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Adaptive protein evolution may be facilitated by neutral amino

acid mutations that confer no benefit when they first arise but

which potentiate subsequent function-altering mutations via

direct or indirect structural mechanisms. Theoretical and

empirical results indicate that such compensatory interactions

(intramolecular epistasis) can exert a strong influence on

trajectories of protein evolution. For this reason, assessing the

form and prevalence of intramolecular epistasis and

characterizing biophysical mechanisms of compensatory

interaction are important research goals at the nexus of

structural biology and molecular evolution. Here I review recent

insights derived from protein-engineering studies, and I

describe an approach for identifying and characterizing

mechanisms of epistasis that integrates experimental data on

structure-function relationships with analyses of comparative

sequence data.
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Introduction
A number of important questions about mechanisms of

protein evolution concern the context-dependence of

mutational effects (‘epistasis’). Do amino acid mutations

produce the same functional effect regardless of sequence

context (i.e. regardless of the amino acid states of other

sites in the same protein), or do their effects depend on

the sequence context in which they occur? Epistatic

interactions between mutant sites in the same protein

can help explain why evolution follows some pathways

rather than others [1–5,6�,7�,8��]. If the sign of a muta-

tion’s fitness effect is conditional on genetic background

(‘sign epistasis’), then pairs of mutations that are indi-

vidually neutral or beneficial may be deleterious in

combination. In such cases, some fraction of all possible

mutational pathways connecting ancestral and descen-

dant genotypes will be selectively inaccessible because

they include incompatible mutational combinations as

intermediate steps [9–15,16�,17,18�]. Conversely, pairs of

mutations that are individually deleterious may be neutral

or beneficial in combination, thereby opening up new

pathways through sequence space that previously would

have been off limits.

Intramolecular epistasis has important implications for

biochemical adaptation and the evolution of novel pro-

tein functions. The evolution of an advantageous change

in protein function may be facilitated by neutral muta-

tions that confer no benefit when they first arise but

which lay the groundwork for subsequent function-alter-

ing mutations. For example, an amino acid mutation at

site X may produce a subtle change in protein confor-

mation or stability that — by itself — is functionally

inconsequential, but the altered structural context

may change the functional effect of subsequent muta-

tions at other sites in the same protein [4,5,7�,15,19–22].

The mutation at site X is neutral when it first arises, but

by facilitating the fixation of a beneficial, function-alter-

ing mutation at site Y, it then becomes deleterious to

revert site X to its ancestral state. Likewise, the muta-

tion at site Y is beneficial on a background in which the

mutation at site X has already occurred, but otherwise it

would be neutral or deleterious. In principle, the com-

pensatory change at site X could precede the function-

altering change at site Y (in which case it is called a

‘permissive’ substitution), or it could occur afterwards, in

which case there would be a transient reduction in

fitness. In principle, the two mutations could also be

fixed simultaneously if they co-occurred on the same

sequence haplotype [23,24]. Evidence for epistatic fit-

ness effects prompts us to view the longstanding

‘selectionist/neutralist’ debate through a new prism

since a given mutation may be neutral, beneficial, or

deleterious depending on the genetic background in

which it occurs.

Compensatory substitutions are central to questions

about the role of historical contingency in shaping path-

ways and outcomes of protein evolution. If the fitness

effects of amino acid mutations are conditional on genetic

background, then mutations can have different effects

depending on the sequential order in which they occur

[2]. Consequently, the accumulated history of substitu-

tions in the past will influence the set of allowable
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mutations in the future, and evolutionary outcomes will

be historically contingent on ancestral starting points

[7�,8��,12,14,25–27].

