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Abstract

Speech is a natural channel for human-

computer interaction in robotics and consumer

applications. Natural language understand-

ing pipelines that start with speech can have

trouble recovering from speech recognition er-

rors. Black-box automatic speech recogni-

tion (ASR) systems, built for general purpose

use, are unable to take advantage of in-domain

language models that could otherwise amelio-

rate these errors. In this work, we present

a method for re-ranking black-box ASR hy-

potheses using an in-domain language model

and semantic parser trained for a particular

task. Our re-ranking method significantly im-

proves both transcription accuracy and seman-

tic understanding over a state-of-the-art ASR’s

vanilla output.

1 Introduction

Voice control makes robotic and computer systems

more accessible in consumer domains. Collect-

ing sufficient data to train ASR systems using cur-

rent state of the art methods, such as deep neural

networks (Graves and Jaitly, 2014; Xiong et al.,

2016), is difficult. Thus, it is common to use well-

trained, cloud-based ASR systems. These sys-

tems use general language models not restricted

to individual application domains. However, for

an ASR in a larger pipeline, the expected words

and phrases from users will be biased by the ap-

plication domain. The general language model of

a black-box ASR leads to more errors in transcrip-

tion. These errors can cause cascading problems

in a language understanding pipeline.

In this paper, we demonstrate that an in-

domain language model and semantic parser can

be used to improve black-box ASR transcription

and downstream semantic accuracy. We consider

a robotics domain, where language understand-

ing is key for ensuring effective performance and

positive user experiences (Thomason et al., 2015).

We collect a dataset of spoken robot commands

paired with transcriptions and semantic forms to

evaluate our method.1 Given a list of ASR hy-

potheses, we re-rank the list to choose the hypoth-

esis scoring best between an in-domain trained

semantic parser and language model (Figure 1).

This work is inspired by other re-ranking meth-

ods which have used prosodic models (Anan-

thakrishnan and Narayanan, 2007), phonetic post-

processing (Twiefel et al., 2014), syntactic pars-

ing (Zechner and Waibel, 1998; Basili et al.,

2013), as well as features from search engine re-

sults (Peng et al., 2013).

Other work has similarly employed semantics

to improve ASR performance, for example by as-

signing semantic category labels to entire utter-

ances and re-ranking the ASR n-best list (Morbini

et al., 2012), jointly modeling the word and se-

mantic tag sequence (Deoras et al., 2013), and

learning a semantic grammar for use by both the

ASR system and semantic parser (Gaspers et al.,

2015). Closest to our work is that of Erdogan et

al. (2005), which uses maximum entropy mod-

eling to combine information from the semantic

parser and ASR’s language model for re-ranking.

Although their method could be adapted for use

with a black-box ASR, their parsing framework

employs a treebanked dataset of parses (Davies

et al., 1999; Jelinek et al., 1994). In contrast, the

Combinatory Categorial Grammar (CCG) frame-

work which we use in this work only requires that

the root-level semantic form be given along with

groundings for a small number of words (see sec-

tion 2.2), significantly reducing the cost of data

collection. Further, although they also experiment

with an out-of-the-box language model, they only

1Our dataset will be made available upon request.
Source code can be found in: https://github.com/

thomason-jesse/nlu_pipeline/tree/speech





S : bring(a(λz.(red(z) ∧ card(z))), jane)

NP : a(λz.(red(z) ∧ card(z)))

N : λz.(red(z) ∧ card(z))

N : card

card

N/N : λP .λz.(red(z) ∧ P (z))

red

NP/N : λP.(a(λz.(P (z))))

a

S/NP : λy.(bring(y, jane))

NP : jane

jane

(S/NP)/NP : λx.(λy.(bring(y, x)))

give

Figure 2: A parse tree of the phrase “give jane a red card.” The token give is an imperative, taking two

noun phrases on its right which represent the recipient and the patient of the action (the robot is the im-

plicit agent in the command). jane immediately resolves to a noun phrase. red is an adjectival predicate,

consuming the noun predicate card on its right, the result of which is consumed by the determiner a in

order to form a complete noun phrase.

culus expression:

(NP/N) N =⇒ NP

(λx.(x)) y =⇒ y

The combinatory rules of a CCG implicitly define

a grammar. An example CCG parse tree may be

seen in Figure 2.

