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An estimated 3500 species of mosquitoes (family Culicidae)

exist worldwide of which several are known vectors of

pathogens that cause disease in humans and other

vertebrates. Mosquitoes also host communities of microbes in

their digestive tract that form a gut microbiota. Recent studies

provide important insights on how mosquitoes acquire a gut

microbiota and the community of microbes that are present.

Results also indicate that the gut microbiota affects several

aspects of mosquito biology. Altogether, these effects impact

mosquito fitness with potential consequences for disease

prevalence.
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Introduction
All mosquitoes are aquatic during their juvenile stages

and terrestrial as adults [1]. Larvae primarily consume

organic detritus, unicellular organisms and small inverte-

brates while adults of both sexes commonly feed on

extrafloral nectaries [2,3]. Adult females also usually

blood feed on vertebrates, which provides nutrients for

egg production but can result in transmission of patho-

gens between hosts [1]. Studies from the early 1900s

noted that larval and adult stage mosquitoes harbor com-

munities of extracellular microbes in their digestive tract

that form a gut microbiota [4,5�,6]. However, only in the

last 10 years have these microbial communities and their

roles in mosquito biology been more broadly studied.

Results summarized in several recent reviews indicate

that the gut microbiota of adult mosquitoes can both
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positively and negatively affect vector competency,

which refers to the ability of females to acquire, maintain,

and transmit vertebrate pathogens [7–10]. This short

summary focuses on how mosquitoes acquire a gut micro-

biota, community composition, and known effects on

larval development and adult physiology.

Acquisition of a gut microbiota by mosquito
larvae
Some insects directly acquire their gut microbiota from

parents or other individuals, while others primarily

acquire their gut microbiota from the environment

[11,12]. Three lines of evidence indicate that mosquitoes

predominantly acquire their gut microbiota anew each

generation from the environment. First, experimental

studies show that mosquito larvae hatch with no extracel-

lular microbes in their gut [13��]. Second, studies of gut

community composition indicate that most microbes

identified in larvae overlap with the community of

microbes that are present in their aquatic habitat

[13��,14–17,18��]. Third, mosquitoes host highly variable

gut communities [13��,14–17,18��], which would not be

expected if these communities were acquired directly

from parents or congeners. Exceptions to environmental

acquisition are results showing that several types of

bacteria are present in the reproductive tracts of adult

mosquitoes, and that some of these bacteria are on the

surface of eggs females lay [13��,15,19–25]. This can

result in larvae directly acquiring these microbes by

ingesting egg shell fragments at hatching or inoculation

of the aquatic habitat where larvae feed. Several mosquito

species host vertically transmitted intracellular bacteria in

the genus Wolbachia and select other genera, which are

thus present in eggs [7,24,26]. Certain viruses have also

been shown to be vertically transmitted [27,28]. How-

ever, these organisms are not part of the extracellular

community of microbes that constitute the gut

microbiota.

Culture-based studies initially suggested that mosquito

larvae expel their gut microbiota in a meconium at

metamorphosis, and that adults emerge from the pupal

stage with few or no gut microbes [29]. These results

further suggested adults reacquire a gut microbiota by

imbibing water from the larval habitat and/or feeding on

resources like extrafloral nectaries. However, controlled

experiments coupled with analysis of gut community

composition provide strong evidence that Aedes and
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Anopheles larvae transstadially transmit a portion of their

gut microbiota to adults [13��,30,31]. Thereafter though,

the adult gut microbiota can change through consumption

of microbe-containing water, nectar or other food sources

[32–34,35�]. Vertebrate blood usually contains few or no

microbes, but several studies show that consumption of a

blood meal persistently or transiently alters composition

of the gut microbiota through alterations in redox status or

metabolism [35�,36,37,38�,39,40,41]. Infection by differ-

ent vector-borne pathogens can also affect the composi-

tion of the gut microbiota through unknown mechanisms

[26,41–44].

Composition of the gut microbiota
Insights into the composition of the mosquito gut micro-

biota primarily derive from metagenomic sequencing

studies. Most identified microbes in larval and adult stage

mosquitoes are gram-negative aerobes or facultative anae-

robes that preferentially belong to four phyla (Proteobac-

teria, Firmicutes, Bacteroidetes and Actinobacteria)

[13��,14–17,18��,35�,45�,46,47�,48]. Bacteria in these

phyla are also common community members in insects

from several other orders that acquire their gut microbiota

from the environment [49], which suggests prevalence in

part reflects their abundance in habitats insects frequent.

