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Abstract

The search for multivariate quadrature rules of minimal size with a specified polynomial accuracy has been the topic of many

years of research. Finding such a rule allows accurate integration of moments, which play a central role in many aspects of scientific

computing with complex models. The contribution of this paper is twofold. First, we provide novel mathematical analysis of the

polynomial quadrature problem that provides a lower bound for the minimal possible number of nodes in a polynomial rule with

specified accuracy. We give concrete but simplistic multivariate examples where a minimal quadrature rule can be designed that

achieves this lower bound, along with situations that showcase when it is not possible to achieve this lower bound. Our second

contribution is the formulation of an algorithm that is able to efficiently generate multivariate quadrature rules with positive weights

on non-tensorial domains. Our tests show success of this procedure in up to 20 dimensions. We test our method on applications

to dimension reduction and chemical kinetics problems, including comparisons against popular alternatives such as sparse grids,

Monte Carlo and quasi Monte Carlo sequences, and Stroud rules. The quadrature rules computed in this paper outperform these

alternatives in almost all scenarios.

c� 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Let D ⇢ R
d be a domain with nonempty interior. Given a finite, positive measure µ on D and a µ-measurable

function f : D! R, our main goal is computation of
Z

D

f (x)dµ(x)
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The need to evaluate such integrals arise in many areas, including finance, stochastic programming, robust design and

uncertainty quantification. Typically these integrals are approximated numerically by quadrature rules of the form

Z

D

f (x)dµ(x) ⇡
MX

m=1

wm f (xm) (1)

Examples of common quadrature rules for high-dimensional integration are Monte Carlo and quasi Monte Carlo

methods [1–4], and Smolyak integration rules [5–7]. Quadrature rules are typically designed and constructed in

deference to some notion of approximation optimality. The particular approximation optimality that we seek in this

paper is based on polynomial approximation.

Our goal is to find a set of quadrature nodes x j 2 D, j = 1, . . . , M , and a corresponding set of weights w j 2 R

such that

MX

j=1

w j p
�
x j

�
=

Z

D

p(x)dµ(x), p 2 PΛ, (2)

where Λ ⇢ N
d
0 is a multi-index set of size N , and PΛ is an N -dimensional polynomial space defined by Λ. (We make

this precise later.) PΛ can be a relatively “standard” space, such as the space of all d-variate polynomials up to a given

finite degree, or more exotic spaces such as those defined by `p balls in index space, or hyperbolic cross spaces.

In this paper we will present a method for numerically generating polynomial based cubature rules. This paper

provides two major contributions to the existing literature. Firstly we provide a lower bound on the number points that

make up a polynomial quadrature rule satisfying (2). Our analysis is straightforward, but to the authors knowledge

this is the first reported bound of its kind. Our second contribution is a numerical method for generating quadrature

rules that are exact for a set of arbitrary polynomial moments. Our method has the following features:

• Positive quadrature rules are generated. (I.e., wm > 0 for all m.)

• The algorithm applies to any measure µ for which moments are computable. Many existing quadrature methods

only apply to tensor-product measures; for non-tensorial integrals this requires construction of mappings to

transform integrals over non-tensorial domains to integrals over tensorial domains. Our method can construct

quadrature rules for measures with, for example, non-linear dependence between variables, without the use of

mappings or transformations.

• Analytical or sample-based moments may be used. In some settings it may be possible to compute moments

of a measure exactly, but in other settings only samples from the measure are available. For example, one may

wish to integrate a function using Markov Chain Monte Carlo-generated samples from a posterior of a Bayesian

inference problem.

• A quadrature that is faithful to arbitrary sets of moments may be generated. Many quadrature methods are

exact for certain polynomial spaces, for example total-degree or sparse grid spaces. However, some functions

may be more accurately represented by alternative polynomial spaces, such as hyperbolic cross spaces. In these

situations it may be more prudent to construct rules that can match a customized set of moments.

• Efficient integration of ridge functions is possible. Some high-dimensional functions can be represented by

a small number of linear combinations of the input variables. In this case it is more efficient to integrate

these functions over this lower-dimensional coordinate space. Such a dimension-reducing transformation

typically induces a new measure on a non-tensorial space of lower-dimensional variables. For example, a high-

dimensional uniform probability measure on a hypercube may be transformed into a non-uniform measure on

a zonotope (a multivariate polygon).

Our algorithm falls into the class of moment-matching methods. There have been some recent attempts at

generating quadrature using moment matching via optimization approaches. These methods frequently either start

with a small candidate set and add points until moments are matched [8], or start with a large set of candidate

points and reduce them until no more points can be removed without numerically violating the moment conditions

[9–11]. These approaches sometimes go by other names, such as scenario generation or scenario reduction methods.

Our numerical strategy is novel and our results show that it is rather effective, but we do not ameliorate persistent

bottlenecks in computing multivariate quadrature rules: The difficulty of computing high-degree quadrature rules

scales commensurately with the dimension of the polynomial space, and this dimension can generally grow
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exponentially with dimension. Also, in high dimensions we require nonconvex optimization in high dimensions, and

cannot guarantee that our procedure converges to a global minimum.

This paper presents a quadrature/scenario reduction moment matching method based upon the work in [9]. The

method in [9] is comprised of two steps. The first step generates a positive quadrature rule with M = N points (N is

the dimension of PΛ in (2)), the existence of which is guaranteed by Tchakaloff’s theorem [12]. The second step uses

this quadrature rule as an initial guess for a local gradient-based optimization procedure that searches for a quadrature

rule with M < N points.

The initial quadrature rule is generated by drawing a large number of points from the domain of integration and

then solving an inequality-constrained linear program to find a quadrature rule with positive weights that matches

all desired moments. Similar approaches can be found in [13,14]. The N points comprising this initial quadrature

rule are then grouped into M  N clusters. A new approximate quadrature rule is then formed by combining points

and weights within a cluster into a single point and weight. Our numerical method differs from [9] in the following

ways: (i) we use a different formulation of the linear program to generate the initial quadrature rule; (ii) we show

numerically that this quadrature only needs to be solved with very limited accuracy, (iii) we present an automated way

of selecting the clusters from the initial rule — in [9] no method for clustering points is presented; (iv) we provide

extensive numerical testing of our method in a number of settings.

The theoretical contributions of this paper include a lower bound on the number of points in the final quadrature

rule, and a lower bound for the size of minimal quadrature rules (i.e., minimal quadrature rules are those the smallest

possible number of nodes for a specified accuracy). We also provide a simple means of testing whether the quadrature

rules generated by any method are minimal.

The remainder of the paper is structured as following. In Section 2 we introduce some nomenclature, derive our

lower bound, and present a means to verify if a quadrature rule is minimal. We also use these theoretical tools to

analytically derive minimal rules for multivariate functions that are sums of univariate functions. In Section 4 we

detail our algorithm for generating quadrature rules. We then present a wide range of numerical examples, in Section 5,

which explore the properties of the quadrature rules that our numerical algorithm can generate.

1.1. Existing quadrature rules

In this section we focus our review on polynomial-based quadrature rules. Although other types of quadrature rules

certainly exist, we only mention them briefly when a comparison against polynomial-based approaches is relevant.

For univariate functions Gaussian quadrature is one of the most commonly used approaches. Nodes associated to

Gaussian quadrature rules are prescribed by roots of polynomials pairwise orthogonal with respect to the measure

µ [15]. The resulting quadrature rule is always positive and the rules are optimal in the sense that given a Gaussian

quadrature rule of degree of exactness k, no rule with fewer points can be used to exactly integrate all degree-k

polynomials.

When integrating multivariate functions with respect to tensor-product measures on a hypercube accurate and

efficient quadrature rules can be found by taking tensor-products of one-dimensional Gaussian quadrature rules. These

rules will be optimal for functions that can be represented exactly by tensor-product polynomial spaces of degree p.

The accuracy of tensor-product integration of (1) generally scales like M�r/d , where r indicates the maximum order

of continuous partial derivatives in any direction [16]. In practice the use of tensor-product quadrature rules is limited

to a small number of dimensions, say 3–4, because the number of the points in the rule grows exponentially with

the dimension. Finally, if µ and/or D are non-tensorial, but may be smoothly mapped to a tensorial domain D̃ and

measureeµ, then a common strategy is to generate a quadrature rule on (D̃,eµ) and map it back to (D, µ) for use there.

This, of course, requires the ability to map (D, µ) to a tensorial configuration, which can be challenging in multiple

dimensions.

Sparse grid quadrature methods have been successfully used as an alternative to tensor-product quadrature for

multivariate functions [5–7]. Sparse grid quadrature delays the curse of dimensionality by focusing on integrating

polynomial spaces that have high-degree univariate terms but low-degree interaction terms. For sparse grids consisting

of univariate quadrature rules with O(2l) points at level l, the number of points in the level-l sparse grid scales like

O(2lld�1) [5]. For some functions of interest sparse grids can achieve a similar error to that obtained when using

tensor product quadrature rules of level l; however unlike tensor-product rules the quadrature weights will not all be

positive.
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High-dimensional cubature rules can often be more effective than sparse grid rules when integrating functions that

are well represented by total-degree polynomials. These rules have positive weights and typically consist of a very

small number of points. However such highly effective cubature rules are difficult to construct and are have only been

derived for a specific set of measures, integration domains and polynomial degree of exactness [17–20].

Polynomial based quadrature rules are useful when the integrand f has high-regularity. However when the

function has less regularity, such as piecewise continuity, alternative rules based upon other basis functions, such

as piecewise polynomials may be more effective. For example, composite quadrature rules are popular: Simpson’s

rule for univariate functions; sparse grids, based upon piecewise polynomials, for multivariate functions [21]; and the

numerous adaptive versions of these methods e.g. [22]

When the above quadrature methods become intractable due to the curse of dimensionality, Monte Carlo (MC)

and quasi Monte Carlo (QMC) approaches can be effective. These approximations produce convergence rates of

O(M�
1
2 ) and O(log(M)d M�1), respectively [23]. MC points are random, selected as independent and identically-

distributed realizations of a random variable, and QMC points are deterministically generated as sequences that

minimize discrepancy.