The role of intramolecular epistasis in protein
evolution
Insights from protein-engineering experiments

The question of whether mutations have different effects

in different genetic backgrounds can be decisively tested

with site-directed mutagenesis experiments. Lunzer

et al. [28] investigated the effects of swapping amino acid

states at residue positions that differ between two highly

divergent orthologs of isopropymalate dehydrogenase

(IMDH). They introduced a total of 168 single mutations

into wildtype IMDH of Escherichia coli that match the

amino acid states at the same sites in the IMDH ortholog

of Pseudomonas aeruginosa. Of these 168 swapped resi-

dues, over 1/3 of the wildtype amino acid states in P.

aeruginosa compromised enzyme activity on the genetic

background of E. coli. The fact that identical amino acid

states produced different phenotypic effects on the two

genetic backgrounds must be attributable to substitutions

at other residue positions in one or both lineages that

epistatically interact with the focal residues. These could

be permissive substitutions that made a given amino acid

state acceptable in the native P. aeruginosa background,

and/or restrictive substitutions that made the same state

deleterious in the E. coli background. Results of this

experiment demonstrate how evolved changes in

sequence context can reduce the number of site-specific

amino acid states that are unconditionally acceptable in

the divergent backgrounds of orthologous proteins (Fig-

ure 1). Interestingly, mutagenesis screens revealed that

the amino acid replacements that most strongly reduced

activity on the E. coli background could be compensated

by multiple mutations at structurally remote sites; the

compensatory mechanisms did not generally involve

direct physical interactions [28].

Similar to the ‘horizontal’ swapping of amino acids

between divergent orthologs of extant taxa, Gong

et al. [15] performed ‘vertical’ exchanges between ances-

tral and descendant genotypes of the influenza nucleo-

protein that were isolated from different timepoints over

the span of several decades. Capitalizing on their ability

to infer the temporal order of observed substitutions in a

single line of descent, Gong et al. individually introduced

each of 39 observed amino acid replacements into the

genetic background of an extinct viral strain that approxi-

mated the ancestral genotype. The experiments revealed

that three of the 39 substitutions that occurred as inter-

mediate steps in the pathway had strongly deleterious

effects on the ancestral genetic background even though

they must have been neutral, nearly neutral, or possibly

even beneficial on the derived genetic background in

which they actually fixed. The three mutations that had

deleterious effects on the ancestral background severely

compromised thermal stability of the native protein fold.

These same mutations were tolerated at later steps in the

pathway because they were preceded by stabilizing sub-

stitutions in the same protein. These substitutions pro-

vided a stability buffer and therefore permitted the fixa-

tion of mutations with destabilizing effects.

As in the Lunzer et al. [28] study on IMDH orthologs, the

identified compensatory interactions in influenza nucleo-

protein involved pairs of structurally remote residues.

The permissive mutations did not directly alter the

effects of destabilizing mutations; instead, they simply

increased overall thermal stability so that the destabiliz-

ing mutations did not cause the fraction of folded protein

to fall below the critical threshold where the assayed

functional property (viral RNA transcription) was com-

promised. This illustrates how mutations that have addi-

tive effects on structural properties can have nonadditive

effects on higher-level properties due to nonlinear rela-

tionships between structure and function or between

function and fitness [18�,19,22,29–31].

In summary, neutral or nearly neutral mutations that fix in

one species may have deleterious effects if they were to
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Amino acid states that are allowable in one genetic background may

be deleterious in other backgrounds. (a) Two species diverge from a

common ancestor with the two-site genotype, ab. The substitution

a!A occurs at the first site in species 1 (yielding Ab) and the

substitution b!B occurs at the second site in species 2 (yielding aB).

A negative epistatic interaction (‘Dobzhanksy-Müller imcompatibility’)

is revealed by moving mutation A from species 1 into the orthologous

background of species 2, or by moving mutation B from species 2 into

the orthologous background of species 1. Mutations A and B are

individually neutral on the genetic backgrounds in which they occurred

during evolution, but they are deleterious in combination. Swapping

mutations a or b to form genotype ab results in a reversion to the

ancestral state. (b) The same type of incompatibility can arise if both

substitutions occur in one lineage, while the other species retains the

ancestral states at both sites. In this case, swapping mutations a or B

yields a low-fitness genotype (aB). Swapping mutations A or b yields

genotype Ab, one of two possible mutational intermediates in the

ancestry of species 1. Note that since mutations a and B are

deleterious in combination, substitution a!A must have preceded

substitution b!B in the ancestry of species 1 because Ab is the only

viable single-mutant intermediate connecting the ancestral (ab) and

descendant (AB) genotypes.
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occur on the divergent genetic background of a different

