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ABSTRACT

Association mapping (AM) methods are used in genome-wide asso-

ciation (GWA) studies to test for statistically signi!cant associations

between genotypic and phenotypic data. "e genotypic and pheno-

typic data share common evolutionary origins – namely, the evo-

lutionary history of sampled organisms – introducing covariance

which must be distinguished from the covariance due to biological

function that is of primary interest in GWA studies. A variety of

methods have been introduced to perform AM while accounting

for sample relatedness. However, the state of the art predominantly

utilizes the simplifying assumption that sample relatedness is ef-

fectively !xed across the genome. In contrast, population genetic

theory and empirical studies have shown that sample relatedness

can vary greatly across di#erent loci within a genome. "is phenom-

enon – referred to as local genealogical variation – is commonly

encountered in many genomic datasets. New AM methods are

needed to be$er account for local variation in sample relatedness

within genomes.

We address this gap by introducing Coal-Miner, a new statistical

AM method. "e Coal-Miner algorithm takes the form of a method-

ological pipeline. "e initial stages of Coal-Miner seek to detect

candidate loci, or loci which contain putatively associated markers.

Subsequent stages of Coal-Miner perform test for association using

a linear mixed model with multiple e#ects which account for sam-

ple relatedness locally within candidate loci and globally across the

entire genome. Using synthetic and empirical datasets, we compare

the statistical power and type I error control of Coal-Miner against

state-of-the-art AM methods. "e simulation conditions re%ect a

variety of genomic architectures for complex traits and incorporate

∗To whom correspondence should be addressed.

ACM-BCB’17, August 20-23, 2017, Boston, MA, USA.

© 2017 Copyright held by the owner/author(s). 978-1-4503-4722-8/17/08.
DOI: h$p://dx.doi.org/10.1145/3107411.3107490

a range of evolutionary scenarios, each with di#erent evolutionary

processes that can generate local genealogical variation. Across the

datasets in our study, we !nd that Coal-Miner consistently o#ers

comparable or typically be$er statistical power and type I error

control compared to the state-of-the-art methods.
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1 INTRODUCTION

Genome-wide association (GWA) studies aim to pinpoint loci with

genetic contributions to a phenotype by uncovering signi!cant

statistical associations between genomic markers and a phenotypic

trait under study. We refer to the computational methods used in a

GWA analysis as association mapping (AM) methods. Among the

most widely studied organisms in GWA studies are natural human

populations and laboratory strains of house mouse. Recently, GWA

approaches have been applied to natural populations of other or-

ganisms sampled from across the Tree of Life. For example, the 1001

Genomes Consortium study [7] published whole genome sequences

for over a thousand samples from globally distributed Arabidopsis

populations. In combination with phenotypic data, the genomic

sequence data was used in a GWA analysis to pinpoint genomic

loci involved in %owering time at two di#erent temperatures. Other

recent GWA studies such as the study of Porter et al. [24] have

focused on bacteria and other microbes (see [6] for a review of

relevant literature).

Regardless of sampling strategy – from one or more closely

related populations involving a single species to multiple popula-

tions from divergent species – it is well understood that sample

relatedness can be a confounding factor in GWA analyses unless
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properly accounted for. Intuitively, the genotypes and phenotypes

of present-day samples re%ect their shared evolutionary history,

or phylogeny. For this reason, covariance due to a functional rela-

tionship between genotypic markers and a phenotypic character

must be distinguished from shared covariance due to common

evolutionary origins. A number of AM methods have been devel-

oped to address this issue. EIGENSTRAT [26] is a popular AM

method which accounts for sample relatedness as a !xed e#ect.

Other statistical AM methods have utilized linear mixed models

(LMMs) to capture sample relatedness using random e#ects; these

include EMMAX [17] and GEMMA [31]. Local variation in func-

tional covariance across the genome is a crucial signature that AM

methods use to uncover putatively associated markers. In contrast,

virtually all of the most widely used state-of-the-art AM methods

assume that covariance due to sample relatedness does not vary

appreciably across the genome. Sample relatedness is therefore

evaluated “globally” across the genome, eliding over “local” ge-

nealogical variation across loci. "e la$er has been observed by

many comparative genomic and phylogenomic studies (see [10] for

a review of relevant literature). It is now well understood that local

genealogical variation within genomes is pervasive across a range

of evolutionary divergence – from structured populations within a

single species to multiple species at various scales up to the Tree

of Life, the evolutionary history of all living organisms on Earth.

"e evolutionary processes that can contribute to local genealogi-

cal variation include genetic dri& and incomplete lineage sorting,

recombination, gene %ow, positive selection, and the combination

of all of these processes (and others) [10].

Computational approaches for detecting local genealogical varia-

tion are broadly characterized by their modeling assumptions. One

class of methods makes use of the Four-Gamete Test [14], which

requires the simplifying assumption that sequence evolution can be

described by the in!nite sites model. "e LRScan algorithm [29] be-

longs to this class of methods. Another class consists of parametric

methods that make use of !nite-sites models of sequence evolu-

tion. "ese include methods such as RecHMM [30]. More recently,

coalescent-based methods such as PhyloNet-HMM [19] have been

developed to infer local coalescent histories and explicitly ascribe

local genealogical variation to di#erent evolutionary processes.

Building upon these insights, we previously developed Coal-Map

[12], an AM method that utilizes a !xed e#ects model to account

for global sample relatedness and, depending upon whether the test

marker is located within a locus containing putatively associated

markers, local sample relatedness as well. "e la$er condition

is evaluated using model selection criteria. Coal-Map requires

local-phylogeny-switching breakpoints as input. We conducted a

simulation study which demonstrated that Coal-Map’s statistical

power and type I error control was comparable or be$er than other

state-of-the-art methods that account for global sample relatedness

using !xed e#ects.

2 METHODS

2.1 Overview of Coal-Miner algorithm

In this study, we introduce Coal-Miner, a new statistical AMmethod

which accounts for local variation of sample relatedness across

genomic sequences as well as global sample relatedness. Coal-

Miner’s contributions relative to the state of the art (including Coal-

Map) consist of the following. First, Coal-Miner utilizes an LMM

with multiple e#ects to explicitly capture the genomic architecture

of a phenotype, where both genotypic and phenotypic characters

are the product of a complex evolutionary history which can cause

sample relatedness to vary locally across genomic loci. "e LMM

captures global sample relatedness as a random e#ect, in contrast to

the !xed-e#ect approach used by Coal-Map. Second, the pipeline-

based design of Coal-Miner incorporates an intermediate stage to

infer “candidate loci” for use in the new LMM, where a candidate

locus is a locus that is inferred to contain one or more putatively

associated SNPs.

We begin by introducing the high-level design of Coal-Miner.

"e input to the Coal-Miner algorithm consists of: (1) an n×k multi-

locus sequence data matrixX , (2) an n×1 vectory which represents

a phenotypic character, and (3) ℓ∗, the number of candidate loci

used during analysis. "e output consists of an association score

for each site x ∈ X .

Coal-Miner’s statistical model captures the relationship between

genotypic data X and the phenotypic character y in the form of a

linear mixed model (LMM). "e LMM incorporates multiple e#ects

to capture the phenotypic contributions of and local genealogical

variation among multiple candidate loci. A candidate locus is repre-

sented by a !xed e#ect, and a random e#ect is included to capture

global sample relatedness as measured across all loci in X . Ideally,

the set of candidate loci identi!ed during a Coal-Miner analysis is

identical to the set of causal loci (i.e., loci containing causal SNPs)

for the trait under study; in practice, the set of candidate loci are

inferred as part of the Coal-Miner algorithm, which we discuss in

greater detail below. "e LMM takes the following form (based on

the notation of Zhou and Stephens [31]):

y =Wα + xβ +u + ϵ

u ∼ MVNn (0, λτ
−1Kglobal)

ϵ ∼ MVNn (0,τ
−1In )

"e !xed e#ects are represented by c covariates in the n × c matrix

W , which include covariates that capture local sample relatedness

within each candidate locus, the c × 1 vector α of corresponding

coe'cients, and the test SNP is represented by the n × 1 vector

x with e#ect size β . Global sample relatedness (i.e., sample re-

latedness as measured across all loci in the genotypic data X ) is

speci!ed by the n ×n relatedness matrix Kglobal computed usingX ,

following the approach of state-of-the-art LMM-based AMmethods

(e.g., GEMMA [31]). "e n × 1 vectors u and ϵ represent random

e#ects which account for global sample relatedness and residual

error, respectively. Each of the two random e#ects follows an n-

dimensional multivariate normal distribution (abbreviated “MVN”)

with mean 0. "e random e#ects u have covariance λτ−1Kglobal

and the random e#ects ϵ have covariance τ−1In , where λ is the

relative ratio between the two, In is the n × n identity matrix, and

the residual errors have variance τ−1.

"e design of the Coal-Miner algorithm takes the form of a

methodological pipeline. We now discuss each pipeline stage in

turn.



Stage one ofCoal-Miner: inferring local-phylogeny-switching

breakpoints. "e input to the !rst stage of Coal-Miner is the geno-

typic data matrixX . "e output consists of a set of local-phylogeny-

switching breakpoints b which partition the sites in X into loci

{Xi }, where 1 ≤ i ≤ ℓ and ℓ is the number of loci. We require

that ℓ∗ ≤ ℓ. ("e ratio of ℓ∗ and ℓ depends upon the genomic

architecture of the trait corresponding to character y.)

"e general approach to address this computational problem is to

infer local coalescent histories under an appropriate multi-species

extension of the coalescent model [18], and then to assign break-

points based upon gene tree discordance. Each pair of neighboring

breakpoints delineates a locus for use in downstream stages of the

Coal-Miner pipeline. "e speci!c choice of model/method depends

upon the relevant evolutionary processes involved in multi-locus

sequence evolution, particularly regarding the source(s) of local

genealogical discordance.

