
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. MATH. ANAL. c© 2018 Society for Industrial and Applied Mathematics
Vol. 50, No. 3, pp. 2441–2465

THE MEAN FIELD EQUATION FOR THE KURAMOTO MODEL ON
GRAPH SEQUENCES WITH NON-LIPSCHITZ LIMIT∗

DMITRY KALIUZHNYI-VERBOVETSKYI† AND GEORGI S. MEDVEDEV†

Abstract. The Kuramoto model (KM) of coupled phase oscillators on graphs provides the
most influential framework for studying collective dynamics and synchronization. It exhibits a rich
repertoire of dynamical regimes. Since the work of Strogatz and Mirollo [J. Stat. Phys., 63 (1991),
pp. 613–635], the mean field equation derived in the limit as the number of oscillators in the KM goes
to infinity has been the key to understanding a number of interesting effects, including the onset of
synchronization and chimera states. In this work, we study the mathematical basis of the mean field
equation as an approximation of the discrete KM. Specifically, we extend the Neunzert’s method
of rigorous justification of the mean field equation (cf. [H. Neunzert, Fluid Dyn. Trans., 9 (1978),
pp. 229–254]) to cover interacting dynamical systems on graphs. We then apply it to the KM on
convergent graph sequences with non-Lipschitz limit. This family of graphs includes many graphs
that are of interest in applications, e.g., nearest-neighbor and small-world graphs. The approaches
for justifying the mean field limit for the KM proposed previously in [C. Lancellotti, Transp. Theory
Statist. Phys., 34 (2005), pp. 523–535; H. Chiba and G. S. Medvedev, arXiv:1612.06493, 2016] do
not cover the non-Lipschitz case.
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1. Introduction. The Kuramoto model (KM) of coupled phase oscillators pro-
vides a useful framework for studying collective behavior in large ensembles of inter-
acting dynamical systems. It is derived from a weakly coupled system of nonlinear
oscillators, which are described by autonomous systems of ordinary differential equa-
tions possessing a stable limit cycle [8]. Originally, Kuramoto considered all-to-all
coupled systems, in which each oscillator interacts with all other oscillators in exactly
the same way. In this case, the KM has the following form:

(1.1) u̇n,i = ωi +
K

n

n∑
j=1

sin (un,j − un,i + α) , i ∈ [n] := {1, 2, . . . , n}.

Here, un,i : R+ → S := R/2πZ stands for the phase of oscillator i as a function of
time, ωi is its intrinsic frequency, K is the coupling strength, and α is a parameter
defining the type of interactions.

Despite its simple form, the KM (1.1) features a rich repertoire of interesting
dynamical effects. For the purpose of this review, we mention the onset of synchro-
nization in (1.1) with randomly distributed intrinsic frequencies ωi (Figure 1(a), (b))
(cf. [21]) and chimera states, interesting spatio-temporal patterns combining coherent
and incoherent behaviors [10, 1]. The mathematical analysis of these and many other
dynamical regimes uses the mean field equation, derived in the limit when the num-
ber of oscillators goes to infinity [22]. The mean field equation is a partial differential
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(a)
K<Kc

(b)
K>Kc

Fig. 1. The distribution of the phase oscillators in the KM (1.1) for values of K below (a)
and above (b) the critical value Kc. In the former plot, the distribution is approximately uniform,
whereas the latter plot exhibits a pronounced cluster. The bold vectors depict the order parameter,
whose length reflects the degree of coherence. The random distribution of the oscillators shown in
these plots can be effectively analyzed with the mean field equation (1.18). In particular, the mean
field analysis determines the critical value Kc.

equation for the probability density describing the distribution of the phases on S.
We discuss the mean field equation in more detail below.

Recently, there has been a growing interest in the dynamics of coupled dynamical
systems on graphs [20]. In the KM on a graph, each oscillator is placed at a node of
an undirected graph Γn = 〈V (Γn), E(Γn)〉. Here, V (Γn) = [n] stands for the node
set of Γn, and E(Γn) denotes its edge set. The oscillator i interacts only with the
oscillators at the adjacent nodes:

(1.2) u̇n,i = ωi +
K

n

∑
j:j∼i

sin (un,j − un,i + α) , i ∈ [n],

where j ∼ i is a shorthand for {i, j} ∈ E(Γn).
Clearly, one can not expect limiting behavior of solutions of (1.2) as n → ∞,

unless the graph sequence {Γn} is convergent in the appropriate sense. In the present
paper, we use the following construction of the convergent sequence {Γn}. Let W
be a symmetric measurable function on the unit square I2 := [0, 1]2. W is called a
graphon. It will be used to define the asymptotic behavior of {Γn}. Further, let

(1.3) Xn = {xn,1, xn,2, . . . , xn,n}, xn,i = i/n, i ∈ [n],

and

(1.4) Wn,ij := n2
∫
In,i×In,j

W (x, y)dxdy, In,i := [xn,(i−1), xn,i), i, j ∈ [n].

The weighted graph Γn = G(W,Xn) on n nodes is defined as follows. The vertex set
is V (Γn) = [n] and the edge set is

(1.5) E(Γn) = {{i, j} : Wn,ij 6= 0, i, j ∈ [n]} .

Each edge {i, j} ∈ E(Γn) is supplied with the weight Wn,ij .
1

1There are several possible ways of defining the weights Wn,ij , i, j ∈ [n] (see Remark 3.5).
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The KM on Γn = G(W,Xn) has the following form:

(1.6) u̇n,i = ωi +
K

n

n∑
j=1

Wn,ij sin (un,j − un,i + α) , i ∈ [n].

For different W (1.6) implements the KM on a variety of simple and weighted graphs.
Moreover, it provides an effective approximation of the KM on random graphs. In-
deed, let Γ̄n = Gr(Xn,W ) be a random graph on n nodes, whose edge set is defined
as follows:

(1.7) P ({i, j} ∈ E(Γn)) = Wn,ij ,

assuming the range of W is [0, 1]. The decision for each pair {i, j} is made indepen-
dently from the decisions on other pairs. Γ̄n = Gr(Xn,W ) is called a W-random
graph [12].

The KM on the W-random graph Γ̄n = Gr(Xn,W ) has the form

(1.8) ˙̄un,i = ωi +Kn−1
n∑
j=1

en,ij sin(ūn,j − ūn,i + α), i ∈ [n],

where en,ij , 1 ≤ i ≤ j ≤ n, are independent Bernoulli RVs,

P(en,ij = 1) = Wn,ij ,

and en,ij = en,ji.
The following lemma shows that the deterministic model (1.6) approximates the

KM on the random graph Γ̄n (1.8).

Lemma 1.1. Let un(t) and ūn(t) denote solutions of the IVP for (1.6) and (1.8),
respectively. Suppose that the initial data for these problems coincide un(0) = ūn(0).
Then for any δ ∈ (0, 1),

(1.9) sup
t∈[0,T ]

‖un(t)− ūn(t)‖1,n ≤ C1e
C2Tn

−1+δ
4 P− almost surely (a.s.),

where C1 and C2 are positive constants independent of n and T , un = (u1, u2, . . . , un),
ūn = (ū1, ū2, . . . , ūn), and

(1.10) ‖un‖1,n =

√√√√n−1
n∑
i=1

u2ni

is a discrete L2-norm.

Proof. See Appendix A.

Example 1.2. A few examples are in order.
1. Let W (x, y) ≡ p ∈ (0, 1). Then Γ̄n = Gr(Xn,W ) is an Erdős–Rényi graph

(Figure 2(a)).
2. Let

(1.11) Wp,h(x, y) =

{
1− p, dS(2πx, 2πy) ≤ 2πh,
p otherwise,
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(a) (b) (c)

Fig. 2. The pixel pictures representing adjacency matrices of the Erdős–Rényi (a), small-world
(b), and nearest-neighbor (c) graphs.

where p, h ∈ (0, 1/2) are two parameters and

(1.12) dS(θ, θ
′) = min{|θ − θ′|, 2π − |θ − θ′|}

is the distance on S. Then Γ̄n = Gr(Xn,Wp,h) is a W-small-world graph [17]
(Figure 2(b)).

