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Abstract

Intelligent robots frequently need to explore the ob-
jects in their working environments. Modern sen-
sors have enabled robots to learn object properties
via perception of multiple modalities. However, ob-
ject exploration in the real world poses a challeng-
ing trade-off between information gains and explo-
ration action costs. Mixed observability Markov de-
cision process (MOMDP) is a framework for plan-
ning under uncertainty, while accounting for both
fully and partially observable components of the
state. Robot perception frequently has to face such
mixed observability. This work enables a robot
equipped with an arm to dynamically construct
query-oriented MOMDPs for multi-modal predi-
cate identification (MPI) of objects. The robot’s be-
havioral policy is learned from two datasets col-
lected using real robots. Our approach enables a
robot to explore object properties in a way that is
significantly faster while improving accuracies in
comparison to existing methods that rely on hand-
coded exploration strategies.

1 Introduction

Service robots are increasingly present in everyday environ-
ments, such as homes, offices, airports, and hospitals, where
a common task is to retrieve an object for a user. Consider
the request, “Please fetch me the red, empty bottle.” A key
problem for the robot is to decide whether a particular can-
didate object matches the properties (or predicate) in the re-
quest, which we refer to as the multi-modal predicate identi-
fication (MPI) problem. For certain words (e.g., heavy, soft,
etc.), visual classification of the object is insufficient. The
robot would need to perform an action (e.g., lift the object
to determine whether it is heavy or not). Multi-modal percep-
tion research has focused on combining information arising
from such multiple sensory modalities.

Given multi-modal perception capabilities, a robot needs to
decide which actions (possibly out of many) to perform on an
object, i.e., generate a behavioral policy for a given request.
For instance, to obtain an object’s color, a robot could ad-

just the pose of its camera, whereas sensing the content of an
opaque container requires two actions: grasping and shaking.
The robot has to select actions in such a way that the infor-
mation gain about object properties is maximized while the
cost of actions is minimized. Sequential reasoning is required
in this action selection process, e.g., a shaking action would
make sense only if a grasping action has been successfully
executed. Also, robot perception capabilities are imperfect,
so the robot sometimes needs to take the same action more
than once. Probabilistic planning algorithms aim at comput-
ing action policies to help select actions toward maximizing
long-term utility (information gain in our case), while consid-
ering the uncertainty in non-deterministic action outcomes.

Markov decision processes (MDPs) [Puterman, 1994] and
partially observable MDPs (POMDPs) [Kaelbling et al.,
1998] enable an agent to plan under uncertainty with full
and partial observability respectively. However, the observ-
ability of real-world domains is frequently mixed: some com-
ponents of the current state can be fully observable while
others are not. A mixed observability Markov decision pro-
cess (MOMDP) is a special form of POMDP that accounts
for both fully and partially observable components of the
state [Ong et al., 2010]. In this work, we model robot MPI
problems using MOMDPs because of the mixed observabil-
ity of the world that the robot interacts with (e.g., whether an
object is in hand or not is fully observable, but object proper-
ties such as color and weight are not).1

Robot behavioral exploration policies are used for suggest-
ing exploration actions given the current world state estima-
tion. In this work, the robot learns its policies from the ex-
perience of interacting with objects in the real world. We use
datasets that include tens of objects and nearly one hundred
properties. In such domains, it frequently takes a prohibitively
long time to compute effective behavioral exploration poli-
cies. To tackle this issue, we dynamically learn MOMDP-
based controllers to model a minimum set of domain vari-
ables that are relevant to current user queries (e.g. “red, empty
bottle”). This strategy ensures a small state set and enables us
to generate high-quality robot action policies in a reasonable

1Referring to our model as a MOMDP (as opposed to a POMDP)
is not of practical importance in this paper. It is mainly for ease of
describing the domain.



time (e.g., ≤ 5 seconds). Our experiments show that the poli-
cies of the learned controllers improve accuracy for recogniz-
ing new objects’ properties while reducing exploration cost,
in comparison to baseline strategies that deterministically or
randomly use predefined sequences of actions.

2 Related Work

Recent research has shown that robots can learn to classify
objects using computer vision methods as well as non-visual
perception coupled with actions performed on the objects
[Högman et al., 2013; Sinapov et al., 2014a; Thomason et al.,
2016]. For example, a robot can learn to determine whether
a container is full or not based on the sounds produced
when shaking the container [Sinapov and Stoytchev, 2009];
or learn whether an object is soft or hard based on the hap-
tic sensations produced when pressing it [Chu et al., 2015].
Past work has shown that robots can associate (or ground)
these sensory perceptions with human language predicates
in vision space [Alomari et al., 2017; Whitney et al., 2016;
Krishnamurthy and Kollar, 2013; Matuszek et al., 2012] and
joint visual and haptic spaces [Gao et al., 2016].

