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Abstract

Intelligent robots frequently need to explore the ob-
jects in their working environments. Modern sen-
sors have enabled robots to learn object properties
via perception of multiple modalities. However, ob-
ject exploration in the real world poses a challeng-
ing trade-off between information gains and explo-
ration action costs. Mixed observability Markov de-
cision process (MOMDP) is a framework for plan-
ning under uncertainty, while accounting for both
fully and partially observable components of the
state. Robot perception frequently has to face such
mixed observability. This work enables a robot
equipped with an arm to dynamically construct
query-oriented MOMDPs for multi-modal predi-
cate identification (MPI) of objects. The robot’s be-
havioral policy is learned from two datasets col-
lected using real robots. Our approach enables a
robot to explore object properties in a way that is
significantly faster while improving accuracies in
comparison to existing methods that rely on hand-
coded exploration strategies.

1 Introduction

Service robots are increasingly present in everyday environ-
ments, such as homes, offices, airports, and hospitals, where
a common task is to retrieve an object for a user. Consider
the request, “Please fetch me the red, empty bottle.” A key
problem for the robot is to decide whether a particular can-
didate object matches the properties (or predicate) in the re-
quest, which we refer to as the multi-modal predicate identi-
fication (MPI) problem. For certain words (e.g., heavy, soft,
etc.), visual classification of the object is insufficient. The
robot would need to perform an action (e.g., lift the object
to determine whether it is heavy or not). Multi-modal percep-
tion research has focused on combining information arising
from such multiple sensory modalities.

Given multi-modal perception capabilities, a robot needs to
decide which actions (possibly out of many) to perform on an
object, i.e., generate a behavioral policy for a given request.
For instance, to obtain an object’s color, a robot could ad-

just the pose of its camera, whereas sensing the content of an
opaque container requires two actions: grasping and shaking.
The robot has to select actions in such a way that the infor-
mation gain about object properties is maximized while the
cost of actions is minimized. Sequential reasoning is required
in this action selection process, e.g., a shaking action would
make sense only if a grasping action has been successfully
executed. Also, robot perception capabilities are imperfect,
so the robot sometimes needs to take the same action more
than once. Probabilistic planning algorithms aim at comput-
ing action policies to help select actions toward maximizing
long-term utility (information gain in our case), while consid-
ering the uncertainty in non-deterministic action outcomes.

Markov decision processes (MDPs) [Puterman, 1994] and
partially observable MDPs (POMDPs) [Kaelbling er al.,
1998] enable an agent to plan under uncertainty with full
and partial observability respectively. However, the observ-
ability of real-world domains is frequently mixed: some com-
ponents of the current state can be fully observable while
others are not. A mixed observability Markov decision pro-
cess (MOMDP) is a special form of POMDP that accounts
for both fully and partially observable components of the
state [Ong et al., 2010]. In this work, we model robot MPI
problems using MOMDPs because of the mixed observabil-
ity of the world that the robot interacts with (e.g., whether an
object is in hand or not is fully observable, but object proper-
ties such as color and weight are not).!

Robot behavioral exploration policies are used for suggest-
ing exploration actions given the current world state estima-
tion. In this work, the robot learns its policies from the ex-
perience of interacting with objects in the real world. We use
datasets that include tens of objects and nearly one hundred
properties. In such domains, it frequently takes a prohibitively
long time to compute effective behavioral exploration poli-
cies. To tackle this issue, we dynamically learn MOMDP-
based controllers to model a minimum set of domain vari-
ables that are relevant to current user queries (e.g. “red, empty
bottle”). This strategy ensures a small state set and enables us
to generate high-quality robot action policies in a reasonable

IReferring to our model as a MOMDP (as opposed to a POMDP)
is not of practical importance in this paper. It is mainly for ease of
describing the domain.



time (e.g., < 5 seconds). Our experiments show that the poli-
cies of the learned controllers improve accuracy for recogniz-
ing new objects’ properties while reducing exploration cost,
in comparison to baseline strategies that deterministically or
randomly use predefined sequences of actions.