In this study, we use one of two di#erent methods, depending

upon assumptions about biomolecular sequence evolution. In the

simulation study, the simulations make use of the in!nite sites

model. We therefore used the LRScan algorithm [29] to compute

local-topology-switching breakpoints based upon the Four Gamete

Test (FGT) [14]. In the empirical study, we did not make use of

the in!nite sites model and its assumptions about sequence evolu-

tion. Furthermore, multiple evolutionary processes were known

to be involved in multi-locus sequence evolution, including ge-

netic dri&/incomplete lineage sorting (ILS), recombination/gene

conversion, gene %ow/horizontal gene transfer (HGT), and natural

selection. Breakpoint inference under the corresponding extended

coalescent model is suspected to be a computationally di'cult prob-

lem. Existing methods for this problem (e.g., PhyloNet-HMM [19])

did not have su'cient scalability for the dataset sizes examined in

our study. As amore feasible alternative, we inferred local-topology-

switching breakpoints using Rec-HMM [30]. Rec-HMM performs

!xed-species-phylogeny inference of local genealogies under a sta-

tistical model that combines a !nite-sites substitution model and a

hidden Markov model which is meant to capture intra-sequence

dependence (such as arises from recombination).

Stage two of Coal-Miner: identifying candidate loci. "e

input to the second stage of Coal-Miner consists of the genotypic

data matrix X , the set of breakpoints b which partition X into loci

{Xi }, where 1 ≤ i ≤ ℓ and ℓ is the number of loci, the phenotypic

character y, and ℓ∗, the number of candidate loci to identify. Note

that the input b is an output of the preceding stage of Coal-Miner.

"e output is a set of candidate loci {X ∗
j
} ⊆ {Xi } where 1 ≤ j ≤ ℓ∗.

Our general approach to this problem consists of a search among

possible sets of candidate loci {X ∗j } using optimization under a

“null” version of Coal-Miner’s LMM, where we do not consider a

test SNP (i.e., β = 0 in Coal-Miner’s LMM) and the phenotypic con-

tributions from putatively associated SNPs in each candidate locus

X ∗j is captured by covariates {wj } ⊆W . Since we compare !$ed

LMMs that may have varying !xed e#ects, our optimization crite-

rion consists of the LMM log-likelihood L (λ,τ ,α , β ) = n
2 log(τ ) −

n
2 log(2π )− 1

2 log |H |−
1
2τ (y−Wα−xβ )TH−1 (y−Wα−xβ ) where

H = λKglobal+In (reproduced from equation (3) in [31]). Due to the

computational di'culty of this optimization problem, numerical

optimization procedures are typically used. We obtained estimates

of λ in the range of [10−5, 1] using the optimization heuristic im-

plemented in the GEMMA so&ware library [31], which combines

Brent’s method [5] and the Newton-Raphson method.

For each candidate locusX ∗
j
, local sample relatedness was evalu-

ated using principal component analysis (PCA) [16] ofX ∗
j
– similar

to techniques that are widely used by AM methods to account for

global sample relatedness as !xed e#ects [26]. "e phenotypic con-

tribution of candidate locus X ∗
j
was represented using covariates

{wj } which consisted of the top !ve principal components, where

the zth principal component corresponds to the sample covariance

matrix eigenvector with the zth largest eigenvalue and the num-

ber of covariates was based upon a design experiment in [12]. For

added computational e'ciency, we substituted the following search

heuristic in place of set-based search among all possible ℓ∗-size

sets of candidate loci. For each locus Xi , we used MLE to !t an

equivalent LMM, except that the covariatesW included only the

covariates {wi } for locus Xi (as computed using the above PCA-

based procedure). "e output set of candidate loci consists of the

top ℓ∗ loci based upon !$ed LMM likelihood.

Stage three of Coal-Miner: SNP-based association testing.

"e input to the third stage of Coal-Miner consists of the genotypic

data matrix X , the set of breakpoints b which partition X into loci

{Xi }, where 1 ≤ i ≤ ℓ and ℓ is the number of loci, the phenotypic

character y, and the set of candidate loci {X ∗
j
}. Note that the in-

puts b and {X ∗
j
} are outputs of stages one and two of Coal-Miner,

respectively. "e output of this stage is Coal-Miner’s !nal output.

Each test SNP x is tested for association under Coal-Miner’s

LMM. Variation in local sample relatedness across candidate loci

{X ∗
j
} is captured by covariates inW : speci!cally, if the test SNP x

is located within a candidate locus X ∗
j
, the covariatesW include a

corresponding covariatewj which consists of the top principal com-

ponent from PCA applied to X ∗
j
(see above discussion of previous

stage), and otherwise not. (Stages two and three of the Coal-Miner

pipeline utilize di#erent covariatesW due to the absence or pres-

ence of a test SNP e#ect in their respective LMMs.) "e LMM is

!$ed using the likelihood-based numerical optimization procedures

that are also used in stage two of Coal-Miner, and the association

score is computed using a likelihood ratio test of the !$ed model

against a null model with no SNP e#ect.

2.2 Simulation study

Neutral simulations of multi-locus sequence data were based upon

either tree-like or non-tree-like evolutionary scenarios. "e evo-

lutionary scenarios shared a species phylogeny that we used in a

prior simulation study (Supplementary Figure S1 in the Supporting

Online Materials (SOM)). We used ms [13] to simulate coalescent

histories (and embedded gene trees) under an extension of the

coalescent model [18] which allows instantaneous unidirectional

admixture (IUA) [9]. Under this model, the parameterization of

the model phylogeny includes an admixture proportion γ . Appro-

priate choices of γ allow us to explore the impact of tree-like and

non-tree-like evolution in our simulation study, where we set γ to

either 0.0 or 0.5, respectively. Each replicate dataset sampled 10

independently and identically distributed loci and 1000 individuals;

taxa A, B, and C were represented by 250, 250, and 500 samples,



respectively. Bi-allelic sequence evolution was simulated under the

in!nite sites model to obtain 250 bp per locus, resulting in total

sequence length of 2.5 kb per replicate dataset.

As a means to investigate the impact of the genomic architecture

of phenotypes, we simulated phenotypic characters using the ap-

proach from our previous work [12]. For each synthetic multi-locus

sequence dataset in the neutral simulations, we randomly selected

either 10%, 20%, or 30% of loci as causal. Twenty causal SNPs were

then randomly selected from causal loci such that each causal locus

contained at least one causal SNP and causal SNPs had minor allele

frequency between 0.1 and 0.3. Given a set of causal SNPs δ , we

sampled character y under an extension of the quantitative trait

model used by Long and Langley [20]. "e trait value for the ith

individual is represented as yi = π
∑

j ∈δ

Qi, j

|δ |
+ (1 − π )N (0, 0.01)

where π speci!es the ratio between the genotypic contribution and

an environmental residual,Q is 1 if sample i has the derived allele at

the jth causal SNP and 0 otherwise, and the environmental residual

is normally distributed with mean 0 and standard deviation 0.01.

Our simulations utilized a ratio π of 0.5.

Our simulation study also included non-neutral simulations that

incorporated positive selection. We used msms [11] to conduct

forward-time coalescent simulations of genotypic sequence evolu-

tion (in place of an otherwise equivalent neutral backward-time

coalescent simulation using ms), where causal loci were evolved un-

der deme-dependent positive selection with a !nite sites mutation

model and all other loci evolved neutrally (as discussed above in

the neutral simulation procedure). We used a selection coe'cient

of s = 0.56, which is in line with estimates from prior studies of

positive selection in natural Mus populations [28]. (antitative

traits were simulated using the above procedure.

"e simulation study experiments involving quantitative traits

with varying genomic architectures included 12 di#erent model

conditions in total. To recap, the model conditions di#ered in terms

of the proportion of causal loci (either 10%, 20%, or 30%), model

phylogeny (either tree-like or non-tree-like), and the presence or

absence of positive selection. For eachmodel condition, we repeated

the simulation procedure to obtain 20 replicate datasets.

Performance evaluation. "e other methods in our study

consisted of Coal-Map, GEMMA, and EIGENSTRAT. We followed

the procedure from [12] to obtain FGT-based local-phylogeny-

switching breakpoints and run Coal-Map analyses. For consis-

tency with the other LMM-based AM methods in our study, we

ran GEMMA using an IBS kinship matrix as our measure of global

sample relatedness and MLE and LRT to obtain association scores.

EIGENSTRAT was run with default se$ings using the top ten prin-

cipal components from the genotypic data matrix X , following the

recommendations of Price et al. [26]. Detailed so&ware commands

are listed in the SOM Appendix.

We evaluated performance based on statistical power, type I

error, and AUROC. To compare AUROC, we performed DeLong et

al. tests [8] using the Daim v. 1.1.0 package [25] in R [27]. Custom

scripts were used to conduct the simulation study. All scripts are

provided under an open source license. See SOM Appendix for

details and download instructions.

2.3 Empirical study

We re-analyzed an Arabidopsis dataset which consists of whole

genome sequence (WGS) data and phenotypic data for two quan-

titative traits: %owering time at 10 ◦C and 16 ◦C. A total of 1,135

samples from natural populations across the globe are represented.

"e phylogeny shown in SOM Supplementary Figure S16 depicts

the geographic origins of and evolutionary relationships among the

samples. "e dataset was originally published and analyzed by the

1001 Genomes Consortium [7], and we obtained genomic sequences

and quantitative trait data from the 1001 Genomes Project database

(accessible at www.1001genomes.org); the former includes both

assembled WGS data and variant calls for a total of 10,707,430 bi-

allelic SNPs. (Details about sequencing, assembly, !ltering, quality

controls, and variant calling are described in the 1001 Genomes

Consortium study [7].)

Stage one of the Coal-Miner pipeline made use of RecHMM [30]

to infer local-phylogeny-switching breakpoints. For computational

e'ciency, the breakpoint inference utilized a subset of taxa rather

than the full set of taxa. "e subset was chosen to maximize evolu-

tionary divergence and was comprised of one sample from each of

the following geographic regions: Spain, Sweden, USA, and Russia.