2. Minimality in multivariate polynomial quadrature

A quadrature rule is minimal if no other rule exists with a smaller number of nodes can have identical (or greater)

accuracy. The goal of this section is to mathematically codify relationships between minimality, the number of

quadrature points M and the dimension N of the polynomial space PΛ. In particular, fixing Λ, we provide a theoretical

lower bound for M and show that achieving the lower bound is a sufficient condition for minimality of a quadrature

rule, but minimal quadrature rules can have size exceeding this lower bound (see Section 3).

2.1. Notation

With d � 1 fixed, we consider a positive measure µ on R
d with support D = supp µ. This support may be

unbounded. The L2
µ(D) inner product and norm are defined as

h f, giµ :=

Z

D

f (x)g(x)dµ(x), k f k2
µ = h f, f iµ, L2

µ(D) =
�

f : D! R | k f k2
µ <1

 

To prevent degeneracy of polynomials with respect to µ and to ensure finite moments of µ we assume

0 < kqkµ <1, (3)

for all nonzero algebraic polynomials q(x). One can guarantee the lower inequality if, for example, there is any open

Euclidean ball in D inside which µ has a positive density function.

Let the coordinate representation of a point x in R
d be x =

�
x (1), . . . , x (d)

�
2 R

d , then for a multi-index ↵ 2 N
d
0

with coordinates ↵ =
�
↵(1), . . . ,↵(d)

�
, we have ↵! =

Qd
j=1↵

( j)! and x↵ =
Qd

j=1

⇥
x ( j)

⇤↵( j)

.

If ↵, � 2 N
d
0 are any two multi-indices and k 2 R, we define ↵ + �, k↵, and bk↵c component wise. The partial

ordering ↵  � is true if all the component wise conditions are true. Letting Λ ⇢ N
d
0 denote a multi-index set of finite

size N , we define the following standard properties and operations on multi-index sets:

Definition 2.1. Let Λ and Θ be two multi-index sets, and let k 2 [0,1).

(Minkowski addition) The sum of two multi-index sets is

Λ + Θ = {↵ + � | ↵ 2 Λ, � 2 Θ}

(Scalar multiplication) The expression kΛ is defined as

kΛ = {k↵ | ↵ 2 Λ} .

Note that this need not be a set of multi-indices.

(Downward closed) Λ is a downward closed set if ↵ 2 Λ implies that � 2 Λ for all �  ↵.

(Downward closure) For any finite Λ, Λ̄ is the smallest downward closed set containing Λ,

Λ̄ =
�
↵ 2 N

d
0 | ↵  � for some � 2 Λ

 
.
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(Convexity) Λ is convex if for every ↵, � 2 Λ and for all � 2 [0, 1] such that � ↵ + (1 � �)� 2 N
d
0 , then

�↵ + (1� �)� 2 Λ.

With our notation, scalar multiplication is not consistent with Minkowski addition. In particular we have 2Θ ✓
Θ + Θ in general. If Λ is downward closed, then Λ̄ = Λ.

The polynomial space PΛ is defined by a given multi-index Λ:

PΛ = span {x↵ | ↵ 2 Λ} , |Λ| = N ,

and PΛ has dimension N in L2
µ(D) under the assumption (3). Note that we make no particular assumptions on the

structure of Λ. I.e., we do not assume Λ is downward closed, but much of our theory and all our numerical examples

use downward closed index sets.

On N
d
0 , we will make use of the `p quasinorm k·kp for 0  p  1, and the associated ball Bp(r ) of radius r � 0

to define index sets. These sets are defined by

Bp(r ) =
�
↵ 2 N

d
0 | k↵kp  r

 
.

The `p quasinorms are defined for p = 0, 0 < p <1, and p =1 by, respectively,

k↵k0 =

dX

j=1

1↵ j 6=0, k↵kp
p =

dX

j=1

↵
p

j , k↵k1 = max
1 jd

↵ j .

The index sets Bp(r ) are all downward closed, and are convex if p � 1. The set B0(r ) equals Nd
0 when r � d.

2.2. Minimal quadrature

With M fixed, the theoretical and computational tractability of computing a solution to (2) depends on Λ, D, and µ.

In particular, it is unreasonable to expect that Λ can be arbitrarily large; if this were true, then µ can be approximated

to arbitrary accuracy by a sum of M Dirac delta distributions, which would allow us to violate the lower inequality

in (3). There is a strong heuristic that motivates the possible size of Λ: The set {x1, . . . , xM} represents Md degrees

of freedom, and varying w j ( j = 1, . . . , M) represents an additional M degrees of freedom. For an N -dimensional

space PΛ, (2) can be ensured with N constraints. Thus we expect for general (µ, D) that Λ (and thus N ) must be small

enough to satisfy

|Λ| = N  (d + 1)M. (4)

We will show that this heuristic does not always produce a faithful bound on sizes of quadrature rules; we provide

instead a strict lower bound on the number of points M in a quadrature rule for a given Λ. To proceed we require the

notion of ‘half-sets’.

Definition 2.2. Let Λ 2 N
d
0 be a finite, nontrivial, downward-closed set. A multi-index set Θ is

1. a half-set for Λ if Θ + Θ ✓ Λ

2. a maximal half-set for Λ if it is a half-set of maximal size. I.e, if |Θ | = L , with

L = L(Λ) = max {|Θ | | Θ a multi-index set satisfying Θ + Θ ✓ Λ} (5)

We call L the maximal half-set size of Λ.

Recall that 2Θ ✓ Θ + Θ so that the terminology “half” should not be conflated with the operation of halving

each index in an index set. If Λ is not downward closed, it may not have any half sets. However, all nontrivial

downward-closed sets have at least one nontrivial half-set (the zero set {0} is one such half set). Thus maximal half

sets always exist in this case, but they are not necessarily unique. An example in d = 2, depicted in Fig. 1, illustrates

this non-uniqueness. Specifically let

Λ = B0(1) \ B1(3) = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (2, 0), (3, 0)} ,

Θ1 = {(0, 0), (1, 0)} , Θ2 = {(0, 0), (0, 1)} .

For this example L(Λ) = 2 and both Θ1 and Θ2 are maximal half sets for Λ.

If Λ is both downward-closed and convex, then its maximal half-set is unique and easily computed.
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Fig. 1. (Left) Index set Λ = B0(1) \ B1(3) (blue and gray) and half sets Θ j =
�
0, e j

 
(gray), for j = 1 (red dashed line) and j = 2 (green

dotted line), where e j is the cardinal unit vector in the j th direction in N
2
0. (Right) Index set Λ = B1(2) (blue and gray) and unique half set

Θ = {(0, 0), (0, 1), (1, 0), (1, 1)} (gray). (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

Theorem 2.1. Let Λ be convex and downward-closed. Then its maximal half-set Θ is unique, given by Θ =
⌅

1
2
Λ
⇧

.

Proof. Let Θ be any half-set for Λ. Then for any ✓ 2 Θ , we have 2✓ 2 Λ, so that ✓ 2
⌅

1
2
Λ
⇧

. Thus Θ ✓
⌅

1
2
Λ
⇧

,

showing that any half-set must be contained in
⌅

1
2
Λ
⇧

.

Now let ✓1, ✓2 2
⌅

1
2
Λ
⇧

. Then 2✓1, 2✓2 2 Λ̄ = Λ. Thus,

✓1 + ✓2 =
1

2
(2✓1) +

1

2
(2✓2) 2 Λ,

where the set inclusion holds since ✓1 +✓2 2 N
d
0 , and since Λ is convex. Thus,

⌅
1
2
Λ
⇧

is itself a half-set; by the previous

observation that it also dominates any half-set, then it must be the unique largest (maximal) half-set. ⇤

We can now state one of the main results of this section: The number L(Λ) in (5) is a lower bound on the size of

any quadrature rule satisfying (2).

Theorem 2.2. Let Λ be a finite downward-closed set, and suppose that an M-point quadrature rule
�

x j , w j

 N

n=1
exists satisfying (2). Then M � L(Λ), with L the maximal half-set size defined in (5).

Proof. Let Θ be any set satisfying Θ + Θ ✓ Λ and |Θ | = L , with L defined in (5). We choose any size-L

µ-orthonormal basis for PΘ :

PΘ = span
�
q j

 L

j=1
,

Z
q j (x)qk(x)dµ(x) = �k, j

Note that q j and qk have monomial expansions

q j (x) =
X

↵2Θ

c↵x↵, qk(x) =
X

↵2Θ

d↵x↵,

for fixed j, k = 1, . . . , N and some constants c↵ and d↵ . This implies

q j (x)qk(x) =
X

↵,�2Θ

c↵d� x↵+� =
X

↵2(Θ+Θ)

f↵x↵.

Since Θ is a half set for Λ, then q j qk 2 PΛ and is therefore exactly integrated by the quadrature rule (2).

Then consider the L ⇥ L matrix G defined as

G = V
T

WV, (G) j,k =

MX

m=1

wmq j (xm)qk(xm)

(V ) j,k = qk(x j ), (W ) j,k = w j� j,k . (6)

The matrices V and W are M ⇥ L and M ⇥ M , respectively. Since the quadrature rule exactly integrates q j qk , then

G = I, the L ⇥ L identity matrix. Thus, the matrix product V
T

WV has rank L . If M < L then, e.g., rank(W) < L and

so it is not possible that rank
�
V

T
WV

�
= L . ⇤
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This result shows that if M < L(Λ), then an M-point quadrature rule satisfying (2) cannot exist. This is nontrivial

information. As an example, let d = 2, and consider

Λ = B1(2) = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)} ,

corresponding to the tensor-product space of degree 2. Since |Λ| = 9, the heuristic (4) suggests that it is possible to

find a rule with only 3 points. However, let Θ = {(0, 0), (0, 1), (1, 0), (1, 1)}, such that Θ + Θ = Λ and |Θ | = 4.

Thus, no 3-point rule that is accurate on PΛ can exist. The index set Λ and the half set Θ for this example are shown

in Fig. 1, right.