2 Related Work

Recent research has shown that robots can learn to classify
objects using computer vision methods as well as non-visual
perception coupled with actions performed on the objects
[Hogman et al., 2013; Sinapov et al., 2014a; Thomason et al.,
2016]. For example, a robot can learn to determine whether
a container is full or not based on the sounds produced
when shaking the container [Sinapov and Stoytchev, 20091;
or learn whether an object is soft or hard based on the hap-
tic sensations produced when pressing it [Chu er al., 2015].
Past work has shown that robots can associate (or ground)
these sensory perceptions with human language predicates
in vision space [Alomari et al., 2017, Whitney ef al., 2016;
Krishnamurthy and Kollar, 2013; Matuszek et al., 2012] and
joint visual and haptic spaces [Gao et al., 2016].

Nevertheless, there has been relatively little emphasis on
enabling a robot to efficiently select actions at test time when
it is tasked with classifying a new object. The few approaches
for tackling action selection, e.g., [Rebguns et al., 2011;
Fishel and Loeb, 2012; Sinapov et al., 2014a; Thomason et
al.,2018], assume that only one target property has to be iden-
tified (e.g., the object’s identity in the case of object recogni-
tion). In contrast, we address the multi-modal predicate iden-
tification (MPI) problem where a robot needs to recognize
multiple properties about an object, e.g., “is the object a red
empty bottle?”.

Sequential decision-making frameworks, such as MDPs,
POMDPs and MOMDPs, can be used for probabilistic plan-
ning toward achieving long-term goals, while accounting for
non-deterministic action outcomes and different observabil-
ities [Kaelbling et al., 1998; Ong et al., 2010]. As a result,
these frameworks have been applied to multi-modal predicate
identification (MPI) problems on physical objects in robotics.
For instance, hierarchical POMDPs were used for suggesting
visual operators and regions of interests for exploring multi-
ple objects on a tabletop scenario [Sridharan et al., 2010]; the
work of Eidenberger and Scharinger further enabled a robot
to actively adjust its position to avoid occlusions [Eidenberger
and Scharinger, 2010]. More recent work used a robotic arm
to move objects enabling better visual analysis [Pajarinen
and Kyrki, 2015]. Interaction with objects in these lines of
research relies heavily on robot vision while other sensing
modalities, such as audio and haptics, are not considered.

Behavioral policies for MPI problems have been learned in
simulation using deep reinforcement learning methods [Denil
et al., 20171, where force was directly used in the interactions
with objects. The simulation environment used in that work
makes it possible to run large numbers of trials, but does not
establish applicability on real robots.

[ Behavior [ Modality |
[ [ color | shape | deep |
[ Took [ 64 | 308 | 4096 |
audio | haptics | proprioception
grasp 100 60 20
drop, hold, lift, lower, press, push 100 60

Table 1: The number of features extracted from each context (i.e.,
combination of robot behavior and perceptual modality) for one of
the datasets (Thomason16) used in our experiments.

3 Theoretical Framework

Next, we describe the theoretical framework used by the robot
to learn multi-modal predicate identification (MPI) models
and generate efficient policies when tasked with identifying
whether a set of predicates hold true for a new object.

3.1 Multi-modal Predicate Learning

In this work, the robot learns predicate recognition models
using the methodology described in [Sinapov et al., 2014b;
Thomason er al., 2016], briefly summarized here. The robot
interacts with objects using behaviors (e.g., look, grasp, lift)
coupled with sensory modalities (e.g., color, haptics, audio).
We refer to a combination of a behavior and modality as
a sensorimotor context (e.g., look-color, lift-haptics, etc.),
where C is the set of all such contexts. Table 1 shows the set of
sensorimotor contexts for one of the datasets used in our ex-
periments (discussed in more detail in Section 5), along with
the feature dimensionality for each context. Note that not all
modalities are produced by every behavior — for example, the
lift action does not produce color features while the look ac-
tion does not produce haptic features.

We connect these feature representations of objects to pred-
icates by learning discriminative classifiers on the feature
spaces for each predicate p € P, the set of all predicates.
For each predicate p, and context ¢ € C, the robot learns a
binary classifier using data points [x¢,y;], where x¢ is the i""
feature vector in context ¢ (e.g., in the look-color context, the
feature vector encodes a color histogram of the object), and
yi; = true if the predicate p holds true for the object in trial i,
and false otherwise. We assume that the classifiers’ outputs
can be mapped to probabilities, i.e., a classifier associated
with context ¢ for predicate p can estimate Pr/, (yi =true|x§).