For chromosomes 1 through 5, the analysis in stage one resulted in

1876, 991, 783, 559, and 913 loci with an average locus length of 16

kb, 19 kb, 30 kb, 33 kb, and 29 kb, respectively.

Using the loci obtained in stage one as input, the second stage

of Coal-Miner was run on both trait characters. "e 10 ◦C analysis

identi!ed 179, 99, 108, 109, and 95 candidate loci in chromosomes

1 through 5, respectively. "e 16 ◦C analysis identi!ed 115, 42, 88,

65, and 89 candidate loci in chromosomes 1 through 5, respectively.

Coal-Miner also requires that ℓ∗, the number of candidate loci,

be provided as an input parameter. In practice, model selection

approaches are typically used in this context. Our study utilized

the following procedure to determine a suitable value for ℓ∗. We

calculated the likelihood score of the !$ed “null” LMM for each

locus (see above), and we examined the distribution of likelihood

scores (Supplementary Figure S15 in the SOM). We then assigned

ℓ∗ based on the distribution’s in%ection point.

"e inputs to the third stage of Coal-Miner consisted of the set

of candidate loci, a quantitative trait character (%owering time at

either 10 ◦C or 16 ◦C), and the genotypic sequence data matrix

which consisted of sites with minor allele frequency threshold of

0.03 (i.e., sites having a minor allele frequency less than or equals

to 0.03 were removed). "e third stage of Coal-Miner was run using

the same se$ings as in the simulation study.

3 RESULTS

3.1 Simulation study

We conducted experiments that varied the proportion of causal loci

as a means to investigate the impact of the genomic architecture of

a trait on AM method performance. "e model conditions utilized

simulations with between 10% and 30% causal loci and either neutral

or non-neutral evolution on either tree-like or non-tree-like model

phylogenies. "e methods under study included Coal-Miner, our

new AM method, as well as representative methods from di#erent

classes of state-of-the-art methods: Coal-Map, an AM method that

accounts for local and global sample relatedness as !xed e#ects,



GEMMA, a LMM-based AMmethod that accounts for global sample

relatedness as a random e#ect (but does not account for local sample

relatedness), and EIGENSTRAT, an AM method that accounts for

global sample relatedness as a !xed e#ect (but does not account

for local sample relatedness). We compared the statistical power

and type I error control of each method using receiver operating

characteristic (ROC) curves (Supplementary !gures S2 through

S5 in the SOM), and Table 1 compares the area under ROC curve

(AUROC) of each method.

Regardless of the proportion of causal loci and the evolutionary

scenario explored in these model conditions, Coal-Miner’s AUROC

was signi!cantly be$er than the next best method in our study

(either Coal-Map or GEMMA) based upon the corrected test of

DeLong et al. [8] (Table 1). A similar observation was made when

measuring performance using true positive rate (TPR) at a false

positive rate (FPR) of 0.1 (Supplementary Table S2 in the SOM),

except that Coal-Miner’s performance advantage over the next best

method was even more pronounced. "e TPR di#erence was 0.158

on average and ranged as high as 0.248. Across these model condi-

tions, we observed a consistent ranking of AM methods by AUROC

(with two minor exceptions): Coal-Miner !rst, Coal-Map second,

GEMMA third, and EIGENSTRAT fourth. "e minor exceptions

involved the two lowest AUROC values on the neutral, non-tree-

like model condition with 10% or 20% causal loci, where GEMMA

and EIGENSTRAT swapped rankings. We noted that Coal-Map’s

AUROC was second best on model conditions with the smallest pro-

portion of causal loci, but its performance tended to degrade as the

proportion increased. Coal-Map’s AUROC was only marginally bet-

ter than GEMMA on model conditions with the highest proportion

of causal loci.

"e impact of varying the proportion of causal loci was similar

for all methods: AUROC tended to degrade as the proportion of

causal loci increased from 10% to 30%. However, Coal-Miner’s

performance advantage relative to the other AM methods was %at

or improved as the proportion of causal loci increased.

"e model conditions included di#erent combinations of genetic

dri&/incomplete lineage sorting and/or gene %ow – evolutionary

processes which can generate local variation in sample relatedness.

Note that model conditions with non-tree-like model phylogenies

incorporated all of these evolutionary processes (including genetic

dri&/incomplete lineage sorting). "e impact of the di#erent evolu-

tionary processes varied across the methods. Coal-Miner’s AUROC

tended to be larger on model conditions involving both dri&/ILS

and gene %ow as sources of local genealogical variation, and Coal-

Map’s AUROCwas similarly a#ected. On the other hand, GEMMA’s

AUROC was comparable (within 0.01) based on this comparison,

with the exception of non-neutral model conditions involving 10%

or 20% causal loci.

A comparison of model conditions that di#ered only with re-

spect to neutral versus non-neutral evolution revealed the impact of

positive selection on AMmethod performance. We note that, in our

experiments, the evolution of causal loci di#ered from non-causal

loci since positive selection acted only upon the former but not

the la$er. Coal-Miner and Coal-Map returned comparable AUROC

(within 0.025) regardless of neutral versus non-neutral evolution.

GEMMA and EIGENSTRAT performed similarly, although slightly

greater variability (within 0.035) was observed. For LMM-based

methods, there was no obvious trend in terms of direction of change

when comparing neutral versus non-neutral experiment results.

"ere was an apparent trend for EIGENSTRAT, however: positive

selection tended to reduce EIGENSTRAT’s AUROC, with one ex-

ception (model conditions with a tree-like model phylogeny and

10% causal loci).

3.2 Empirical study

We used Coal-Miner to re-analyze an Arabidopsis dataset which

was originally studied by the 1001 Genomes Consortium [7]. "e

dataset includes samples from 1,135 high quality re-sequenced nat-

ural lines adapted to di#erent environments with varying local

climates [7]. "e sampled data included whole genome sequences

and quantitative trait data for two traits: %owering time under high

and low temperature – 16 ◦C and 10 ◦C, respectively.

A key component of the 1001 Genomes Consortium study was

a GWA analysis of the genomic sequences and quantitative trait

data using EMMAX [17], another state-of-the-art statistical AM

method (see [31] for a comparison of EMMAX and other state-

of-the-art statistical AM methods). A major focus of the analysis

was a set of !ve genes which are known to regulate %owering

and contribute to %owering time variation at 10 ◦C in Arabidopsis

[7]: FLOWERING LOCUS T (FT), SHORT VEGETATIVE PHASE

(SVP), FLOWERING LOCUS C (FLC), DELAY OF GERMINATION

1 (DOG1), and VERNALIZATION INSENSITIVE 3 (VIN3). Plants

rely on both endogenous and environmental (e.g. temperature and

photoperiod) cues to initiate %owering [1, 2]. "ese !ve genes

encode major components of the vernalization (exposure to the

prolonged cold) and autonomous pathways known to regulate the

initiation of %owering in Arabidopsis. Allelic and copy number

variants (CNV) for many of these genes, including FLC, are known

to serve important roles in generating novel variation in %owering

time and permit plants to adapt to new climates [21–23]. DOG1

is known to be involved in determining seasonal timing of seed

germination and in%uences %owering time in Arabidopsis [15].

Under a conservative Bonferroni-corrected threshold [4], Coal-

Miner identi!ed signi!cant peaks associated with %owering time

under high and low temperature (16 ◦C and 10 ◦C, respectively). In

particular, Coal-Miner identi!ed signi!cantly associated markers

in all !ve genes (FT, SVP, FLC, DOG1, and VIN3) for both the

16 ◦C dataset and the 10 ◦C dataset (Supplementary Figure S12 in

the SOM). Within the !ve genes, Coal-Miner analyses returned

peaks which largely agreed across the 10 ◦C and 16 ◦C datasets.

Some di#erences involved association scores that were borderline

signi!cant in one dataset but not the other.

Table 2 compares the Coal-Miner analysis with similar analyses

using two other state-of-the-art statistical AM methods. "e EM-

MAX analysis in the 1001 Genomes Consortium study [7] identi!ed

signi!cant associations for three of the genes at 10 ◦C, and associ-

ation score peaks were marginally below a Bonferroni-corrected

threshold in the other two genes (SVP and FLC). Furthermore, signif-

icant peaks were only detected in DOG1 at 16 ◦C, but no signi!cant

peaks were detected in the other four genes for this dataset. (See

Figure 2 in the 1001 Genomes Consortium study [7] for the original

Manha$an plot.) GEMMA’s performance was qualitatively simi-

lar to EMMAX (Supplementary Figure S13 in the SOM). At 10 ◦C,



Model condition AUROC

Neutral vs. Model Percentage of

non-neutral phylogeny causal loci (%) Coal-Miner Coal-Map GEMMA EIGENSTRAT q-value

Neutral Non-tree-like 10 0.962 (0.009) 0.939 (0.009) 0.866 (0.017) 0.871 (0.014) < 0.00001

20 0.921 (0.010) 0.899 (0.009) 0.849 (0.015) 0.859 (0.012) < 0.00001

30 0.904 (0.013) 0.882 (0.009) 0.847 (0.017) 0.832 (0.018) < 0.00001

Neutral Tree-like 10 0.943 (0.014) 0.922 (0.010) 0.870 (0.009) 0.833 (0.019) 0.0053

20 0.904 (0.016) 0.847 (0.011) 0.843 (0.010) 0.813 (0.016) < 0.00001

30 0.904 (0.013) 0.853 (0.009) 0.844 (0.008) 0.799 (0.022) 0.00003

Non-neutral Non-tree-like 10 0.959 (0.009) 0.933 (0.013) 0.896 (0.014) 0.836 (0.022) < 0.00001

20 0.926 (0.009) 0.897 (0.009) 0.856 (0.017) 0.847 (0.013) < 0.00001

30 0.894 (0.015) 0.863 (0.010) 0.832 (0.018) 0.816 (0.014) < 0.00001

Non-neutral Tree-like 10 0.954 (0.014) 0.922 (0.010) 0.856 (0.012) 0.841 (0.018) < 0.00001

20 0.890 (0.015) 0.850 (0.013) 0.832 (0.014) 0.796 (0.020) 0.00003

30 0.879 (0.014) 0.836 (0.011) 0.830 (0.009) 0.783 (0.018) 0.0007

Table 1: !e impact of the genomic architecture of a quantitative trait on the performance of Coal-Miner and the other AM

methods. Multi-locus sequences were simulated under neutral or non-neutral evolution on tree-like or non-tree-like model

phylogenies, and quantitative traits were simulated using causal markers sampled from 10%, 20%, or 30% of loci (see Methods

section for more details). !e performance of each AM method was evaluated based on the area under its receiver operating

characteristic (ROC) curve, or AUROC. We report each method’s AUROC as an average (and standard error in parentheses)

across twenty replicate datasets for each model condition. Coal-Miner’s AUROC is shown in bold where it signi"cantly im-

proved upon the AUROC of the most accurate of the other AM methods, based upon the test of DeLong et al. [8] (n = 20;

α = 0.05). We corrected for multiple tests using the approach of Benjamini and Hochberg [3], and corrected q-values are

shown. (!e corresponding ROC plots are shown in Supplementary Figures S2 through S5 in the SOM.)