Another observation from Theorem 2.2 is that we may justifiably call an M-point quadrature rule minimal if

M = L , in the sense that one cannot achieve the same accuracy with a smaller number of nodes. A quadrature rule is

minimal if no other rule with a smaller number of nodes can have identical (or greater) accuracy.

Definition 2.3. Let Λ be a finite, downward-closed multi-index set. An M-point quadrature rule is minimal for Λ if

(i) it satisfies (2), and (ii) any other quadrature rule with eM points satisfying (2) has size obeying eM � M .

Since Λ is finite, then a minimal quadrature rule always exists. (E.g., the interpolatory quadrature rule over any

set of |Λ| abscissae for which the interpolation problem from PΛ is unisolvent has finite size N .) Minimal quadrature

rules by the definition above are not necessarily unique, and among several minimal quadrature rules some may have

greater accuracy than others. (See Section 3.3.) Our definition does not guarantee existence of minimal quadrature

rules, but Theorem 2.2 gives us an easy method to check if a quadrature rule is minimal.

Corollary 2.1. Let Λ be a downward-closed multi-index set. An M-point quadrature rule is minimal for Λ if it satisfies

(2) and M = L(Λ), with L defined in (5).

The condition M = L(Λ) is a stronger condition than minimality, and Section 3.4 gives a concrete example of

(Λ, D, µ) where a minimal quadrature rule must have M > L(Λ). Thus, rules achieving the lower bound M = L(Λ)

are minimal, but minimal rules need not satisfy this lower bound.

The weights for minimal quadrature rules with M = L(Λ) have a precise behavior. Under the assumption (3), we

can find an orthonormal basis q j for PΛ:
⌦
q j , qk

↵
µ

= � j,k, PΛ = span
�
q j

 N

j=1

Given this orthonormal basis, define

�Λ(x) =
1

PN
j=1 q2

j (x)
.

The quantity �Λ depends on D, µ, and PΛ, but not on the particular basis q j we have chosen: Through a unitary

transform we may map
�
q j

 N

j=1
into any other orthonormal basis for PΛ, but this transformation leaves the quantity

above unchanged. The weights for a lower-bound-achieving quadrature rule on Λ are evaluations of �Θ , where Θ is a

maximal half-set for Λ.

Theorem 2.3. Let Λ be a finite downward-closed set, and let an M-point quadrature rule {xm, wm}M
m=1 be minimal

for Λ with M = L(Λ). Then

w j = �Θ (x j ), j = 1, . . . , M, (7)

where Θ is a(ny) maximal half set for Λ.

Proof. Let ` j (x), j = 1, . . . , M , be the cardinal Lagrange interpolants from the space PΘ on the nodes
�

x j

 M

j=1
.1

These cardinal interpolants satisfy ` j (xk) = � j,k , span PΘ , and are pairwise orthogonal in L2
µ by (2) and the fact that

Θ + Θ ✓ Λ. The weights w j must be positive since

w j =

MX

m=1

wm`2
j (xm) =

Z
`2

j (x)dµ(x) > 0, (8)

1 The interpolation problem of x j for any basis of PΘ must be invertible since the Vandermonde-like matrix V in the proof of Theorem 2.2 must

have full rank, be square since M = L(Λ), and thus be invertible. Thus, the ` j are well-defined.
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where the second equality uses the fact that the quadrature rule is exact for `2
j 2 PΛ. The above relation also shows

that qk(x) := `k(x)/
p

wk , k = 1, . . . , M , is an orthonormal basis for PΘ . Then the M ⇥ M matrices V and W with

entries defined by (6) satisfy V
T

WV = I, due to the exactness of the quadrature rule for q j qk 2 PΛ. Thus,
p

WV is

an orthogonal matrix, so that
p

WVV
T
p

WT = I

VV
T = W

�1

Taking the diagonal components of the left- and right-hand side shows that w j =
⇣PN

k=1(V )2
j,k

⌘�1

. ⇤

2.3. Relation to lower bounds for total degree spaces

Our condition M � L(Λ) from Theorem 2.2 is a lower bound for the possible size of a quadrature rule with

prescribed accuracy, and is a notable generalization of existing lower bounds. For example, the following well-known

result can be derived as a special case of Theorems 2.2 and 2.1.

Corollary 2.2. Let Λ = B1(k) be the total degree index set of degree k. Then any M-point quadrature rule satisfying

(2) must satisfy

M � |B1(bk/2c)| .

The above is a result that has appeared in the past in various incarnations, and with various restrictions on D, µ,

k, and d [24–27]. Our result matches all these statements: In order to integrate polynomials up to degree k with a

quadrature rule, at least dim PΘ points are required, with Θ = B1 (bk/2c). Other than our assumptions in Section 2.1,

our result requires no further properties about D or µ, and does not require the quadrature rule to be an interior rule

(i.e., to have all nodes inside D).

However our results, Theorems 2.2 and 2.3, and Corollary 2.1, apply to general downward-closed index sets Λ that

can be significantly more general than total degree spaces. For a general discussion about existing lower bounds on

quadrature rule sizes we refer to [19], and to [28] for a compilation of many existing rules.

3. Examples: Quadrature rule minimality and the lower bound

To provide further insight into our lower bound characterization, Theorem 2.2, we investigate the consequences of

the above theoretical results through some examples. This section consists of four examples: (i) a univariate example

of a minimal rule achieving the lower bound, (ii) a multivariate minimal rule achieving the lower bound, (iii) many

multivariate minimal rules achieving the lower bound, (iv) a multivariate situation where a minimal rule cannot achieve

the lower bound.

3.1. Univariate rules

The example in this section discusses the facts (i) that minimal quadrature rules in one dimension are Gauss

quadrature rules, and (ii) a great many minimal rules in one dimension achieve the lower bound, and some are capable

of accurately integrating more polynomials than the others.

Let d = 1 with Λ = {0, . . . , N � 1}. The maximal half-set for Λ is Θ =
�
0, . . . ,

⌅
N�1

2

⇧ 
, and thus

L(Λ) =

�
N � 1

2

⌫
+ 1

We consider two cases, that of even N , and of odd N .

Suppose N is even. Then a quadrature rule achieving our lower bound has M = |Θ | = N
2

abscissae, and exactly

integrates M = 2N (linearly independent) polynomials. I.e., the N -point rule exactly integrates polynomials up to

degree 2M � 1. It is well-known that this quadrature rule is unique: it is the µ-Gauss–Christoffel quadrature rule

[15, chapter 3].

With
�
q j

 1
j=0

a family of L2
µ(D)-orthonormal polynomials, with deg q j = j , then the abscissae x1, . . . , xM are

the zeros of qM , and the weights are given by (7). This quadrature rule can be efficiently computed from eigenvalues
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and eigenvectors of the symmetric tridiagonal Jacobi matrix associated with µ [29]. Thus, this quadrature rule can be

computed without resorting to optimization routines.

Now suppose N is odd. Then a quadrature rule achieving our lower bound has M = L(Λ) = N+1
2

abscissae, and

exactly integrates 2M � 1 polynomials. I.e., the M-point rule exactly integrates polynomials up to degree 2M � 2.

Clearly a Gauss–Christoffel rule is a minimal rule achieving our lower bound in this case. However, by our definition

there are an (uncountably) infinite number of such lower-bound-achieving rules in this case [15]. In particular, for

arbitrary c 2 R, the zero set of the polynomial

qM (x)� cqM�1(x), (9)

corresponds to the abscissae of a quadrature rule achieving the lower bound, with the weights given by (7). Like

the Gauss–Christoffel case, computation of these quadrature rules can be accomplished via eigendecompositions of

symmetric tridiagonal matrices [30].

In classical scientific computing scenarios, sets of M-point rules with polynomial accuracy of degree 2M � 2 have

been called Gauss–Radau rules, and are traditionally associated to situations when suppµ is an interval and one of the

quadrature abscissae is collocated at one of the endpoints of this interval [31].

3.2. Multivariate quadrature achieving the lower bound

This section furnishes an example where a multivariate quadrature rule achieving our lower bound can be explicitly

constructed.

Consider a tensorial domain and probability measure, i.e., suppose

µ = ⇥d
j=1µ j , D = ⌦d

j=1suppµ j

where µ j are univariate probability measures. We let Λ = B0(1)\ B1(n) for any n � 2. With e j the cardinal j’th unit

vector in N
d
0 , then Λ is the set of indices of the form qe j for 0  q  n; the size of Λ is N = dn + 1. (See Fig. 1

for a visualization of these sets with d = 2, n = 3.) Note that this Λ would arise in situations where one seeks to

approximate an unknown multivariate function as a sum of univariate functions; this is rarely a reasonable assumption

in practice. However, in this case we can explicitly construct optimal quadrature rules.

The heuristic (4) suggests that we can construct a rule satisfying (2) if we use

M � n

✓
d

d + 1

◆
+

1

d + 1

nodes, which is approximately n nodes. However, we can achieve this with fewer nodes, only M = bn/2c + 1,

independent of d. Here the heuristic (4) is too pessimistic when d � 2. Associated to each µ j , we need the

corresponding system of orthonormal polynomials qn, j , n � 0, and the univariate � function. For each j = 1, . . . , d ,

let qn, j (x), n = 0, 1, . . . , denote a L2
µ j

-orthonormal polynomial family with deg qn, j = n. Define

�n, j (·) =
1Pn

i=0 q2
i, j (·)

.

Note that �0, j = 1/q2
0, j ⌘ 1 for all j since each µ j is a probability measure.

Consider the index sets Θ j =
�
0, e j , 2e j , . . . , bn/2c e j

 
, for j = 1, . . . , d , where 0 is the origin in N

d
0 . Each Θ j

is a maximal half-set for Λ, and L in (5) is given by L = bn/2c+ 1. The index set Λ and Θ j , j = 1, 2 for n = 3 are

shown in Fig. 1, left.