Several bacteria identified as gut community members in

mosquitoes have also been isolated and successfully

cultured [13��,18��,22,31,50–53]. Unicellular eukaryotes

identified as gut community members in different species

of mosquitoes include fungi, algae, and Apicomplexa but

thus far none of these organisms have been isolated from

mosquitoes and cultured independently

[43,48,54,55�,56,57]. Sequence-based surveys also iden-

tify a number of viruses in mosquitoes [58,59]. Most

belong to families with small RNA genomes such as

the Flaviviridae which includes species that are mos-

quito-vectored vertebrate pathogens [59]. In contrast,

the absence of bacteriophages in published studies sug-

gest either viruses infecting bacteria in the gut are under-

represented or few bacteriophages infect bacteria present

in the mosquito gut.

Excluding rare sequence reads, most studies indicate that

bacterial diversity in the mosquito gut is low (200 species)

when compared to vertebrates [12]. However, diversity

estimates in mosquitoes are comparable to other holome-

tabolous insects that acquire their gut microbiota from the

environment [11,49]. Differences in bacterial species

diversity have been reported between larval stadia of

Culex quinquefasciatus [60]. Studies of Aedes aegypti further

show that substantial numbers of bacteria in the gut die at

the end of each instar prior to molting, which provides

opportunity for altering gut community composition in

the succeeding instar [61�]. Other patterns of note include

that bacterial species diversity is consistently higher in

mosquito larvae than adults [13��,15,18��,47�], and that
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diversity is lower in laboratory reared versus field col-

lected mosquitoes of the same species [13��,14,35�].

A large number of studies indicate that bacterial diversity

differs substantially both between and within mosquito

species as a function of collection location and other factors

[14–17,18��,30,43,44,45�,46,47�,62,63,64]. On a local scale,

factors implicated in affecting community composition

include habitat preferences of different mosquito species

and larval feeding behavior [18��,30,62]. Studies that have

analyzed mosquito larvae from multiple sites that are in

close proximity to one another report greater similarities in

gut community composition among individuals of the

same or different species from the same site and collection

date than among individuals from different sites and

collection dates [14,15,47�]. This strongly suggests the

community of microbes present in aquatic habitats can

vary considerably even when in close proximity to one

another. It also means that larvae from a given site can

harbor similar communities of gut microbes but adults

collected from a given local area can exhibit high levels

of variation due to heterogeneity between larval sites [14–

16,35�,45�]. In addition, while bacteria in particular phyla

or classes are commonly found in mosquitoes, no evidence

currently indicates that particular species of mosquitoes

across their geographic range host a ‘core’ microbiota that

always includes particular microbes [10,12]. Instead, cur-

rent results indicate that environment dominates over

genetics in shaping the gut microbiota of mosquitoes,

which is a similar conclusion to studies of other insects

and vertebrates that acquire their gut microbiota from the

environment [49,65].

Functional roles of the gut microbiota in
mosquito larvae
Several early studies reported that mosquito larvae

exhibit higher mortality and/or delayed growth to the

pupal stage when the abundance of microbes in the

aquatic habitat is reduced [[47�],5�,19]. More recently,

increased mortality and delayed growth have also been

reported when larvae are treated with antibiotics [66,67],

whereas inoculating larvae with certain bacteria or yeast

has been reported to promote growth [68,69]. These

findings collectively suggest a positive role for the gut

microbiota in development of mosquito larvae although

the approaches used provide no insights into the mecha-

nisms involved. Antibiotic treatment also does not fully

eliminate the gut microbiota due to high levels of resis-

tance in several bacterial community members and insen-

sitivity of eukaryotic community members [47�].

Alternatively, surface sterilizing eggs produces axenic

larvae with no gut microbiota, which can then be fed a

sterile diet and/or inoculated with known microbes to

produce gnotobiotic larvae [13��]. This approach showed

that axenic Ae. aegypti first instars consume a standard

rearing diet like conventional (non-sterile) larvae but do
www.sciencedirect.com
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not grow which results in larvae dying after several days as

first instars [13��]. In contrast, Escherichia coli and several

other species of bacteria identified as gut community

members in different populations of Ae. aegypti
Figure 1
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same responses [13��,18��,47�], which altogether suggests

several mosquitoes require living bacteria in their gut as

larvae for growth and molting.