GEMMA recovered signi!cant associations in three of the genes

but not in the remaining two (SVP and FLC); at 16 ◦C, no signi!cant

peaks were detected in three genes, a peak just above the threshold

of signi!cance was detected in FT, and another peak was detected

in DOG1.

4 DISCUSSION

Simulation study. For the model conditions that varied the pro-

portion of causal loci with neutral or non-neutral evolution on

tree-like or non-tree-like model phylogenies, Coal-Miner had bet-

ter performance than all of the other state-of-the-art methods in

our study, as measured using AUROC and TPR at an FPR of 0.1.

"is suggests that Coal-Miner’s performance advantage is robust to

the speci!c proportion of causal loci that contribute genetic e#ects

to a quantitative trait, which relates to trait architecture, as well as

the evolutionary processes involved. We note that, as even more

causal loci are added beyond the proportions explored in our study,

the e#ects contributed by any individual locus becomes more dif-

fuse, and global sample structure will become a more reasonable

approximation of di#erent causal loci with di#erent local sample

structures. In general, we found traits with “di#use” genomic archi-

tecture (i.e., traits with a relatively high proportion of causal loci)

to be challenging for all methods. Coal-Miner tended to cope be$er

with the challenge relative to the other methods in our study, which

we a$ribute to the design of the second stage in the Coal-Miner

pipeline (i.e., candidate locus detection). Consistent performance

trends were observed when comparing neutral versus non-neutral

simulations. "is suggests that, for the model conditions that we

explored in our study, Coal-Miner’s performance is robust to the

presence or absence of positive selection. A similar outcome was

observed when comparing IUA model-based experiments involving

two di#erent types of model phylogenies – tree-like and non-tree-

like.

Taken together, the model conditions included multiple sources

of local genealogical variation, including genetic dri&/ILS, gene

%ow, positive selection, and combinations thereof. "e speci!c

evolutionary processes contributing to local genealogical variation

did not seem to ma$er as much as the presence of local genealog-

ical variation, and Coal-Miner’s performance advantage was not

necessarily predicated on speci!c evolutionary cause(s) of local

genealogical discordance. "ese !ndings seem to suggest that

Coal-Miner’s model and algorithm may be generalized to other

evolutionary scenarios, so long as the breakpoint inference method

used in the Coal-Miner pipeline suitably accounts for evolutionary

processes with !rst-order contributions to genome evolution. An

additional consideration is that the simulations utilized minor allele

frequencies of at least 0.1, and future work is needed to understand

Coal-Miner’s performance in GWA studies involving rare variants.

Empirical study. "e empirical datasets in our study were

more challenging than the simulated datasets because the former

likely involved more complex evolutionary evolutionary scenarios

compared to the la$er. Additional evolutionary processes which

may have played an important role include other types of natural

selection and demographic events (e.g., %uctuations in e#ective

population size).

For both of the Arabidopsis datasets, Coal-Miner was able to

detect signi!cant associations in all !ve positive control regions.

In contrast, neither GEMMA nor EMMAX – the statistical AM

method used in the 1001 Genomes Consortium study [7] – were

able to do the same. "e vernalization requirement for %owering in



Signi!cantly associated markers detected?

Dataset Positive control gene Coal-Miner EMMAX GEMMA

10 ◦C FLOWERING LOCUS T (FT) Yes Yes Yes

10 ◦C SHORT VEGETATIVE PHASE (SVP) Yes No* No

10 ◦C FLOWERING LOCUS C (FLC) Yes No* No

10 ◦C DELAY OF GERMINATION 1 (DOG1) Yes Yes Yes

10 ◦C VERNALIZATION INSENSITIVE 3 (VIN3) Yes Yes Yes

16 ◦C FLOWERING LOCUS T (FT) Yes No Yes

16 ◦C SHORT VEGETATIVE PHASE (SVP) Yes No No

16 ◦C FLOWERING LOCUS C (FLC) Yes No No

16 ◦C DELAY OF GERMINATION 1 (DOG1) Yes Yes Yes

16 ◦C VERNALIZATION INSENSITIVE 3 (VIN3) Yes No No

Table 2: A comparison of Coal-Miner and two other state-of-the-art statistical AM methods based upon analyses of the two

Arabidopsis datasets. !e other AM methods are GEMMA and EMMAX, the statistical AM method used in the 1001 Genomes

Consortium study [7]. We evaluated whether the three AMmethods detected signi"cantly associatedmarkers in "ve genomic

regions centered on positive control genes which are known to regulate #owering time in Arabidopsis. We used a Bonferroni-

corrected threshold for signi"cance. For two of the "ve genomic regions in the 10 ◦C dataset, EMMAX returned association

scores thatwere near the threshold of signi"cance (marked using an asterisk). !e correspondingManhattan plots for theCoal-

Miner and GEMMA analyses are shown in Supplementary Figures S12 and S13 in the SOM, respectively. !e corresponding

Manhattan plot for the EMMAX analysis is shown as Figure 2 in the 1001 Genomes Consortium study [7].

Arabidopsis suggests that the %owering response at 16 ◦C presents

a greater AM challenge than at 10 ◦C. Our !ndings were consistent

with a need for more statistical power for the former as compared

with the la$er as well as the overall !ndings in the simulation

study, which suggested that Coal-Miner o#ered improved statis-

tical power relative to the state of the art. As noted above, the

empirical datasets likely involved relatively complex evolutionary

histories as compared to the synthetic datasets in our study, and an

expanded simulation study would be needed to con!rm our initial

comparison of performance !ndings using synthetic and empirical

data. Furthermore, Coal-Miner analysis of the Arabidopsis dataset

identi!ed putatively novel markers (i.e., markers which were not

%agged using other AM methods). Additional comparative and

functional analyses are needed to interpret these !ndings.

5 CONCLUSIONS

Across the range of genomic architectures and evolutionary scenar-

ios explored in our study, Coal-Miner had comparable or typically

improved statistical power and type I error control compared to

state-of-the-art AM methods. "e scenarios included di#erent evo-

lutionary processes such as genetic dri& and ILS, positive selection,

gene %ow, and recombination – all of which can generate local

genealogical variation that di#ers from the true species phylogeny.

More work needs to be done to explore additional evolutionary

processes which have !rst-order impacts on genome evolution (e.g.,

gene duplication and loss, other genome rearrangement events,

etc.). As more divergent samples are included in a GWA study,

more evolutionary processes potentially will become relevant to

AM analysis. We fully expect that more algorithmic development

will need to be done in this case, particularly regarding the break-

point inference stage of Coal-Miner.

We conclude with our thoughts on future work. As an alternative

to the pipeline-based design of Coal-Miner, simultaneous inference

of local coalescent histories and AM model parameters will avoid

error propagation across di#erent stages of a pipeline-based algo-

rithm. Furthermore, viewed through the lens of evolution, genotype

and phenotype are arguably two sides of the same coin. "e same

could be said of “intermediate-scale” characters (e.g., interactomic

characters). A combination of the extended coalescent models and

LMMs could be used to capture evolutionary relatedness of and

functional dependence between heterogeneous biological charac-

ters across multiple scales of complexity and at higher evolutionary

divergences.

6 SUPPORTING ONLINE MATERIALS (SOM)

SOM !les are located at h$ps://doi.org/10.6084/m9.!gshare.5165470.

v1. "ese materials include: (1) an appendix with supplementary

text, tables, and !gures, (2) source code for so&ware used in this

study, and (3) datasets analyzed in this study. All materials are

provided under open and free licenses.
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Commands and software options used in simulation

study

Simulation study

Neutral with non-tree-like model phylogeny. The following ms command was

used to generate a multiple sequence alignment for the neutral model conditions with

non-tree-like model phylogenies that include drift/ILS and gene flow:

ms 1000 10 -t 4.0 -s 250 -T -I 4 250 250 Ca Cb -ej 3.0 2 1 -ej 2.0 3

1 -ej 2.0 4 2

where the number of taxa is 1000, the number of gene trees is 10, the -t switch

represents the mutation parameter 4N0µ where N0 is the diploid population size (N0 =