3. Γn = G(Xn,W1,h) is a �h−1
-nearest-neighbor graph (Figure 2(c)).
For more examples, we refer an interested reader to [3].

Remark 1.3. For simplicity, we restrict the presentation to the KM on dense
graphs. The KM on W-random graphs (1.8) easily extends to sparse graphs like
scale-free graphs. (See [9] for details.)

Below, we will focus on the deterministic model (1.6). All results for this model
can be extended to the KM on random graphs via Lemma 1.1. Furthermore, from
now on we will assume that all intrinsic frequencies in (1.6) are the same ωi = ω,
i ∈ [n], and, thus, ω can be set to 0 by switching to the rotating frame of coordinates.
Extending the analysis in the main part of this paper to models with distributed
frequencies ωi is straightforward (see, e.g., [3]), but it complicates the presentation.
We will comment on the adjustments in the analysis that are necessary to cover the
distributed intrinsic frequencies case in section 4. Until then we consider the following
system of n coupled oscillators on Γn = G(W,Xn):

u̇n,i = n−1
n∑

j=1

Wn,ijD(un,j − un,i),(1.13)

un,i(0) = u0
n,i, i ∈ [n],(1.14)

where D is a Lipschitz continuous 2π-periodic function.
For the remainder of this section and in the next section, we assume W ∈ L∞(I2).

Without loss of generality, we assume

(1.15) sup
(x,y)∈I2

|W (x, y)| ≤ 1, max
u∈S

|D(u)| ≤ 1,

and

(1.16) |D(u)−D(v)| ≤ |u− v| ∀u, v ∈ S.

In addition, we assume that the graphon W satisfies the following condition:

(1.17) lim
δ→0

∫
I

|W (x+ δ, y)−W (x, y)|dy = 0 ∀x ∈ I.
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Having defined the KMs on deterministic and random graphs (1.6) and (1.8),
respectively, we will now turn to the mean field limit:

(1.18)
∂

∂t
ρ(t, u, x) +

∂

∂u
{V (t, u, x)ρ(t, u, x)} = 0,

where

(1.19) V (t, u, x) =

∫
I

∫
S
W (x, y)D(v − u)ρ(t, v, y)dvdy.

The initial condition

(1.20) ρ(0, u, x) = ρ0(u, x) ∈ L1(G), G := S× I,

is a probability density function on S for x ∈ I almost everywhere (a.e.), i.e., ρ0 ≥ 0
and

(1.21)

∫
S
ρ0(u, x)du = 1 x ∈ I a.e.

In the continuum limit as n→∞, the nodes of Γn fill out I. Thus, heuristically,
ρ(t, u, x) in (1.18) stands for the density of the probability distribution of the phase
of the oscillator at x ∈ I on S at time t ≥ 0. As we will see below, this probability
distribution is indeed continuous for t > 0, provided that the initial conditions for the
discrete problem (1.13), (1.14) converge weakly to the probability distribution with
density (1.20). In fact, in [3] it is shown that in this case, the empirical measure on
the Borel subsets of G,

(1.22) µnt (A) = n−1
n∑
i=1

1A((uni(t), xni)), A ∈ B(G),

converges weakly to the absolutely continuous measure

(1.23) µt(A) =

∫ ∫
A

ρ(t, u, x)dudx, A ∈ B(G).

The analysis in [3], which extends the analysis of the all-to-all coupled KM (1.1)
by Lancellotti [11], relies on the Lipschitz continuity of W . This is the essential
assumption of the Neunzert’s fixed point argument that lies at the heart of the method
used in [11, 3]. This puts the KM on such common graphs as the small-world and
k-nearest-neighbor ones out of the scope of applications of [3] (see Example 1.2). It
is the goal of the present paper to fill this gap. Specifically, we extend the Neunzert’s
method to the KM on convergent families of graphs with non-Lipschitz limits. Our
results apply to a general model of n interacting particles on a graph (cf. [7]). However,
for concreteness and in view of the diverse applications of the KM, in this paper, we
present our method in the context of the KM of coupled phase oscillators.

The organization of this paper is as follows. In the next section, we revise the
Neunzert’s fixed point theory to adapt it to the KM on convergent graph sequences.
This includes a careful choice of the underlying metric space in subsection 2.1, setting
up the fixed point equation in subsection 2.2, proving the existence and uniqueness of a
solution of the fixed point equation in section 2, and showing continuous dependence
on the initial data in subsection 2.4 and on the graphon W in subsection 2.5. In
section 3, we apply the fixed point theory to the KM on graphs. To this end, we first
apply it to an auxiliary problem and then show that this problem approximates the
original KM on graphs. We conclude with a brief discussion of our results in section 4.

D
ow

nl
oa

de
d 

05
/2

5/
18

 to
 1

44
.1

18
.2

32
.1

49
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2446 D. KALIUZHNYI-VERBOVETSKYI AND S. MEDVEDEV

2. The fixed point equation. In this section, we extend Neunzert’s fixed point
method, so that it can be used for the analysis of the IVP for the mean field equation
(1.18), (1.19) with non-Lipschitz kernel W .

2.1. The metric space. LetM denote the space of Borel probability measures
on S. The bounded Lipschitz distance on M is given by

(2.1) d(µ, η) = sup
f∈L

∣∣∣∣∫
S
f(v) (dµ(v)− dη(v))

∣∣∣∣ ,
where L stands for the class of Lipschitz continuous functions on S with Lipschitz
constant at most 1 (cf. [4]). 〈M, d〉 is a complete metric space.

Consider the set of measurable M-valued functions2 µ̄ : x 7→ µx ∈M

M̄ := {µ̄ : I →M} .

Equip M̄ with the metric

(2.2) d̄(µ̄, η̄) =

∫
I

d (µx, ηx) dx.

Lemma 2.1. 〈M̄, d̄〉 is a complete metric space.

Proof. Since d is a metric, it is straightforward that d̄ is a metric as well. In order
to prove the completeness of 〈M̄, d̄〉, take a Cauchy sequence {µ̄n} in M̄. Then there
is an increasing sequence of indices nk such that

d̄(µnk , µnk+1
) =

∫
I

d
(
µxnk , µ

x
nk+1

)
dx <

1

2k+1
, k = 1, 2, . . . .

By Levi’s theorem, the series

∞∑
k=1

d
(
µxnk , µ

x
nk+1

)
converges for a.e. x ∈ I to some measurable function f(x), and

∞∑
k=1

∫
I

d
(
µxnk , µ

x
nk+1

)
dx =

∫
I

f(x) dx.

Since, for every i, j with j > i,

d
(
µxni , µ

x
nj

)
≤

j−1∑
k=i

d
(
µxnk , µ

x
nk+1

)
,

the sequence {µxnk} is Cauchy for a.e. x ∈ I. Since the metric space 〈M, d〉 is complete,
there exists the limit

µx = lim
k→∞

µxnk , a.e. x ∈ I.

Extending the definition of µx in an arbitrary way to all of I, we obtain a function

µ̄ := {µx} : I →M

2µ̄ : I → M is called measurable if the preimage of an open set in M is a Lebesgue measurable
subset of I.
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which is measurable as an a.e. pointwise limit of measurable functions. Thus µ̄ ∈ M̄.
Next, for every i, j with j > i, we have

d̄(µ̄ni , µ̄nj ) =

∫
I

d
(
µxni , µ

x
nj

)
dx≤

∫
I

j−1∑
k=i

d
(
µxnk , µ

x
nk+1

)
dx =

j−1∑
k=i

∫
I

d
(
µxnk , µ

x
nk+1

)
dx

≤
∞∑
k=i

∫
I

d
(
µxnk , µ

x
nk+1

)
dx <

1

2i
.

