Towards an understanding of CO₂ microsolvation: Microwave spectroscopy of CO₂ complexes with fluoroethylenes

Rebecca A. Peebles,^a <u>Ashley N. Anderton</u>,^a <u>Cori L.</u> <u>Christenholz</u>,^a <u>Rachel E. Dorris</u>,^a Prashansa B. Kannangara,^a William C. Trendell,^a Brooks H. Pate,^b Sean A. Peebles^a

^{*a*} Department of Chemistry, Eastern Illinois University, Charleston, IL, USA ^{*b*} Department of Chemistry, University of Virginia, Charlottesville, VA, USA

Motivation

- a) C-H^{...}O interactions
- b) How do interactions change with degree of fluorination?
- c) Can we understand relative stabilities of different structures?
- a) How do interactions

change as a solvation shell is built?

- d) Supercritical CO₂
 - Unique solvent properties
 - Especially for fluorocarbons
- e) Can we understand b) and c) well enough to begin to better predict sc-CO₂'s solvent properties, d)?

pubs.acs.org/JPCL

Letter

Structural Evolution of Supercritical CO₂ across the Frenkel Line

Dima Bolmatov,*^{,†} D. Zav'yalov,[‡] M. Gao,[¶] and Mikhail Zhernenkov[§]

[†]Baker Laboratory, Cornell University, Ithaca, New York 14853, United States [‡]Volgograd State Technical University, Volgograd, 400005 Russia [¶]Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom [§]Brookhaven National Laboratory, Upton, New York 11973, United States

ABSTRACT: Here, we study structural properties of the supercritical carbon dioxide and discover the existence of persistent medium-range order correlations, which make supercritical carbon dioxide nonuniform and heterogeneous on an intermediate length scale.

due to localization of transverse-like phonon packets. Importantly, we highlight a catalytic role of atoms inside of the nearest-neighbor heterogeneity shell in providing a mechanism for diffusion and proving the existence of an additional thermodynamic boundary in the supercritical carbon dioxide on an intermediate length scale. Finally, we discuss important implications for answering the intriguing question whether Venus may have had CO_2 oceans and urge for an experimental detection of this persistent local-order heterogeneity.

SECTION: Liquids; Chemical and Dynamical Processes in Solution

D. Bolmatov, et al., J. Phys. Chem. Lett. 5 (2014) 2785.

"We report on the CO₂ heterogeneity shell structure where, in the first shell, both carbon and oxygen atoms experience gas-like-type interactions with short-range order correlations while within the second shell, oxygen atoms essentially exhibit a liquid-like type of interactions..."

How do students connect?

- Concepts from General Chemistry

 - Polarity N O F
- Environmental/green aspect
- Identifying trends in data
- Basic process involves pattern matching
 - Anyone can do it; deeper understanding follows
- Chemical knowledge/intuition used to set up *ab initio* optimizations

D. A. Obenchain, A. A. Elliott, A.L. Steber, R. A. Peebles, S. A. Peebles, C. J. Wurrey, G. A. Guirgis, *J. Mol. Spectrosc.* 261 (2010) 35.

- Reduced Bandwidth Chirped-Pulse Fourier-Transform Microwave (CP-FTMW) Spectrometer
- 480 MHz bandwidth
- Scan in 240 MHz steps
- Calculate absolute frequencies and assemble into full 11 GHz spectrum using LabVIEW
- Typically scan a full (10k average) spectrum in 1 day

Fluoroethylene...CO₂

Two isomers!

C. Christenholz, et al, J. Phys. Chem. A 118 (2014) 8765.

Difluoroethylene...CO₂

A. Anderton, et al, J. Phys. Chem. A 120 (2016) 247.

Trifluoroethylene and cis-1,2-Difluoroethylene

- Trifluoroethylene:
 - Above structure would not converge

- Only side binding observed
- *cis*-1,2-Difluoroethylene:
 - Only side binding was predicted
 - Consistent with all previous dimers in the series
 - No spectrum consistent with side binding observed
 - Now what?

Spectroscopic Constants

		Normal	Ab Initio	¹³ CO ₂	¹³ CH	¹³ CF	C ¹⁸ O ₂
FE	A / MHz	9644.5725(17)	9550	9639.7765(32)			
Side	<i>B</i> / MHz	1423.1498(6)	1372	1409.3202(6)	≻-₹		
	C / MHz	1242.6365(4)	1200	1232.0001(6)			
FE	•••	6828.4038(16)	6668	6823.9970(29)	6751.89(19)	6813.77(20)	
Тор		1723.3735(15)	1661	1705.9257(6)	1694.3780(8)	1697.9307(8)	
	\succ	1379.3127(13)	1330	1367.9294(7)	1357.6309(8)	1362.4362(8)	
DFE	•••	5696.6440(9)	5672	5696.3890(5)	5571.7612(31)	5696.1818(31)	5394.5195(23)
Тор		1121.85748(24)	1130	1108.8034(4)	1116.1018(5)	1115.6321(5)	1072.0180(5)
	\succ	939.4186(4)	942	930.23834(32)	931.9529(4)	935.0380(4)	896.2158(5)
TFE	A / MHz	5355.7872(21)	5285		5281.922(33) ^a	5189.5777(16) ^b	5111.218(3)
Side	<i>B</i> / MHz	696.4235(3)	703		674.428(18)	685.2672(8)	664.5307(11)
	C / MHz	617.3247(2)	621		599.057(7)	606.3258(2)	589.0155(8)

^{*a*} C¹⁸O¹⁶O (¹⁸O near F) ^{*b*} C¹⁶O¹⁸O (¹⁸O near H)

Comparison...