species. Likewise, within a single line of descent, substitu-

tions may have different phenotypic effects depending on

the sequential order in which they occur. Site-directed

mutagenesis experiments that swap residues between

orthologs of contemporary species [28,32,33] or between

ancestral and descendant sequences [9,17,18�,34–37] have

revealed pervasive epistasis for functional properties or

fitness proxies. These experimental findings are generally

consistent with results of theoretical and computational

analyses [38–41,42�,43,44,45�,46] and in silico simulations

[47,48��]. By contrast, other experimental studies that

focused on mutational perturbations of structural stability

have suggested a less important role for epistasis during

longterm protein evolution [49–51].

Genetic compensation of pathogenic mutations

Additional insights into the prevalence of epistasis and

the nature of genetic compensation are provided by cases

where a pathogenic amino acid mutation in a human

protein appears as the wildtype residue at the same site

in the orthologous protein of one or more nonhuman

species [52] (Figure 2). In such cases, the pathogenic

variant is invariably present at low frequency in the

human gene pool, but the same amino acid is fixed

(present at a frequency of 1.0) in the nonhuman species.

In order for the disease-associated residue (DAR) to

become fixed in the nonhuman species, its deleterious

effects must have been compensated by one or more

substitutions at other sites in the same protein or in an

interacting protein. This permits an indirect inference of

sign epistasis for fitness: the DAR produces a deleterious

effect in the human protein, but is neutral in the nonhu-

man ortholog due to genetic compensation [52–58,59�].

The pathogenicity of amino acid mutations often stems

from their negative effects on protein structural stability

[60], and evidence suggests that the destabilizing effects

of such DARs are sometimes partly or wholly compen-

sated by substitutions at structurally proximal residue

positions [52,55,56,58,59�,61,62]. For example, Xu and

Zhang [58] demonstrated that uncompensated DARs in

human proteins are associated with lower average struc-

tural stabilities than the corresponding wildtype DARs in

cases where the latter are accompanied by one or more

lineage-specific substitutions at residue positions within a

4 Å radius of the DAR. This finding suggests that one or

more of the observed substitutions in the nonhuman

background compensate for the destabilizing effect of

the DAR.

In cases where compensatory substitutions have not been

identified, there are other possible explanations for the

existence of wild-type DARs that do not invoke sign

epistasis for fitness [54]. For example, the observation

that a DAR is wildtype in a given species does not rule out

the possibility that it has a mildly deleterious effect, as

such mutations can fix due to drift, especially in small or

bottlenecked populations [63]. This is unlikely to be a

general explanation, however, especially in cases where

the wildtype DAR is shared by multiple species within

the same clade. A number of wildtype DARs have been

documented in laboratory mice (Mus domesticus)[53], but

the majority of these are shared by multiple species of

Mus that diverged over one million years ago, so they

clearly do not represent deleterious variants that were

fixed as a result of founder effects during the history of

mouse breeding and domestication [54].

Rather than using the identification of wildtype DARs to

indirectly infer sign epistasis for fitness, a similar approach

can be used to infer sign epistasis for biochemical phe-

notypes without making assumptions about fitness

effects. This is possible in cases where we have detailed

information about structure–function relationships. For

example, in the case of human hemoglobin (Hb), crys-

tallographic and NMR studies of mutant Hbs have pro-

vided exquisitely detailed insights into the structural

mechanisms responsible for observed functional effects

of specific amino acid replacements. In cases where a

particular mutation in human Hb is known to alter a

particular functional property, it is often possible to
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Indirect evidence for genetic compensation is provided by cases

where a pathogenic amino acid mutation in a human protein appears

as the wildtype residue at the same site in the orthologous protein of

one or more nonhuman species. The pathogenic hemoglobin (Hb)

mutant, Hb Mequon (b41Phe!Tyr), provides an illustrative example.