We also have that, for all j > i, d(µxni , µ
x
nj ) ≤ f(x) a.e. x ∈ I and the function f is

Lebesque integrable on I. By the Lebesque dominated convergence theorem, letting
j →∞, we obtain that

d̄(µ̄ni , µ̄) =

∫
I

d
(
µxni , µ

x
)
dx =

∫
I

lim
j→∞

d
(
µxni , µ

x
nj

)
dx

= lim
j→∞

∫
I

d
(
µxni , µ

x
nj

)
dx ≤ 1

2i
→ 0,

as i→∞. Since the subsequence {µ̄ni} of the Cauchy sequence {µ̄n} converges to µ̄
in M̄, we conclude that the sequence {µ̄n} converges to µ̄ as well. Thus 〈M̄, d̄〉 is a
complete metric space.

Let T > 0 be arbitrary but fixed and denote T = [0, T ]. We define MT =
C(T ,M̄), the space of continuous M̄-valued functions.

For any α > 0, the following is a metric on M̄T :

(2.3) dα(µ̄., ν̄.) = sup
t∈T

e−αtd̄(µ̄t, ν̄t) = sup
t∈T

e−αt
∫
I

d(µxt , ν
x
t )dx.

2.2. The equation of characteristics. Recall that T := [0, T ], where T > 0
is arbitrary but fixed. For a given µ̄. ∈ MT , consider the following equation of
characteristics

(2.4)
d

dt
u = V [W, µ̄.](u, x, t),

where

(2.5) V [W, µ̄.](u, x, t) =

∫
I

W (x, y)

{∫
S
D(v − u)dµyt (v)

}
dy.

Lemma 2.2. For every µ̄. ∈ M̄T , V [W, µ̄.](u, x, t) is Lipschitz continuous in u
and continuous in x and t.

Proof. The proof follows from the following estimates. First, using (1.15) and
(1.16), we have

|V [W, µ̄.](u, x, t)− V [W, µ̄.](v, x, t)|

=

∣∣∣∣∫
I

W (x, y)

∫
S

(D(w − u)−D(w − v)) dµyt (w)dy

∣∣∣∣
≤
∫
I

|W (x, y)|
∫
S
|D(w − u)−D(w − v)| dµyt (w)dy

≤ |u− v| ∀u, v ∈ S, x ∈ I, t ∈ T .
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Using the bound on D (cf. (1.15)), we obtain

|V [W, µ̄.](u, x, t)− V [W, µ̄.](u, z, t)|

=

∣∣∣∣∫
I

(W (x, y)−W (z, y))

∫
S
D(v − u)dµyt (v)dy

∣∣∣∣
≤
∫
I

|W (x, y)−W (z, y)|
∫
S
|D(v − u)| dµyt (v)dy

≤
∫
I

|W (x, y)−W (z, y)| dy ∀u ∈ S, x, z ∈ I, t ∈ T .

(2.6)

The continuity of V [W, µ̄.] in x follows from (2.6) and (1.17).
Finally,

|V [W, µ̄.](u, x, t)− V [W, µ̄.](u, x, s)|

=

∣∣∣∣∫
I

W (x, y)

∫
S
D(v − u) (dµyt (v)− dµys(v)) dy

∣∣∣∣
≤
∫
I

|W (x, y)|
∣∣∣∣∫

S
D(v − u) (dµyt (v)− dµys(v))

∣∣∣∣ dy
≤
∫
I

|W (x, y)| d(µyt , µ
y
s)dy

≤ d̄(µ̄t, µ̄s).

Similarly to the derivation of the last inequality, we prove the following lemma.

Lemma 2.3.

(2.7) |V [W, µ̄.](u, x, t)− V [W, ν̄.](u, x, t)| ≤ d̄(µ̄t, ν̄t) ∀µ̄., ν̄. ∈ M̄T .

Consider the initial value problem (IVP) for (2.4) subject to the initial condition
at time s ∈ T , u(s) = us. By Lemma 2.2, for every x ∈ I and us ∈ S, there exists a
unique solution of the IVP for (2.4). Since V [W, µ̄.](u, x, t) is uniformly Lipschitz in
u, u(t) can be extended to t ∈ T . Thus, the equation of characteristics (2.4) generates
the flow on S :

(2.8) T xt,s[W, µ̄.]us = u(t), t, s ∈ T , us ∈ S.

For every x ∈ I, T xt,s[W, µ̄.], t, s ∈ T , is a two-parameter family of one-to-one trans-
formations of S to itself depending continuously on x:

T xs,s[W, µ̄.] = id, (T xt,s[W, µ̄.])
−1 = T xs,t[W, µ̄.].

2.3. Existence of solution of the fixed point equation. In the remainder
of this section, we will study the following fixed point equation. For a given µ̄0 ∈ M̄,
consider the pushforward measure

(2.9) µ̄t = µ̄0 ◦ T0,t[W, µ̄.] ∀t ∈ T ,

which is interpreted as

(2.10) µxt = µx0 ◦ T x0,t[W, µ̄.] a.e. x ∈ I, and t ∈ T .

First, we address existence and uniqueness of solution of (2.9).
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Theorem 2.4. For every µ̄0 ∈ M̄, the fixed point equation (2.9) has a unique
solution µ̄. ∈ M̄T .

For the proof of Theorem 2.4, we will need a variant of the Gronwall’s inequality,
which we formulate below for convenience.

Lemma 2.5. Let φ(t) and a(t) be continuous functions on [0, T ] and

(2.11) φ(t) ≤ A
∫ t

0

φ(s)ds+B

∫ t

0

a(s)ds+ C, t ∈ [0, T ],

where A ≥ 0. Then

(2.12) φ(t) ≤ eAt
(
B

∫ t

0

a(s)e−Asds+ C

)
.

Proof. The proof is standard (see, e.g., [5]).

Proof of Theorem 2.4. Given µ̄0 ∈ M̄, consider A : M̄T → M̄T defined by

(2.13) A[W, µ̄.](t, x) = µx0 ◦ T x0,t[W, µ̄.], a.e. x ∈ I.

Below we show that A is a contraction on (M̄T , dα) with α > 2. To this end,

d̄ (A[W, µ̄.](t, ·), A[W, η̄.](t, ·))
= d̄(µ̄0 ◦ T0,t[W, µ̄.], µ̄0 ◦ T0,t[W, η̄.])

=

∫
I

d(µx0 ◦ T x0,t[W, µ̄.], µx0 ◦ T x0,t[W, η̄.])dx

=

∫
I

sup
f∈L

∣∣∣∣∫
S
f(v)

(
dµx0 ◦ T x0,t[W, µ̄.](v)− dµx0 ◦ T x0,t[W, η̄.](v)

)∣∣∣∣ dx
=

∫
I

sup
f∈L

∣∣∣∣∫
S
f
(
T xt,0[W, µ̄.]v

)
dµx0(v)−

∫
S
f
(
T xt,0[W, η̄.]v

)
dµx0(v)

∣∣∣∣ dx
≤
∫
I

∫
S

∣∣T xt,0[W, µ̄.]v − T xt,0[W, η̄.]v
∣∣ dµx0(v)dx =: λ(t).

(2.14)

The change of variables formula used in (2.14) is explained in [13, section 6.1]. Using
(2.4) and (2.7), we obtain

λ(t)

=

∫
I

∫
S

∣∣T xt,0[W, µ̄.]v − T xt,0[W, η̄.]v
∣∣ dµx0(v)dx

≤
∫ t

0

∫
I

∫
S

∣∣V [W, µ̄.]
(
T xs,0[W, µ̄.]v, x, s)

)
− V [W, η̄.]

(
T xs,0[W, η̄.]v, x, s)

)∣∣ dµx0(v)dxds

≤
∫ t

0

∫
I

∫
S

∣∣V [W, µ̄.]
(
T xs,0[W, µ̄.]v, x, s)

)
− V [W, η̄.]

(
T xs,0[W, µ̄.]v, x, s)

)∣∣ dµx0(v)dxds

+

∫ t

0

∫
I

∫
S

∣∣V [W, η̄.]
(
T xs,0[W, µ̄.]v, x, s)

)
− V [W, η̄.]