Structure

				•		G 0	•
	rved	0-		Predi	cted	•	
A / MHz	3810.154(14)	3809.984(14)		3734.7		8002.3	
<i>B</i> / MHz	1614.4404(25)	1614.4991(22		1559.1		868.2	
C / MHz	1456.786(14)	1456.	867(14)	1403.4		783.2	
<i>P_{aa} /</i> u Ų	263.655(2)	263.	637(2)	274.5		582.1	
<i>P_{bb}</i> / u Ų	83.259(2)	83.258(2)		85.6		63.2	
<i>P_{cc} /</i> u Ų	49.382(2)	49.3	388(2)	49.7		0.0	
μ_a / D	2.13(3)			<u> </u>			
μ_{b} / D	0.00		P _{aa} tor	$_{g}$ for DFE = 85.30534(4) u A ²			
μ_c / D	1.13(4)			1.4		0.0	
$\mu_{ m tot}$ / D	2.41(5)						

Monomer rotational constants: N. C. Craig, *et al*, *Int. J. Quantum Chem.*, **95**, (2003), 837. Monomer dipole moment: V. W. Laurie, *J. Chem. Phys.*, **34**, (1961), 291.

Gaussian 09: MP2/6-311++G(2d,2p)

- What's next?
 - Symmetry adapted perturbation theory (SAPT)
 - Better understanding of energetics
- Larger clusters...

XCO ₂ [kJ mol ⁻¹] X =	E _{es}	E _{ind}	E _{disp}	E _{ex}	E _{SAPT}	E_{MP2} (BSSE)
FE (side)	-8.33 (52.0%)	-1.34 (8.3%)	-6.36 (39.7%)	8.33	-7.70	-6.41
FE (top)	-7.78 (49.7%)	-1.30 (8.2%)	-6.61 (42.1%)	8.03	-7.66	-6.30
FE (above)	-6.65 (42.5%)	-0.96 (6.1%)	-8.02 (51.3%)	8.43	-7.19	-6.44
1,1-DFE (top)	-5.69 (44.8%)	-1.00 (7.8%)	-6.02 (47.4%)	6.49	-6.22	-5.10
1,1-DFE (above)	-4.43 (34.8%)	-0.78 (6.1%)	-7.50 (59.1%)	7.35	-5.35	-4.86
<i>cis</i> -1,2-DFE (side)	-7.91 (51.0%)	-1.34 (8.6%)	-6.28 (40.5%)	7.99	-7.54	-6.33
cis-1,2-DFE (above)	-7.29 (44.6%)	-1.11 (6.8%)	-7.96 (48.7%)	8.38	-7.97	-6.81
TFE (side)	-7.61 (50.2%)	-1.30 (8.5%)	-6.23 (41.3%)	7.82	-7.32	-6.16
TFE (top)	-6.11 (45.7%)	-1.21 (9.0%)	-6.07 (45.3%)	6.78	-6.61	-5.39
TFE (above)	-5.84 (41.2%)	-0.87 (6.1%)	-7.47 (52.7%)	7.52	-6.66	-5.69

Table adapted from: R. Dorris, et al, J. Phys. Chem. A, **120**, (2016), 7865.

MP2/6-311++G(2d,2p) using Gaussian 09

New Fluoroethylene-CO₂ Scan – 1 million FIDs

				•••		
	То	p-above	Sic	Side-above		Side-top
A / MHz	1618.3	1552.1048(9)	1734.3	1660.3513(1)	2933.3	1626.9
<i>B</i> / MHz	1173.9	1169.4589(4)	1107.4	1109.7647(1)	643.5	922.8
C / MHz	881.2	847.2575(3)	808.4	785.7773(1)	609.4	588.8
<i>P_{aa} /</i> u Ų	345.9	351.5135(3)	395.1	397.08513(4)	721.2	547.6
<i>Р_{bb} /</i> и Ų	227.7	244.9746(3)	230.1	246.07297(4)	108.1	310.7
<i>P_{cc} /</i> u Ų	84.6	80.6342(3)	61.3	58.30781(4)	64.2	0.0
μ_a / D	1.1	Strongest	0.8	Medium	0.0	0.03
μ_{b} / D	1.0	Less Strong	0.8	Medium	0.5	1.5
μ_c / D	0.7	Weak	1.1	Stronger	1.5	0.0
∆ <i>E</i> / cm ⁻¹	24		0		319	387

Larger Clusters?

- Two FE-CO₂-CO₂ trimers observed

 Nearly isoenergetic
- Tetramer? Pentamer?

 Image: Second se

– S/N probably borderline in current spectrum

- Pentamer Add a second "Above" CO₂?
- Hexamer?

Summary and Future Work

Extended cross correlation: A technique for spectroscopic pattern recognition

6

Acknowledgements

- National Science Foundation
 - RUI1214070 (2012-2017)
 - RUI1664900 (2017-2020)

- Pate Group (University of Virginia)
- Eastern Illinois University

- Collaborators:
 - Prof. Nasser Moazzen-Ahmadi (IR, Calgary)
 - Prof. Steve Scheiner (Theory, Utah State)