Let C;, C C be the set of sensorimotor contexts associated
with behavior b € B. When executing action b, the robot de-
tects a set of feature vectors, &; (one vector per each context
in Cp), and uses them to query the classifiers associated with
contexts Cp. The probability estimates of the classifiers are
combined using weighted combination and normalized again
to compute the final predication:

Pr,(yi = true|X;) = o x Y wl x PrS(v; = truelx;)
XfGXl‘

where « is a normalization constant to ensure the probabili-
ties sum up to 1.0 and w¥ € [0.0,1.0] is a reliability weight
indicating how good the classifier associate with context c is
at recognizing predicate p, as estimated by performing cross-
validation on the training data. In other words, each behavior
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Figure 1: Example confusion matrices from one of the datasets
(Sinapov14) showing the TP, FP, TN, and FN rates for three of the
predicates when using the robot’s shake action. The action is good
at recognizing heavy due to the rich haptic feedback produced when
shaking an object, somewhat good at recognizing beans (referring
to the objects’ contents) due to the sound produced by the contents,
and poor at recognizing green as no visual input is processed when
performing this action.

acts as a classifier ensemble where each individual classifier’s
output is combined using weighted combination.

At the end of the training stage, cross-validation at the be-
havior level is used to compute the confusion matrix C[’Z €

R?*2 for predicate p and behavior b. These confusion ma-
trices are normalized to compute the True Positive, True
Negative, False Positive, and False Negative rates for each
behavior-predicate pair, which are later used for dynami-
cally constructing controllers. Example confusion matrices
are shown in Figure 1. Next, we describe the problem of gen-
erating an action policy when identifying whether a set of
predicates hold true for a novel object.

3.2 MOMDP-based Controllers

Behaviors (or actionsz), such as look and drop, have differ-
ent costs and different accuracies in predicate recognition. At
each step, the robot has to decide whether more exploration
behaviors are needed, and, if so, select the exploration behav-
ior that produces the most information. In order to sequence
these behaviors toward maximizing information gain, subject
to the cost of each behavior (e.g., the time it takes to execute
it), it is necessary to further consider preconditions and non-
deterministic outcomes of the actions. For instance, shaking
and dropping actions make sense only if a preceding (unreli-
able) grasping action succeeds.

In this work, we assume action outcomes are fully ob-
servable and object properties are not. For instance, a robot
can reliably sense whether a grasping action is success-
ful, but it cannot reliably sense the color of a bottle or
whether that bottle is full. Due to this mixed observability
and unreliable action outcomes, we use mixed observability
MDPs (MOMDPs) [Ong et al., 2010] to model the sequential
decision-making problem for object exploration.

A MOMDRP is fundamentally a factored POMDP with
mixed state variables. The fully observable state components
are represented as a single state variable x (in our case, the
robot-object status, e.g., the object is in hand or not), while
the partially observable components are represented as state
variable y (in our case, the object properties, e.g., the object is
heavy or not). As a result, (x,y) specifies the complete system

2The terms of “behavior” and “action” are widely used in de-
velopmental robotics and sequential decision-making communities
respectively. In this paper, the two terms are used interchangeably.
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Figure 2: A simplified version of the transition diagram in space X’
for object exploration. This figure only shows the probabilistic tran-

sitions led by exploration actions. Report actions that deterministi-
cally lead transitions from x; € X to the ferm state are not included.

state, and the state space is factored as S = X x ), where X
is the space for fully observable variables and ) is the space
for partially observable variables.

Formally, a MOMDP model is specified as a tuple,

(XJ yv A: TX7 Ty: R7 Zv 07 Y),

where A is the action set, Ty and Ty are the transition func-
tions for fully and partially observable variables respectively,
R is the reward function, Z is the observation set, O is the
observation function, and 7 is the discount factor.