(
T xs,0[W, η̄.]v, x, s)

)∣∣ dµx0(v)dxds

≤
∫ t

0

d̄(µ̄s, η̄s)ds+

∫ t

0

∫
I

∫
S

∣∣T xs,0[W, µ̄.]v − T xs,0[W, η̄.]v
∣∣ dµx0(v)dxds

≤
∫ t

0

d̄(µ̄s, η̄s)ds+

∫ t

0

λ(s)ds.

(2.15)
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Using Gronwall’s inequality (cf. Lemma 2.5), from (2.15) we obtain

(2.16) λ(t) ≤ et
∫ t

0

d̄(µ̄s, η̄s)e
−sds.

Combining (2.14), (2.15), and (2.16), we have

(2.17) d̄ (A[W, µ̄](t, ·), A[W, η̄](t, ·)) ≤ et
∫ t

0

d̄(µ̄s, η̄s)e
−sds

and

dα (A[W, µ̄](t, ·), A[W, η̄](t, ·)) = sup
t∈T

{
e−αtd̄ (A[W, µ̄](t, ·), A[W, η̄](t, ·))

}
≤ sup

t∈T
e−(α−1)t

∫ t

0

d̄(µ̄s, η̄s)e
−sds

≤ dα (µ̄, η̄) e−(α−1)t
∫ t

0

e(α−1)sds

≤ (α− 1)−1dα (µ̄., η̄.) .

(2.18)

We conclude the proof with using the contraction mapping principle to establish a
unique solution of (2.9).

2.4. Continuous dependence on initial data.

Lemma 2.6. Let µ̄., η̄. ∈ M̄T be two solutions of (2.9) corresponding to initial
conditions µ̄0, η̄0 ∈ M̄, respectively. Then

(2.19) sup
t∈T

d̄(µ̄t, η̄t) ≤ e2T d̄(µ̄0, η̄0).

Proof. For every t ∈ T , by the triangle inequality, we have

d̄(µ̄t, η̄t) = d̄(µ̄0 ◦ T0,t[W, µ̄.], η̄0 ◦ T0,t[W, η̄.])
≤ d̄(µ̄0 ◦ T0,t[W, µ̄.], µ̄0 ◦ T0,t[W, η̄.]) + d̄(µ̄0 ◦ T0,t[W, η̄.], η̄0 ◦ T0,t[W, η̄.]).

(2.20)

Exactly in the same way as in (2.14), we estimate the first term on the right-hand
side of (2.20) as follows:

d̄(µ̄0 ◦ T0,t[W, µ̄.], µ̄0 ◦ T0,t[W, η̄.])

=

∫
I

sup
f∈L

∣∣∣∣∫
S

(
f(T xt,0[W, µ̄.]v)− f(T xt,0[W, η̄.]v)

)
dµx0(v)

∣∣∣∣ dx
≤
∫
I

∫
S

∣∣T xt,0[W, µ̄.]v − T xt,0[W, η̄.]v
∣∣ dµx0(v)dx =: λ(t).

(2.21)

Similarly, repeating the steps in (2.15)

(2.22) λ(t) ≤
∫ t

0

d̄(µ̄s, η̄s)ds+

∫ t

0

λ(s)ds.

Using Gronwall’s inequality, from (2.22) we obtain

(2.23) λ(t) ≤ et
∫ t

0

d̄(µ̄s, η̄s)e
−sds.
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Next, we turn to the second term on the right-hand side of (2.20):

d̄(µ̄0 ◦ T0,t[W, η̄.], η̄0 ◦ T0,t[W, η̄.])

=

∫
I

sup
f∈L

∣∣∣∣∫
S
f(v)dµx0 ◦ T x0,t[W, η̄.](v)−

∫
S
f(v)dηx0 ◦ T x0,t[W, η̄.](v)

∣∣∣∣ dx
=

∫
I

sup
f∈L

∣∣∣∣∫
S
f(T xt,0[W, η̄.]v)dµx0(v)−

∫
S
f(T xt,0[W, η̄.]v)dηx0 (v)

∣∣∣∣ dx
≤ d̄(µ̄0, η̄0).

(2.24)

The combination of (2.20), (2.21), (2.23), and (2.24) yields

(2.25) d̄(µ̄t, η̄t) ≤ et
∫ t

0

d̄(µ̄s, η̄s)e
−sds+ d̄(µ̄0, η̄0).

Denote φ(t) := d̄(µ̄t, η̄t)e
−t and rewrite (2.25) as

φ(t) ≤
∫ t

0

φ(s)ds+ e−td̄(µ̄0, η̄0) =: ψ(t).

Next,

ψ′(t) = φ(t)− e−td̄(µ̄0, η̄0)

≤ ψ(t)− e−td̄(µ̄0, η̄0)

≤ ψ(t).

Further,

(2.26)
d

ds

{
e−sψ(s)

}
= e−sψ′(s)− e−sψ(s) ≤ 0,

and, thus,
φ(t) ≤ ψ(t) ≤ etψ(0) = etd̄(µ̄0, η̄0).

Recalling, the definition of φ(t), we arrive at

(2.27) d̄(µ̄t, η̄t) ≤ e2td̄(µ̄0, η̄0), t ∈ T ,

from which (2.19) follows.

2.5. Continuous dependence on the kernel. In this subsection, we study
how the solution of the fixed point equation (2.9) changes under the perturbation of
the kernel W . To this end, let W and U be two bounded measurable functions on I2

satisfying (1.17). Then for a given µ0 ∈M each of the fixed point equations

µ̄t = µ̄0 ◦ T0,t[W, µ̄.],(2.28)

ν̄t = µ̄0 ◦ T0,t[U, ν̄.](2.29)

has a unique solution in MT , which we denote by µ̄t and ν̄t, respectively.

Lemma 2.7.

(2.30) sup
t∈T

d̄(µ̄t, ν̄t) ≤ e2T ‖W − U‖L1(I2).
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Proof. We proceed along the lines of the proof of Lemma 2.6. Replicating the
steps in (2.14), we derive

(2.31) d̄(µ̄t, ν̄t) ≤
∫
I

∫
S

∣∣T xt,0[W, µ̄.]v − T xt,0[U, ν̄.]v
∣∣ dµx0dx =: λ(t).

Further,

λ(t) =

∫
I

∫
S

∣∣∣∣∫ t

0

{
V [W, µ̄.]

(
T xt,0[W, µ̄.]v, x, s

)
−V [U, ν̄.]

(
T xt,0[U, ν̄.]v, x, s

)}
ds

∣∣∣∣ dµx0(v)dx

≤
∫ t

0

∫
I

∫
S

∣∣V [W, µ̄.]
(
T xt,0[W, µ̄.]v, x, s

)
−V [W, ν̄.]

(
T xt,0[W, µ̄.]v, x, s

)∣∣ dµx0(v)dxds

+

∫ t

0

∫
I

∫
S

∣∣V [W, ν̄.]
(
T xt,0[W, µ̄.]v, x, s

)
−V [U, ν̄.]

(
T xt,0[W, µ̄.]v, x, s

)∣∣ dµx0(v)dxds

+

∫ t

0

∫
I

∫
S

∣∣V [U, ν̄.]
(
T xt,0[W, µ̄.]v, x, s

)
−V [U, ν̄.]

(
T xt,0[U, ν̄.]v, x, s

)∣∣ dµx0(v)dxds

=: λ1(t) + λ2(t) + λ3(t).

(2.32)

We estimate the first term on the right-hand side of (2.32), using Lemma 2.3:

(2.33) λ1(t) ≤
∫ t

0

d̄(µ̄s, ν̄s)ds.