Following Zettlemoyer and Collins (2005), gold

labels for parsing contain only root-level sema-

natic forms, and only a small set of bootstrapping

lexical entries are provided. This necessitates that

latent parse trees be inferred and that additional

lexical entries be induced during training.

Given a corpus of training examples T of sen-

tences paired with their semantic forms, we fol-

low the framework proposed by (Liang and Potts,

2015) and train a perceptron model to greedily

search for the maximally scoring parse of each

hypothesis. We bootstrap the parser’s lexicon en-

tries with mappings for words from 20 randomly

selected examples from our validation set, which

were parsed by hand to obtain the latent trees.

Sample templates used to create our dataset are

shown in Table 2.

To normalize likelihoods between hypotheses

of different lengths, we calculate average like-

lihoods for CCG productions and semantic null

nodes, then expand the semantic parse trees to ac-

commodate the maximum token length for utter-

ances when scoring.

Because our application is human-robot inter-

action, we give the parser a budget of 10 seconds

per hypothesis during the re-ranking process.4 If a

valid parse is not found in time, the hypothesis is

given a confidence score of zero. If no hypotheses

from a list are parsed, the re-ranking decision falls

solely to the language model.

3 Experimental Evaluation

We evaluate chosen hypotheses by word error rate

(WER), semantic form accuracy (whether the cho-

sen hypothesis’ semantic parse exactly matched

the gold parse), and semantic form F1 score, the

average harmonic mean of the precision and re-

call of hypotheses’ semantic predicates with their

corresponding gold predicates (see Table 3 for ex-

ample F1 computations). In the robotic command

domain, higher F1 can mean shorter clarification

dialogs with users when there are misunderstand-

ings, since the intended (gold) semantic parse’s

predicates are better represented for parses with

higher F1. We compare the ASR’s top hypothe-

sis to re-ranking (Eq. 2) using only the language

model (α = 0), only the semantic parser (α = 1),

and a weighted combination of the two (α = 0.7).

3.1 Dataset

We collected a corpus of speech utterances from

32 participants, consisting of both male and fe-

male, native and non-native English speakers. Par-

ticipants were asked to read sentences from a com-

puter screen for 25 minutes each, resulting in a to-

tal of 5,161 utterances. The sentences read were

4We found that hypotheses successfully parsed within the
budget were parsed in 1.94 seconds on average, suggesting
that a stricter budget can be used.



Template Example Sentences Corresponding Semantic Form

roll over to dr bell’s office walk(the(λx.(office(x) ∧ possesses(x, tom))))
(f) (w) to (p)’s office can you please walk to john’s office walk(the(λx.(office(x) ∧ possesses(x, john))))

run over to professor smith’s office walk(the(λx.(office(x) ∧ possesses(x, john))))
go and bring coffee to jane bring(coffee, jane)

(f) (d) (i) to (p) please deliver a red cup to tom bring(a(λx.(red(x) ∧ cup(x))), tom)
would you take the box to jack bring(box, jack)

please look for ms. jones in the lab searchroom(3414b, jane)
(f) (s) (p) in (l) can you find jack in room 3.512 searchroom(3512, jack)

search for the ta in the kitchen searchroom(kitchen, jack)

Table 2: Example templates used to generate our dataset. Our template parameterization includes items

(i), people (p), locations (l), filler words (f), and actions such as walk (w), delivery(d), and search (s).
Parameter instances had multiple referring expressions (e.g. “john” and “professor smith” both refer to

the person john). Eight distinct templates were used across the 3 actions, with 70 items, 69 adjectives,

over 20 referents for people, and a variety of wordings for actions and filler, resulting in over 400 million

possible utterances.

generated using templates for commanding a robot

in an office domain (Table 2). The use of templates

allowed for the automatic generation of ground

truth transcriptions and semantic forms for each

spoken utterance.

3.2 Experimental Setup and Results

To test our methodology, we used the Google

Speech API,5 a state-of-the-art, black-box ASR

system which has been used in recent robotics

tasks (Arumugam et al., 2017; Kollar et al., 2013).

For each utterance, 10 hypotheses were requested

from Google Speech.6 An average of 9.2 hypothe-

ses were returned per utterance (the API some-

times returns fewer than requested). We held out 2

speakers from our dataset as validation for hyper-

parameter tuning, leaving 30 speakers for a 27/3

(90%/10%) training and test set split using 10-fold

cross validation.

We set the language model and semantic parser

hyperparameters using the held-out validation set.

