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Abstract

The role of cosmic rays generated by supernovae and young stars has very recently begun to receive significant
attention in studies of galaxy formation and evolution due to the realization that cosmic rays can efficiently
accelerate galactic winds. Microscopic cosmic-ray transport processes are fundamental for determining the
efficiency of cosmic-ray wind driving. Previous studies modeled cosmic-ray transport either via a constant
diffusion coefficient or via streaming proportional to the Alfvén speed. However, in predominantly cold, neutral
gas, cosmic rays can propagate faster than in the ionized medium, and the effective transport can be substantially
larger; i.e., cosmic rays can decouple from the gas. We perform three-dimensional magnetohydrodynamical
simulations of patches of galactic disks including the effects of cosmic rays. Our simulations include the
decoupling of cosmic rays in the cold, neutral interstellar medium. We find that, compared to the ordinary diffusive
cosmic-ray transport case, accounting for the decoupling leads to significantly different wind properties, such as
the gas density and temperature, significantly broader spatial distribution of cosmic rays, and higher wind speed.
These results have implications for X-ray, γ-ray, and radio emission, and for the magnetization and pollution of the
circumgalactic medium by cosmic rays.
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1. Introduction

Galactic winds are observed ubiquitously in star-forming
galaxies and significantly affect their chemical and dynamical
evolution (Veilleux et al. 2005). Galactic winds redistribute
angular momentum, aiding in the formation of extended disks
(Brook et al. 2011; Übler et al. 2014); help produce large-scale
magnetic fields in dwarf galaxies (Moss & Sokoloff 2017); and
pollute the intergalactic medium with metals (Steidel et al.
2010; Booth et al. 2012). Additionally, most galaxies are
missing a large fraction of baryons compared to the
cosmological average (Bell et al. 2003). Models matching
observed luminosity functions to simulated halo mass functions
find that 20% of the baryons are accounted for in L* galaxies,
and that this fraction decreases rapidly for both more and less
massive galaxies (Guo et al. 2010). This suggests that the
efficiency of converting baryons into stars is a strong function
of halo mass.The discrepancies between halo and stellar
properties, “the missing baryons problem,” constitutes an
outstanding challenge in galaxy formation. Galactic winds can
possibly solve the missing baryons problem by ejecting
baryons out of galaxies. For galaxies more massive than L*,
active galactic nuclei likely dominate the energetics of the
outflows (e.g., Croton et al. 2006), while in less massive
galaxies galactic winds are likely driven by stellar feedback
(Larson 1974, Chevalier & Clegg 1985; Dekel & Silk 1986).

In the standard model of supernova-driven galactic winds
(Chevalier & Clegg 1985), thermal energy is injected into the
gas, launching it ballistically and entraining denser gas as it is
flung out of the galaxy. Thermally driven winds may explain
the superwinds observed in starburst galaxies, such as M82
(Bustard et al. 2016). However, results from high-resolution
simulations demonstrated that such models might inject
significant amounts of energy and launch metals out of galaxies

but fail to expel a significant amount of mass into the
intergalactic medium (Mac Low & Ferrara 1999; Melioli
et al. 2013). Additionally, Steidel et al. (2010) found that the
kinematic features of Lyman-break galaxies best match models
in which the gas velocity increases with distance to at least
100 kpc. This result is also difficult to reconcile with the
thermal feedback model. The insufficiencies of purely
thermally driven winds hint at the importance of additional
stellar feedback processes, such as cosmic rays (Boulares &
Cox 1990; Breitschwerdt et al. 1993; Uhlig et al. 2012).
Cosmic rays can be accelerated by means of the diffusive

acceleration mechanism operating in the shocks of supernova
remnants (Blandford & Eichler 1987; Caprioli 2015) and in the
winds from massive stars (Bykov 2014). Cosmic rays exert
pressure that is in rough equipartition with magnetic and
dynamical pressures in the interstellar medium (ISM; Zweibel
& Heiles 1997; Beck 2001; Cox 2005), suggesting their
dynamical importance. In particular, cosmic rays can provide
pressure support against self-gravitating clouds, suppressing
star formation (Jubelgas et al. 2008; Pfrommer et al. 2017).
Additionally, Fermi γ-ray observations of the starburst galaxies
M82 and NGC 253 imply cosmic-ray energy densities roughly
two magnitudes higher than in the Milky Way (Paglione &
Abrahams 2012; Yoast-Hull et al. 2013, 2014).
Cosmic rays escape the Galactic disk in ∼10Myr (Strong

et al. 2007). Compared to the thermal gas, cosmic rays can be
relatively free of energy losses, which together with their fast
escape from the disk, suggests that cosmic rays may efficiently
transport supernova energy to regions occupied by tenuous gas
above the disk, which they can accelerate into a wind (Hanasz
et al. 2013).
Early work by Ipavich (1975) considered the emission of

magnetohydrodynamic (MHD) waves by super-Alfvénic cos-
mic rays. These waves enable cosmic rays to be coupled to
the thermal gas. A steady-state, spherically symmetric,
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hydrodynamic treatment by Ipavich (1975) suggested that
cosmic rays could drive outflows at rates 1 Me yr−1 from a
typical galaxy. Breitschwerdt et al. (1991) extended the work
by Ipavich (1975) by including the streaming of cosmic rays
along large-scale magnetic fields and found that mass outflow
rates of ∼1 Me yr−1 are possible in Milky Way-like galaxies.
Everett et al. (2008) further extended this work by combining
cosmic-ray and thermal pressure under Milky Way conditions
and found that both thermal and cosmic-ray pressures were
essential for wind driving in the Milky Way.

Recently, 3D numerical studies of cosmic-ray winds have
found that wind properties depended sensitively on the details
of cosmic-ray transport. This was demonstrated in both
Eulerian grid hydrodynamic (Uhlig et al. 2012; Booth et al.
2013; Salem & Bryan 2014) and MHD simulations (Hanasz
et al. 2013; Ruszkowski et al. 2017) as well as unstructured
moving mesh simulations (Pakmor et al. 2016a, 2016b;
Simpson et al. 2016; Pfrommer et al. 2017; Jacob et al. 2018).