For the second term, we have

λ2(t) ≤
∫ t

0

∫
I

∫
S

[∫
I

|W (x, y)− U(x, y)|{∫
S

∣∣D(w − T xt,0[W, µ̄.]v)
∣∣ dνys (w)

}
dy

]
dµx0(v)dxds

≤
∫ t

0

∫
I2
|W (x, y)− U(x, y)|dxdyds,

(2.34)

where we used |D(u)| ≤ 1 to get the latter inequality. Finally, to estimate the third
term, we use Lipschitz continuity of V [·, ·](u, x, t) in u:

(2.35) λ3(t) ≤
∫ t

0

∫
I

∫
S

∣∣T xs,0[W, µ̄.]v − T xs,0[U, ν̄.]v
∣∣ dµx0(v)dxds =

∫ t

0

λ(s)ds.

Plugging (2.33)–(2.35) into (2.32), we obtain

(2.36) λ(t) ≤
∫ t

0

λ(s)ds+

∫ t

0

(
d̄(µ̄s, ν̄s) + ‖W − U‖L1(I2)

)
ds.

By Gronwall’s inequality (cf. Lemma 2.5),

(2.37) λ(t) ≤ et
∫ t

0

e−s
(
d̄(µ̄s, ν̄s) + ‖W − U‖L1(I2)

)
ds.

The combination of (2.31) and (2.37) yields

(2.38) d̄(µ̄t, ν̄t) ≤ et
∫ t

0

e−s
(
d̄(µ̄s, ν̄s) + ‖W − U‖L1(I2)

)
ds.
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Denote φ(t) := e−td̄(µ̄t, ν̄t) and rewrite (2.38) as

φ(t) ≤
∫ t

0

φ(s)ds+ ‖W − U‖L1(I2)

∫ t

0

e−sds

≤
∫ t

0

φ(s)ds+ ‖W − U‖L1(I2).

(2.39)

Using Lemma 2.5 again, we have

φ(t) ≤ et‖W − U‖L1(I2).

Recalling, the definition of φ(t), we finally get

d̄(µ̄t, ν̄t) ≤ e2t‖W − U‖L1(I2).

3. Application to coupled systems. In this section, we apply the fixed point
theory developed in the previous section to the proof of convergence of solutions of
the KM on graphs (1.2).

3.1. The initial value problem. We begin by addressing the well-posedness
of the IVP for (1.18), i.e., review the notion of the weak solution of the mean field
equation (1.18) and then prove the existence and uniqueness of the weak solution
of the IVP (1.18)–(1.20). The following definition of the weak solution of (1.18) is
adapted from [19].

Definition 3.1. A measurable function ρ : T ×G→ R is called a weak solution
of (1.18)–(1.20) if the following conditions hold a.e. x ∈ I.

1. ρ(t, u, x) is weakly continuous in t ∈ T , i.e., t 7→
∫
S ρ(t, u, x)f(u)du is a

continuous map for every f ∈ C(S).
2. The following identity holds∫ T

0

{∫
S
ρ(t, u, x)

(
∂

∂t
w(t, u) + V (t, u, x)

∂

∂u
w(t, u)

)
du

}
dt

+

∫
S
w(0, u)ρ0(u, x)du = 0

(3.1)

for every w ∈ C1(T × S) with support in (0, T ]× S.

Theorem 3.2. Suppose W ∈ L1(I2) satisfies (1.17) and ρ0 ∈ L1(G). Then there
is a unique weak solution to the IVP (1.18)–(1.20).

Proof. Recall that T x0,t := T x0,t[W, µ̄.] is the flow generated by the equation of
characteristics (2.4) on S (see (2.8)). By Theorem 2.4, for µx0 , a family of measures on
(S,B(S)) with densities ρ0(·, x), there is a unique solution of the fixed point equation
(2.9).

For a.e. x ∈ I and t ∈ T , T x0,t is one-to-one and Lipschitz continuous. As an
absolutely continuous function, T x0,t is differentiable a.e. on S and has an essentially
bounded weak derivative. Using (2.10) and the change of variables formula for Lips-
chitz maps (cf. [6, Theorem 2, section 3.3.3]), we have

µxt (A) = µx0 ◦ T x0,t(A) =

∫
Tx0,tA

ρ0(u, x)du

=

∫
A

ρ0(T x0,tu, x)

∣∣∣∣ ∂∂uT x0,tu
∣∣∣∣ du, a.e. x ∈ I,

(3.2)D
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for any Borel A ⊂ S. In the last integral of (3.2), ∂
∂uT

x
0,tu is understood as a weak

derivative. Thus, for t ∈ T and a.e. x ∈ I, µxt is an absolutely continuous measure
with density

(3.3) ρ(t, u, x) = ρ0(T x0,tu, x)

∣∣∣∣ ∂∂uT x0,tu
∣∣∣∣ .

To show that ρ(t, u, x) is a weak solution of (1.18)–(1.20), as in the proof of [19,
Theorem 1], we set

(3.4) h :=
∂

∂t
w + V (t, u, x)

∂

∂u
w(t, u)

and compute∫ T

0

∫
S
ρ(t, u, x)h(t, u, x)dudt =

∫ T

0

∫
S

(
ρ0(T x0,tu, x)

∣∣∣∣ ∂∂uT x0,tu
∣∣∣∣h(t, u, x)

)
dudt

=

∫
S
ρ0(u, x)

(∫ T

0

h(t, T xt,0u)dt

)
du.

(3.5)

Further, using the chain rule and (3.4), we have

d

dt
w(t, T xt,0u) = ∂1w(t, T xt,0u) + ∂2w(t, T xt,0u)

d

dt
T xt,0u

= ∂1w(t, T xt,0u) + ∂2w(t, T xt,0u)V (t, u, x) = h(t, T xt,0u, x),
(3.6)

where ∂1,2 stand for the partial derivatives with respect to the first and second argu-
ment, respectively. The combination of (3.5) and (3.6) yields∫ T

0

∫
S
ρ(t, u, x)h(t, u, x)dudt =

∫
S
ρ0(u, x)

(∫ T

0

h(t, T xt,0u)dt

)
du

=

∫
S
ρ0(u, x)

(∫ T

0

∂

∂t
w(t, T xt,0u)du

)
dt

= −
∫
S
ρ0(u, x)w(0, u)du.

3.2. Approximation. We continue by collecting several results on approxima-
tion, which will be used later in this section.

Let W ∈ L2(I2) and consider a step function Wn : I → R, which on each cell
In,i × In,j is equal to the average value Wn,ij , i, j ∈ [n] (cf. (1.4)).

Lemma 3.3. Wn →W a.e. and in L2(I2) as n→∞.
Proof. The proof can be found in [9, Lemma 5.3].

Let Γn = 〈[n], E(Γn),Wn〉 be a weighted graph on n nodes. Here, [n] is the set
of vertices and

E(Γn) = {{i, j} : i, j ∈ [n]}

is the edge set. Each edge {i, j} is equipped with a real weight Wn,ij , the ijth entry
of the n× n weight matrix Wn.
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On Γn consider a coupled system:

(3.7) u̇n,i = n−1
n∑
j=1

Wn,ijD(un,j − un,i), i ∈ [n].

By un = (un,1, un,2, . . . , un,n)T ∈ Rn we denote a solution of the coupled system

(3.7). Along with (3.7), consider the coupled system on a weighted graph Γ̃n =
〈[n], E(Γn), W̃n〉, whose solution is denoted by ũn.

Recall the discrete L2-norm defined in (1.10). We will also need its analogue for
discretizations of functions on I2:

(3.8) ‖Wn‖2,n =

√√√√n−2
n∑

i,j=1

W 2
n,ij .

Lemma 3.4 (see [3, Lemma 4.1]). Let un(t) and ũn(t) denote solutions of the
IVPs for the coupled system (3.7) on weighted graphs Γn = 〈[n], E(Γn),Wn〉 and
Γ̃n = 〈[n], E(Γn), W̃n〉, respectively. Suppose that the initial data for these problems
coincide

(3.9) un(0) = ũn(0).

Then for any T > 0,

(3.10) max
t∈[0,T ]

‖un(t)− ũn(t)‖1,n ≤ C1

∥∥∥Wn − W̃n

∥∥∥
2,n

,

where C1 =
√
Te5T > 0.