To construct a quadrature rule achieving the lower bound, M = L nodes, we note that the weights w j , j = 1, . . . , N

must be given by (7), which holds for any maximal half index set Θ . I.e., it must simultaneously hold for all Θ j . Thus,

wm = �Θ j
(xm) =

2
64
bn/2cX

i=0

q2
i, j

�
x ( j)

m

� Y

s=1,...,d
s 6= j

q2
0,s

3
75

�1

= �bn/2c, j

�
x ( j)

m

�
, (10)

for j = 1, . . . , d. This implies in particular that the coordinates x
( j)
m for node m must satisfy

�bn/2c,1
�
x (1)

m

�
= �bn/2c,2

�
x (2)

m

�
= · · · = �bn/2c,d

�
x (d)

m

�
.



J.D. Jakeman, A. Narayan / Comput. Methods Appl. Mech. Engrg. 338 (2018) 134–161 143

We can satisfy this condition in certain cases. Suppose µ1 = µ2 = · · · = µd ; then �n,1 = �n,2 = · · · = �n,d and so

we can satisfy (10) by setting x (1)
m = x (2)

m = · · · = x (d)
m for all m = 1, . . . , M . Thus nodes for a lower-bound-achieving

quadrature rule nodes could lie in R
d along the graph of the line defined by

x (1) = x (2) = · · · = x (d).

In order to satisfy the integration condition (2) we need to distribute the nodes in an appropriate way. Having

effectively reduced the problem to one dimension, this is easily done: we choose a Gauss-type quadrature rule as

described in the previous section. Let the j th coordinate of the quadrature rule be the M-point Gauss quadrature

nodes for µ j , i.e.,
n

x
( j)

1 , x
( j)

2 , . . . , x
( j)

M

o
= q�1

M, j (0).

This then uniquely defines x1, . . . , xM , and wm is likewise uniquely defined since we have satisfied (10).

Thus a “diagonal” Gauss quadrature rule, M = bn/2c + 1, with equal coordinate values for each abscissa, is a

minimal rule in this case that achieves the lower bound M = L .

3.3. Multivariate quadrature: non-uniqueness of rules achieving the lower bound

The previous example with an additional assumption allows to construct 2d�1 distinct minimal quadrature rules

achieving the lower bound. Again take Λ = B0(1) \ B1(n) for n � 2, and let µ = ⇥d
j=1µ j with identical univariate

measures µ j = µk .

To this add the assumption that µ j is a symmetric measure; i.e., for any set µ j -measurable A ⇢ R, then

µ j (A) = µ j (�A). In this case the univariate orthogonal polynomials qk, j are even (odd) functions if k is even (odd).

Thus, the set q�1
k, j (0) is symmetric around 0, and �M, j is always an even function. With xm the lower-bound-achieving

set of nodes defined in the previous section, let

y( j)
m = � j x

( j)
m , � j 2 {�1, +1} ,

for a fixed but arbitrary sign train �1, . . . , �d . Using the above properties, one can show that the nodes {y1, . . . , yM}

and the weights w1, . . . , wM define a quadrature rule satisfying (2), and of course have the same number of nodes as

the minimal rule from the previous section.

By varying the � j , we can create 2d�1 unique distributions of nodes, thus showing that at least this many minimal

rules exist that achieve the lower bound.

3.4. Multivariate quadrature: minimal rule sizes can exceed the lower bound

We again use the setup of Section 3.2, but this time to illustrate that it is possible for minimal quadrature rule sizes

to exceed our lower bound. We consider d = 2, and take Λ = B0(1) \ B1(3), and let µ = µ1 ⇥ µ2 for two univariate

probability measures µ1 and µ2. We will show that a quadrature rule with M = L(Λ) cannot exist. In contrast to

previous sections, we let the µ1 and µ2 measures be different:

dµ1(t) =
1

2
dt, supp µ1 = [�1, 1]

dµ2(t) =
3

4
(1� t2)dt, supp µ2 = [�1, 1]

With our choice of Λ, we have L(Λ) = 2 with two maximal half-sets:

Θ1 = {(0, 0), (1, 0)} , Θ2 = {(0, 0), (0, 1)}

In this simple case the explicit µ1- and µ2-orthonormal polynomial families have constant and linear polynomials of

the form

q0,1(t) = 1, q1,1(t) =
p

3t,

q0,2(t) = 1, q1,2(t) =

p
5

2
t
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so that associated to Θ1 and Θ2, respectively, we have the functions

�1,1(t) =
1

1 + 3t2
, �1,2(t) =

4

4 + 5t2
.

Since by (10) we require wm = �1,1

�
x (1)

m

�
= �1,2

�
x (2)

m

�
, this implies that

3
�
x (1)

m

�2
=

5

4

�
x (2)

m

�2
, m = 1, 2 (11a)

However, the condition (2) also implies for our choice of Λ that

Z 1

�1

p(t)
1

2
dt =

2X

m=1

wm p
�
x (1)

m

�
, p 2 span

�
1, t, t2, t3

 
,

Z 1

�1

p(t)
3

4
(1� t2)dt =

2X

m=1

wm p
�
x (2)

m

�
, p 2 span

�
1, t, t2, t3

 
.

The conditions above imply that
�

x (1)
m

 2

m=1
and

�
x (2)

m

 2

m=1
be nodes for the 2-point µ1- and µ2-Gauss quadrature rules,

respectively, which are both unique. Thus,
�

x (1)
m

 2

m=1
=
n
±
p

3/3
o

, and
�

x (2)
m

 2

m=1
=
n
±1/
p

5
o

. Thus, we have the

equality

3
�
x (1)

m

�2
= 5

�
x (2)

m

�2
, m = 1, 2 (11b)

We arrive at a contradiction: simultaneous satisfaction of (11a) and (11b) implies all coordinates of the abscissae are 0,

which cannot satisfy (2). Thus, a quadrature rule satisfying (2) cannot have M = L(Λ) abscissae, and so any minimal

rule has size M exceeding the lower bound, i.e., M > L .

4. Numerically generating multivariate quadrature rules

In this section we describe our proposed algorithm for generating multivariate quadrature rules; the algorithm

generates rules having significantly fewer points than the number of moments being matched. We will refer to such

rules as reduced quadrature rules. We will compare the number of nodes our rules can generate with the lower bound

L(Λ) defined in Section 2, along with the heuristic bound (4).

Our method is an adaptation of the method presented in [9]. The authors there showed that one can recover a

univariate Gauss quadrature rule as the solution to an infinite-dimensional linear program (LP) over nonnegative

measures. Let a finite index set Λ be given with |Λ| = N , and suppose that
�

p j

 N

j=1
is any basis for PΛ. In addition,

let r be a polynomial on R
d such that r 62 PΛ; we seek a positive Borel measure ⌫ on R

d solving

minimize

Z
r (x)d⌫(x) (12)

subject to

Z
p j (x)d⌫(x) =

Z
p j (x)dµ(x), j = 1, . . . , NΛ (13)

The restriction that ⌫ is a positive measure will enter as a constraint into the optimization problem. A nontrivial result

is that a positive measure solution to this problem exists with |supp⌫| = M  N . Such a solution immediately

yields a positive quadrature rule with nodes {x1, . . . , xM} = supp⌫ and weights given by w j = ⌫(x j ). Unfortunately,

the above optimization problem is NP-hard, and so the authors in [9] propose a two step procedure for computing

an approximate solution. The first step solves a finite-dimensional linear problem similar to (12) to find a K -point

positive quadrature rule with K  N . In the second step, the K  N points are clustered into M groups, where M

is automatically chosen by the algorithm. The clusters are then used to form a set of M averaged points and weights,

which form an approximate quadrature rule. This approximate quadrature rule is refined using a local gradient-based

method to optimize a moment-matching objective. The precise algorithm is outlined in more detail in Appendix A.

In this paper we also adopt a similar two step procedure to compute reduced quadrature rules. We outline these

two steps in detail in the following section. Pseudo code for generating reduced quadrature rules is presented in

Algorithm 1 contained in Appendix B.



J.D. Jakeman, A. Narayan / Comput. Methods Appl. Mech. Engrg. 338 (2018) 134–161 145

4.1. Generating an initial condition

Let an index set Λ be given with |Λ| = N < 1, and suppose that
�

p j

 n

j=1
is a basis for PΛ. We seek to find a

discrete measure ⌫ =
P

kvk�xk
by choosing a large candidates mesh, X S = {xk}

S
k=1, with S � N points on D and

solving the `1 minimization problem

minimize

SX

k=1

|vk |

subject to

SX

k=1

vk p j (xk) =

Z
p j (x)dµ(x), j = 1, . . . , N

and vk � 0, k = 1, . . . , S

(14)

The optimization is over the S scalars vk . With v 2 R
S a vector containing the vk , the non-zero coefficients then define

a quadrature rule with K = kvk0 points, K  N . The points corresponding to the non-zero coefficients vk are the

quadrature points and the coefficients themselves are the weights.

This `1-minimization problem as well as the residual based linear program used by [9] become increasingly difficult

to solve as the size of Λ and dimension d of the space increase. The ability to find a solution is highly sensitive to the

candidate mesh. Through extensive experimentation we found that by solving (14) approximately via

minimize

SX

k=1

|↵k |

subject to |

SX

k=1

↵k p j (xk)�
Z

p j (x)dµ(x)| < ✏, j = 1, . . . , n

and ↵k � 0, k = 1, . . . , M

(15)

for some ✏ > 0, we were able to find solutions that, although possibly inaccurate with respect to the moment matching

criterion, could be used as an initial condition for the local optimization to find an accurate reduced quadrature rule.

This is discussed further in Section 5.1. We were not able to find such approximate initial conditions using the linear

program used in [9]; we show results supporting this in Section 5.

We solved (15) using least angle regression with a LASSO modification [32] whilst enforcing positivity of the

coefficients. This algorithm iteratively adds and removes positive weights ↵k until ✏ = 0, or until no new weights can

be added without violating the positivity constraints. This allows one to drive ✏ to small values without requiring an a

priori estimate of ✏.

In our examples, the candidate mesh X S is selected by generating uniformly random samples over the integration

domain D, regardless of the integration measure. Better sampling strategies for generating the candidate mesh

undoubtedly exist, but these strategies will be D- and Λ-dependent, and are not the central focus of this paper. Our

limited experimentation suggested that there was only marginal benefit from exploring this issue.