2.5 x 105) and µ is the neutral mutation rate for a locus (µ = 4 x 10−6), the number of

segregating sites is 250, the -T parameter outputs the gene trees, which represent the

evolutionary history of the sampled taxa. The -I parameter is followed by the number

of subpopulations (k = 4) and a list of integers (n A = 250, n B = 250, n Ca = Ca,

n Cb = Cb) that represent the number of taxa sampled for each subpopulation. Ca

and Cb vary across loci and are dependent on γ. The -ej switch (-ej t i j) moves all

lineages from subpopulation i to subpopulation j at time t.
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We further investigated the impact of different admixture times by simulating two

more datasets with admixture occurring at t1 = 1.0 and t1 = 2.9. We used the following

ms commands to generate the aforementioned simulations:

ms 1000 10 -t 4.0 -s 250 -T -I 4 250 250 Ca Cb -ej 3.0 2 1 -ej 1.0 3

1 -ej 1.0 4 2

ms 1000 10 -t 4.0 -s 250 -T -I 4 250 250 Ca Cb -ej 3.0 2 1 -ej 2.9 3

1 -ej 2.9 4 2

Neutral with tree-like model phylogeny. The following ms command was

used to generate a multiple sequence alignment for the neutral model conditions with

tree-like model phylogenies that include drift/ILS:

ms 1000 10 -t 4.0 -s 250 -T -I 3 250 250 500 -ej 2.0 3 2 -ej 3.0 2 1

We further investigated the impact of different split times by simulating two more

datasets with divergence occurring at t1 = 1.0 and t1 = 2.9. We used the following ms

commands to generate the aforementioned simulations:

ms 1000 10 -t 4.0 -s 250 -T -I 3 250 250 500 -ej 1.0 3 2 -ej 3.0 2 1

ms 1000 10 -t 4.0 -s 250 -T -I 3 250 250 500 -ej 2.9 3 2 -ej 3.0 2 1

Isolation with migration. ms [1] was used to simulate a multiple sequence

alignment for the neutral model conditions with non-tree-like model phylogenies incor-

porating an isolation-with-migration (IM) model of gene flow:

ms 1000 10 -t 4.0 -s 250 -T -I 3 250 250 500 -ej 2.0 3 2 -ej 3.0 2 1
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-em 1 1 3 1

where the -em switch (-em t i j x) sets 4N0mij (mij = 10−6) to x at time t and mij is

the fraction of subpopulation i in each generation which consist of migrants from sub-

population j. The migration rate used in this simulation is inline with previous studies

[2].

Recombination. We further simulated a multiple sequence alignment under

the coalescent model with uniform recombination rate across a locus. We used a total

sequence length of 2.5 kb, and a p parameter of 0.35, which is 4N0r, where r is the prob-

ability of cross-over per generation between the ends of the locus. The per-generation

crossover probability of 10−9.85 between adjacent sites was used. Therefore, the proba-

bility of cross-over between the ends of the locus is: 10−9.85 x (2500− 1) = 3.5 x 10−7

and p = 4 x 2.5 x 105 x 3.5 x 10−7 = 0.35. On average, we obtained 10 recombinant

regions per replicate.

The following ms command was used to generate a multiple sequence alignment for the

neutral model conditions with tree-like model phylogenies incorporating recombination:

ms 1000 1 -t 4.0 -s 2500 -T -I 3 250 250 500 -ej 2.0 3 2 -ej 3.0 2 1

-r 0.35 2500

Non-neutral with non-tree-like model phylogeny. We used msms [3] to

generate a forward-time simulation that explicitly modeled positive selection for the

causal loci in the “neutral with non-tree-like model phylogeny” model conditions. The

msms-based simulation utilized a sequence mutation model that allowed recurrent mu-

tations between two alleles. Our forward-time coalescent simulation used a selection

coefficient s = 0.56 which was based upon previously reported estimates from natu-

ral mouse populations that were involved in adaptive introgression linkage to emulate

the genomic patterns of positive selection. The following msms command was used
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to generate a multiple sequence alignment for the non-neutral model conditions with

non-tree-like model phylogenies that include drift/ILS, gene flow, and positive selection:

java -jar msms.jar 1000 <Number of causal loci> -t 4.0 -s 250 -T -I

4 250 250 Ca Cb 0 -ej 3.0 2 1 -ej 2.0 3 1 -ej 2.0 4 2 -SI 2.0 4 0 0

0 0 -Sc 0 4 11200 6272 0 -Sc 0 3 11200 6272 0 Smu 4.0 -N 10000

where the -SI switch (-SI t <number of populations> A B Ca Cb) sets the start

of selection to time t forward in time from this point, the -Sc switch (-Sc t i αAA αAa

αaa) sets the selection strength in population i pastward from time t to 2Ns, the -Smu

switch sets the forward mutation rate for the selected allele, and the -N switch is the

effective population size.

Non-neutral with tree-like model phylogeny. The following msms command

was used to generate a multiple sequence alignment for the non-neutral model condi-

tions with tree-like model phylogenies that include drift/ILS and positive selection:

java -jar msms.jar 1000 <Number of causal loci> -t 4.0 -s 250 -T -I

3 250 250 500 0 -ej 2.0 3 2 -ej 3.0 2 1 -SI 2.0 3 0 0 0 -Sc 0 3 11200

6272 0 -Smu 4.0 -N 10000

EIGENSTRAT

EIGENSTRAT [4] utilizes a fixed effect model and uses Principal Component Analysis

(PCA) to infer population structure in genetic data. From an n by m genotypic matrix

X where n is the number of SNPs and m is the number of individuals, an m by m

covariance matrix φ is computed. The top k principal components are defined as the

top k eigenvectors of φ (e.g. k eigenvectors of the k largest eigenvalues). Using the top
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k principal components as covariates, EIGENSTRAT corrects for population structure

using the following:

Xij,adjusted = Xij − αiaj (1)

where i =1 to n, j =1 to m, αi is the regression coefficient, and aj is the axis of

variation. After genetic and phenotypic adjustment based on the top principal com-

ponents using equation (1), EIGENSTRAT applies a χ2 association analysis between

each genetic locus and the phenotype.

The following command was used to generate the principal components:

smartpca.perl -i example.geno -a example.snp -b example.ind -k 10 -q YES -o

example.pca -p example.plot -e example.eval -l example.log -m 5 -t 2 -s 6

where the -i parameter specifies the genotype file, the -a parameter specifies the snp

file, the -b parameter specifies the individual file, the k parameter specifies the number

of principal components to output, the -q parameter specifies whether the phenotype

is quantitative, the -o parameter specifies the output file of principal components, the

-p parameter specifies the prefix of output plot files of top 2 principal components, the

-e parameter specifies the output file of all eigenvalues, the -l parameter specifies the

output log file, the -m parameter specifies the maximum number of outlier removal

iterations, the -t parameter specifies the number of principal components along which

to remove outliers, and the -s parameter specifies the number of standard deviations

which an individual must exceed to be removed as an outlier.

The following command was used to apply the association analysis:

smarteigenstrat.perl -i example.geno -a example.snp -b example.ind -q YES -p
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example.pca -k 10 -o example.chisq -l example.log

where the -p parameter specifies the input file of principal components, the -k param-

eter specifies the number of principal components along which to correct for population

structure, the -o parameter specifies the χ2 association statistics, and the -l parameter

specifies the standard output file.

GEMMA

We used GEMMA [5] which utilizes a linear mixed model to account for sample struc-

ture. GEMMA represents the phenotype Y as a function of fixed (Wα + Xβ) and

random (u+ ǫ) effects:

y = Wα+ xβ + u+ ǫ (2a)

u ∼ MVNn(0, λτ
−1K) (2b)

ǫ ∼ MVNn(0, τ
−1In) (2c)

where y is the phenotype vector, W includes the fixed effects, α contains the coef-

ficients of the covariates located in W , x is the test locus, β is the effect size of x,

u is a random effect that follows an n-dimensional multivariate normal distribution,

K is a kinship matrix which is represented as a pairwise genotypic similarity between

individuals, λ is the ratio between two variance components (genetic and environmen-

tal effects), τ is the variance of residual errors, ǫ is a random effect that follows an

n-dimensional multivariate normal distribution and is used to model any unexplained

variation in y, and In is an n by n identity matrix. The parameters α̂, β̂, τ̂ , and λ̂

are estimated using maximum likelihood where the association test statistics for xj are

generated using likelihood-ratio test between the fitted model against a null model with

no SNP effect.
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The following command was used to generate a kinship matrix:

gemma -g <specify input genotype file name> -p <specify input phenotype file

name> -a <specify input SNPs annotation file name> -gk 1 <kinship/relatedness

matrix type> -o <specify output file prefix>

The following command was used to run the association test:

gemma -g <specify input genotype file name> -p <specify input phenotype file

name> -a <specify input SNPs annotation file name> -n 1 <specify phenotype

column in the phenotype file> -maf 0 <specify minor allele frequency threshold>

-r2 1 <specify r-squared threshold> -k <specify input kinship/relatedness matrix

file name> -lmm 2 <specify frequentist analysis choice> -o <specify output file

prefix>

Coal-Map

We applied Coal-Map [6] that models the local genealogical variation using a linear

mixed model. Details on how to run Coal-Map are shown here https://gitlab.msu.edu/liulab/Coal-

Map. We represented each of the global and local sample structures using five principal

components.

Simulation study experiments involving alternative

scenarios of neutral evolution

Multi-locus sequence evolution in our simulation study (see main manuscript) is im-

pacted by genetic drift and incomplete lineage sorting, admixture, positive selection,

and combinations of these processes. Our simulation study also included additional
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model conditions that involved alternative models of multi-locus sequence evolution.

Each model condition was an extension of the above neutral model condition with 10%

causal loci. One set of model conditions varied split time t1 in the model tree shown in

Figure S1 panel (a). Another set of model conditions varied admixture time t1 in the

model phylogeny network shown in Figure S1 panel (b), where γ = 0.5. The impact

of recombination was explored in a model condition which made use of the coalescent-

with-recombination model [7]. The simulations generated 2.5 kb alignments under a

finite-sites model of recombination with per-generation crossover probability between

adjacent sites of 10−9.85, which is 1-2 orders of magnitude smaller than estimates for

mouse, rat and human [8]. We further explored the impact of gene flow using a model

condition which substituted the isolation-with-migration model [9] in place of the IUA

model.

Supplementary Table S1 shows an AUROC comparison of Coal-Miner and the other

AM methods on the additional model conditions.