Remark 3.5. Note that (3.10) implies that the solutions of any two discrete models
(1.6) with weights given by Wn and W̃n will be close, provided that Wn and W̃n

converge to W in L2.

Let ρ(t, u, x) and %n(t, u, x) denote the solutions of the IVP (1.18), (1.19) subject
to the initial conditions ρ0(u, x) and %0n(u, x), respectively. We assume that ρ0(u, x)
and %0n(u, x) are nonnegative functions from L1(G) satisfying (1.21). Denote the
measures generated by ρ(t, u, x) and %n(t, u, x) by

(3.11) νxt (A) =

∫
A

ρ(t, u, x)du and υxn,t(A) =

∫
A

%(t, u, x)du, x ∈ I, A ∈ B(S).

Lemma 3.6. Suppose for every u ∈ S, %0(u, ·)→ ρ0(u, ·) a.e. on I. Then

(3.12) lim
n→∞

sup
t∈T

d̄(ν̄t, ῡn,t) = 0.

Proof. ν̄t and ῡn,t solve the fixed point equation (2.9) subject to the initial con-
ditions ν̄0 and ῡn,0, respectively. By Lemma 2.6,

(3.13) sup
t∈T

d̄(ν̄t, ῡn,t) ≤ e2T d̄(ν̄n,0, ῡn,0).

Thus, it remains to estimate d̄(ν̄0, ῡn,0). To this end, we consider

d̄(ν̄0, ῡn,0) =

∫
I

sup
f∈L

∣∣∣∣∫
S
f(v)

[
ρ0(v, x)− %0n(v, x)

]
dv

∣∣∣∣ dx
≤
∫
I

∫
S

∣∣ρ0(v, x)− %0n(v, x)
∣∣ dvdx

=

∫
S

∫
I

∣∣ρ0(v, x)− %0n(v, x)
∣∣ dxdv =:

∫
S
φn(v)dv.

(3.14)
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Recall that for every v ∈ S, %0n(v, ·)→ ρ0(v, ·) a.e. Further, by (1.21) and the Fubini
theorem, ∫

S

∫
I

%0n(v, x)dxdv =

∫
S

∫
I

ρ0(v, x)dxdv = 1.

By Scheffé’s lemma (cf. [24]), φn → 0 pointwise on S. Since

0 ≤ φn(u) ≤
∫
I

(
%0n(u, x) + ρ0(u, x)

)
dx,

the Lebesgue dominated convergence theorem yields
∫
S φn(u)du→ 0.

3.3. The auxiliary problems. Our next goal is to establish convergence to
the mean field limit for an auxiliary discrete model. To this end, recall that Wn :
I2 → [−1, 1] is a step function taking constant value Wn,ij on In,i × In,j , (i, j) ∈ [n]2

(cf. (1.4)).
Suppose n ∈ N is arbitrary but fixed. Let N = nm for some m ∈ N and consider

a coupled system

v̇N,(k−1)m+l = N−1
n∑
i=1

m∑
j=1

Wn,kiD(vN,(i−1)m+j − vN,(k−1)m+l),(3.15)

vN,(k−1)m+l(0) = u0n,kl, k ∈ [n], l ∈ [m],(3.16)

where u0 = (u0n,pq), (p, q) ∈ [n]× N is a random array of initial conditions

(3.17)

u0n,11, u0n,12, u0n,13, . . .
u0n,21, u0n,22, u0n,23, . . .
. . . . . . . . . . . .
u0n,n1, u0n,n2, u0n,n3, . . . .

Here, for every k ∈ [n], u0n,ki, i ∈ N, are independent identically distributed continuous

random variables. The density of the probability distribution of u0n,ki is given by

(3.18) ρ0n,k(v) = n

∫
In,k

ρ0(u, x)dx.

Thus, we have defined the probability measure on the measurable space (Ω(n) =

(R∞)n,F (n) =(B(R∞))n). Denote the resultant probability space by (Ω(n),F (n),P(n)
0 ).

Remark 3.7. Note that ρ0n,k(u) is indeed a probability density function on S:∫
S
ρ0n,k(u)du = n

∫
S

∫
In,k

ρ0n(u, x)dxdu = n

∫
In,i

∫
S
ρ0n(u, x)dudx = 1,

where we used the Fubini theorem and (1.21).

We are going to describe the solution of (3.15), (3.16) in terms of the local em-
pirical measures

(3.19) µxn,m,t(A) = m−1
m∑
j=1

1A(vN,(i−1)m+j(t)), x ∈ In,i, A ∈ B(S), i ∈ [n].
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We will show that in the large m limit, the behavior of solutions of the discrete
model (3.15), (3.16) is effectively approximated by the IVP for the following integro-
differential equation,

(3.20)
∂

∂t
ρn(t, u, x) +

∂

∂u
{Vn(t, u, x)ρn(t, u, x)} = 0,

where

(3.21) Vn(t, u, x) =

∫
I

∫
S
Wn(x, y)D(u− v)ρn(t, v, y)dvdy,

and subject to the initial condition

(3.22) ρn(0, u, x) =
n∑
i=1

ρ0n,i(v)1In,i(x) =: ρ0n(u, x).

By Theorem 3.2, there is a unique weak solution of the IVP (3.20)–(3.22), which
defines a family of absolutely continuous measures on (S,B(S)):

(3.23) µxn,t(A) =

∫
A

ρn(t, u, x)du, x ∈ I, A ∈ B(S).

Theorem 3.8. There exists U (n) ∈ F (n), P(n)
0 (U (n)) = 1, such that

(3.24) sup
t∈T

d̄(µ̄n,m,t, µ̄n,t)→ 0, m→∞,

for every u0 ∈ U (n).

The proof of Theorem 3.8 follows from two lemmas, which we prove next.

Lemma 3.9. The empirical measure µ̄n,m,t and the absolutely continuous measure
µ̄n,t satisfy the following estimate:

(3.25) sup
t∈T

d̄(µ̄n,m,t, µ̄n,t) ≤ e2T d̄(µ̄n,m,0, µ̄n,0).

Proof. The proof follows from the fact that the empirical measure µxn,m,t and the
absolutely continuous measure µxn,t satisfy the fixed point equation

(3.26) µxt = µx0 ◦ T x0,t[Wn, µ̄.] a.e. x ∈ I

for µ̄0 := µ̄n,m,0 and µ̄0 := µ̄n,0, respectively.
For the continuous measures µxn,t this follows from the proof of Theorem 3.2.

Thus, it remains to verify (3.26) for the discrete measures µxn,m,t. Using (3.19), for
every x ∈ In,k we have

V [Wn, µ̄n,m,.](t, u, x) =

∫
I

Wn(x, y)

{∫
S
D(v − u)dµyn,m,t(v)

}
dy

=
n∑
i=1

∫
In,i

Wn(x, y)

m−1
m∑
j=1

D
(
vN,(i−1)m+j(t)− u

) dy

= N−1
n∑
i=1

m∑
j=1

Wn,kiD
(
vN,(i−1)m+j(t)− u

)
.

(3.27)
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The right-hand side of (3.27) with u := vN,(k−1)m+l(t) yields the velocity field acting
on the oscillator ((k−1)m+l) of the discrete system (3.15). Therefore, by construction
of the empirical measure (3.19), for every x ∈ I we have

µxn,m,t = µxn,m,0 ◦ T x0,t[Wn, µ̄n,m,.].

Finally, (3.25) follows from Lemma 2.6.

Lemma 3.10.

(3.28) lim
m→∞

d̄(µ̄n,m,0, µ̄n,0) = 0 P(n)
0 -a.s.

Proof. Since µxn,m,0 and µxn,0 are constant on each In,i, i ∈ [n],

d̄(µ̄n,m,0, µ̄n,0) =
n∑
i=1

∫
In,i

d
(
µyn,m,0, µ

y
n,0

)
dy

= n−1
n∑
i=1

d
(
µ
xn,i
n,m,0, µ

xn,i
n,0

)
.