4.2. Finding a reduced quadrature rule

Once an initial condition has been found by solving (15) we then use a simple greedy clustering algorithm to

generate an initial condition for a local gradient-based moment-matching optimization.

4.2.1. Clustering

The greedy clustering algorithm finds the point with the smallest weight and combines it with its nearest neighbor.

These two points are then replaced by a point whose coordinates are a convex combination of the two clustered

points, where the weights correspond to the vk weights that are output from the LP algorithm. The newly clustered

point set has one less point than before. This process is repeated until a desired number of points M is reached. At

the termination of the clustering algorithm a set of points bxm and weights bwm , defining an approximate quadrature
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rule are returned. The algorithm pseudo-code describing this greedy clustering algorithm is given in Algorithm 2 in

Appendix B.

The ability to find an accurate reduced quadrature rule is dependent on the choice of the number of specified

clusters M . As stated in Section 2, there is a strong heuristic that couples the dimension d , the number of matched

moments N , and the number of points M . For general µ and given N = |Λ| we set the number of clusters to be

M =
N

d + 1
. (16)

As shown in Section 2 this heuristic will not always produce a quadrature rule that exactly integrates all specified

moments. Moreover, the heuristic may overestimate the actual number of points in a quasi-optimal quadrature rule, as

shown in Section 3.2.

It is tempting to set M to the lower bound value L(Λ), defined in (5). However, a sobering result of our

experimentation is that in all our experiments we were never able to numerically find a quadrature rule with fewer

points than that specified by (16); therefore, we could not find any rules with M points where L(Λ)  M < N/(d +1).

However, we were able to identify situations, and numerically construct reduced quadrature rules, in which the

heuristic underestimated the requisite number of points in a reduced quadrature rule. For example, Corollary 2.2

implies that if one wants to match the moments of a total degree basis of degree k (here with k even) one must use

at least
⇣

k/2+d

d

⌘
points. This lower bound is typically violated by the heuristic for low-degree k and high-dimension

d. E.g. for d = 10 and k = 2 we have M = 6 using the heuristic yet the theoretical lower bound for M from

Corollary 2.2 requires M � L(Λ) = 11. In this case our theoretical analysis sets a lower bound for M that is more

informative than the heuristic (16).

4.2.2. Local optimization

The approximate quadrature rule bxk , bwk generated by the clustering algorithm is used as an initial guess for the

following local optimization

minimize

NX

j=1

 Z
p j (x)dµ(x)�

MX

m=1

wm p j (xm)

!2

(17a)

subject to xm 2 D and wm � 0, m = 1, . . . , M (17b)

The objective f defined by (17a) is a polynomial and its gradient can easily be computed

d f

dx
(s)
k

= �
n�1X

i=0

2
4wk

dpi (xk)

dx
(s)
k

0
@q(pi )�

MX

j=1

w j pi (x j )

1
A
3
5 (18a)

d f

dwk

= �
n�1X

i=0

2
4pi (xk)

0
@q(pi )�

MX

j=1

w j pi (x j )

1
A
3
5 , (18b)

for s = 1, . . . , d and m = 1, . . . , M , and where q(pi ) =
R

pi (x)dµ(x).

We use a gradient-based nonlinear least squares method to solve the local optimization problem. Defining the

optimization tolerance ⌧ = 10�10, the procedure exits when either | fi � fi�1| < ⌧ fi or kgsk1 < ⌧ , where fi and fi�1

are the values of the objective at steps i and i � 1 respectively, and gs is the value of the gradient scaled to respect the

constraints (17b).

This local optimization procedure in conjunction with the cluster based initial guess can frequently find a

quadrature rule of size M as determined by the degree of freedom heuristic (16). However in some cases a quadrature

rule with M points cannot be found for very high accuracy requirements (in all experiments we say that a quadrature

rule is found if the iterations yield | fi | < 10�8). In these situations one might be able to find an M point rule

using another initial condition. (Recall the initial condition provided by `1-minimization is found using a randomized

candidate mesh.) However we found it more effective to simply increment the size of the desired quadrature rule to

M + 1. This can be done repeatedly until a quadrature rule with the desired accuracy is reached. While one fears that

M may be incremented by a large number using this procedure, we found that no more than a total of 10 of increments

(M ! M + 10) were ever needed. This is described in more detail in Section 5.1.
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Note that both generating the initial condition using (15) and solving the local optimization problem (17a) involve

matching moments. We assume in this paper that moments are available and given; in our examples we compute these

moments analytically (or to machine precision with high-order quadrature), unless otherwise specified.

5. Numerical results

In this section we will explore the numerical properties of the multivariate quadrature algorithm we have proposed

in Section 4. First we will numerically compare the performance of our algorithm with other popular quadrature

strategies for tensor product measures. We will then demonstrate the flexibility our approach for computing quadrature

rules for non-tensor-product measures, for which many existing approaches are not directly applicable. Finally we will

investigate the utility of our reduced quadrature rules for high-dimensional integration by leveraging selected moment

matching and dimension reduction.

Our tests will compare the method in this paper (Section 4), which we call REDUCED QUADRATURE, to other

standard quadrature methods. We summarize these methods below.

• MONTE CARLO — The integration rule

Z

D

f (x)dµ(x) ⇡
1

M

MX

m=1

f (Xm),

where Xm are independent and identically-distributed samples from the probability measure µ.

• SPARSE GRID — The integration rule for µ the uniform measure over [�1, 1]d given by a multivariate sparse

grid rule generated from a univariate Clenshaw–Curtis quadrature rule [5].

• CUBATURE — Stroud cubature rules of degree 2, 3, and 5 [18]. These rules again integrate on [�1, 1]d with

respect to the uniform measure.

• SOBOL — A quasi-Monte Carlo Sobol sequence [4] for approximating integrals on [�1, 1]d using the uniform

measure.

• REDUCED QUADRATURE — The method in this paper, described in Section 4.

• `1 QUADRATURE — The “initial guess” for the REDUCED QUADRATURE algorithm, using the solution of the

LP algorithm summarized in Section 4.1.

The SPARSE GRID, SOBOL, and CUBATURE methods are directly applicable (i.e., without mapping) only for

integrating over [�1, 1]d with the uniform measure. When µ has a density w(x) with support D ✓ [�1, 1]d , we

will use these methods to evaluate
R

D
f (x)dµ(x) by integrating f (x)w(x) with respect to the uniform measure on

[�1, 1]d , where we assign w = 0 on [�1, 1]d \ D.

5.1. Tensor product measures

Our reduced quadrature approach can generate quadrature rules for non-tensor-product measures but in this section

we investigate the performance of our algorithm in the more standard setting of tensor-product measures.

5.1.1. Computational complexity

We begin by discussing the computational cost of computing our quadrature rules. Specifically we compute

quadrature rules for the uniform probability measure on D = [�1, 1]d in up to 10 dimensions for all total-degree

spaces with degree at most 20 or with subspace dimension at most 3003. In all cases we were able to generate an

efficient quadrature rule using our approach for which the number of quadrature points was equal to or only slightly

larger (< 10 points) than the number of points suggested by the heuristic (16). The number of points in each computed

quadrature rule, the number of moments matched |Λ|, the lower bound L(Λ) on quadrature rule sizes, the number of

points d|Λ|/(d + 1)e suggested by the heuristic (16), and the number of iterations taken by non-linear least squares

algorithm, is presented in Table 1.

The final two columns of Table 1, the number of points in the reduced quadrature rules and the number of iterations

used by the local optimization are given as ranges because the final result is sensitive to the random candidate sets used

to generate the initial condition. The ranges presented in the table represent the minimum and maximum number of

points and iterations used to generate the largest quadrature rules for each dimension for 10 different initial candidate
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Table 1

Results for computing REDUCED QUADRATURE rules for total-degree spaces for the uniform measure on [�1, 1]d . Tabulated are the number of

moments matched (|Λ|), the theoretical lower bound on the quadrature rule size from (5), the number of the quadrature points given by the counting

heuristic (16), the number of reduced quadrature points found, and the number of iterations required in the optimization. The reduced quadrature

algorithm output is random since the initial candidate grid is a random set. Thus, the final two columns give a range of results over 10 runs of the

algorithm.

Dimension Degree |Λ| L(Λ) d|Λ|/(d + 1)e No. Points No. Iterations

2 20 231 66 77 77–79 262–854

3 20 1771 286 443 445–447 736–1459

4 13 2380 210 476 479–480 782–2033

5 10 3003 252 501 506–508 3181–4148

10 5 3003 66 273 273–274 511–2229

meshes. We observe only very minor variation in the number of points, but more sensitivity in the number of iterations

is observed.

The number of iterations needed by the local optimization to compute the quadrature rules was always a

reasonable number: at most a small multiple of the number of moments being matched. However, the largest rules

did take several hours to compute on a single core machine due to the cost of running the optimizer (we used

scipy.optimize.least squares) and forming the Jacobian matrix of the objective.

Profiling the simulation revealed that long run times were due to the cost of evaluating the Jacobian (18) of the

objective function, and the singular value decomposition repeatedly called by the optimizer. This run-time could

probably be reduced by using a Krylov-based nonlinear least squares algorithm, and by computing the Jacobian

in parallel. We expect that such improvements would allow one to construct such rules in higher dimensions in a

reasonable amount of time; however, even our unoptimized code was able to compute such rules on a single core in a

moderate number of dimensions.

5.1.2. Accuracy

To compare the performance of our reduced quadrature rules to existing algorithms consider the corner-peak

function often used to test quadrature methods [33],

fCP(x) =

 
1 +

dX

i=1

ci xi

!�(d+1)

, x 2 D = [0, 1]d (19)

The coefficients ci can be used to control the variability over D and the effective dimensionality of this function. We

generate each ci randomly from the interval [0, 1] and subsequently normalize them so that
Pd

i=1ci = 1. For X a

uniform random variable on D = [0, 1]d , the mean and variance of f (X ) can be computed analytically; these values

correspond to computing integrals over D = [0, 1]d with µ the uniform measure. This positive function raises quickly

to its peak value of 1 at x = 0 from its smallest value of 2�d�1 at the opposite corner of the domain, making this

function difficult to integrate in high dimensions.