In predominantly cold, neutral gas, cosmic rays can propagate
faster than in the ionized medium, and the effective transport can
be substantially larger; i.e., cosmic rays can decouple from the
gas. In this work, we study the consequences of this decoupling
and show that it has a significant impact on the properties of
cosmic-ray-driven galactic winds. In Section 2, we delineate the
numerical methods and treatment of physics in our simulations.
In Section 3, we present our results, and in Section 4, we
conclude.

2. Methods

We model cosmic rays with a two-fluid model (e.g., Salem &
Bryan 2014; Ruszkowski et al. 2017), in which cosmic rays
take the form of an ultrarelativistic ideal fluid with an adiabatic
index γcr=4/3, and the thermal gas is characterized by an
adiabatic index γ=5/3. We include the advection of cosmic
rays, dynamical coupling between cosmic rays and the gas, and
model the transport of cosmic rays relative to the gas via
anisotropic diffusion of cosmic rays along magnetic field lines
rather than via the streaming instability (see Section 2.3). We
model the effect of cosmic rays decoupling from the cold,
neutral ISM via a temperature-dependent diffusion coefficient
(see Section 2.3). Additionally, we include star formation and
feedback, self-gravity of the gas, and radiative cooling. We
solve the following equations:
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where ρ is the gas density, u is the gas velocity, mform˙ is a
density sink term representing star formation, f mfeed

*
˙ is a

density source term representing stellar winds and supernovae
(see Section 2.4), B is the magnetic field, ptot is the sum of
the gas (pth), magnetic, and cosmic-ray (pcr) pressures, g=
−∇f + gNFW is the gravitational acceleration (including
contributions from self-gravity of gas and stars: −∇f and dark
matter: gNFW; see Section 2.1), pSN˙ is the momentum injection
from stellar winds and supernovae, e=0.5ρu2+eg+ecr+
B2/8π is the total energy density (where eg is the thermal
energy density), Tk ( ) is the temperature-dependent diffusion
coefficient (see Section 2.3), ecr is the cosmic-ray energy
density, C is the radiative cooling term (see Section 2.2), HSN is
the supernova heating term (see Section 2.4), and ρb is the total
(gas and stars) baryon density.
We use the adaptive-mesh refinement MHD code FLASH4.2

(Fryxell et al. 2000; Dubey et al. 2008) extended to include
cosmic rays (Yang et al. 2012, 2013; Ruszkowski et al. 2017;
Yang & Ruszkowski 2017) to solve the above equations. We
utilize the directionally unsplit staggered mesh (USM) solver
(Lee & Deane 2009; Lee 2013). The USM solver is a finite-
volume, high-order Godunov scheme that utilizes constrained
transport to ensure divergence-free magnetic fields.
Due to computational constraints, we employ sound-speed

limiting. That is, we set a ceiling on the thermal and cosmic-ray
energy so that the time step does not become unfeasibly small.
Specifically, we impose an upper limit on the generalized
sound speed,
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In our fiducial runs, we limit cs to c 10s,lim
3= km s−1, but we

have additionally run test cases for c 2 10s,lim
3= ´ km s−1

and found no significant differences in the star formation rates
(c.f., Salem & Bryan 2014).
For the most expensive simulation, which employs the

decoupling mechanism (Run DEC; cf., Sections 2.3 and 3), we
use a raised density floor of 10−3 cm−3, which effectively
limits the Alfvén speed. In test cases that use reduced diffusion
coefficients (which are computationally easier), we found no
difference in the results between runs that used the raised
density floor of 10−3 cm−3 compared to the fiducial density
floor of 5×10−7 cm−3.

2.1. Gravity

We include self-gravity of baryons (gas and stars) and solve
the Poisson equation using the Barnes–Hut tree solver (Barnes
& Hut 1986) implemented in FLASH4.2 by Richard Wünsch
(Wünsch et al. 2018). This solver allows us to use mixed
boundary conditions (see Section 2.5).
In addition to self-gravity, we include acceleration in the

z-direction due to dark matter. This component of the
gravitational field assumes that dark matter is distributed
according to the Navarro–Frenk–White profile (Navarro
et al. 1997) and has the following form:
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where z is the height from the midplane, G is the universal
gravitational constant, M200 is the virial mass of the halo,
x z c r200= ∣ ∣ / , c is the halo concentration parameter, and r200
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is the virial radius defined as the radius of a sphere within
which the average density exceeds the critical density at

redshift zero by a factor of 200, i.e., M r 200200
4

3 200
3

critp r= . See
Table 1 for the parameter values used in our simulations.

2.2. Radiative Cooling

We implemented the Townsend (2009) exact cooling
method using the Rosen & Bregman (1995) piecewise
power-law form of the cooling function, which extends down
to a floor temperature of 300 K. The Rosen & Bregman (1995)
cooling function is an approximation to the Dalgarno &
McCray (1972) and Raymond et al. (1976) radiative cooling
functions and is given by
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where T is the gas temperature in K and Λ(T) is in units of
erg cm3 s−1. The above cooling function is approximately

correct for gas of solar abundance, which is completely ionized
at 8000 K. Unlike explicit or implicit solvers, the Townsend
integration scheme is exact and does not impose restrictions on
the cooling time step. Our tests confirm that the gas
temperature evolution computed using this method follows,
down to machine precision, the evolution predicted analytically
(see Appendix A).