For model conditions that varied divergence time, involved recombination, or in-

corporated an isolation-with-migration (IM) model of gene flow, Coal-Miner returned

significantly improved AUROC compared to the next best method based upon the test

of DeLong et al. [10], and the other AM methods were ranked similarly to the ex-

periments which varied the proportion of causal loci. A similar ranking was obtained

when performance was measured using TPR at an FPR of 0.1 (Supplementary Table

S3). Coal-Miner returned a comparable AUROC (within 0.027) as the divergence time

t1 increased from 1.0 to 2.9. The other methods performed similarly, except that the

AUROC difference was larger (within 0.031). In the IM-based model condition, all

methods returned AUROC that was comparable relative to experiments using the IUA

model that were otherwise equivalent.

For IUA-based model conditions that varied the admixture time t1, Coal-Map and

Coal-Miner had comparable AUROC which was better than GEMMA and EIGEN-

STRAT. When comparing TPR at an FPR of 0.1, Coal-Miner returned a significant

performance improvement relative to Coal-Map and the other AM methods (Supple-
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mentary Table S3). As seen in Supplementary Figures S8 and S9, Coal-Miner’s TPR

was better than Coal-Map when the false positive rate was 0.1 or less; the reverse was

true only for large false positive rates (greater than around 0.15 for the t1 = 1.0 model

condition and greater than around 0.2 for the t1 = 2.9 model condition). Among the

AM methods in our study, Coal-Miner’s AUROC was least impacted by the choice of

admixture time and differed by at most 0.029 as the time t1 increased from 1.0 to 2.9.

The AUROC of the other AM methods became smaller as the admixture time became

more ancient, and the AUROC difference was relatively greater than Coal-Miner (as

much as 0.086).

Overall, Coal-Miner retained its performance advantage relative to the state-of-

the-art, with one exception: Coal-Miner and Coal-Map had comparable AUROC on

model conditions involving neutral evolution on non-tree-like model phylogenies and

10% causal loci, although Coal-Miner’s TPR at an FPR of 0.1 was significantly better

than Coal-Map’s. These model conditions involved the smallest proportion of causal

loci in our study. We note that Coal-Map’s performance tended to degrade more rapidly

than Coal-Miner as the proportion of causal loci increased, and the relative performance

of the two methods may have changed for model conditions with higher proportions of

causal loci that are otherwise equivalent.

Additional empirical datasets

To demonstrate the flexibility of the Coal-Miner framework, we conducted Coal-Miner

analyses of three empirical datasets which spanned a range of GWAS settings. Each of

the three datasets sampled taxa from a different kingdom and ranged from well-studied

organisms to relatively novel organisms about which little is known. Specifically, the

datasets sampled (1) natural populations of a single plant species (see main manuscript),

(2) multiple closely related butterfly species where gene flow is a countervailing force

versus genetic isolation, and (3) divergent bacterial species where horizontal gene trans-

fer is suspected to be rampant. The datasets also varied in terms of the evolutionary
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processes with first-order impacts upon genome/phenotype evolution. The empirical

analyses served two purposes: methodological validation using positive and negative

controls based upon previous literature, and generation of new hypotheses for future

study.

Heliconius erato dataset. We re-analyzed data from the study of Supple et al. [11].

The dataset includes 45 H. erato samples collected from four hybrid zones located in

Peru, Ecuador, French Guiana, and Panama. Each sample exhibits one of two red

phenotypes – postman and rayed – where 28 samples had the postman phenotype and

17 samples had the rayed phenotype. The genotypic data were sequenced from the

400 kb genomic region referred to as the D interval in H. erato. The D interval spans

56,862 biallelic SNPs and is known to modulate red phenotypic variation. Coal-Miner

was run on the H. erato dataset using the same approach as in the Arabidopsis dataset

analysis (see main manuscript). The first stage of Coal-Miner identified seven loci and

the second stage inferred a single candidate locus.

Burkholderiaceae dataset. Bacteria belonging to the Burkholderiaceae are of interest

given their importance in human and plant disease, but also given their role as plant and

fungal endosymbionts and their metabolic capacity to degrade xenobiotics. Fully se-

quenced (closed) genomes belonging to Burkholderiaceae were selected and downloaded

from the PATRIC web portal (www.patricbrc.org/) [12]. Supplementary Table S8 lists

sampled species names along with other information (IDs, groups, and pathogenic-

ity). We chose to maximize phylogenetic and ecological diversity in this sampling, so

we included available genomes belonging to free-living, pathogenic, and endosymbiotic

species spanning across the genera Burkholderia, Ralstonia, Pandoraea, Cupriavidus,

Mycoavidus, and Polynucleobacter. A total of 57 samples were included, of which 52

samples were free-living and 5 were endosymbionts. Genomes ranged in size from 1.56

Mb to 9.70 Mb and spanned between 2,048 and 9,172 coding DNA sequences (CDS).

The software package Proteinortho [13] was run using default parameters to detect sin-

gle copy orthologs in the selected genomes. A total of 549 orthologs were recovered

in the Proteinortho analysis. We analyzed a phenotype that identified each sample’s
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status as either an animal pathogen or non-animal pathogen. Coal-Miner was used to

analyze the genomic sequence data and phenotypic character using the same approach

as in the other empirical analyses (see above). The initial stages of Coal-Miner identi-

fied 55 candidate loci. Genes with significant associations based upon the Coal-Miner

analysis were further classified based upon their Gene Ontology [14] and KEGG [15]

pathway assignments.

Coal-Miner re-analysis of the Heliconious erato dataset. Supplementary Figure

S14 displays the Manhattan plot generated after applying Coal-Miner on the H. er-

ato dataset across the D interval. We identified two significant peaks ranging from

502 kb to 592 kb and 658 kb to 682 kb, respectively. The second peak is located at

the 3′ of the optix transcription factor, a gene previously shown to be behind the red

phenotype variation in Heliconius [11]. The first peak is located in a noncoding region

more distant from the 3′ of the optix transcription factor.

Coal-Miner analysis of the Burkholdericeae dataset. We applied Coal-Miner on an

empirical dataset of complete genomes of bacteria belonging to the Burkholderiaceae

and spanning a diversity of ecological states including animal and plant pathogens.

Supplementary Table S7 shows the genes inferred by Coal-Miner to be associated with

human pathogenicity, along with their inferred KEGG pathway and gene ontology

assignments. In total, we identified 16 genes associated with human pathogenicity in

Burkholderia. Four of these genes have been implicated in pathogenicity by others, and

in some cases validated through gene knockout and experimental evolution experiments.

For example, the cell division protein FtsK that Coal-Miner associated with human

pathogenicity was found to be one of three genes under positive selection in Burkholderia

multivorans during a 20-year cystic fibrosis infection [16]. Modifications of another

gene identified by Coal-Miner, DNA gyrase subunit A, are well known to be implicated

with virulence and antibiotic resistance to quinolone and ciprofloxacin in pathogenic

Burkholderia [17, 18]. For example, Lieberman et al. [19] found that the DNA gyrase

subunit A gene was under positive selection during a Burkholderia dolosa outbreak

among multiple patients with cystic fibrosis [19]. Another gene identified by Coal-
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Miner, Excinuclease ABC subunit A, has been shown to bind to previously published

vaccine targets [20]. Coal-Miner also associated the protein dihydrofolate synthase with

animal pathogenicity. Point mutations leading to nonsynonymous base changes in the

dihydrofolate reductase gene have previously been demonstrated to be associated with

trimethoprim resistance in cystic fibrosis patients infected by Burkholderia cenocepacia

[21, 22].

Inferring local-phylogeny-switching break-points

The local partition breakpoint vector b for the simulated data required as input to Coal-

Miner was inferred using the Four-Gamete Test [23], which identifies segregating sites

that did not arise without either recombination or a repeat mutation. The Four-Gamete

Test is an appropriate choice to detect breakpoints due to the simplifying assumptions

of our simulation study (infinite sites model, free recombination between markers, and

complete linkage within each marker).

For our empirical studies, we used RecHMM [24], an HMM-based method for comput-

ing local-phylogeny-switching breakpoints. The following command was used to run

RecHMM:

./runTraining.py <FASTA input alignment> -lb -prefix <empty existing working

directory> -k 2 <number of hidden states> -lt

Using 2 states for the -k option corresponds to two parental trees for the model network.

Sensitivity of breakpoint inference

We tested the sensitivity of inferring local-phylogeny-switching breakpoints using a

variant of the LRScan algorithm [25] on the performance of Coal-Miner using neutral
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and non-tree-like model conditions that included 10% causal loci. The AUROC results

for Coal-Miner, Coal-Map, GEMMA, and EIGENSTRAT were 0.962, 0.939, 0.866, and

0.871, respectively, with Coal-Miner significantly more accurate (q-value < 0.00001)

than the next best method (Coal-Map). The Coal-Miner results are similar to the

results obtained when using the LRScan algorithm for breakpoint inference, which

suggests that Coal-Miner is robust to breakpoint inference.

Leaving-one-chromosome-out (LOCO) analysis

We demonstrate that Coal-Miner works better than an approach that performs stan-

dard linear mixed model association analysis, where the relatedness is controlled for all

other loci when testing for each SNP. The performance advantage of Coal-Miner over

the leaving-one-chromosome-out standard approach was significantly more accurate by

0.066 based on AUROC on model conditions that included neutral and non-tree-like

model phylogenies with 10% causal loci.

Running time

We explored the running time of different stages of Coal-Miner using neutral and non-

tree-like model conditions that included 10% causal loci. On average, the running

time of the Coal-Miner pipeline across twenty replicates was 1.43 hours (with standard

error of 0.02). The first stage of Coal-Miner, which involves inferring local-phylogeny-

switching breakpoints, took approximately 70 minutes to complete while the other

stages (stages two and three) took no more than 15 minutes to complete the analysis.

These results suggest that stage one of Coal-Miner could pose a performance bottleneck

as either the number of taxa or length of the multiple sequence alignment increases.