The definitions of A, R, Z, O, and Yy of a MOMDP are iden-
tical to these of POMDPs [Kaelbling et al., 1998], except that
Z and O are only applicable to ), the partially observable
components of the state space. Y is the discount factor that
specifies the planning horizon.

Next, we present how each component of our MOMDP
model is specified for our object exploration problem.

3.3 State Space Specification

The state space of our MOMDP-based controllers has two
components of X and ). The global state space S includes a
Cartesian product of X and ),

S={(x,y)|xeXandye YV}

X is the state set specified by fully observable domain vari-
ables. In our case, X includes a set of six states {xo,-- x5},
as shown in Figure 2, and a terminal state ferm € A that iden-
tifies the end of an episode. x € X is fully observable, and the
robot knows the current state of the robot-object system, e.g.,
whether grasping and dropping actions are successful or not.

Y is the state set specified by partially observable domain
variables. In our case, these variables correspond to N object
properties that are queried about, {vg, vi, -+, vy_1}, where
the value of v; is either true or false. Thus, |Y| = N,

For instance, given an object description that includes three
properties (e.g., “a red empty bottle”), ) includes 23 =8
states. Since y € ) is partially observable, it needs to be es-
timated through observations. It should be noted that there
is no state transition in the space of ), as we assume object
properties do not change over the course of robot action.

3.4 Actions and Transition System

We present the transition system of our MOMDP-based con-
trollers by first introducing the action set and then the transi-
tion probabilities. A : A° UA” is the action set. A® includes the
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Figure 3: The behaviors, and their durations in seconds (behaviors
are from the Thomason16 dataset detailed in Sec. 5). In addition, the
hold (1.0s) behavior was performed by holding the object in place.
The look (0.5s) behavior was also performed by taking a visual snap-
shot of the object using the robot’s sensors prior to exploration.

object exploration actions pulled from the literature of robot
exploration, as shown in Figure 2, and A” includes the report-
ing actions used for object property identification.

Exploration actions:  Figure 2 shows all exploration ac-
tions except for action ask (i.e., ask a human operator) that
is allowed in any state x € X'. Among the actions, tap, poke,
and shake are only available in the dataset of [Sinapov et al.,
2014b] and hold is only available in the dataset of [Thomason
et al., 2016]. As one of the main contributions, our approach
enables a robot to automatically figure out what actions are
useful given a user query by learning from the datasets. Ex-
amples of a robot executing some of the exploration actions
are shown in Figure 3.

Reporting actions: A’ includes a set of actions that are
used for reporting the object’s properties and can determin-
istically lead the state transition to ferm (terminal state). For
instance, if a user queries about “a blue, heavy can”, there will
be three binary variables specifying whether each of proper-
ties is true or false. As a result, there will be eight reporting
actions. Fora € A", we use s ®a (or y®a) to represent that the
report of a matches the underlying values of object properties
(i.e., a correct report) and use s @ a (or y @ a) otherwise.

Ty : X x Ax X — [0,1] is the state transition function in
the fully observable component of the current state. Ty in-
cludes a set of conditional probabilities of transitions from
x € X—the fully observable component of the current state—
to x' € X, the component of the next state, given a € A the
current action. Reporting actions and illegal exploration ac-
tions (e.g., dropping an object in state x;—before a successful
grasp) lead state transitions to term with 1.0 probability.

Most exploration actions are unreliable and succeed prob-
abilistically. For instance, p(x4, drop, xs) = 0.95 in our case,
indicating there is small probability the object is stuck in
the robot’s hand. Such non-deterministic action outcomes are
considered in our experiments. The success rate of action look
is 1.0 in our case, since without changing positions of either
the camera or the object it does not make sense to keep run-
ning the same vision algorithms.

Ty : Y xAxY — [0,1] is the state transition function in
the partially observable component of the current state. It is
an identity matrix in our case, (we assume) because object
properties do not change during the process of the robot’s ex-
ploration actions.

3.5 Reward Function and Discount Factor

R: S xA— Risthe reward function. Each exploration action,
a® € A has a cost that is determined by the time required
to complete the action. These costs are empirically assigned
according to the datasets used in this research. The costs of
reporting actions depend on whether the report is correct.