2.3. Cosmic-Ray Decoupling from the Cold ISM

Cosmic rays can be efficiently confined to hot plasmas by
scattering off self-excited hydromagnetic waves (Kulsrud &
Pearce 1969; Kulsrud 2005). The relative drift speed of the
cosmic rays with respect to the plasma vD occurs at the local
Alfvén speed vA, unless the hydromagnetic waves are damped.
Kulsrud & Cesarsky (1971) have shown that ion–neutral
damping can significantly boost the relative drift velocity of
cosmic rays. Moreover, as the ionization fraction decreases, the
Alfvén speed vA∝(density of ionized particles)−1/2 increases.
Both of these effects lead to the decoupling of cosmic rays
from the low-temperature ISM.
Note that turbulent damping (Farmer & Goldreich 2004;

Lazarian 2016; P. Holguin et al. 2018, in preparation), linear
Landau damping (Wiener et al. 2018), and nonlinear Landau
damping (Kulsrud 2005) will also increase the relative drift
velocity of cosmic rays. All of these damping mechanisms
(including the ion–neutral damping explored in this work)
dissipate cosmic-ray streaming energy into heat. This will
affect the equation of state, which is different for the waves
(depending on the Alfvén Mach number), cosmic rays, and gas,
an effect we ignore in the present work.
We note that even in the presence of cosmic rays in the cold

ISM, the ionization fraction in most of this phase should be low
because it is mostly the low-energy (tens of MeV) cosmic rays
that are responsible for the ionization of hydrogen. The
ionization cross-section of these cosmic rays is very high
(Draine 2011), and consequently, they typically do not travel
far from the sites of their injection. This allows higher-energy
cosmic rays, which carry most of the energy of the cosmic-ray
fluid, to propagate in weakly ionized cold ISM where the
coupling is relatively weak.
The dynamics of cosmic-ray decoupling from the gas is

governed by kinetic theory, yet we model cosmic rays as a fluid
in order to perform simulations of tractable duration. The
expectation from kinetic theory is that cosmic-ray pressure and
energy density tend toward constant values in space when
decoupling operates (cf., Everett & Zweibel 2011, who also
model decoupling via a large diffusion coefficient). We model
the decoupling mechanism in the “extrinsic turbulence”
framework (Zweibel 2013) in which cosmic rays scatter off
waves generated by turbulence driven by external sources
rather than off the waves generated by the streaming instability.
In this model, cosmic-ray transport proceeds via diffusion
rather than streaming, and cosmic rays exert pressure on the gas
but do not heat it (Zweibel 2017).5

Cosmic-ray streaming and streaming heating were pre-
viously investigated in detail in Ruszkowski et al. (2017). They
found that the streaming speed (i.e., the boost factor f > 1)
significantly affects wind launching, while whether or not

Table 1

Model Parameters

Halo

M200
1( ) 1012Me

c(2) 12

Disk

ρo
(3) 5.24 10 24´ - gcm−3

zo
4( ) 0.325 kpc

o
5S( ) 100 Me pc−2

To
6( ) 104 K

B Bo o x
7

,=( ) 1 μG

Star Formation

nthresh
8( ) 10 cm−3

Tfloor
9( ) 300 K

m ,min
10

*

( ) 105 Me

SF
11 ( ) 0.05

Stellar Feedback

f 12

*

( ) 0.25

f
cr
13( ) 0.1

SN
14 ( ) 1051 erg/(Msfc

2
)

Msf
15( ) 100 Me

Note. From top to bottom, the rows contain the (1) halo mass, (2) concentration
parameter, (3) initial midplane density, (4) initial scale height of the gas disk,
(5) initial gas surface density, (6) initial temperature, (7) initial magnetic field
strength, (8) gas density threshold for star formation, (9) floor temperature,
(10) minimum stellar population particle mass, (11) star formation efficiency,
(12) fraction of stellar mass returned to the ISM, (13) fraction of supernova
energy bestowed upon cosmic rays, (14) supernova energy per rest-mass
energy of newly formed stars, and (15) rest-mass energy of newly formed stars
per supernova.

5 We have in mind here collisionless heating due to the excitation and
damping of Alfvén waves; the low-energy cosmic rays that ionize the gas also
collisionally heat it.
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streaming heating is included does not have any noticeable
impact on the results (M. Ruszkowski et al. 2017, private
communication). In this work, we focus on the influence of
decoupling on the transport speed.

In order to emulate the decoupling effect in the fluid model, we
adopt a simple treatment in which the parallel diffusion coefficient
is amplified to large values in low-temperature regions. This has
the same effect as increasing the effective transport speed in the
low-temperature gas as discussed above. As such, it will smooth
the gradients in cosmic-ray pressure and energy density, matching
the expectations from kinetic theory.

The parallel diffusion coefficient k∣∣ can be expressed as
κBohm/ò, where ò is the ratio of the scattering frequency of
cosmic rays on the waves generated by external turbulence to
the gyrofrequency c/rg, and r vgBohm

1

3 pk = is the Bohm
diffusion coefficient, rg is the gyroradius, and vp is the particle
speed (Schlickeiser 1989; Enßlin 2003). The scattering
frequency depends on the properties of the MHD turbulence
on scales comparable to rg. Since we are working in the
“extrinsic turbulence” model, the source of the magnetic field
perturbations capable of deflecting cosmic rays is most likely
compressive waves generated by the Goldreich–Sridhar
cascade down to this small scale (Yan & Lazarian 2002).
Frequent cosmic-ray scattering on these perturbations reduces
field-aligned diffusion. The scattering frequency is proportional
to δB2/B2, where δB2 is the power in the magnetic fluctuations
corresponding to the scale equal to rg. Thus, B B2 2k dµ∣∣ , and
we assume that when significant wave damping is present in
weakly ionized regions, the amplitude of the magnetic field
perturbations decreases, and the parallel diffusion coefficient is
boosted.

To illustrate that increasing the diffusion coefficient has the
desired effect of flattening the cosmic-ray energy density
distribution, let us consider a one-dimensional and steady-state
form of the cosmic-ray energy density equation with spatially
constant velocity v0. For the sake of simplicity, we also ignore
supernova heating in this example. In this case, the integration
of Equation (5) over z yields

de

dz
v e const. 10

cr
0 crk - = ( )

Let ez L
0k k= . In this example, low-temperature regions

correspond to large values of z. The solution of Equation (10),
which satisfies the boundary condition ecr=ecr,0 at z=0, is
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For z?L, ecr approaches a constant required to match the
behavior expected from kinetic theory. Moreover, if
v0L/κ0=1, the constant value is ecr≈ecr(0), as expected.
On the other hand, in the limit of z=L,
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which, as expected, matches the solution of an advection–
diffusion equation with a constant diffusion coefficient.