We recommend performing sampling of taxa to mitigate the computational impact of

this dimension of scale on the computational performance of stage one.
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Impact of the number of loci

The impact of the number of loci on the performance of Coal-Miner was explored using

a simulation study containing 20 loci (250 sites per locus) for neutral and non-tree-

like model conditions that included 10% causal loci. The AUROC results for Coal-

Miner, Coal-Map, GEMMA, and EIGENSTRAT were 0.965, 0.933, 0.841, and 0.866,

respectively. Coal-Miner was significantly more accurate compared to the next most

accurate method (Coal-Map) using a corrected test of DeLong et al. [10]. These results

suggest that increasing the number of loci from 10 to 20 preserves the performance

advantage of Coal-Miner over the other AM methods.

Additional trait model

We simulated a continuous additive trait using the following:

y = Xβ + ǫ

where X is an n by p genotype matrix at p causal SNPs. Twenty causal SNPs were

randomly selected from causal loci such that each causal locus contained at least one

causal SNP and causal SNPs had minor allele frequency between 0.1 and 0.3. β follows

a normal distribution with mean of zero and variance of h2

p
(h is the heritability of the

trait), and ǫ is the residual effect generated from a normal distribution with mean of 0

and variance of (Xβ) x ( 1

h2 − 1).

We explored the performance of Coal-Miner and the other methods on neutral and

non-tree-like model conditions that included 10% causal loci using the above continuous

additive trait model across a range of heritability values (h = 0.25, 0.5, and 0.75). For

h = 0.5, the AUROC results for Coal-Miner, Coal-Map, GEMMA, and EIGENSTRAT

were 0.952, 0.924, 0.865, and 0.869, respectively, with Coal-Miner significantly more

accurate than the next most accurate method (Coal-Map) using a corrected test of

DeLong et al. [10]. Furthermore, the TPR values at an FPR value of 0.1 for Coal-
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Miner, Coal-Map, GEMMA, and EIGENSTRAT were 0.915, 0.799, 0.689, and 0.587,

respectively. The results for the other heritability values are shown in Tables S5 and

S6. These results suggest that Coal-Miner performs better than the other AM methods

under a more complex continuous trait model with varying effect size. We compared

the performance of Coal-Miner under the above trait model with h = 0.5 relative to

h ∼ 0. Results are shown in Figure S17, suggesting that Coal-Miner’s performance is

better relative to the null.

Bonferroni correction

The simulations used Benjamini-Hochberg procedure [26] to correct for multiple tests.

We further used Bonferroni corrected by the number of independent loci, which is 10,

for multiple tests correction. The results are shown in Table S4 and are consistent with

the results shown in Table 1.

Vary recombination rate

A multiple sequence alignment under the coalescent model with uniform recombination

rate across a locus, with a total sequence length of 10 kb and a p parameter of 1, was

simulated using ms. The model condition included 10% causal loci. The AUROC results

for Coal-Miner, Coal-Map, GEMMA, and EIGENSTRAT were 0.827, 0.772, 0.799, and

0.732, respectively, with Coal-Miner significantly more accurate than the next most

accurate method (GEMMA) using a corrected test of DeLong et al. [10]. Furthermore,

the TPR values at an FPR value of 0.1 for Coal-Miner, Coal-Map, GEMMA, and

EIGENSTRAT were 0.485, 0.317, 0.446, and 0.296, respectively. These results suggest

that increasing the recombination rate does not impact the performance advantage of

Coal-Miner over the other AM methods.
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Vary sequence length

We demonstrate the performance of Coal-Miner relative to the other AM methods

by simulating larger sequence length datasets using neutral and non-tree-like model

conditions that included 10% causal loci. Furthermore, the simulations contained 10

loci per replicate (0.1 Mb per locus), with a total sequence length of 1 Mb. The AUROC

results for Coal-Miner, Coal-Map, GEMMA, and EIGENSTRAT were 0.946, 0.889,

0.862, and 0.851, respectively, with Coal-Miner significantly more accurate relative to

the next most accurate method (Coal-Map) using a corrected test of DeLong et al.

[10]. Furthermore, the TPR values at an FPR value of 0.1 for Coal-Miner, Coal-Map,

GEMMA, and EIGENSTRAT were 0.923, 0.750, 0.739, and 0.513, respectively. These

results suggest that increasing the sequence length preserves the performance advantage

of Coal-Miner over the other AM methods.

SI Tables

AUROC

Model condition Coal-Miner Coal-Map GEMMA EIGENSTRAT q-value

Non-tree-like model phylogeny with admixture time t1 = 1.0 0.959 0.963 0.922 0.905 0.9959

Non-tree-like model phylogeny with admixture time t1 = 2.9 0.933 0.922 0.836 0.843 < 0.00001

Tree-like model phylogeny with split time t1 = 1.0 0.959 0.899 0.884 0.852 < 0.00001

Tree-like model phylogeny with split time t1 = 2.9 0.932 0.895 0.853 0.849 < 0.00001

Coalescent-with-recombination 0.841 0.768 0.77 0.738 < 0.00001

Isolation-with-migration 0.953 0.931 0.881 0.868 < 0.00001

Supplementary Table S1: Additional evolutionary scenarios exploring other

evolutionary processes that can generate local genealogical variation. The

additional model conditions were variants of the model condition with neutral evolution

on a tree-like model phylogeny and 10% causal loci (see Table 1 in the main manuscript).

Each model condition incorporated an alternative evolutionary scenario (see Methods

section for more details). Otherwise, table layout and description are identical to Table

1 in the main manuscript.
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Model condition Model phylogeny Percentage of causal loci (%)
TPR

q-value
Coal-Miner Coal-Map GEMMA EIGENSTRAT

10 0.934 0.806 0.678 0.654 0.0102

Neutral Non-tree-like 20 0.823 0.645 0.667 0.539 0.0003

30 0.785 0.616 0.63 0.546 0.0005

10 0.782 0.76 0.582 0.51 0.2299

Neutral Tree-like 20 0.804 0.488 0.556 0.443 0.00003

30 0.766 0.549 0.556 0.489 < 10−5

10 0.934 0.841 0.698 0.619 0.0062

Non-neutral Non-tree-like 20 0.841 0.639 0.651 0.505 0.0002

30 0.788 0.527 0.645 0.455 0.0016

10 0.93 0.725 0.561 0.524 0.0033

Non-neutral Tree-like 20 0.714 0.532 0.523 0.426 0.0009

30 0.643 0.469 0.483 0.426 0.0006

Supplementary Table S2: The true positive rate (TPR) values of Coal-Miner,

Coal-Map, GEMMA, and EIGENSTRAT at false positive rate (FPR) value

of 0.1 across different model conditions. The most accurate method for each model

condition is highlighted in bold. We report the corrected q-value of the performance

advantage of Coal-Miner over the next most accurate method, which were compared

using a pairwise t-test with Benjamini-Hochberg correction [26].

Model condition Model phylogeny Percentage of causal loci (%)
TPR

q-value
Coal-Miner Coal-Map GEMMA EIGENSTRAT

Neutral Non-tree-like with admixture-time t1 = 1.0 10 0.913 0.894 0.822 0.771 0.5572

Neutral Non-tree-like with admixture-time t1 = 2.9 10 0.885 0.726 0.676 0.599 0.0002

Neutral Tree-like with split-time t1 = 1.0 10 0.888 0.726 0.633 0.55 0.0018

Neutral Tree-like with split-time t1 = 2.9 10 0.827 0.674 0.542 0.519 0.0463

Neutral Tree-like with recombination 10 0.493 0.328 0.379 0.27 0.073

Neutral Non-tree-like with isolation-with-migration 10 0.89 0.727 0.712 0.607 0.029

Supplementary Table S3: The true positive rate (TPR) values of Coal-Miner,

Coal-Map, GEMMA, and EIGENSTRAT at false positive rate (FPR) value

of 0.1 across different model conditions. Table layout and description are other-

wise similar to Supplementary Table S2.
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Model condition

Neutral vs. Model Percentage of q-value

non-neutral phylogeny causal loci (%)

Neutral Non-tree-like 10 < 0.00001

20 < 0.00001

30 < 0.00001

Neutral Tree-like 10 0.0006

20 < 0.00001

30 0.00008

Non-neutral Non-tree-like 10 < 0.00001

20 < 0.00001

30 < 0.00001

Non-neutral Tree-like 10 < 0.00001

20 0.00009

30 0.002

Supplementary Table S4: Coal-Miner’s AUROC improvement upon the AU-

ROC of the most accurate of the other AM methods, based upon the test

of [10] (n = 20; α = 0.05). We corrected for multiple tests using the approach

of Bonferroni, and corrected q-values are shown.
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AUROC

Heritability value Coal-Miner Coal-Map GEMMA EIGENSTRAT q-value

0.25 0.949 0.913 0.860 0.863 < 10−5

0.5 0.952 0.924 0.865 0.869 < 10−5

0.75 0.940 0.934 0.887 0.848 < 10−5

Supplementary Table S5: The AUROC values of Coal-Miner, Coal-Map,

GEMMA, and EIGENSTRAT across different heritability trait values. The

most accurate method for each model condition is highlighted in bold. We report Coal-

Miner’s AUROC improvement upon the AUROC of the most accurate of the other AM

methods, based upon the test of [10] (n = 20; α = 0.05). We corrected for multiple tests

using the approach of Benjamini-Hochberg [26], and corrected q-values are reported.

TPR

Heritability value Coal-Miner Coal-Map GEMMA EIGENSTRAT q-value

0.25 0.912 0.788 0.694 0.576 0.0092

0.5 0.915 0.799 0.689 0.587 0.0022

0.75 0.817 0.833 0.682 0.580 0.726

Supplementary Table S6: The true positive rate (TPR) values of Coal-Miner,

Coal-Map, GEMMA, and EIGENSTRAT at false positive rate (FPR) value

of 0.1 across different heritability trait values. The most accurate method for

each model condition is highlighted in bold. We report the corrected q-value of the

performance advantage of Coal-Miner over the next most accurate method, which were

compared using a pairwise t-test with Benjamini-Hochberg correction [26].