R(s,a) = {

r-, ifseS, acA’, soa
rt, ifs€S, acA’, sOa

where r~ (or r1) is negative (or positive) given an incorrect
(or correct) report. Unless otherwise specified, ¥~ =—500 and
rT =500 in this paper.

Generally, a robot is more risk-seeking (e.g., preferring
fewer exploration actions before taking the reporting action),
when the penalty of incorrect reports is lower or the bonus of
correct reports is higher. Prior research studied such parame-
ters in a dialog system context [Zhang and Stone, 2015]. We
set the values of ~ and r™ heuristically in this work.

Costs of other exploration actions come from the datasets
used in this research, and are within the range of [0.5,22.0]
(corresponding reward is negative), except that action ask has
the cost of 100.0. 7 is a discount factor, and ¥y = 0.99 in our
case. This setting gives the robot an unspecified, relatively
long planning horizon.

3.6 Observations and Observation Function

Z:Z" U0 is a set of observations. Elements in Z” include all
possible combinations of object properties and have one-to-
one correspondence with elements in A” and ). For instance,
when the query is about “a red empty bottle”, there exists an
observation z € Z" that represents “the object’s color is red; it
is not empty, and it is a bottle.” Actions that produce no infor-
mation gain (reinitialize, in our case), and reporting actions
in A” result in a @ (none) observation.

O : 8 xAxZ—10,1] is the observation function that spec-
ifies the probability of observing z € Z when action a is exe-
cuted in state s: O(s,a,z). In this work, the probabilities are
learned from performing cross-validation on the robot’s train-
ing data. As described in Section 3.1, predicate learning pro-
duces confusion matrix C;, € R?*? for each predicate p and
each behavior b, where b corresponds to one of the explo-
ration actions shown in Figure 2.

O(s,a,z) = Pr(p’,b,p°)
=Cb (p6,p§)-Ch (p1,p5) - Ch (PN_1,PY_1)

where behavior b corresponds to action a; p* and p*® are the
vectors of true and observed values (0 or 1) of the predicates;
p; (or p3) is the true (or observed) value of the i"" predicate;
and N is the total number of predicates in the query.

So far, we have specified all components of our MOMDP-
based controller. It should be noted that there are other sub-
classes of POMDPs that can be used for formalizing the MPI



problem (e.g., POMDP-lite [Chen er al., 2016]). We leave the
comparisons to future work.

Next, we discuss a way of computing high-quality policies
for MPI problems that include large numbers of predicates.

4 Dynamically Learned Controllers

Multi-modal predicate identification (MPI) problems can in-
clude a prohibitively large number of predicates. One of the
datasets in our experiments contains 81 predicates, resulting
in 28! possible states in ). It is computationally intractable to
generate a far-sighted policy while considering all the pred-
icates. The goal of dynamically learned controllers is to in-
clude a relatively small set of predicates in our MOMDPs
while maintaining quality of the generated policies.

Recent research on Integrated commonsense Reasoning
and probabilistic Planning (IRP) [Zhang and Stone, 2017]
enables decomposing a sequential decision-making prob-
lem into two tractable subproblems that focus on high-
dimensional reasoning (e.g., objects with many properties)
and long-horizon planning (e.g., tasks that require many ac-
tions). Among the IRP algorithms, iCORPP [Zhang et al.,
2017] enables an agent to reason about all domain variables
in a complete (static) world model, specify a transition sys-
tem focusing on the current task, and plan under uncertainty
toward achieving long-term goals.

We dynamically construct MOMDP controllers (inspired
by iCORPP) by specifying the following components in or-
der: 1) State set ) that includes only the predicates that are
relevant to the query (e.g., “blue”, “heavy”, and “bottle”,
given a query of “a blue heavy bottle”); 2) State set S, the
Cartesian product of X (predefined) and ); 3) Action set A",
where each reporting action a” € A” corresponds to a state in
Y; 4) Action set A, union of A¢ (predefined) and A”; 5) 7",
object predicate combinations; 6) Z, union of Z" and 0.