Fig. 2 plots the convergence of the error in the mean of the corner-peak function using the reduced quadrature rules

generated for µ the uniform probability measure on [0, 1]d with d = 2, 3, 4, 5, 10. Because generating the initial

condition requires randomly sampling over the domain of integration for a given degree, we generate 10 quadrature

rules and plot both the median error and the minimum and maximum errors. There is sensitivity to the random

candidate set used to generate the initial condition. However, for each of the 10 repetitions a quadrature rule was

always found.

For a given number of samples the error in the reduced quadrature rule estimate of the mean is significantly

lower than the error of a Clenshaw–Curtis-based sparse grid.2 It is also more accurate than Sobol sequences up to

10 dimensions. Furthermore the reduced quadrature rule is competitive with the Stroud degree 2,3 and 5 cubature

rules. However unlike the Stroud rules the polynomial exactness of the reduced quadrature rule is not restricted to low

degrees (shown here) nor is it even restricted to total-degree spaces.

2 We adopt the most common convention of using univariate Clenshaw–Curtis rules that grow exponentially with level l. Specifically, the number

of points for a level-l univariate rule satisfies ml = 2l + 1.
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Fig. 2. Convergence of the error in the mean of the corner-peak function fCP (25) computed using the reduced quadrature rule generated for the

uniform measure. The horizontal axis in all plots indicates the number of quadrature points M used to approximate the integral. Convergence is

shown for d = 2, 3, 4, 5, 10 which are respectively shown left to right starting from the top left. Solid lines represent the median error of the

total-degree quadrature rules for 10 different initial conditions. Transparent bands represent the minimum and maximum errors of the same 10

repetitions. The bottom right depicts the convergence of the error in the reduced quadrature rules computed using total-degree polynomial indices

(TD) and with a Clenshaw–Curtis indices (CC) in 4 dimensions (d = 4). (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

Reduced quadrature rules can be generated for arbitrary index sets, not just total degree spaces. In the bottom right

plot of Fig. 2, we compare the accuracy of reduced cubature rules constructed using total-degree indices (TD) and with

the index sets for which the Clenshaw–Curtis sparse grid are exact (CC). The latter index sets are hyperbolic-cross-

like, and three-dimensional examples of 4th degree TD and CC index sets are shown in Fig. 3. The reduced quadrature

rules based upon total-degree index sets out perform all other approaches. This result is expected because the integrand

is smooth and sparse grid index sets are better suited to functions with less regularity. However even when using CC
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Fig. 3. Total-degree index (TD, left) and Clenshaw–Curtis index (CC, right) spaces of degree/level three in three dimensions. The four-dimensional

versions of these index sets are used to define reduced quadrature rules in the bottom-right plot of Fig. 2.

index sets our reduced quadrature approach still outperforms sparse grid integration as the degree of the rule increases.

The generation of reduced quadrature rules for other types of index sets is presented in Section 5.3.1.

In Fig. 2 we also compare sparse grids based on nested Leja sequences [34] which approximate integrals using

total-degree index sets. Specifically the Leja sparse grid was constructed using univariate Leja sequences, for which

the number of points ml in a level l rule satisfies ml = l. Approximating the integral with sparse grids, based upon

total-degree polynomial spaces, does not improve the performance of the sparse grid. This is in contrast to the benefits

observed when using total-degree reduced quadrature rules.

In Fig. 2 we also plot the error in the quadrature rule used as the initial condition for the local optimization

used to generated the reduced rule. As expected, the error of the initial condition is larger than the final reduced

rule for a given number of points. Moreover it becomes increasingly difficult to find an accurate initial condition as

the degree increases. In two-dimensions, as the degree is increased past 13, the error in the initial condition begins

to increase. Similar degradation in accuracy also occurs in the other higher dimensional examples. However, even

when the accuracy of the initial condition still is extremely low, it still provides a good starting point for the local

optimization, allowing us to accurately generate the reduced quadrature rule.

We emphasize here that there is a one-to-one correspondence between the data points in the convergence curves of

the reduced quadrature rule and the `1 quadrature rules depicted in Fig. 2. (I.e., each dot on the blue curve corresponds

to a dot on the green curve.) Each of the `1 quadrature rules are initial conditions used to find the corresponding

reduced quadrature rules. The reduced quadrature curve does not extend to the larger samples size of the `1 quadrature

rules because the reduced quadrature rules achieve the same polynomial accuracy with fewer points. This is the major

advantage of our approach.

We also stress that, as pointed out in Section 5.1.1, constructing reduced quadrature rules (excluding function

evaluations) is much more computationally expensive than constructing sparse grid quadrature rules. However in this

paper we are targeting situations when function evaluations are significantly more expensive than the cost of building

the sparse grid and one can only afford a limited number of evaluations, i.e. . 1000. This is commonly the case when

the integrand involves the evaluation of high-fidelity physics-based simulations.

5.2. Beyond tensor product measures

Numerous methods have been developed for multivariate quadrature for tensor-product measures, however

comparatively less attention has been given to computing quadrature rules for arbitrary measures, for example those

that exhibit non-linear dependence between dimensions. In this setting Monte Carlo quadrature is the most popular

method of choice.
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Fig. 4. (Left) Contour plot of the banana density (21) mapped to DI . (Right) Response surface of the mass fraction u1 at t = 100 predicted by the

chemical reaction model. The response is plotted over the entire domain of problem I and the black box represents the smaller domain of problem

II.

5.2.1. Chemical reaction model

The reduced quadrature method we have developed can generate quadrature rules to integrate over arbitrary

measures, assuming the moments are known. Consider the following model of competing species absorbing onto

a surface out of a gas phase [35]

du1

dt
= x1z � cu1 � 4du1u2

du2

dt
= 2x2z2 � 4du1u2

du3

dt
= ez � f u3

z = u1 + u2 + u3, u1(0) = u2(0) = u3(0)

(20)

The constants c, d, e, and f are fixed at the nominal values c = 0.04, d = 1.0, e = 0.36, and f = 0.016. The

parameters x1 and x2 will vary over a domain D endowed with a non-tensor-product probability measure µ. Viewing

X = (X1, X2) 2 R
2 as a random variable with probability density dµ(x), we are interested in computing the mean of

the mass fraction of the third species u1(t = 100) at t = 100 s.

We will consider two test problems, problem I and problem II, each defined by its own domain D and measure µ.

We therefore have two rectangular domains DI and DII with measures µI and µII, respectively. The domains and the

measures are defined via affine mapping of a canonical domain and measure:

dµ(x) = C exp(�(
1

10
x4

1 +
1

2
(2x2 � x2

1 )2)), x 2 D = [�3, 3]⇥ [�2, 6], (21)

where C is a constant chosen to normalize µ as a probability measure. This density is called a “banana density”, and

is a truncated non-linear transformation of a bivariate standard Normal Gaussian distribution. We define (DI, µI) and

(DII, µII) as the result of affinely mapping D to the domains

DI = [0, 4.5]⇥ [5, 35], DII = [1.28, 1.92]⇥ [16.6, 24.9].

The response surface of the mass fraction over the integration domain of problem I is shown in the right of

Fig. 4. The response has a strong non-linearity which makes it ideal for testing high-order polynomial quadrature.

For comparison the integration domain of problem II is also depicted in the right of Fig. 4. The domain of problem

II is smaller and thus the non-linearity of the response is weaker, consequently integrating the mean of problem II is

easier than integrating the mean of problem II for polynomial quadrature methods.

Fig. 5 compares the convergence of the error in the mean of the mass fraction of the chemical reaction model

computed using the reduced quadrature rule, with the estimates of the mean computed using Monte Carlo sampling
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Fig. 5. Convergence of the error in the mean of the mass fraction of the chemical reaction model computed using the reduced quadrature rule

generated for the banana-density over (right) DII and (left) DI. Error is compared to popular alternative quadrature methods.

and Clenshaw–Curtis based sparse grids. Unlike previous examples the mean cannot be computed analytically so

instead we compute the mean using 106 samples from a 2-dimensional Sobol sequence. Sparse grids can only

be constructed for tensor-product measures, so here we investigate performance of sparse grids by including the

probability density in the integrand and integrating with respect to the uniform measure. This is the most common

strategy to tackle a non-tensor-product integration problem using a tensor-product quadrature rule.

For the more challenging integral defined over DI, the reduced quadrature error out-performs Monte Carlo and

sparse grid quadrature, however the difference is more pronounced when integrating over DII. The apparent slower

rate of convergence of reduced quadrature for problem I is because a high-polynomial degree is needed to accurately

approximate the steep response surface features over this domain. The performance of the reduced quadrature method

is related to how well the integrand can be approximated by a polynomial.

5.2.2. Sample-based moments

Note that both generating the initial condition using (15) and solving the local optimization problem (17a) involve

matching moments. Throughout this paper we have computed the moments of the polynomials we are matching

analytically (or to machine precision with high-order quadrature). However situations may arise when one only has

samples from the probability density of a set of random variables. For example Bayesian inference [36] is often used

to infer densities of random variables conditional on available observational data. The resulting so called posterior

densities are almost never tensor-product densities. Moreover it is difficult to compute analytical expressions for the

posterior density and so Markov Chain Monte Carlo (MCMC) sampling is often used to draw a set of random samples

from the posterior density.

Consider a model fp(x) : Rd ! R
1 parameterized by d variables x = (x1, . . . , xd ) 2 D ⇢ R

d , predicting an

unobservable quantity of interest (QoI). There is a true underlying value of x that is unknown. In the example (20),

f p is the mass fraction u1 of the chemical reaction model. We wish to quantify the effect of the uncertain variables on

the model prediction, and we use Bayesian inference to accomplish this.