Nevertheless, there has been relatively little emphasis on
enabling a robot to efficiently select actions at test time when
it is tasked with classifying a new object. The few approaches
for tackling action selection, e.g., [Rebguns et al., 2011;
Fishel and Loeb, 2012; Sinapov et al., 2014a; Thomason et
al., 2018], assume that only one target property has to be iden-
tified (e.g., the object’s identity in the case of object recogni-
tion). In contrast, we address the multi-modal predicate iden-
tification (MPI) problem where a robot needs to recognize
multiple properties about an object, e.g., “is the object a red
empty bottle?”.

Sequential decision-making frameworks, such as MDPs,
POMDPs and MOMDPs, can be used for probabilistic plan-
ning toward achieving long-term goals, while accounting for
non-deterministic action outcomes and different observabil-
ities [Kaelbling et al., 1998; Ong et al., 2010]. As a result,
these frameworks have been applied to multi-modal predicate
identification (MPI) problems on physical objects in robotics.
For instance, hierarchical POMDPs were used for suggesting
visual operators and regions of interests for exploring multi-
ple objects on a tabletop scenario [Sridharan et al., 2010]; the
work of Eidenberger and Scharinger further enabled a robot
to actively adjust its position to avoid occlusions [Eidenberger
and Scharinger, 2010]. More recent work used a robotic arm
to move objects enabling better visual analysis [Pajarinen
and Kyrki, 2015]. Interaction with objects in these lines of
research relies heavily on robot vision while other sensing
modalities, such as audio and haptics, are not considered.

Behavioral policies for MPI problems have been learned in
simulation using deep reinforcement learning methods [Denil
et al., 2017], where force was directly used in the interactions
with objects. The simulation environment used in that work
makes it possible to run large numbers of trials, but does not
establish applicability on real robots.

Behavior Modality

color shape deep

look 64 308 4096

audio haptics proprioception

grasp 100 60 20

drop, hold, lift, lower, press, push 100 60

Table 1: The number of features extracted from each context (i.e.,
combination of robot behavior and perceptual modality) for one of
the datasets (Thomason16) used in our experiments.

3 Theoretical Framework

Next, we describe the theoretical framework used by the robot
to learn multi-modal predicate identification (MPI) models
and generate efficient policies when tasked with identifying
whether a set of predicates hold true for a new object.

3.1 Multi-modal Predicate Learning

In this work, the robot learns predicate recognition models
using the methodology described in [Sinapov et al., 2014b;
Thomason et al., 2016], briefly summarized here. The robot
interacts with objects using behaviors (e.g., look, grasp, lift)
coupled with sensory modalities (e.g., color, haptics, audio).
We refer to a combination of a behavior and modality as
a sensorimotor context (e.g., look-color, lift-haptics, etc.),
where C is the set of all such contexts. Table 1 shows the set of
sensorimotor contexts for one of the datasets used in our ex-
periments (discussed in more detail in Section 5), along with
the feature dimensionality for each context. Note that not all
modalities are produced by every behavior – for example, the
lift action does not produce color features while the look ac-
tion does not produce haptic features.

We connect these feature representations of objects to pred-
icates by learning discriminative classifiers on the feature
spaces for each predicate p ∈ P , the set of all predicates.
For each predicate p, and context c ∈ C, the robot learns a
binary classifier using data points [xc

i ,yi], where xc
i is the ith

feature vector in context c (e.g., in the look-color context, the
feature vector encodes a color histogram of the object), and
yi = true if the predicate p holds true for the object in trial i,
and f alse otherwise. We assume that the classifiers’ outputs
can be mapped to probabilities, i.e., a classifier associated
with context c for predicate p can estimate Prc

p(yi = true|xc
i ).

Let Cb ⊂ C be the set of sensorimotor contexts associated
with behavior b ∈ B. When executing action b, the robot de-
tects a set of feature vectors, Xi (one vector per each context
in Cb), and uses them to query the classifiers associated with
contexts Cb. The probability estimates of the classifiers are
combined using weighted combination and normalized again
to compute the final predication:

Prp(yi = true|Xi) = α × ∑
xc

i ∈Xi

wp
c ×Prc

p(yi = true|xc
i )

where α is a normalization constant to ensure the probabili-
ties sum up to 1.0 and w

p
c ∈ [0.0,1.0] is a reliability weight

indicating how good the classifier associate with context c is
at recognizing predicate p, as estimated by performing cross-
validation on the training data. In other words, each behavior





grasp (22.0s) lift (11.1s) lower (10.6s)

drop (9.8s) push (22.0s) press (22.0s)

Figure 3: The behaviors, and their durations in seconds (behaviors
are from the Thomason16 dataset detailed in Sec. 5). In addition, the
hold (1.0s) behavior was performed by holding the object in place.
The look (0.5s) behavior was also performed by taking a visual snap-
shot of the object using the robot’s sensors prior to exploration.

object exploration actions pulled from the literature of robot
exploration, as shown in Figure 2, and Ar includes the report-
ing actions used for object property identification.