In order to capture the effect of decoupling, we implement in
the code the following simple dependence of the diffusion

coefficient on the gas temperature,

T
T

T

1.0 10 cm s if 10 K

3.0 10 cm s if 10 K,
13

29 2 1 4

27 2 1 4k = ´ <
´

-

-
⎧
⎨
⎩

( ) ( )

and set 3 1026k = ´^ cm2 s−1 for all temperatures. Here, κP
and κ⊥ denote the diffusion coefficient for cosmic-ray transport
parallel and perpendicular to the magnetic field, respectively.
The adopted cold gas value of the diffusion coefficient is

representative of the values inferred for the Galaxy, but the high-
temperature value of the coefficient is lower. However, our
volume-weighted diffusion coefficient is expected to lie in
between these limits and is comparable to that adopted by Booth
et al. (2013), Salem & Bryan (2014), and Ruszkowski et al.
(2017). This average value is somewhat smaller than the Galactic
value (c.f., Strong & Moskalenko 1998). However, the level of
diffusion inferred from observations depends on the assumptions
of the models used to quantify it. Specifically, diffusion
coefficients derived from the GALPROP propagation model
assume a spatially constant diffusion coefficient and/or often
assume the absence of winds. Interestingly, Ptuskin et al. (1997;
see also Zirakashvili et al. 1996) consider an analytic model that
includes both of these effects. They study cosmic-ray-driven
winds in which they treat streaming in the diffusion approx-
imation and include decoupling due to ion–neutral damping.
They find that the level of diffusion required for consistency with
the Galactic data is only ∼1027 cm2 s−1 outside the regions close
to the disk midplane, and significantly higher close to the disk
where decoupling operates. The vertical velocity gradient of the
cosmic-ray-accelerated wind in their model is large and similar to
the values predicted by simulations (e.g., Salem & Bryan 2014).
Furthermore, Jóhannesson et al. (2016); see also Trotta et al.
2011) demonstrate that propagation parameters derived from
low-mass isotope data differ significantly from those based on
light elements, e.g., B and C, suggesting that these species probe
different locations of the ISM where cosmic-ray transport may
occur at different rates, though their GALPROP models ignore
winds. Individual supernova remnants have also been used to
put constraints on the diffusion coefficient. These studies
suggested that the locally measured diffusion coefficient can be
around ∼1026 cm2 s−1 to ∼1027 cm2 s−1 when isotropic diffusion
is assumed and a somewhat larger 3 1027k ~ ´∣∣ cm2 s−1

(at 1 GeV) when anisotropic diffusion is assumed (e.g., Nava &
Gabici 2013 and references therein).
Our approximate treatment assumes that the gas is fully

ionized above 104K. The ionization level changes dramatically
near this temperature threshold, and we note that the results are
only weakly sensitive to the exact choice of this threshold.
Consequently, the exact form of the cooling function, and
specifically its dependence on the gas ionization near this
critical temperature, is not critical to our conclusions.
Although we implement decoupling by boosting κP by a

factor of 30 in regions with T<104K, we experimented with
larger boost factors and found that they did not significantly
affect the results. Since the computational time step is inversely
proportional to the diffusion coefficient, we decided to use
smaller boost factors to accelerate the computations. Tests of
the anisotropic diffusion module are presented in Appendix B.

4
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2.4. Star Formation and Feedback

We follow the star formation prescription of Cen & Ostriker
(1992; cf. Tasker & Bryan 2006; Bryan et al. 2014; Salem &
Bryan 2014; Li et al. 2015), in which stars form when all of the
following conditions are simultaneously met: (i) gas density
exceeds a threshold value of nthresh=10 cm−3

(Gnedin &
Kravtsov 2011; Agertz et al. 2013), (ii) flow is convergent
(∇· u<0), (iii) cooling time is smaller than the dynamical
time t G3 32 bdyn p r= ( ) or the temperature is below the floor
of the cooling function (see Section 2.2), and (iv) the cell gas
mass exceeds the local Jeans mass.

When the above conditions are met, we form a stellar
population particle6 instantaneously. The mass of the particle is
m*=òSF (dt/tdyn)ρdx

3, where dx is the size of the cell in
which the particle was formed, and òSF=0.05 is the star
formation efficiency (Tasker & Bryan 2006; Ruszkowski et al.
2017). Due to computational constraints, we prevent an
exceedingly large number of stellar population particles from
forming by using a minimum stellar mass m*,min=105 Me.
However, even when m*<m*,min, we still permit stars to
form with a probability of m*/m*,min and mass of m

*
=

dx0.8 3r . Whenever a stellar population particle forms, we
remove its mass from the gas the moment the stellar population
particle appears.

We model stellar feedback by adding to the ISM gas at the
rate of f m

*
˙ , thermal energy at the rate of f mc1 cr SN

2-( ) ˙ , and
cosmic-ray energy at the rate of f mccr SN

2 ˙ , where m =˙

m t texp2

*
t tD -D( ) and tmax , 10Myrdynt = ( ). In order

to conserve baryons during this time-dependent feedback
process, we reduce the stellar population particle mass at the
rate of f m

*
˙ . This mass exchange represents stellar mass loss

due to winds and supernovae. We use f*=0.25, fcr=0.1, and
10SN

51 = erg/(M csf
2), where òSN is the energy released by

supernovae per rest-mass energy corresponding to the mass in
newly formed stars Msf=100 Me (Guedes et al. 2011; Hanasz
et al. 2013; Ruszkowski et al. 2017), which corresponds to a
Kroupa (2001) initial mass function. Star formation and
feedback parameter choices are summarized in Table 1.

2.5. Simulation Setup

We simulate a slab of ISM, with box dimensions of
(2 kpc)2×40 kpc. This domain shape and size were motivated
by the results of Hill et al. (2012), who found that an extended
height was crucial in establishing a realistic halo temperature
distribution in their simulations. We employ periodic boundary
conditions on boundaries perpendicular to the disk and “diode”
boundary conditions on boundaries parallel to the disk. Diode
boundary conditions permit material to outflow from the
simulation box but prevent infall (cf., Sur et al. 2016). Note that
we ignore the magnetic field amplification due to rotational
shear, and our simulations somewhat enhance gravitational
instability since we ignore differential rotation. These caveats
are important to keep in mind; however, ignoring differential
rotation greatly simplifies the calculation without sacrificing its
main objectives.