In the standard inverse problems setup, we have no direct measurements of f p but we can make observations yo of

other quantities which we can use to constrain estimates of uncertainty in the unobservable QoI. To make this precise,

let fo(x) : Rd ! R
no be an observable quantity, parameterized by the same d random variables x , which predicts

a set of no observable quantities. Bayes rule can be used to define the posterior density for the model parameters x

given observational data yo:

⇡ (x |yo) =
⇡ (yo|x)⇡ (x)R

D
⇡ (yo|x)⇡ (x)dx

, (22)

where any prior knowledge on the model parameters is captured through the prior density ⇡ (x). The function ⇡ (y0|x)

is the likelihood function and dictates an assumed model-versus-data misfit.

The construction of the posterior is often not the end goal of an analysis. Instead, one is often interested in statistics

on the unobservable QoI. Here we will focus on moments of the data informed predictive distribution, for example
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Fig. 6. Convergence of the error in the mean of the mass fraction of the chemical reaction model computed using the reduced quadrature rule

generated for the banana-density using approximate moments computed with S Monte Carlo samples. The x axis in the plots indicates the number

of points in a reduced quadrature rule generated from approximate moments. The numbers in the legend indicate the number of Monte Carlo

samples used to approximate moments. (Right) Convergence over DI and (Left) DI. The “exact” lines are reproductions of the reduced quadrature

(blue) lines in Fig. 5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the mean prediction

m p =

Z

D

fp(x)⇡ (x |yo)dx . (23)

In practice the posterior of the chemical model parameters may be obtained by observational data y from chemical

reaction experiments and an observational model fo that is used to numerically simulate those experiments. However

for ease of discussion we will assume the posterior distribution (22) is given by the banana-type density defined over

DI or DII. The banana density (21) has been used previously to test Markov Chain Monte Carlo (MCMC) methods [37]

and thus is a good test case for Bayesian inference problems.

As in the previous section we will use the reduced quadrature method to compute m p, however here we will

investigate the performance of the quadrature rules that are generated from approximate moments. The approximate

moments are those computed via Monte Carlo sampling from ⇡ (x |yo). These approximate moments are used to

generate reduced quadrature rules, i.e. they are used as inputs when solving (15) and (17a). Fig. 6 illustrates the

effect of using a finite number of samples to approximate the polynomial moments. The left of the figure depicts the

convergence of the error in the mean of the mass fraction for the banana density defined over DI. The right shows

errors for the banana density defined over DII. The right-hand figure illustrates that the accuracy of the quadrature rule

is limited by the accuracy of the moments used to generate the quadrature rule. Once the error in the approximation

of the mean reaches the accuracy of the moments, the error stops decreasing when the number of quadrature points

is increased. The error saturation point can be roughly estimated by the typical Monte Carlo error which scales like

S�1/2, where S is the number of samples used to estimate the polynomial moments. The saturation of error present in

the right-hand figure is not as evident in the left-hand figure, and this is because the error of the quadrature rules using

exact moments is greater than the error in the Monte Carlo estimate of the moments using based upon 104 and 106

samples.

Our Monte Carlo samples from ⇡ (x |yo) were generated using rejection sampling, which is an exact sampler [38].

While MCMC is the tool of choice for sampling from high-dimensional non-standard distributions, it is an

approximate sampler. If we had generated samples using MCMC, then our approximate moments contain two error

sources: that from finite sample size, and that from approximate sampling. For this reason, we opted to use the exact

rejection sampling technique. However, we expect that the results in Fig. 6 would look similar when using MCMC

samples.

5.3. High-dimensional quadrature

The cost of computing integrals with total-degree quadrature rules increases exponentially with dimension for a

fixed degree. This is because the dimension of the polynomial space N = |Λ| = |B1(k)| grows exponentially with d
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for k fixed. This cost can be ameliorated if one is willing to consider subspaces that are more exotic than total-degree

spaces. In this section we show how our reduced quadrature rules can generate quadrature for non-standard subspaces,

taking advantage of certain structures that may exist in an integrand. Specifically we will demonstrate the utility

of reduced quadrature rules for integrating high-dimensional functions that can be approximated by (i) low-order

ANOVA expansions and (ii) by a function of a small number of linear combinations of the function variables (such

functions are often referred to as ridge functions).

5.3.1. ANOVA decompositions

Dimension-wise decompositions of the input–output relationship have arisen as a successful means of delaying or

even breaking the curse of dimensionality for certain applications [39–42]. Such an approach represents the model

outputs as a high-dimensional function f (x) dependent on the model inputs x = (x1, . . . , xd ). One useful dimension-

wise decomposition is the ANOVA decomposition

f (x1, . . . , xd ) = f0 +

dX

n=1

fi (xi ) +

dX

i, j=1

fi, j (xi , x j ) + · · · + fi,...,d (xi , . . . , xd ) (24)

which separates the function into a sum of subproblems. The first term is the zero-th order effect which is a constant

throughout the d-dimensional variable space. The fi (xi ) terms are the first-order terms which represent the effect

of each variable acting independently of all others. The fi, j (xi , x j ) terms are the second-order terms which are the

contributions of xi and x j acting together, and so on. In practice only a small number of interactions contribute

significantly to the system response and consequently only a low-order approximation is needed to represent the

input–output mapping accurately [43].

In this section we show that reduced quadrature rules can be constructed for functions admitting ANOVA type

structure. Specifically consider the following modified version of the corner peak function (19)

fMCP =

d�1X

i=1

(1 + ci xi + ci+1xi+1)
�3, x 2 D = [0, 1]d (25)

with d = 20. This function has at most second order ANOVA terms, and can be integrated exactly using the uniform

probability measure on D.

We can create a quadrature rule ideally suited to integrating functions that have at most second-order ANOVA

terms. Specifically we need only customize the index set Λ that is input to Algorithm 1. To emphasize a second-order

ANOVA approximation, we compute moments of the form
Z

D

p↵(x) dµ(x), 8↵ 2 Λ = {↵ | k↵k0  2 and k↵k1  k}

for some degree k.

In Fig. 7 we compare the error in the mean computed using our reduced quadrature method, with the errors in the

estimates of the mean computed using popular high-dimensional integration methods, specifically Clenshaw–Curtis

sparse grids, Quasi Monte Carlo integration based upon Sobol sequences and low-degree (Stroud) cubature rules. By

tailoring the reduced quadrature rule to the low-order ANOVA structure of the integrand, the error in the estimate of

the mean is orders of magnitude smaller than the estimates computed using the alternative methods.

Note that sparse grids are a form of an anchored ANOVA expansion [39] and delay the curse of dimensionality by

assigning decreasing number of samples to resolving higher order ANOVA terms. Hence, tailoring a sparse grid to the

exact ANOVA structure of the function is possible.

5.3.2. Ridge functions

In this section we show that our algorithm can be used to integrate high-dimensional ridge functions. Ridge

functions are multivariate functions that can be expressed as a function of a small number of linear combinations

of the input variables [44]. We define a ridge function to be a function of the form f : Rd ! R that can be expressed

as a function g of s < d rotated variables,

f (y) = g(Ay), A 2 R
s⇥d .
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Fig. 7. (Left) Comparison of a three dimensional total degree index set of degree 5 with a 2nd-order ANOVA index set of degree 5. (Right)

Convergence of the error in the mean of the modified corner-peak function fMCP (25) computed using reduced quadrature rules for the uniform

measure.

In applications it is common for d to be very large, but for f to be a(n approximate) ridge function with s ⌧ d.

When integrating a ridge function one need not integrate in R
d but rather can focus on the more tractable problem

of integrating in R
s . The difficulty then becomes integrating with respect to the transformed measure of the high-

dimensional integral in the lower-dimensional space, which is typically unknown and challenging to compute.

When d-dimensional space is a hypercube, then the corresponding s-dimensional domain of integration is a

multivariate zonotope, i.e., a convex, centrally symmetric polytope that is the s-dimensional linear projection of a

d-dimensional hypercube. The vertices of the zonotope are a subset of the vertices of the d-dimensional hypercube

projected onto the s-dimensional space via the matrix A.

When computing moment-matching quadrature rules on zonotopes we must amend the local optimization problem

to include linear inequality constraints, to enforce that the quadrature points chosen remain inside the zonotope. The

inequality constraints of the zonotope are the same constraints that define the convex hull of the zonotope vertices.3

Computing all the vertices of the zonotope {Av | v 2 [�1, 1]d} can be challenging: The number of vertices of the

zonotope grows exponentially with the large dimension d. To address this issue we use a randomized algorithm [45]

to find a subset of vertices of the zonotope. This algorithm produces a convex hull that is a good approximation of the

true zonotope with high-probability. In all our testing we found that the approximation of the zonotope hull did not

noticeably affect the accuracy of the quadrature rules we generated.

We assume that y 2 R
d is the d-dimensional variable with a measure ⌫. Since d is large, ⌫ is typically a tensor-

product measure. In the projected space x := Ay 2 R
s , this induces a new measure µ on the zonotope D that is

not of tensor-product form. With this setup, the µ-moments can be computed analytically by taking advantage of the

relationship x = Ay. For further details see Appendix C.

Once a quadrature rule on a zonotope D is constructed, some further work is needed before it can be applied to

integrate the function f on the original d-dimensional hypercube. Specifically we must transform the quadrature

points x 2 D back into the hypercube. The inverse transformation of A is not unique, but if the function is

(approximately) constant in the directions orthogonal to x , then any choice will do. In our example we set this

transformation as y = AT x 2 D. The integral of the ridge function can then be approximated by

Z

Dy

f (y) d⌫(y) ⇡
MX

i=1

f (AT xi )wi

where (xi , wi ) are a quadrature rule generated to integrate over the s-dimensional domain D with the non-tensor-

product measure µ.

3 Note that most non-linear least squares optimizers do not allow the specification of inequality constraints so to compute quadrature rules on a

zonotope we used a sequential quadratic program.



156 J.D. Jakeman, A. Narayan / Comput. Methods Appl. Mech. Engrg. 338 (2018) 134–161

Fig. 8. (Left) The zonotope defining the domain of integration and the joint probability density of the two variables defining the two-dimensional

ridge function of 20 uniform variables. The affine mapping described in Section 5.2 is used to center the mean of the zonotope density over the

highly non-linear region of the chemical reaction model response surface shown in the right of Fig. 4. (Right) The convergence of the error in the

mean value of the ridge function computed using reduced quadrature rules over the two-dimensional zonotope compared against more standard

quadrature rules in the full 20-dimensional space.