Exploration actions: Figure 2 shows all exploration ac-
tions except for action ask (i.e., ask a human operator) that
is allowed in any state x ∈ X . Among the actions, tap, poke,
and shake are only available in the dataset of [Sinapov et al.,
2014b] and hold is only available in the dataset of [Thomason
et al., 2016]. As one of the main contributions, our approach
enables a robot to automatically figure out what actions are
useful given a user query by learning from the datasets. Ex-
amples of a robot executing some of the exploration actions
are shown in Figure 3.

Reporting actions: Ar includes a set of actions that are
used for reporting the object’s properties and can determin-
istically lead the state transition to term (terminal state). For
instance, if a user queries about “a blue, heavy can”, there will
be three binary variables specifying whether each of proper-
ties is true or false. As a result, there will be eight reporting
actions. For a∈Ar, we use s�a (or y�a) to represent that the
report of a matches the underlying values of object properties
(i.e., a correct report) and use s�a (or y�a) otherwise.

TX : X ×A×X → [0,1] is the state transition function in
the fully observable component of the current state. TX in-
cludes a set of conditional probabilities of transitions from
x ∈X—the fully observable component of the current state—
to x′ ∈ X , the component of the next state, given a ∈ A the
current action. Reporting actions and illegal exploration ac-
tions (e.g., dropping an object in state x1—before a successful
grasp) lead state transitions to term with 1.0 probability.

Most exploration actions are unreliable and succeed prob-
abilistically. For instance, p(x4, drop, x5) = 0.95 in our case,
indicating there is small probability the object is stuck in
the robot’s hand. Such non-deterministic action outcomes are
considered in our experiments. The success rate of action look
is 1.0 in our case, since without changing positions of either
the camera or the object it does not make sense to keep run-
ning the same vision algorithms.

TY : Y ×A×Y → [0,1] is the state transition function in
the partially observable component of the current state. It is
an identity matrix in our case, (we assume) because object
properties do not change during the process of the robot’s ex-
ploration actions.

3.5 Reward Function and Discount Factor

R : S×A→R is the reward function. Each exploration action,
ae ∈ Ae, has a cost that is determined by the time required
to complete the action. These costs are empirically assigned
according to the datasets used in this research. The costs of
reporting actions depend on whether the report is correct.

R(s,a) =

{

r−, if s ∈ S, a ∈ Ar
, s�a

r+, if s ∈ S, a ∈ Ar
, s�a

where r− (or r+) is negative (or positive) given an incorrect
(or correct) report. Unless otherwise specified, r−=−500 and
r+=500 in this paper.

Generally, a robot is more risk-seeking (e.g., preferring
fewer exploration actions before taking the reporting action),
when the penalty of incorrect reports is lower or the bonus of
correct reports is higher. Prior research studied such parame-
ters in a dialog system context [Zhang and Stone, 2015]. We
set the values of r− and r+ heuristically in this work.

Costs of other exploration actions come from the datasets
used in this research, and are within the range of [0.5,22.0]
(corresponding reward is negative), except that action ask has
the cost of 100.0. γ is a discount factor, and γ = 0.99 in our
case. This setting gives the robot an unspecified, relatively
long planning horizon.

3.6 Observations and Observation Function

Z : Zh ∪ /0 is a set of observations. Elements in Zh include all
possible combinations of object properties and have one-to-
one correspondence with elements in Ar and Y . For instance,
when the query is about “a red empty bottle”, there exists an
observation z ∈ Zh that represents “the object’s color is red; it
is not empty, and it is a bottle.” Actions that produce no infor-
mation gain (reinitialize, in our case), and reporting actions
in Ar result in a /0 (none) observation.

O : S×A×Z → [0,1] is the observation function that spec-
ifies the probability of observing z ∈ Z when action a is exe-
cuted in state s: O(s,a,z). In this work, the probabilities are
learned from performing cross-validation on the robot’s train-
ing data. As described in Section 3.1, predicate learning pro-
duces confusion matrix Cb

p ∈ R
2×2 for each predicate p and

each behavior b, where b corresponds to one of the explo-
ration actions shown in Figure 2.

O(s,a,z) = Pr(ps
,b,pz)

=Cb
p0
(ps

0, pz
0) ·C

b
p1
(ps

1, pz
1) · · ·C

b
pN−1

(ps
N−1, pz

N−1)

where behavior b corresponds to action a; ps and pz are the
vectors of true and observed values (0 or 1) of the predicates;
ps

i (or pz
i ) is the true (or observed) value of the ith predicate;

and N is the total number of predicates in the query.
So far, we have specified all components of our MOMDP-

based controller. It should be noted that there are other sub-
classes of POMDPs that can be used for formalizing the MPI
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