We use static mesh refinement throughout the duration of the
simulations to maximize the resolution near the disk. Although
using static mesh refinement possibly underestimates the shock

heating of the halo gas and thus the temperature of the wind, it
does not affect our main conclusions (i.e., whether winds are
launched since it mainly depends on what happens close to the
disk, and the relative differences of wind properties among the
three transport cases presented below). We achieve a maximum
resolution of 31.25 pc in the disk. Beyond z 2>∣ ∣ kpc, our
resolution begins to degrade down to a minimum resolution
beyond z 4>∣ ∣ kpc of 250 pc. One of the factors limiting the
simulation time step is the magnetic-field-aligned diffusion.
Our maximum resolution is comparable to that achieved in
Girichidis et al. (2016), who also included magnetic-field-
aligned cosmic-ray diffusion but considered a lower maximum
value of the diffusion coefficient.
We initialize a constant temperature of 104K and a constant

magnetic field of strength 1.0 μG along the (horizontal)
x-direction throughout the computational volume. The initial
density distribution follows a vertical density profile given by

z
zsech

otherwise
, 14

z

z0
2

2 crit

crit

0r
r r r

r
=

>
⎧

⎨
⎪

⎩⎪
( )( )

( )
( )

where ρ0 is the midplane density, z0 is the scale height of the
gas disk, and ρcrit is the critical density of the universe. The
normalization constant ρ0 is obtained from the disk surface gas

density z dz0
20 kpc

20 kpc

ò rS =
-

( ) . See Table 1 for the adopted

parameter values. For a radially exponential gas distribution of
4.1×1010Me in baryons in a Milky Way-type galaxy with a
scale factor of 3.6 kpc (Booth et al. 2013), the adopted gas
surface density Σ0 corresponds to the gas surface density
averaged within a radius of ∼10 kpc from the Galactic center.
The initial setup is in rough hydrostatic equilibrium; that is,

the density distribution is such that there would be hydrostatic
equilibrium but for the gravity due to the NFW halo. However,
gravity due to the NFW halo is small compared to self-gravity
near the midplane. Consequently, gas rapidly accretes onto the
midplane early in the simulation. We show results for times
after 40Myr, after memory of the initial condition has been
forgotten.

3. Results and Discussion

We present results from three simulations, which include
self-gravity, radiative cooling, magnetic fields, star formation
and feedback, and cosmic-ray pressure forces, but differ in their
treatment of cosmic-ray transport: in run ADV, cosmic rays are
advected by gas motions and diffusive cosmic-ray transport is
ignored; in run DIF, cosmic rays are advected by gas motions
and additionally, the anisotropic diffusion of cosmic rays along
magnetic field lines with 3 1027k = ´ cm2 s−1 and k =^

3 1026´ cm2 s−1 is included; run DEC includes cosmic-ray
decoupling from low-temperature ISM treated via a temper-
ature-dependent diffusion coefficient as described in
Section 2.3.
In Figure 1, we show the projected gas densities in the

central z 6 kpc<∣ ∣ at ∼170Myr for each run. In the ADV run
(left panel), cosmic rays injected by supernovae are unable to
efficiently drive the dense gas away from the midplane. In this
case, cosmic rays remain trapped within the disk, provide
additional pressure support, and thus puff up the disk. In
contrast, in the DIF run (middle panel), cosmic rays are able to
diffuse away from the midplane and drive the more tenuous gas

6 Nota bene: a stellar population particle is representative of a star cluster, not
an individual star.
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located immediately above the midplane away from the disk,
thus producing a wind. In the DEC run (right panel), the effects
of stellar feedback are even stronger than in the DIF run—
faster cosmic-ray transport out of the ISM reduces cosmic-ray
pressure support near the midplane, which leads to enhanced
star formation rate, and thus, stronger feedback. This stronger
feedback, together with the fact that cosmic rays avoid dense
gas in the disk due to their decoupling from the cold ISM phase
and preferentially acting on more tenuous gas, leads to the
formation of hot, low-density bubbles extending up to±4 kpc
away from the midplane (see the right panel in Figure 1). The
timing of the snapshots shown in Figure 1 corresponds to the
period following the peak in star formation rate and was chosen
specifically to reveal the maximum spatial extent of the hot
bubbles.

Previous simulations also found that cosmic rays cannot
drive winds without diffusive transport (Jubelgas et al. 2008,
Uhlig et al. 2012; Simpson et al. 2016). However, the
formation of small-scale structure is resolution dependent.
We performed an additional ADV simulation at 15.625 pc
resolution and still found that no wind was produced.
Nevertheless, it is possible that at sufficiently high resolution,
the thermal energy from supernovae would carve out channels
in the gas density. The channels would allow the cosmic rays to
escape rather than puffing up the disk. This hypothesis will be
examined by future higher-resolution simulations, which can

better resolve high-density clumps within the disk (but this is
beyond the scope of the current work).
To better understand the impact of cosmic-ray decoupling on

the properties of the ISM, we next consider temperature–
density phase plots. Figure 2 shows these phase plots for
z 4<∣ ∣ kpc (bottom row) and z 4>∣ ∣ kpc (top row). The left
column shows results from the DIF run and the right from the
DEC run. All panels correspond to 170Myr. One of the most
striking differences between these phase plots is the difference
between the phase plots corresponding to z 4<∣ ∣ kpc. These
plots reveal that the low-density bubbles formed in the DEC
case (see the right panel in Figure 1) are very hot (106–107 K).
This feature is absent in the DIF case. We verified that the hot
underdense bubbles are present throughout the z 4<∣ ∣ kpc
region rather than being confined to smaller distances from the
midplane. These results also show that the gas in the DEC case
is on average hotter than that in the DIF case (i.e., even gas
with temperatures below 104 K is less abundant). As mentioned
above, this is a consequence of enhanced stellar feedback in the
DEC run. At z 4>∣ ∣ kpc (top panels), the maximum gas density
in the DEC case is lower compared to that in the DIF run. This
is consistent with the gas surface density distributions shown in
Figure 1. This could again be understood as being due to faster
cosmic-ray transport in the DEC case. This enhanced transport
forces cosmic rays to interact with relatively less dense disk
gas, which results in an outflow characterized by lower density.
Figure 3 shows the evolution of the vertical wind velocity (top

row), cosmic-ray number density (middle row), and magnetic
field strength (bottom row) as a function of height above the
midplane. All three variables are volume-weighted. The cosmic-
ray number density is computed from the simulation output
cosmic-ray energy density through ncr=[(n−4)/(n− 3)]
ecr/Emin, where n=4.5 is the slope of the cosmic-ray
distribution function in momentum, and Emin=1 GeV is the
minimum cosmic-ray energy.
From left to right, the columns show the results for the ADV,