Although the Hb Mequon mutation is associated with severe hemolytic

anemia in humans, the disease-associated b41Tyr is wildtype in Mus

and Rattus. In order for the Tyr variant to become fixed in the

common ancestor of these rodent taxa, the deleterious effects that are

manifest in human Hb must have been compensated by one or more

rodent-specific substitutions at other sites in the same protein.
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identify Hbs from nonhuman species in which the same

amino acid is wildtype and yet the property of interest is

not altered in the same way. In such cases the connection

between genotype and biochemical phenotype can be

experimentally tested. By contrast, associations with dis-

ease states do not generally permit direct insights into the

mapping functions that relate genotype to phenotype or

phenotype to fitness.

Molecular basis of the Bohr effect: a case study of

genetic compensation

The Hbs of jawed vertebrates are heterotetramers, com-

posed of paired ab dimers (a2b2) that undergo a sym-

metrical rotation during oxygenation-linked transitions in

quaternary structure [64]. This allosteric transition is

mediated by a conformational equilibrium between the

low-affinity, deoxygenated ‘T state’ and the high-affinity,

oxygenated ‘R state’. Hb-O2 affinity is reduced at low pH

because protons preferentially bind and stabilize deox-

yHb, thereby shifting the allosteric equilibrium in favor of

the low-affinity T conformation [65]. Because Hb-O2

affinity decreases with reductions in pH over the physio-

logical range (6.6–7.6), the metabolic acidosis of capillary

blood induces Hb to release O2 to the tissues that need it

most. This pH-sensitivity of Hb-O2 affinity is known as

the Bohr effect.

At physiological pH and temperature, the Bohr effect of

human Hb is mainly attributable to the oxygenation-

linked deprotonation of surface histidines because their

imidazole side chains typically have acid dissociation

constants, pKa’s, in the physiological pH range [66].

The C-terminal histidine of the b-chain, b146His, makes

an outsized contribution, accounting for �60% of the

Bohr effect in the presence of 0.1 M chloride [67]. In

deoxy (T state) Hb, the positive charge on the imidazole

sidechain of b146His is stabilized by formation of a salt

bridge with the carbonyl group of b94Asp in the same

b-chain subunit (Figure 3). This ionization of the

b146His side chain substantially raises its pKa in the

deoxy T state. Consequently, mutational replacements

of either b146His or b94Asp result in a severely dimin-

ished Bohr effect because the b94Asp-b146His salt-

bridge in the T state is replaced by an unionizable

hydrogen bond; thus, no protons are released in the

allosteric T!R transition in quaternary structure. Sur-

prisingly, substitutions at these highly conserved residue

positions have been identified in the Hbs of several
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Figure 3
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The structural basis for the Bohr effect in tetrameric (a2b2) human Hb. (a, b) The C-terminal His of each b-chain subunit (b146His) participates in

two electrostatic interactions in the deoxy (T) state. The positively charged imidazole side chain of b146His forms an intrasubunit salt bridge with

b94Asp (which increases its pKa) and its negatively charged carboxyl group forms an intradimer salt bridge with a40Lys. (c) When Hb is

oxygenated, the allosteric transition in quaternary structure shifts the triad of residues apart from one another, outside the range of electrostatic

interaction. The consequent rupturing of the b146His-b94Asp salt bridge results in the deprotonation of the His side chain (two protons are

released per tetramer), which makes a major contribution to the Bohr effect.
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vertebrate species that do not have reduced Bohr effects

[68–70]. For example, human Hb mutants such as Hb

Bologna-St. Orsola (b146His!Tyr) and Hb Kodaira

(b146His!Gln) exhibit increased O2-affinities (due to

destabilization of the T-state) and severe reductions in

the Bohr effect [71,72]. Remarkably, the same amino acid

states are observed as wildtype in the adult Hbs of the

dwarf caiman (Paleosuchus palpebrosus) (b146Tyr) and the

golden-mantled ground squirrel (Callospermophilus later-

alis) (b146Gln), and yet the Hbs of both species exhibit

Bohr effects that are undiminished relative to normal

human Hb [68,69] (Figure 4). In the case of both caiman

and ground-squirrel Hb, the loss of a single key residue

with a major effect on pH-sensitivity, b146His, appears to

be compensated by the lineage-specific gain of multiple

solvent-exposed, titratable histidines with individually

minor effects [68,69].