In considering how bacteria might promote growth,

recent studies show that Ae. aegypti larvae inoculated with

a mixed community of bacteria or wild-type E. coli exhibit

markedly lower gut oxygen levels in the midgut (hypoxia)

than axenic larvae or gnotobiotic larvae with bacteria

defective for aerobic respiration [61�]. This suggested

that bacteria in the midgut induce a gut hypoxia response

which could function as a growth signal. Functional assays

supporting this hypothesis include the finding that gut

hypoxia activates hypoxia-induced transcription factors

(HIFs) in Ae. aegypti larvae which leads to activation of the

insulin/insulin growth factor pathway, select mitogen

activated kinases and other processes with essential

growth functions [61�,70��] (Figure 1). Transcriptome

analysis also identifies several genes with functions in

digestion and nutrient acquisition as additional targets

that are potentially regulated by the gut microbiota or

microbiota-induced hypoxia [71].

Axenic Ae. aegypti larvae were recently reported to grow

into adults when fed a liver powder: yeast extract diet

supplemented with heat-killed bacteria, which suggests

other diets could obviate a requirement by mosquito

larvae for living microbes under certain conditions [72].

In contrast, another study that bioassayed the same diets

found no evidence axenic Ae. aegypti or An. gambiae larvae

grow beyond the first instar but did find that several

eukaryotic gut community members induce gut hypoxia,

HIF signaling and larval growth if viable [73]. However,

the preceding study and others also show that the propor-

tion of larvae that develop into adults as well as the size,

longevity, and fecundity of surviving adults varies among

different bacteria and unicellular eukaryotes [18��,42,73–
75]. Thus, microbes from diverse taxa can induce a gut

hypoxia response and larval growth, whereas in the

absence of a micriobiota larvae do not grow or molt. In

this respect the presence of a microbiota is more critical

than its composition when compared to mosquitoes with

no gut microbiota. However, community composition

does affect several measures of mosquito fitness, which

indicates the individual species of microbes or particular

combinations of microbes benefit mosquito fitness more

than others. Whether these differences reflect variation in

the nutrients microbes provide in conjunction with the

diet larvae are fed, the ability of certain microbes to

facilitate digestion, or products that promote gut function

or other activities is currently unknown.

Effects of the gut microbiota on midgut
function in adult mosquitoes
In addition to affecting vector competence and fitness

metrics like size and fecundity, a few studies indicate the

gut microbiota also affects midgut function in adult
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mosquitoes. These include evidence based on oral anti-

biotic treatment of adult An. gambiae that the gut micro-

biota affects immune gene expression in the midgut [50].

Antibiotic treatment of adult An. coluzzi further suggest

the gut microbiota is required for peritrophic matrix

formation around the blood bolus after blood feeding

[41]. In turn, disabled peritrophic matrix formation allows

bacteria to contact midgut cells, which could play a role in

altered expression of immune genes and increased risk of

systemic infection by gut microbes [41]. Other results

implicate the gut microbiota in blood meal digestion

either directly through the hemolytic activity of some

community members or indirectly by affecting midgut

function [76].

Conclusions
In addition to affecting vector competency, current

results indicate the gut microbiota affects larval growth,

adult fitness and select other traits that likely affect vector

populations and disease prevalence. Results published in

the last ten years substantially advance understanding of

how mosquitoes acquire a gut microbiota and community

composition but with a bias toward studies of bacteria.

Going forward additional information is needed about the

identity and diversity of unicellular eukaryotes in the

mosquito gut as well as studies that begin to examine how

particular networks of microbes interact, the stability of

different communities and their effects on mosquito

fitness. How mosquito diet, habitat and other factors

interact to shape the composition of the gut microbiota

is also largely unknown. While several recent papers

indicate that the gut microbiota positively affects mos-

quito physiology, understanding of the underlying mech-

anisms remain understudied. To address this issue, more

experimental data are needed that formally examine how

the gut microbiota affects growth and other physiological

processes, and the function of particular community

members in these processes.
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