DIF, and DEC cases. The profiles are shown from the beginning
of star formation at 50Myr to quiescence at 200Myr.
We begin the discussion of Figure 3 by considering the

vertical gas velocity. In the ADV case, inflows (positive/
negative “wind” velocity at negative/positive z) are present for
most of the simulation time. Note that regions at large heights
above the disk contain very little gas in this case. This has to be
contrasted with the DIF and DEC runs that are dominated by
outflows. Interestingly, the wind in the DEC case is faster than
that in the DIF case (e.g., compare the green-yellow curves
near 140Myr when the wind is about twice as fast in the
DEC run) and lasts longer. Both of these effects are the result
of stronger stellar feedback and the fact that it is easier to
accelerate lower-density gas in the DEC case.
Let us now consider the spatial distribution of cosmic rays

and magnetic fields (shown in the middle and bottom rows,
respectively). Cosmic rays are most tightly confined to the
midplane in the ADV case. This is consistent with our analysis
of the gas density projections (see the left panel in Figure 1).
On the other hand, in both DIF and DEC runs, the cosmic rays
are much more dispersed than in the ADV case; i.e., at large z∣ ∣,
the cosmic-ray number density is much greater for most of the
simulated time. Moreover, the DEC run exhibits a much wider
distribution of cosmic rays than that seen in the DIF case.
The trends seen in the evolution of the cosmic-ray

distribution are generally reflected in the evolution of the

Figure 1. Gas mass density projections along the y-direction (along the
midplane) for the inner z 6 kpc<∣ ∣ . The snapshots are taken at 170 Myr. Panels
show three cases that correspond to different treatments of cosmic-ray
transport: ADV (no cosmic-ray transport; left), DIF (magnetic-field-aligned
diffusion; middle), and DEC (temperature-dependent magnetic-field-aligned
diffusion to model cosmic-ray decoupling in the cold ISM; right). Strong wind
in the cases including transport, and the formation of large low-density cavities
due to strong feedback in the DEC case, is evident.
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magnetic field profiles. Specifically, the magnetic field
distribution is much broader in the simulations that include
cosmic-ray transport (DIF and DEC) compared to the ADV
case. However, the magnetic field strength is much stronger in
DEC than in DIF (except at very late times). In the DEC run,
cosmic-ray feedback is substantially more explosive than in the
DIF run, launching a strongly magnetized outflow.

While we initialize a unidirectional 1 μG magnetic field, that
initial field is quickly erased. In the inflow case (initial stage of
the ADV case), the field is simply accreted onto the midplane.
As we use diode boundary conditions (inflow through the top
and bottom boundaries is not permitted), accretion leads to the
reduction of the magnetic field in the regions away from the
midplane. Because no wind develops in this case, the gas
density above and below the midplane is also very low, as can
be seen in the left panel in Figure 1. Thus, we expect the results
in the ADV case to be unaffected by our assumption of a
spatially constant magnetic field, and an initial field decaying
with the distance from the midplane should lead to very similar
results. The bulk of the magnetic field amplification occurs
only near the midplane as a result of turbulent motions
associated with star formation and feedback. In the cases that
include transport (DIF and DEC), the field is also amplified in
the disk due to star formation and feedback, but following its
amplification, it is expelled from the disk. During the outflow,
the initial field is swept out of the simulation volume through
the outer boundaries. We do not expect our assumption
regarding the initial magnetic field to affect our conclusions in
these cases either. Thus, the system quickly loses memory of
the initial field configuration and strength. It is only in the cases
that include cosmic-ray transport that we expect significant
magnetization of the gas at large distances from the disk at late
times. This magnetization process occurs earlier in the DEC

case compared to the DIF case, because the wind speed is
larger in the former case.
The above differences between the evolution of the wind

velocity, gas density, temperature, magnetic field strength, and
cosmic-ray number density will lead to different observational
signatures. For example, we expect a stronger, spatially
extended soft X-ray emission when the decoupling mechanism
operates. The presence of such emission may mitigate the
problem reported by Peters et al. (2015), who found that
cosmic-ray-driven outflows eject too little hot gas to match the
soft X-ray background. Note that if streaming were additionally
included, the coupled regions would be collisionlessly heated
by cosmic rays, possibly producing even higher temperatures
and stronger soft X-ray emission.
Furthermore, elevated cosmic-ray number densities and

magnetic field strengths in the halo, combined with advection
times shorter than synchrotron cooling times, suggest a more
extended radio emission in the DEC case than in the DIF case.
However, we note that our simulations reflect the cosmic-ray
proton rather than the cosmic-ray electron distribution; cosmic-
ray electrons are subject to energy-dependent losses (synchro-
tron and inverse Compton cooling) which dominate the
nonthermal radio emission. We will investigate radio spectra
in future work (e.g., via a Lagrangian tracer particle approach
to follow the synchrotron aging of electrons comoving with
the wind).
Finally, as the decoupling reduces the amount of time cosmic

rays spend in the cold ISM phase, we expect that this
mechanism would have implications for the γ-ray emission due
to hadronic processes. We defer the study of these effects, and
the other observational signatures, to a future publication.
In Figure 4, we quantify the properties of the mass flow and

compare them to the star formation rates in the ADV (left

Figure 2. Temperature–density phase plots at 170 Myr for z 4<∣ ∣ kpc (bottom row) and z 4>∣ ∣ kpc (top row). The left column corresponds to Run DIF and the
right one to Run DEC.
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column), DIF (middle column), and DEC cases (right column).
The top row shows the evolution of the star formation rates
(solid red lines) and the mass outflow rates computed by
integrating mass fluxes through three different pairs of surfaces
parallel to the disk. These planes are positioned at±1 kpc
(dashed green lines), ±2.5 kpc (dotted–dashed blue lines),
and±5 kpc (dotted black lines). We find that there is
essentially no outflow in the ADV case, and the star formation
in this case is very weak. This is consistent with the findings of
a number of authors (e.g., Salem & Bryan 2014; Girichidis
et al. 2016; Simpson et al. 2016; Ruszkowski et al. 2017). In
this case, cosmic rays are confined to the dense disk and the
pressure forces they exert are too weak to expel the dense gas
from the galaxy. The enhanced pressure support in the disk
inhibits the collapse of cold gas clumps and thus significantly
suppresses star formation.