Given the above components, observation function O is
learned from datasets as described in Section 3.1, and transi-
tion function 7 and reward function R are constructed accord-
ingly. The components together form a complete MOMDP
that is relatively very small, and typically includes fewer than
100 states at runtime. It should be noted that we use MOMDP,
as a special form of POMDP, to model our domain mainly for
the ease of describing the mixed observability over X and Y
(Section 3.3). Our approach enables automatic generation of
complete MOMDP models, which can be encoded, as in our
experiments, such that existing POMDP solvers (e.g., [Kur-
niawati ef al., 2009]) can be used to generate policies.

5 Experimental Results

We evaluate the proposed method using two datasets in which
arobot explored a set of objects using a variety of exploratory
behaviors and sensory modalities, and show that, for both, our
proposed MOMDP model outperforms baseline models in ex-
ploration accuracy and overall exploration cost. Two datasets
of Sinapov14 and Thomason16 are used in the experiments,
where Thomason16 has a much more diverse set of house-
hold objects and a larger number of predicates that arose nat-
urally during human-robot interaction gameplay.

Figure 4: Objects in the Thomasonl6 dataset (Left) and the one
used in the illustrative example in Section 5.1 (Right).

Sinapov14 Dataset: In this dataset, the robot explored 36
different objects using 11 prototypical exploratory behaviors:
look, grasp, lift, shake, shake-fast, lower, drop, push, poke,
tap, and press 10 different times per object [Sinapov et al.,
2014b]. The objects are lidded containers with the same shape
and varied along 3 different attributes: 1) color: red, green,
blue; 2) weight: light, medium, heavy; and 3) contents: beans,
rice, glass, screws. These variations result in the 3 X 3 x4 =
36 objects bearing combinations of these attributes in the set
P that the robot is tasked with learning. The costs of actions
in the two datasets are different because the datasets were
collected using different robots.

Thomason16 Dataset: In this dataset, the robot, part of the
Building-Wide Intelligence project [Khandelwal et al., 20171,
explored 32 common household objects using 8 exploratory
actions: look, grasp, lift, hold, lower, drop, push, and press.
Each behavior was performed 5 times on each object. The
dataset was originally produced for the task of learning how
sets of objects can be ordered and is described in greater detail
by [Sinapov er al., 2016].

For the look behavior, color, shape, and deep features (the
penultimate layer of the trained VGG network [Simonyan and
Zisserman, 2014]) are available. For the remaining behaviors,
the robot recorded audio and haptic (i.e., joint forces) fea-
tures produced by the interaction with the object. Finally, for
the grasp action, finger position features were also extracted.
These modalities result in |[C| =1x3+7 x2+1 = 18 sen-
sorimotor contexts. The set of predicates P consisted of 81
words used by human participants to describe objects in this
dataset during an interactive gameplay scenario [Thomason et
al., 2016]. Example predicates include the words red, heavy,
empty, full, cylindrical, round, etc. Unlike the Sinapovl4
dataset, here the objects vary greatly, and the predicate recog-
nition problem is much more difficult.

5.1 Illustrative Example

We now describe an example in which a robot works on
the multi-modal predicate identification (MPI) task. We ran-
domly selected an object from the Thomasonl16 dataset: a
blue and red bottle full of water (Figure 4). We then ran-
domly selected properties, in this case “yellow” and “metal-
lic,” and asked the robot to identify whether the object has
each of the properties or not. The selected object was not part
of the robot’s training set used to learn the predicate recogni-
tion models and the MOMDP observation model. The robot
should report negative to both properties while minimizing
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Figure 5: Action selection and belief change in the exploration of a
red and blue bottle full of water, given a query of yellow and metallic.

the overall cost of exploration actions.

Given this user query, we generate a MOMDP model that
includes 25 states. We then generate an action policy us-
ing past work’s methods [Kurniawati et al., 2009]. Currently,
building the model takes almost no time, and we uniformly
gave five seconds for policy generation using the model (same
in all experiments). The time for computing the policy is
insignificant relative to the time for exploratory behaviors
(which is what we are really trying to minimize).