Performance of the ASR’s top hypothesis (ASR)

was tested against re-ranking solely based on

semantic-parser scores (SemP), solely on lan-

guage model scores (LM), and on an interpolation

of these with α = 0.7 which maximized semantic

form accuracy on the validation set (Both).

Table 4 summarizes the results of these models

on the test set. All of our model’s scores are statis-

tically significantly better than the ASR baseline

(p < 0.05 with a Student’s independent paired t-

test). Additionally, SemP and Both perform sig-

5https://cloud.google.com/speech/
6Preliminary experiments showed diminishing returns for

hypothesis lists of size n > 10. Therefore, n was set to 10
for the accuracy vs. runtime tradeoff.

nificantly better than LM in F1 while the Both

condition performs significantly better than LM

in semantic accuracy without a significant loss in

WER or F1 performance against LM and SemP,

respectively.

3.3 Discussion

All re-ranking conditions significantly improve

word error rate, semantic parsing accuracy, and se-

mantic form F1 scores against using the ASR’s top

hypothesis.

When examining the overall parsing accuracy

of our models, we found that 37.5% of the ASR

hypothesis lists generated for test utterances had at

least 1 out of vocabulary (OOV) word per hypoth-

esis. Our semantic parser is closed-vocabulary at

test time, ignoring OOV words, which can contain

valuable semantic information.

Consistent with intuition, using a language

model alone decreases WER most. Semantic ac-

curacy increases when interpolating confidences

from the semantic parser and language model,

meaning there are cases where the hypothesis the

semantic parser most favors has an incorrect se-

mantic form even while another hypothesis in the

list gives the correct one. In this case, a lower

confidence parse from a better-worded transcript

is more likely to be correct, and we need both the

semantic parser and the language model to select

it.

There is no significant difference in semantic

accuracy performance between solely using the

language model or semantic parser, but interpolat-

ing the two gives a significant improvement over

just using a language model. The semantic parser

and interpolation conditions give significantly bet-



Semantic Form P R F1

bring(cup, jane) 3

3

3

3
1.0

bring(a(λx.(red(x)∧ cup(x))), jane) 3

4

3

3
0.857

bring(jane, jane) 3

3

2

3
0.8

Table 3: Example F1 computations for the phrase “Bring Jane a cup”. Here, the relevant (gold) predicates

are bring, cup, and jane. F1 is the harmonic mean of the precision (P) and recall (R): F1= 2 · P ·R

P+R

Model WER Acc F1

Oracle 13.4± 4.2 27.9± 3.8 39.3± 3.9

ASR 30.8± 4.6 7.38± 1.9 15.9± 3.0
SemP 20.8± 5.3 24.8± 3.9 38.3± 4.1
LM 15.7± 4.7 22.7± 3.3 31.7± 4.1
Both 16.8± 4.6 26.3± 3.7 38.1± 4.1

Table 4: Average performance of re-ranking

with standard deviation using semantic parsing

(SemP), language model (LM), and Both against

the black-box ASR’s top hypothesis. Oracle de-

notes the best possible performance achievable

through re-ranking per metric (i.e. choosing the

hypothesis from the ASR that optimizes for each

metric in turn).

ter F1 performance over a language model alone.

These results show that the integration of semantic

information into the speech recognition pipeline

can significantly improve language understand-

ing.

4 Conclusion and Future Work

We have shown that post-hoc re-ranking of a

black-box ASR’s hypotheses using an in-domain

language model and a semantic parser can signifi-

cantly improve the accuracy of transcription and

semantic understanding. Using both re-ranking

components together improves parsing accuracy

over either alone without sacrificing WER reduc-

tion.

A natural extension to this work would be to test

re-ranking using a neural language model, which

has been shown to encode some semantic informa-

tion in addition to capturing statistical regularities

in word sequences (Bengio et al., 2003).

Our approach should improve language under-

standing in robotics applications. The increase

in F1 should help expedite dialogues because it

would entail fewer predicates needing clarification

from the user. Additionally, due to the large pro-

portion of OOV words that we encountered from

ASR, in the future we will use an open-vocabulary

semantic parser, perhaps through leveraging dis-

tributional semantic representations in order to in-

duce the meaning of novel words. By adapting ex-

isting work on learning semantic parsers for robots

through dialog (Thomason et al., 2015) to incor-

porate ASR, a robot equipped with our pipeline

could iteratively learn the meaning of new words

and expressions it encounters in the wild.
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