This picture is significantly altered when transport processes
are included in the simulations. We find that in the DIF case,
star formation is enhanced compared to the ADV case, and gas
is displaced from the midplane. We observe significant gas
outflow followed by some inflow (the signature of a fountain
flow). When the decoupling physics is included, the star
formation rate is enhanced further and an outflow is launched,
but there appears to be no inflow. Notice that not only is the

star formation peak highest in this case, but the duration of the
star formation episode is the longest. In the DIF and DEC
cases, there is a delay between the onset of star formation and
the outflow.
The star formation rate increases from ADV to DIF to DEC

due to decreasing cosmic-ray pressure support in the cold ISM
phase caused by faster cosmic-ray escape from the disk.
However, including energy-dependent losses of cosmic rays
could decrease the cosmic-ray pressure inside dense regions in
the ADV case. In such a case, cosmic rays would additionally
enhance the pressure in the ambient medium, boosting the star
formation rate in this case relative to the DIF or DEC cases
since the Bonnor–Ebert mass goes as P0

1 2- , where P0 is the
ambient pressure (Ebert 1955; Bonnor 1956). Thus, it is
possible that a treatment including energy-dependent losses of
cosmic rays would find a boosted star formation rate in the
ADV case relative to the DIF or DEC cases. We will
investigate the effect of energy-dependent cosmic-ray transport
in future work.
In the bottom row, we present the evolution of the integrated

mass-loading factor: the ratio of the integrated mass in the wind
mw to that in the stars m*. In the early stages of disk evolution,
the gas cools and quickly settles very close to the disk
midplane. Therefore, in measuring the wind mass, we delay the

Figure 3. Time series of profiles of the wind velocity (top row), the cosmic-ray number density (middle row), and the magnetic field strength (bottom row) as a
function of height above the midplane. All three variables are volume-weighted. From left to right, the columns show the results for the ADV, DIF, and DEC cases.
The time series span the range from 50 Myr (dark blue) to 200 Myr (dark red).
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integration of the disk mass until 40 Myr. This allows us to
exclude accretion through the set of planes positioned closest to
the disk (±1 kpc), which would appear as a negative wind
mass. Thus, this approach allows us to better quantify the true
amount of gas expelled to large distances from the midplane
over time.

In agreement with the findings presented in the first row, we
observe that in the ADV case, the integrated mass-loading
factor is very low when the mass flux is measured at ±5 kpc
from the disk. For smaller heights (±1 kpc), the integrated
mass loading is higher, and this simply reflects the fact that the
disk puffs up due to the increased pressure caused by the
inability of the cosmic rays to leave the disk.

As expected, in the cases that include cosmic-ray transport,
the integrated mass-loading factors are much larger compared
to the no-transport case. Surprisingly, the level of the integrated
mass-loading factors is roughly comparable in both the DIF
and DEC cases despite the differences in the transport physics
that lead to a number of important differences in the properties
of the outflows and their observational signatures. This can be
understood by the faster wind speed partially compensating for
the much lower gas density in the wind for DEC compared to
DIF. The DIF run exhibits integrated mass loadings of ∼0.3,
which is comparable to that found in other papers (e.g., Booth
et al. 2013), while the DEC run is somewhat smaller, ∼0.2.

4. Summary and Conclusions

We perform simulations of cosmic-ray feedback and its
impact on the launching of galactic winds. In our simulations,
we find that cosmic-ray transport is essential for driving
galactic winds by cosmic rays—in the absence of transport
effects, cosmic rays alone fail to drive winds, as found in
previous studies (Jubelgas et al. 2008; Uhlig et al. 2012;
Simpson et al. 2016).
However, a novel element of our simulations is that they

incorporate the effect of the ISM temperature on cosmic-ray
propagation. At low temperatures, when the gas ionization
fraction is low, ion–neutral friction can damp waves generated
by the cosmic-ray streaming instability, and cosmic rays can
propagate unimpeded through the ISM rather than scatter off
these waves; i.e., cosmic rays are said to be decoupled from the
ISM. Furthermore, low gas ionization leads to larger ion Alfvén
speed and consequently faster cosmic-ray transport. Both of
these effects result in faster cosmic-ray transport in the cold
ISM. We model this transport phenomenon by introducing
enhanced diffusion in low-temperature regions.
We note here that part of our motivation to treat decoupling

via diffusion rather than streaming is to enable comparisons to
previous work that also considered diffusion. Our work
generalizes previously obtained results by investigating the
impact of environment-dependent diffusion. It represents the

Figure 4. Evolution of the mass outflow rate and star formation rate (top row) and integrated mass loading (Mwind/M*; bottom row). Mass outflow rate is measured
using surfaces parallel to the disk midplane. Curves corresponding to mass outflow rates are labeled according to the heights (measured from the disk midplane) of
these surfaces (see the text for details).
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first attempt to approximate the effects of the decoupling of
cosmic rays from the low-temperature plasma on wind
launching and the properties of the outflow.

Our simulations focus on a patch of the galactic disk to
achieve a resolution higher than would be otherwise possible.
These simulations address a well-posed question of how
the star formation rates and wind properties are affected by the
decoupling of cosmic rays from the low-ionization phase of the
ISM. Our specific conclusions can be summarized as follows.