In the following we will consider the integration of a high-dimensional ridge function with ⌫ the uniform

probability measure. We will again consider the integrating the moments mass fraction of the third species u1(t = 100)

of the competing species model from Section 5.2. However now we set x = Ay, where y with d = 20 and A 2 R
2⇥20

is a randomly generated matrix with orthogonal rows. This makes the mass fraction a ridge function of two variables

which are restricted to a zonotope within the domain DI .

For a realization of A we plot the two resulting dimensional zonotope that defines the domain of integration of

the variables x in Fig. 8 (left). The new probability density µ is depicted in the same figure. It is obvious that the

transformed density µ is no longer uniform. In Fig. 8 (right) we plot the convergence of the error in the mean value

of the ridge function computed using reduced quadrature rules. For a fixed number of function evaluations, the error

for the reduced quadrature approach is orders of magnitudes smaller than the error obtained using Clenshaw–Curtis

sparse grids and Sobol sequences in the 20 dimensional space.

6. Conclusions

In this paper we present a flexible numerical algorithm for generating polynomial quadrature rules. The algorithm

employs optimization to find a quadrature rule that can exactly integrate, up to a specified optimization tolerance, a

set of polynomial moments. We also provide novel lower bound for the number of nodes in a quadrature rule that is

exact for a given set of polynomial moments. Quadrature rule achieving this lower bound are minimal rules. Intuition

regarding this analysis is developed using a simple set of analytical multivariate examples that address existence and

uniqueness of rules achieving the lower bound. In practice we often cannot computationally find an optimal quadrature

rule. Typically the number of points M is only slightly larger (< 10 points) than the number of moments, N , divided

by the dimension plus one, d + 1, i.e. M ⇡ N/(d + 1). The algorithm we present is flexible in the sense that it can

construct quadrature rules with positive weights: (i) for any measure for which moments can be computed; (ii) using

analytic or sample based moments; (iii) for any set of moments from a downward-closed index space, e.g. total-degree

or hyperbolic-cross polynomial spaces. We have shown that this algorithm can be used to efficiently integrate functions

in a variety of settings: (i) total-degree integration on hypercubes; (ii) integration for non-tensor-product measures; (iii)

high-order integration using approximate moments; (iv) ANOVA approximations; and (v) ridge function integration.
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Appendix A. The LP algorithm

In this section we detail the reduced quadrature algorithm first presented in [9]. Let a finite index set Λ be given

with |Λ| = N , and suppose that
�

p j

 N

j=1
is a basis for PΛ. In addition, let r be a polynomial on R

d such that r 62 PΛ.

We seek to find a positive Borel measure ⌫ solving

minimize

Z
r (x)d⌫(x)

subject to

Z
p j (x)d⌫(x) =

Z
p j (x)dµ(x), j = 1, . . . , N

The authors in [9] propose the following procedure for approximating a solution:

(1) Choose a candidates mesh,
�

y j

 S

j=1
, of S points on D. Solve the much more tractable finite-dimensional linear

problem

minimize

SX

k=1

vkr (yk)

subject to

SX

k=1

vk p j (yk) =

Z
p j (x)dµ(x), j = 1, . . . , N

and vk � 0, k = 1, . . . , S

The optimization is over the S scalars vk . Let the solution to this problem be denoted v⇤k .

(2) Identify M  N clusters from the solution above. Partition the index set {1, . . . , S} into these M clusters,

denoted C j , j = 1, . . . , M . Construct M averaged points and weights from this clustering:

bx j =
1

bw j

X

k2C j

v⇤k yk, bw j =
X

k2C j

v⇤k

Note that the size-M set
�
bx j ,bw j

 M

j=1
is a positive quadrature rule, but it is no longer a solution to the

optimization in the previous step.

(3) Solve the nonlinear optimization problem for the nodes x(k) and weights w(k), k = 1, . . . , M ,

minimize

NX

j=1

 Z
p j (x)dµ(x)�

MX

k=1

wk p j (x(k))

!2

subject to x(k) 2 Γ and wk � 0, k = 1, . . . , M

using the initial guess x(k)  bxk and wk  bwk .

We refer to the above method as the LP algorithm.

Appendix B. Reduced quadrature algorithms

This section presents pseudo code that outlines how to compute reduced quadrature rules as detailed in Section 4.

Algorithm 1 presents the entire set of steps for computing reduced quadrature rules and Algorithm 2 details how the
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clustering algorithm used to generate the initial condition for the local optimization used to compute the final reduced

quadrature rule.

Algorithm 1: Reduced Quadrature Method

input : measure µ with and polynomial family p, index set Λ, quadrature tolerance ✏

output: quadrature points X = [x1, . . . , xM ] and weights w = (w1, . . . , wM )T

1 With N = |Λ|, compute moments m = (m1, . . . , m N )T ,

mi =

Z

Γ

p↵(x) dµ(x), 8↵ 2 Λ

2 Generate S candidate samples X S over integration domain D;

3 Compute initial condition:

min kwk1 s.t.Φw = m, Φi j = p↵(xk), k 2 [S], j 2 [N ]

4 Set minimum number of quadrature points

M = N/(d + 1)

5 i = 0;

6 do

7 Cluster initial condition into M + i points and weights using Algorithm 2;

8 Solve

minimize kΦw�mk2 s.t xk 2 D, wk > 0

Set i  i + 1
9 while kΦw�mk2 > ✏;

Algorithm 2: Cluster Initial Quadrature Rule

input : Initial quadrature points X = [x1, . . . , xS] and weights w = (w1, . . . , wS)T , number of clusters M

output: quadrature points bX and weights bw
1 bX = X and bw = w;

2 while S > M do

3 I = arg mink2[N ] bwk ;

4 J = arg mink2[N ]kbxk �bx Ik2;

5 Form new point as convex combination of x I and x J

x? =
1

w?
(bwIbx I + bwJbx J ), w? = bwI + bwJ

6 Set bwI = w? andbx I = x?;

7 Remove bwJ andbx J from bX and bw;

8 S = S � 1;

9 end

Appendix C. Ridge function quadrature

Consider a variable y 2 R
d and a linear transformation A 2 R

s⇥d : Rd ! R
s which maps the variables y into a

lower dimensional set of variables x = Ay 2 R
s , where s  d. When ⌫ is a measure in R

d , this transformation induces

a measure µ in R
s . In this section we describe how to compute the moments of the measure µ in terms of those for ⌫.

Being able to compute such moments allows one to efficiently integrate ridge functions (see Section 5.3.2).

One approach is to approximate the moments of µ via Monte Carlo sampling. That is, generate a set of samples

Y = {yi }
S
i=1 ⇢ R

d from the measure ⌫, and then compute a set of samples X = AY in the s-dimension space. Given
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a multi-index set Λ with basis p↵ , ↵ 2 Λ, the µ-moments of p↵ can then be computed approximately via

1

M

MX

i=1

p↵(xi ) =
1

M

MX

i=1

p↵(Ayi ).

Such an approach is useful when one cannot directly evaluate dµ(x) but rather only has samples from the measure.

However the accuracy of a moment matching quadrature rule will be limited by the accuracy of the moments that are

being matched. For moments evaluated using Monte Carlo sampling the error in these moments decays slowly at a

rate proportional to M�1/2 and the variance of the polynomial p↵ .

However, when the higher-dimensional measure ⌫ is a tensor-product measure, ⌫(y) =
Qd

i=1⌫i (yi ), with each ⌫i (xi )

a univariate measure, then the moments of the lower-dimensional measure µ can be computed analytically using, for

example, a monomial basis.

We need to compute the moments of a monomial basis of the variables x with respect to the measure µ(x).

Computing an expression of the measure µ(x) in terms of ⌫ is difficult in general. Instead, we leverage the following

equality
Z

D

P↵(y)d⌫(y) =

Z

D

p↵(x)dµ(x), P↵(y) := p↵(Ax).

In particular, monomials in x can be expanded in terms of the variables y, e.g x p = (Ay)p, and the resulting

polynomials P↵ are just products of univariate integrals which can be computed analytically or to machine precision

with univariate Gaussian quadrature.

For example let y 2 [�1, 1]3, ⌫(y) be the uniform probability measure, and x = Ay, where A 2 R
2⇥3 then the

moment of x1x2 is
Z

D

x1x2dµ(x) =

Z

[�1,1]3

(A11 y1 + A12 y2 + A13 y3)(A21 y1 + A22 y2 + A23 y3)d⌫(x).

The right-hand side high-dimensional integrand can be expanded into sums of products of univariate terms, and thus

can be integrated with univariate quadrature.

Let A have rows aT
j 2 R

d , j = 1, . . . , s, and for simplicity assume that ⌫ is a measure on [�1, 1]d . For a general

multi-index ↵, we have

Z

D

p↵(x)dµ(x) =

Z

D

x↵dµ(x) =

Z

[�1,1]d

sY

j=1

�
aT

j y
�↵( j)

d⌫(y)

=

Z

[�1,1]d

sY

j=1

2
4 X

|�|=↵( j)

✓
↵( j)

�

◆
a

�

j y�

3
5 d⌫(y), (C.1)

where we have, for a generic � 2 N
d
0 ,

aT
j =

�
a j,1 . . . a j,d

�
, a

�

j =

dY

k=1

a
�(k)

j,k ,

and the multinomial coefficients
✓

↵( j)

�

◆
:=

↵( j)!

�!
=

✓
↵( j)

� (1), � (2), . . . , �(d)

◆
.

Inspection of (C.1) and using the tensor-product structure of ⌫, we see that this can be evaluated exactly via sums

and products of univariate integrals of y� . While exact, this approach becomes quite expensive for large k := ↵( j) (in

which case there are
⇣

k + d � 1

k � 1

⌘
summands under the product), or when s in large (in which case one must expand an

s-fold product). Nevertheless, one can use this approach for relatively large s and d since the univariate integrands in

(C.1) are very inexpensive to tabulate, and it is only processing the combination of them that is expensive.
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