Figure 5 shows the belief change in this process.
The initial distributions over X and Y are [1.0,0.0, -]
and [0.25,0.25,0.25,0.25] respectively. The policy suggests
“look” first. We queried the dataset to make an observa-
tion, neg-neg in this case. The belief over ) is updated
based on this observation: [0.41,0.28,0.19,0.13], where the
entries represent neg-neg, neg-pos, pos-neg, and pos-pos re-
spectively. There is a (fully observable) state transition in X,
from xg to x1, so the belief over X becomes [0.0,1.0,0.0,---].
Based on the updated beliefs, the policy suggests taking
the “push” action, which results in another neg-neg ob-
servation. Accordingly, the belief over ) is updated to
[0.60,0.13,0.22,0.05], which indicates that the robot is more
confident that the object is neither “yellow” nor “metallic”.
After actions of reinitialize, look, push, and push (this first
push action was unsuccessful, and produced the @ observa-
tion), the belief over ) becomes [0.84,0.04,0.12,0.01]. The
policy finally suggests reporting neg-neg, making it a success-
ful trial with an overall cost of 167 seconds, which results in
a reward of 500 — 167 = 333 (an incorrect report would have
resulted in —667 reward).

Remarks: It should be noted that the classifiers associ-
ated with each behavior and word will produce an output
even in cases where the sensory signals from that behavior
are irrelevant to the word. For instance, although the sen-
sory signals relevant to “push” are haptics and audio, the first
“push” action results in an observation of “yellow”. It was
“yellow:neg”, because the training set prior of most objects
are not yellow. The robot favors actions that distinguish ‘easy’
predicates (look distinguishes yellow well in this case). If an
action is useful, the robot will prefer taking it early. The more
the action is delayed, the more the expected reward is dis-
counted (we use a discount factor of 0.99 in our experiments).

5.2 Results

Next, we describe the experiments we conducted to evaluate
the proposed MOMDP-based perception strategy using MPI

[ Properties | Method [ Overall cost (std) | Accuracy |
Random 17.56 (30.00) 0.245
Two Predefined Plus 37.10 (0.00) 0.583
MOMDP (Ours) | 29.85 (12.87) 0.860
Random 10.12 (21.77) 0.130
Three Predefined Plus 37.10 (0.00) 0.373
MOMDP (Ours) 33.87 (8.78) 0.903

Table 2: Performances of MOMDP-based and two baseline planners
in cost (second) and accuracy on the Sinapov14 dataset. Numbers
in parenthesis denote the Standard Deviations over 400 trials.

problems. The goal was to increase the accuracy in identi-
fying properties of a novel object while reducing the overall
action costs required in this process. In all evaluation runs, the
object that needs to be identified was not part of the robot’s
training set when learning the predicate recognition models
or the MOMDP parameters. The following baseline action
strategies are used in experiments, where belief is updated
using Bayes’ rule except for Random:

® Random: Actions are randomly selected from both re-
porting and legal exploration actions. A trial is termi-
nated by any of the reporting actions.

e Random Plus: Actions are randomly selected from legal
exploration actions. Under an exploration budget, one
selects the reporting action corresponding to y with the
highest belief.

e Predefined: An action sequence is strictly followed: ask,
look, press, grasp, lift, lower and drop.> Under an explo-
ration budget or in early terminations caused by illegal
actions, the robot selects the reporting action that makes
the best sense.

o Predefined Plus: The same as Predefined except that un-
successful actions are repeated until achieving the de-
sired result(s).

Sinapov1l4 Dataset: In each trial, we place an object that
has three attributes (color, weight and content) on a table and
then generate an object description that includes the values
of two or three attributes. This description matches the ob-
ject in only half of the trials. When two (or three) attributes
are queried, ) includes four (or eight) states plus ferm state,
resulting in S that includes 25 (or 49) states. The other com-
ponents of the dynamically constructed MOMDPs grow ac-
cordingly, given an increasing number of queried attributes.
Experimental results are reported in Table 2. Not surpris-
ingly, randomly selecting actions produces low accuracy. The
overall cost is smaller in more challenging trials (all three
properties are questioned), because in these trials there are
relatively fewer exploration actions (more properties produce
more reporting actions), making the agent more likely to take
a reporting action. Our MOMDP-based multi-modal percep-
tion strategy reduces the overall action cost while signifi-
cantly improving the reporting accuracy. Our performance
improvement is achieved by repeating actions as needed, se-
lecting legal actions (e.g., lift is legal only if the current state
is x7) that produce the most information or have the potential

3 Action ask was used only in the Thomason16 experiments, be-
cause other exploration actions are not as effective as in Sinapov14.
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Figure 6: Evaluations of five actions strategies on the Thomason16
dataset. Comparisons are made in three categories of overall reward
(Left), overall exploration cost (Middle), and success rate (Right).

of doing so in the future, and even arbitrarily reporting with-
out “wasting” exploration actions given queries where the ex-
ploration actions are not effective.