1. We observe the formation of low-density and high-
temperature bubbles in the simulation that includes
cosmic-ray decoupling from the ISM. This raises the
possibility that this case may result in enhanced soft
X-ray emission from edge-on galaxies undergoing intense
stellar feedback. We suggest that the formation of these
structures is due to a combination of the increase in (i) the
star formation rate and (ii) the effective cosmic-ray
transport speed. Our simulations show that faster
transport leads to the expulsion of more tenuous gas
from the galaxy because cosmic rays avoid cold and
dense gas clouds in the disk and preferentially act on
lower-density ISM.

2. Our simulations corroborate earlier findings that cosmic-
ray feedback reduces star formation rates. We emphasize
that this does not occur as a result of wind launching. In
fact, the impact of cosmic rays on star formation is
strongest when transport processes are ignored and no
wind is present. Our results are consistent with other
studies in that they demonstrate a monotonic trend for the
star formation to increase with the average cosmic-ray
transport speed. While the star formation rate could be
moderated by a number of model parameters, cosmic rays
play a very important role in shaping the properties of the
outflows and controlling star formation rates.

3. Simulations with decoupling exhibit significantly ele-
vated cosmic-ray number densities in the halo at all times
compared to the other cases. Combined with the fact that
the wind speed is generally faster in this case, and that the
advection times are shorter while the synchrotron cooling
times may be comparable to those observed in the case
without decoupling, we speculate that the wider spatial
distribution of cosmic rays may result in broader radio
halos when the decoupling physics is taken into
consideration.

4. Cosmic-ray decoupling reduces pressure support near the
galactic midplane due to faster cosmic-ray escape from
the cold ISM regions. This faster transport consequently
leads to increased star formation rates and further
injection of cosmic rays. This may have implications
for hadronic losses and associated γ-ray emission.

5. Compared to the simulations without temperature-depen-
dent cosmic-ray transport, in the simulation including
decoupling, the wind speeds are larger and the wind
duration is longer.

6. The magnetic fields amplified near the midplane, which
subsequently reach large distances away from the mid-
plane, are much stronger in magnitude in the simulation
including decoupling than in the case with diffusion.
Additionally, since the winds are faster in the decoupling
case, the dispersal of the magnetic fields occurs at earlier
times in this case.

7. While the simulations with decoupling exhibit faster wind
speeds compared to the case with diffusion, their winds
are characterized by lower gas density. Consequently,
wind mass-loading factors—quantified in terms of the
ratio of the integrated wind mass to the cumulative mass
in newly formed stars—appear to be roughly insensitive
to the physics of cosmic-ray transport.

8. Simulations with cosmic-ray transport included reveal the
presence of both fountain flows and net mass loss in
the wind.
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Appendix A
Exact Cooling Scheme Test

To test our implementation of the Townsend (2009) exact
integration radiative cooling scheme, we initialized gas of
constant density and temperature in a cubical box with periodic
boundary conditions. This setup ensured that, despite the fact
that the simulation included hydrodynamics, no gas flow
developed, and the only quantity with time dependence was the
temperature, which decreased due to radiative cooling.
To compare our implementation to an analytic solution, we

simplified the problem and considered only one branch of the
cooling function,

T T3.2217 10 erg cm s , 1527 0.5 3 1L = ´ - -( ) ( )

which corresponds to the uppermost temperature regime of the
Rosen & Bregman (1995) cooling curve.7 In this case, the
thermal energy equation de dt n Tg H

2= - L( ), where eg is
the thermal energy density and nH is the hydrogen number
density, has the following simple solution

T T
n

k
t

3.2217 10

3
, 16f i

H

B

27 2

= -
´ -⎡

⎣
⎢

⎤

⎦
⎥ ( )

where Tf is the temperature after an elapsed time t, Ti is the
initial temperature, and kB is the Boltzmann constant.
In the numerical test, we set T 10i

7= K and nH=1 cm−3,
and evolved the simulation for a few cooling times
t e n Tg Hcool

2= L[ ( )]. The agreement between the analytical

7 The full cooling function implemented in the code, and used in the
simulations presented in this paper, is given by Equation (9).
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result and the simulated solution obtained using the Townsend
method implemented in the code was excellent (see Figure 5).
The simulated temperature evolution agreed with the analytic
result to machine precision. Importantly, the temperature did
not overshoot the lowest temperature below which the cooling
function was set to zero. Other methods may suffer from the
overshooting problem in regions where cooling is fast and gas
temperatures are low.

Appendix B
Test of the Temperature-dependent

Cosmic-Ray Diffusion Module

In order to validate the cosmic-ray decoupling module that
we implemented, we performed the following test. We set up a
simulation with a temperature-dependent diffusion coefficient
κ such that κ(T)=T and T(x)=1 − x2. We used constant gas
density and vanishing gas velocity throughout the computa-
tional domain (note that all quantities are in code units). Our
spatial resolution was 64 zones in the x-direction, and the
temporal resolution was 10−5 time units. The initial cosmic-ray
energy density was initialized according to

e t x e
x x

0,
35 30 3

8
, 17cr cr,0

4 2

= = +
- +

( ) ( )

where ecr,0 is an arbitrary constant background cosmic-ray
energy density, and the last term in Equation (17) is the fourth-
order Legendre polynomial. These initial conditions are not
isobaric. Since we were interested in testing the implementation
of the diffusion module alone, we switched off hydrodynamics
in this test, which allowed us to ignore pressure forces.

Using the above initial conditions, we solved the diffusion
equation
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in a domain that was periodic in the x-direction. The domain
consisted of 64 zones and extended from 3 7- to 3 7 .
These endpoints were chosen to ensure that the initial
distribution of cosmic-ray energy density had a vanishing
slope at the boundaries of the periodic domain. This allowed us

to eliminate jumps in the energy density of cosmic rays at the
boundaries. We then compared our solution to the analytic
solution of Equation (18) given by

e t x e
x x

t,
35 30 3

8
exp 20 . 19cr cr,0

4 2

= +
- +

-( ) ( ) ( )

Our simulated solution was in perfect agreement with the
analytical solution (see Figure 6), validating the implementa-
tion of the decoupling module.
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