM
Computer Communication Review, Vol. 18. ACM, 314–329.

[16] Ana Jokanovic, Jose Carlos Sancho, German Rodriguez, Alejandro Lucero, Cyriel
Minkenberg, and Jesus Labarta. 2015. Quiet neighborhoods: Key to protect job
performance predictability. In Parallel and Distributed Processing Symposium
(IPDPS), 2015 IEEE International. IEEE, 449–459.

[17] Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2001–. SciPy: Open source
scientific tools for Python. (2001–). http://www.scipy.org/ [Online].

[18] Mark Karol, Michael Hluchyj, and Samuel Morgan. 1987. Input versus output
queueing on a space-division packet switch. IEEE Transactions on Communications
35, 12 (1987), 1347–1356.

[19] G. Maurice Kendall. 1948. The Advanced Theory Of Statistics. Vol. 1. Charles
Griffin and Company Limited, 42 Drury Lane, London.

[20] Richard B Langley. 1997. GPS receiver system noise. GPS World 8, 6 (1997),
40–45.

[21] Jacob Leverich, Matteo Monchiero, Vanish Talwar, Parthasarathy Ranganathan,
and Christos Kozyrakis. 2009. Power management of datacenter workloads using
per-core power gating. IEEE Computer Architecture Letters 8, 2 (2009), 48–51.

[22] J Martin, V Rajasekaran, and James Westall. 2005. Virtual machine effects on
network traffic dynamics. In Performance, Computing, and Communications Con-
ference, 2005. IPCCC 2005. 24th IEEE International. IEEE, 233–238.

[23] Makoto Matsumoto and Takuji Nishimura. 1998. Mersenne Twister: a 623-
dimensionally equidistributed uniform pseudo-random number generator. ACM
Transactions on Modeling and Computer Simulation (TOMACS) 8, 1 (1998), 3–30.

[24] Wes McKinney. 2010. Data Structures for Statistical Computing in Python. In
Proceedings of the 9th Python in Science Conference, Stéfan van derWalt and Jarrod
Millman (Eds.). 51 – 56.

[25] Daniel Molka, Daniel Hackenberg, Robert Schone, and Matthias S Muller. 2009.
Memory performance and cache coherency effects on an Intel Nehalem mul-
tiprocessor system. In Parallel Architectures and Compilation Techniques, 2009.
PACT’09. 18th International Conference on. IEEE, 261–270.

[26] Gottfried E. Noether. 1967. Elements of Nonparametric Statistics. John Wiley and
Sons, Inc., New York.

[27] Fabrizio Petrini, Darren J Kerbyson, and Scott Pakin. 2003. The case of the
missing supercomputer performance: achieving optimal performance on the
8,192 processors of ASCI Q. In Supercomputing, 2003 ACM/IEEE Conference. IEEE,
55–55.

[28] Gregory F Pfister. 2001. An introduction to the Infiniband architecture. High
Performance Mass Storage and Parallel I/O 42 (2001), 617–632.

[29] Rolf Rabenseifner, Georg Hager, and Gabriele Jost. 2009. Hybrid MPI/OpenMP
parallel programming on clusters of multi-core SMP nodes. In Parallel, Distributed
and Network-based Processing, 2009 17th Euromicro International Conference on.
IEEE, 427–436.

[30] Robert Ricci, Eric Eide, and the CloudLab Team. 2014. Introducing CloudLab:
scientific infrastructure for advancing cloud architectures and applications. ;login:
39, 6 (Dec. 2014), 36–38. https://www.usenix.org/publications/login/dec14/ricci

[31] Stephen M Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosenblum, and
John K Ousterhout. 2011. It’s time for low latency. In HotOS, Vol. 13. 11–11.

[32] Piyush Shivam, Pete Wyckoff, and Dhabaleswar Panda. 2001. EMP: zero-copy
OS-bypass NIC-driven gigabit ethernet message passing. In Supercomputing,
ACM/IEEE 2001 Conference. IEEE, 49–49.

[33] Jonathan Turner. 1986. New directions in communications (or which way to the
information age?). IEEE communications Magazine 24, 10 (1986), 8–15.

[34] Robert Underwood, Jason Anderson, and Amy Apon. 2018. ICPE 2018 Artifact -
Measuring Network Latency Variation Impacts to High Performance Computing
Application Performance. (Jan 2018). https://doi.org/10.5281/zenodo.1145911

[35] Qi Wang, Ludmila Cherkasova, Jun Li, and Haris Volos. 2016. Interconnect
emulator for aiding performance analysis of distributed memory applications.
In Proceedings of the 7th ACM/SPEC on International Conference on Performance
Engineering. ACM, 75–83.

[36] Lixia Zhang, Scott Shenker, and Daivd D Clark. 1991. Observations on the
dynamics of a congestion control algorithm: The effects of two-way traffic. ACM
SIGCOMM Computer Communication Review 21, 4 (1991), 133–147.