Thomasonl6 Dataset: In this set of experiments, a user
query is specified by randomly selecting one object and N
properties (1 <N <3), on which the robot is questioned. Each
data point is an average over 200 trials, where we conducted
pairwise comparisons over the five strategies, i.e., the strate-
gies were evaluated using the same set of user queries. A trial
is successful only if the robot reports correctly on all prop-
erties. It should be noted that most of the contexts are mis-
leading in this dataset due to the large number of object prop-
erties, so more exploration actions confuse the robot if the
actions are not carefully selected. Figure 6 shows the exper-
imental results. Overall reward is computed by subtracting
overall action cost from the reward yielded by the reporting
action (either a big bonus or a big penalty). We do not com-
pute standard deviations in this dataset, because the diversity
of the tasks results in problems of very different difficulties.

We can see our MOMDP-based strategy consistently per-
forms the best in terms of the overall reward and overall accu-
racy. When more properties are queried, the MOMDP-based
controllers enable the robot to take more exploration actions
(Middle subfigure), whereas the baselines could not adjust
their question-asking strategy accordingly.

The last experiment aims to evaluate the need of dynam-
ically constructed controllers, answering the question “Can
we build a ‘super’ controller that models all properties?”” We
constructed MOMDP controllers including two relevant and
an increasing number of irrelevant properties (i.e., the ones
that are not queried). Our dynamically learned controllers
include only the relevant properties and correspond to the
curves’ left ends. Results are shown in Figure 7. We can see,
the quality of the generated action policies decreases soon,
e.g., from > 150 to <25 in reward (what we try to maxi-
mize), when more irrelevant properties are included in the
controllers. The right two subfigures show that the controllers
first try to achieve a higher accuracy by taking more explo-
ration actions and then “give up” due to the growing number
of irrelevant properties. The results show the infeasibility of
“super” controllers that model all properties and justify the
need of dynamic controllers.

6 Conclusions and Future Work

We investigate using mixed observability Markov decision
processes (MOMDPs) to solve the multi-modal predicate
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Figure 7: A “super” MOMDP that models two relevant plus increas-
ing irrelevant properties, in comparison to our dynamically learned
controllers that model only the relevant predicates and correspond to
the left end of each curve.

identification (MPI) problem, where a robot selects actions
for multi-modal perception in object exploration tasks. Our
approach can dynamically construct a MOMDP model given
an object description from a human user (e.g., “a blue heavy
bottle”), compute a high-quality policy for this model, and
use the policy to guide robot behaviors (such as “look” and
“shake”) toward maximizing information gain. The dynami-
cally built controllers enable the robot to focus on a minimum
set of domain variables that are relevant to the current object
and query. The MOMDP perception models are learned using
two existing datasets collected with robots interacting with
objects in the real world. Experimental results show that our
object exploration approach enables the robot to identify ob-
ject properties more accurately without introducing extra cost
from exploration actions compared to a baseline that suggests
actions following a predefined action sequence.

This research primarily focuses on a robot exploring ob-
jects in a tabletop scenario. In future work, we plan to in-
vestigate applying this approach to tasks that involve more
human-robot interaction and mobile robot platforms, where
exploration would require navigation actions and perceptual
modalities such as human-robot dialog. Finally, in the two
datasets used in this paper, the robot’s manipulation actions
were always successful. That is not the case in a real-world
scenario (we model unsuccessful actions in a simple way in
this work); therefore we plan to extend our framework to sit-
uations in which the robot’s actions may cause undesirable
outcomes (e.g., dropping an object may break it).
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