In the case of b94Asp, human Hb mutants such as

Hb Barcelona (b94Asp!His) and Hb Bunbury

(b94Asp!Asn) also exhibit marked increases in O2-

affinity and concomitant reductions in the Bohr effect

due to the disruption of the b94Asp-b146His intrachain

salt bridge. In two different species of high-altitude

Andean waterfowl (crested duck [Lophonetta specular-

ioides] and Puna teal [Anas puna]), b94Asp!Glu muta-

tions have contributed to adaptive increases in Hb-O2

affinity, but the Bohr effect is not compromised relative
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In the Hbs of amniote vertebrates, comparative sequence analysis and experimental data on structure–function relationships reveal intramolecular

epistasis for the Bohr effect. In the b-chain subunit of vertebrate Hb, the highly conserved b146His generally accounts for a major fraction of the

Bohr effect [66,67,71,72]. This is well-documented by experimental studies of naturally occurring human Hb mutants which demonstrate that

mutational replacements of b146His (H) with Asp (D), Tyr (Y), Arg (R), Leu (L), Pro (P), or Gln (Q) invariably result in a severely diminished Bohr

effect. Surprisingly, however, two of these amino acid states, Q (Hb Kodaira) and Y (Hb Bologna-St. Orsola), occur as wildtype in the Hbs of two

nonhuman vertebrates, golden-mantled ground squirrel (Callospermophilus lateralis) and dwarf caiman (Paleosuchus palpebrosus), respectively,

and yet the Hbs of both species exhibit Bohr effects that are undiminished relative to normal human Hb [68,69]. In both species, the aggregate

effect of other lineage-specific substitutions (e.g. gains of solvent-exposed histidines at other sites in the a-chains and/or b-chains of the Hb

tetramer) may have rendered b146His redundant with respect to oxygenation-linked proton binding, so it could therefore be replaced without

unduly compromising the Bohr effect.
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to wildtype Hbs with the ancestral b94Asp [70]. A con-

sideration of the crystal structure of avian Hb provides a

clear explanation for this result [67], as the b94Asp-

b146His salt bridge is not formed in the deoxy T confor-

mation, so the amino acid state of b94 does not affect

the pKa of b146His. This may also explain why the

b146His!Tyr substitution in dwarf caiman Hb is not

associated with a diminished Bohr effect relative to the

Hbs of other crocodilians, and demonstrates how ‘major

effect’ Bohr groups in human Hb may have minor or

nonexistent effects in the Hbs of other species. These

examples also illustrate how subtle changes in the three-

dimensional orientation of highly conserved amino acids

(caused by substitutions at other sites) can alter the

functional effects of substitutions at those conserved

sites [73].

Conclusions and future directions
Efforts to elucidate mechanisms of epistasis represent a

nexus between the fields of structural biology and molec-

ular evolution [1,5,74]. An especially important question

is whether permissive/compensatory mutational effects

are typically localized and specific, or whether they typi-

cally involve generalized effects on global properties such

as structural stability. If function-altering mutations can

only be compensated by mutations with localized and

specific effects (e.g. via direct steric or electrostatic side-

chain interactions between structurally proximal resi-

dues), then accessible mutational pathways to novel

functions may be fortuitously contingent on the acquisi-

tion of exceedingly rare mutations [7�,25]. By contrast,

there is a much larger mutational target size for perturba-

tions of overall structural stability, so destabilizing, func-

tion-altering mutations may be effectively compensated

by stabilizing mutations at many possible residue posi-

tions in the same protein, and the compensatory effect

would not require direct site–site interaction. If deleteri-

ous pleiotropic effects of adaptive, function-altering

mutations can be effectively compensated by such global

suppressor mutations, then the optimizing power of selec-

tion should be considerably less constrained and evolu-

tionary outcomes will be less strongly contingent on

ancestral starting points.
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