(3.29)

Let i ∈ [n] be fixed. It is sufficient to show that

(3.30) lim
m→∞

d
(
µ
xn,i
n,m,0, µ

xn,i
n,0

)
= 0.

Suppose ε > 0 is given and denote

(3.31) Am =

{
u0 ∈ Ω(n) : sup

x∈R

∣∣µxn,in,m,0(Rx)− µxn,in,0 (Rx)
∣∣ > ε

}
,

where Rx := (−∞, x]. By the Dvoretzky–Kiefer–Wolfowitz inequality [14],

(3.32) P(n)
0 (Am) ≤ 2e−2mε

2

.

By the Borel–Cantelli lemma,

(3.33) P(n)
0

(
lim sup
m→∞

Am

)
= 0,

i.e., there exist m1 = m1(ε) and Uε, P(n)
0 (Uε) = 1, such that

(3.34) sup
x∈R

∣∣µxn,in,m,0(Rx)− µxn,in,0 (Rx)
∣∣ ≤ ε, m ≥ m1,

provided u0 ∈ Uε. Define U0 =
⋂∞
k=1 U 1

k
. By continuity, P(n)

0 (U0) = 1. For u0 ∈ U0
and for every ε > 0 there exists m1 ∈ N such that (3.34) holds. Thus, for u0 ∈ U0,
µ
xn,i
n,m,0 converges to µ

xn,i
n,0 weakly as m→∞. By [4, Theorem 11.3.3], this implies that

(3.30) holds for u0 ∈ U0.

For the proof of our main result, we also need to consider the IVP for (3.20),
(3.21) with the initial condition

(3.35) ρn(0, u, x) = ρ0(u, x).
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To distinguish the solution of the IVP with initial condition (3.35) from that with
(3.22), we denote it by ρ̃n(t, u, x). The solution of (3.20), (3.21), (3.35) generates
another family of absolutely continuous measures on (S,B(S)):

(3.36) νxn,t(A) =

∫
A

ρ̃n(t, u, x)du, x ∈ I, A ∈ B(S).

The well-posedness of the initial value problems (3.20), (3.21), (3.35) and (1.18),
(1.20) on T is established via the same argument used for the auxiliary problem in
the proof of Theorem 3.8.

3.4. The main result. We now turn to the original model (1.13), (1.14). In
analogy to how it was done for the auxiliary problem in the previous subsection, for
given n,m ∈ N and N = nm, we define the empirical measure

(3.37) νxn,m,t(A) = m−1
m∑
j=1

1A
(
uN,(i−1)m+j(t)

)
, A ∈ B(S), x ∈ In,i, i ∈ [n],

where uN is the solution of the IVP (1.13), (1.14) subject to the initial condition
uN,(i−1)m+j = u0n,ij , (i, j) ∈ [n] × [m] (cf. (3.17)). Likewise, ν̄t stands for the M-
valued function defined using the solution of the IVP for (1.18), (1.20):

(3.38) νxt (A) =

∫
A

ρ(t, u, x)du, A ∈ B(S), x ∈ I.

Our goal is to show that for large n,m ∈ N, the continuous measure (3.38) approx-
imates the empirical measure (3.37), and, thus, describes the behavior of solutions of
the discrete model (1.13) with N = nm. This is achieved in the following theorem.

Theorem 3.11. For a given ε > 0 there exist n1 = n1(ε) ∈ N such that the

following holds. For any n ≥ n1 there exist U (n) ∈ F (n), P(n)
0 (U (n)) = 1, and m1 =

m1(ε, n1) such that

(3.39) sup
t∈T

d̄(ν̄n,m,t, ν̄t) ≤ ε

for every m ≥ m1 and u0 ∈ U (n).

Proof.
1. Recall that Wn stands for the step function taking on each cell In,i × In,j ,
i, j ∈ [n], the average value of W on this cell (cf. (1.4)). By Lemma 3.3,

(3.40) ∃n2 ∈ N : ‖Wn −W‖L2(I2) ≤
ε

8
(√

Te5T + e2T
) , n ≥ n2.

2. By Lemma 3.6,

∃n3 : sup
t∈T

d̄(µ̄n,t, ν̄n,t) ≤
ε

4
, n ≥ n3.

3. For the remainder of the proof, let n ≥ n1 := max{n2, n3} be arbitrary but
fixed.

4. By Theorem 3.8, there exist U (n) ∈ F (n), P(n)
0 (U (n)) = 1, and m1 = m1(ε, n1)

such that

(3.41) sup
t∈T

d̄(µ̄n,m,t, µ̄n,t) ≤
ε

4
∀m ≥ m1.
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5. By Lemma 2.7 and (3.40),

(3.42) sup
t∈T

d̄(ν̄t, ν̄n,t) < e2T ‖W −Wn‖L2(I2) ≤
ε

8
.

6. We estimate

d̄(µ̄n,m,t, ν̄n,m,t)

=

∫
I

d
(
µxn,m,t, ν

x
n,m,t

)
dx

= n−1
n∑
i=1

d(µ
xn,i
n,m,t, ν

xn,i
n,m,t)

= n−1
n∑
i=1

sup
f∈L

∣∣∣∣∫
S
f(v)

(
dµxin,m,t(v)− dνxin,m,t(v)

)∣∣∣∣
= n−1

n∑
i=1

sup
f∈L

∣∣∣∣∣∣m−1
m∑
j=1

(
f(vN,(i−1)m+j(t))− f(uN,(i−1)m+j(t))

)∣∣∣∣∣∣
≤ n−1

n∑
i=1

sup
f∈L

m−1
m∑
j=1

∣∣f(vN,(i−1)m+j(t))− f(uN,(i−1)m+j(t))
∣∣

≤ (nm)−1
n∑
i=1

m∑
j=1

∣∣vN,(i−1)m+j(t)− uN,(i−1)m+j(t)
∣∣ .

(3.43)

Further, by the Schwarz inequality followed by the application of Lemma 3.4
and (3.40), we continue the string of estimates in (3.43) as follows:

d̄(µ̄n,m,t, ν̄n,m,t) ≤ N−1
N∑
j=1

|vN,j(t)− uN,j(t)|

≤ ‖vN − uN‖1,N ≤
√
Te5T ‖Wn −WN‖L2(I2)

≤
√
Te5T

(
‖Wn −W‖L2(I2) + ‖W −WN‖L2(I2)

)
≤ ε

4
,

(3.44)

where we used (3.40) to derive the last inequality.
7. By combining the estimates in 1–6, we have

(3.45)
d̄(ν̄n,m,t, νt) ≤ d̄(ν̄n,m,t, µ̄n,m,t)+ d̄(µ̄n,m,t, µ̄n,t)+ d̄(µ̄n,t, ν̄n,t)+ d̄(ν̄n,t, ν̄t) ≤ ε

uniformly in t ∈ T .

4. Discussion. The choice of the KM in this paper was motivated by its role
in the theory of synchronization [21] and analytical convenience. The analysis in the
previous sections can be naturally extended to other models. First, by extending
the phase space to include ω it applies easily to the KM with distributed intrinsic
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frequencies (1.6). Specifically, let G = S × R be an extended phase space, MG be
the space of Borel probability measures on G, µ̄ : x ∈ I 7→ µx ∈ MG be an MG-
measurable function, and µ̄t : t ∈ T 7→ µ̄xt be a weakly continuous function. Then we
rewrite the equation of characteristics in the following form:
(4.1)

∂

∂t

(
u
φ

)
=

(
φ+

∫
I
W (x, y)

{∫
S
∫
RD(v − u)dµyt (v, λ)

}
dy

0

)
=: V [W, µ̄.](u, φ, x, t).

By assigning initial condition (u(0), φ(0)) = (u0i , ωi), the right-hand side of the top
equation in (4.1) yields the velocity field acting on oscillator i with the intrinsic
frequency ωi. Since the newly added second component of the vector field in (4.1) is
trivial, all necessary estimates for V [W, µ̄.](u, φ, x, t) are as before. With the equation
of characteristics (4.1) in hand, one can set up the fixed point equation and then
analyze it exactly in the same way as it was done in sections 2 and 3. We refer
an interested reader to [3], where the KM with distributed frequencies was analyzed
albeit for Lipschitz graph limits. More generally, our formalism allows us to deal with
coupled models like (1.6), for which the distributions of the initial data and parameters
may depend on a given oscillator. In conventional mean field models, initial data (and
parameters) are assumed to be independent and identically distributed (see, e.g., [7]).

Likewise, there are no principal difficulties in applying our analysis to other mod-
els of interacting dynamical systems on graphs, such as the Cucker–Smale model of
flocking [23, 18], consensus protocols [16], as well as neuronal networks [2]. The multi-
dimensionality of the phase space can be handled in the same way as explained above
for the KM with distributed frequencies. The treatment of the coupling term, the key
ingredient in the analysis, remains the same as in the present paper. On the other
hand, the weighted graph model, which we adopted in this paper (see (1.3)–(1.5)),
provides a simple unified treatment of interacting dynamical systems on a variety of
deterministic and random graphs, including Erdős–Rényi and small-world, and certain
approximations of power law graphs [15, 9].

Appendix A. Proof of Lemma 1.1. We will prove the proximity between
the solutions of the coupled systems on random and averaged deterministic graphs
for the following generalized KM:

(A.1) u̇n,i = f(un,i, ωi, t) +
1

n

n∑
j=1

Wn,ijD(un,j − un,i), i ∈ [n],

and

(A.2) ˙̄un,i = f(ūn,i, ωi, t) +
1

n

n∑
j=1

en,ijD(ūn,j − ūn,i), i ∈ [n].

Here, f(u, ω, t) is a Lipschitz continuous function in u and ω ∈ Rr and continuous in
t; D is a 2π-periodic Lipschitz continuous function. Recall that en,ij , 1 ≤ i < j ≤ n,
are Bernoulli random variables

(A.3) P(en,ij = 1) = Wn,ij

and en,ji = en,ij . Denote the Lipschitz constants of f and D by Lf and LD, respec-
tively, and let L = max{Lf , LD, 1}. The proof below is a modification of the proof of
[3, Lemma 4.3]. (See also [9, Lemma 4.1].
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Denote φn,i := un,i − ūn,i. By subtracting (A.2) from (A.1), multiplying the
result by n−1φn,i, and summing over i ∈ [n], we obtain

1

2

d

dt
‖φn‖21,n

= n−1
n∑
i=1

(f(un,i, ωi, t)−f(un,i, ωi, t))φn,i+n−2
n∑

i,j=1

(Wn,ij−en,ij)D(un,j − un,i)φn,i︸ ︷︷ ︸
I1

+ n−2
n∑

i,j=1

en,ij [D(un,j − un,i)−D(ūn,j − ūn,i)]φn,i︸ ︷︷ ︸
I2

=: I1 + I2,

(A.4)

where ‖ · ‖21,n is defined in (1.10).
Using Lipschitz continuity of D and the triangle inequality, we have

|I2| ≤ LDn−2
n∑

i,j=1

(|φn,i|+ |φn,j |) |φn,i|

≤ LDn−1
n∑
i=1

φ2n,i +
LD
2n2

n∑
i,j=1

(
φ2n,i + φ2n,j

)
≤ 2LD‖φn‖21,n.

(A.5)

To estimate I1, we will need the following definitions:

Zn,i(t) = n−1
n∑
j=1

an,ij(t)ηn,ij ,

an,ij(t) = D (un,j(t)− ūn,i(t)) ,
ηn,ij = Wn,ij − en,ij ,

and Zn = (Zn,1, Zn,2, . . . , Zn,n). With these definitions in hand, we estimate I1 as
follows:

(A.6) |I1| = Lf‖φn‖21,n+

∣∣∣∣∣n−1
n∑
i=1

Zn,iφn,i

∣∣∣∣∣ ≤ Lf‖φn‖21,n+2−1
(
‖Zn‖21,n + ‖φn‖21,n

)
.

The combination of (A.4), (A.5), and (A.6) yields

(A.7)
d

dt
‖φn(t)‖21,n ≤ 7L‖φn(t)‖21,n + ‖Zn(t)‖21,n.

Using the Gronwall’s inequality, we have

‖φn(t)‖21,n ≤ e7Lt
(
‖φn(0)‖2n,1 +

∫ t

0

e−7Ls‖Zn(s)‖21,nds
)

and

(A.8) sup
t∈[0,T ]

‖φn(t)‖21,n ≤ e7LT
(
‖φn(0)‖2n,1 +

∫ ∞
0

e−7Ls‖Zn(s)‖21,nds
)
.
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Our next goal is to estimate
∫∞
0
e−7Ls‖Zn(s)‖21,nds. To this end, we will use the

following observations. Note that ηn,ik and ηn,il are independent for k 6= l and

(A.9) Eηn,ij = E (Wn,ij − en,ij) = 0,

by (A.3).
By straightforward estimation (cf. [3, Lemma 4.3]), we have

(A.10) Eη2n,ij ≤ 2−2 and E
(
η4n,ij

)
≤ 2−4, (i, j) ∈ [n]2.

Next,

(A.11)

∫ ∞
0

e−7LtZn,i(t)
2dt = n−2

n∑
k,l=1

cn,iklηn,ikηn,il,

where

(A.12) cn,ikl =

∫ ∞
0

e−7Ltan,ik(t)ani,l(t)dt and |cn,ikl| ≤ (7L)−1 =: C1.

Further, from (A.11) and (A.12), we have

(A.13)

∫ ∞
0

e−7Lt‖Zn(t)‖21,ndt = n−3
n∑

i,k,l=1

cn,iklηn,ikηn,il

and, finally,
(A.14)

E
(∫ ∞

0

e−7Lt‖Zn(t)‖21,ndt
)2

= n−6
n∑

i,k,l,j,p,q=1

cn,iklcn,jpqE (ηn,ikηn,ilηn,jpηn,jq) .

We have six summation indices i, k, l, j, p, q ranging from 1 to n. Since Eηn,ik = 0
for i, k ∈ [n], and RVs ηn,ik and ηn,jp are independent whenever {i, k} 6= {j, p}, the
nonzero terms on the right-hand side of (A.14) fall into two groups:

I : c2n,ikkη
4
n,ik,

II : cn,ikkcn,jppη
2
n,ikη

2
n,jp (i 6= j) or c2n,iklη

2
n,ikη

2
n,il (k 6= l).

There are n2 terms of type I and 3n3(n− 1) terms of type II. Thus,

(A.15) E
(∫ ∞

0

e−7Lt‖Zn(t)‖21,ndt
)2

≤ C2
1n
−6 (n2 + 3n3(n− 1)

)
= O

(
n−2

)
.

For a given ε > 0 and arbitrary 0 < δ < 1, define

An =

{∣∣∣∣∫ ∞
0

e−7Ls‖Zn(s)‖21,nds
∣∣∣∣ > εn

−(1−δ)
2

}
.

By the Markov inequality and (A.15), we obtain

(A.16)
∞∑
n=1

P(An) ≤ ε−2
∞∑
n=1

E
(∫ ∞

0

‖Zn(t)‖21,ndt
)2

= ε−2
∞∑
n=1

n−(1+δ) <∞.D
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By the Borel–Cantelli lemma,

(A.17) lim
n→∞

n
1−δ
2 E

(∫ ∞
0

e−7Lt‖Zn(t)‖21,ndt
)2

= 0, P-a.s.

The combination of (3.33) and (A.8) yields
(A.18)

sup
t∈[0,T ]

‖un(t)− ūn(t)‖1,n ≤ e4LT
(
‖un(0)− ūn(0)‖1,n +O

(
n

−(1−δ)
4

))
, P-a.s.
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