Supplementary Table S7: Empirical study results involving bacteria belonging

to the Burkholderiaceae. Results are shown for proteins inferred to be associated with

human pathogenicity along with their KEGG pathway and gene ontology assignments.

Proteins Pathway Assignments Gene Ontology Assignments

Dihydrofolate synthase KEGG:00790 Folate biosynthesis GO:0008841 dihydrofolate synthase activ-

ity, GO:0004326 tetrahydrofolylpolyglu-

tamate synthase activity
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Aspartokinase KEGG:00260 Glycine, serine and thre-

onine metabolism, KEGG:00270 Cys-

teine and methionine metabolism,

KEGG:00300 Lysine biosynthesis

GO:0004072 aspartate kinase activity

NADH-ubiquinone oxidoreductase chain

G

KEGG:00190 Oxidative phosphorylation,

KEGG:00910 Nitrogen metabolism

GO:0008137 NADH dehydrogenase

(ubiquinone) activity

Excinuclease ABC subunit A - GO:0005524 ATP binding, GO:0016887

ATPase activity

Carboxyl-terminal protease - -

Homoserine O-acetyltransferase KEGG:00270 Cysteine and methion-

ine metabolism, KEGG:00920 Sulfur

metabolism

GO:0004414 homoserine O-

acetyltransferase activity

Glutamate-ammonia-ligase adenylyl-

transferase

- GO:0008882 [glutamate-ammonia-ligase]

adenylyltransferase activity

Undecaprenyl-diphosphatase KEGG:00550 Peptidoglycan biosynthesis GO:0050380 undecaprenyl-diphosphatase

activity

Cell division protein FtsK - -

DNA gyrase subunit A - GO:0003918 DNA topoisomerase (ATP-

hydrolyzing) activity

Diaminohydroxyphosphori-

bosylaminopyrimidine deaminase KEGG:00740 Riboflavin metabolism GO:0008703 5-amino-6-(5-

phosphoribosylamino)uracil reductase

activity, GO:0008835 diaminohydrox-

yphosphoribosylaminopyrimidine deami-

nase activity

Ribonucleotide reductase of class Ia (aer-

obic), alpha subunit

KEGG:00230 Purine metabolism,

KEGG:00240 Pyrimidine metabolism,

KEGG:00480 Glutathione metabolism

GO:0004748 ribonucleoside-diphosphate

reductase activity

DNA gyrase subunit B - GO:0003918 DNA topoisomerase (ATP-

hydrolyzing) activity

Ketol-acid reductoisomerase KEGG:00290 Valine, leucine and

isoleucine biosynthesis, KEGG:00770

Pantothenate and CoA biosynthesis

GO:0004455 ketol-acid reductoisomerase

activity

Phosphoribosylformylglycinamidine syn-

thase, synthetase subunit

KEGG:00230 Purine metabolism GO:0004642 phosphoribosylformylglyci-

namidine synthase activity

DNA polymerase I KEGG:00230 Purine metabolism,

KEGG:00240 Pyrimidine metabolism

GO:0003887 DNA-directed DNA poly-

merase activity

Supplementary Table S8: Empirical study data involving bacteria belonging to

the Burkholderiaceae. The PATRIC accession numbers along with the species names,

and group and pathogenicity categories are shown.

PATRIC

Number

Species Group Pathogenicity

13373.18 Burkholderia-mallei Ingroup Human and animal pathogen

13373.19 Burkholderia-mallei Ingroup Human and animal pathogen

882378.3 Burkholderia-rhizoxinica Ingroup Fungal endosymbiont, plant pathogen

224135.3 Glomeribacter-

endosymbiont-AG77

Ingroup Fungal endosymbiont

452638.4 Polynucleobacter-

necessarius-subsp-

necessarius-STIR1

Outgroup Freshwater bacterium, endosymbiont of protist

339670.8 Burkholderia-ambifaria Ingroup Opportunistic animal pathogen (cystic fibrosis)
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398577.6 Burkholderia-ambifaria-

MC40-6

Ingroup Opportunistic animal pathogen (cystic fibrosis)

331271.8 Burkholderia-cenocepacia Ingroup Opportunistic animal pathogen (cystic fibrosis), plant

pathogen

95486.54 Burkholderia-cenocepacia Ingroup Opportunistic animal pathogen (cystic fibrosis), plant

pathogen

1009846.3 Burkholderia-cepacia Ingroup Opportunistic animal pathogen (cystic fibrosis), plant

pathogen

999541.3 Burkholderia-gladioli Ingroup Opportunistic animal pathogen, opportunistic plant

pathogen, plant and fungal symbiont

626418.3 Burkholderia-glumae-

BGR1

Ingroup Plant pathogen

595500.3 Burkholderia-glumae-PG1 Ingroup Plant pathogen

87883.36 Burkholderia-multivorans Ingroup Opportunistic animal pathogen (cystic fibrosis)

395019.8 Burkholderia-multivorans-

ATCC-17616

Ingroup Opportunistic animal pathogen (cystic fibrosis)

342113.3 Burkholderia-oklahomensis Ingroup Opportunistic human pathogen

391038.7 Burkholderia-phymatum-

STM815

Ingroup Plant symbiont (N-fixation)

398527.4 Burkholderia-

phytofirmans-PsJN

Ingroup Plant symbiont

1435365.3 Burkholderia-pseudomallei Ingroup Human and animal pathogen

28450.84 Burkholderia-pseudomallei Ingroup Human and animal pathogen

28450.87 Burkholderia-pseudomallei Ingroup Human and animal pathogen

1487955.3 Burkholderia-sp-BGK Ingroup Unknown

640510.4 Burkholderia-sp-

CCGE1001

Ingroup Unknown

640511.6 Burkholderia-sp-

CCGE1002

Ingroup Plant symbiont

640512.4 Burkholderia-sp-

CCGE1003

Ingroup Unknown

416344.3 Burkholderia-sp-KJ006 Ingroup Plant-endophyte and symbiont (growth promoter)

758793.3 Burkholderia-sp-RPE64 Ingroup Insect endosymbiont (acquired from soil)

758796.3 Burkholderia-sp-RPE67 Ingroup Insect endosymbiont (acquired from soil)

1439853.3 Burkholderia-sp-TSV202 Ingroup Unknown

1097668.3 Burkholderia-sp-YI23 Ingroup soil (xenobiotic degrader)

1241582.3 Burkholderia-thailandensis Ingroup Plant-associate, opportunistic human pathogen

57975.4 Burkholderia-thailandensis Ingroup Plant-associate, opportunistic human pathogen

269482.11 Burkholderia-vietnamiensis Ingroup Opportunistic animal pathogen, opportunistic plant

pathogen, plant symbiont

266265.5 Burkholderia-xenovorans Ingroup Soil bacterium (degrades xenobiotics)

36873.6 Burkholderia-xenovorans Ingroup Soil bacterium (degrades xenobiotics)

68895.5 Cupriavidus-basilensis-

4G11

Outgroup Unknown

266264.9 Cupriavidus-metallidurans-

CH34

Outgroup Soil bacterium (degrades xenobiotics; metal tolerant)

1042878.5 Cupriavidus-necator-N-1 Outgroup Soil bacterium (metal tolerant); bacterium and fungal

predator

164546.7 Cupriavidus-taiwanensis Outgroup Plant symbiont (N-fixation)

93218.7 Pandoraea-apista-TF81F4 Outgroup Opportunistic animal pathogen (cystic fibrosis)

93220.9 Pandoraea-pnomenusa Outgroup Opportunistic animal pathogen (cystic fibrosis)

1416914.3 Pandoraea-pnomenusa-

3kgm

Outgroup Opportunistic animal pathogen (cystic fibrosis)

93221.4 Pandoraea-pulmonicola-

DSM-16583

Outgroup Opportunistic animal pathogen (cystic fibrosis)

1380774.3 Pandoraea-sp-RB-44 Outgroup Soil bacterium

93222.6 Pandoraea-sputorum-DSM-

21091

Outgroup Opportunistic animal pathogen
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312153.5 Polynucleobacter-

necessarius-subsp-

asymbioticus

Outgroup Freshwater bacterium

381666.6 Ralstonia-eutropha-H16 Outgroup Soil bacterium

264198.6 Ralstonia-eutropha-

JMP134

Outgroup Soil bacterium

428406.5 Ralstonia-pickettii-12D Outgroup Soil and freshwater bacterium, opportunistic human

pathogen

1366050.3 Ralstonia-pickettii-

DTP0602

Outgroup Soil and freshwater bacterium, opportunistic human

pathogen

859656.5 Ralstonia-solanacearum-

CFBP2957

Outgroup Plant pathogen

859655.3 Ralstonia-solanacearum-

CMR15

Outgroup Plant pathogen

1262456.3 Ralstonia-solanacearum-

FQY 4

Outgroup Plant pathogen

267608.8 Ralstonia-solanacearum-

GMI1000

Outgroup Plant pathogen

564065.5 Ralstonia-solanacearum-

MolK2

Outgroup Plant pathogen

1031711.3 Ralstonia-solanacearum-

Po82

Outgroup Plant pathogen

859657.5 Ralstonia-solanacearum-

PSI07

Outgroup Plant pathogen

22





FPR

T
P

R
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

30% causal loci

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

20% causal loci

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

10% causal loci

Coal Miner
Coal Map

GEMMA
EIGENSTRAT

Supplementary Figure S2: Results for neutral model conditions with non-tree-

like model phylogenies that include drift/ILS and gene flow (γ = 0.5). Coal-

Miner has an equal or better power and comparable type I error to Coal-Map, EIGEN-

STRAT, and GEMMA. The receiver operating characteristic (ROC) curve shows the

relationship between false positive rate (FPR) versus the true positive rate (TPR). Re-

sults are shown for three genomic architectures of quantitative traits with proportion

of causal loci of 10%, 20%, and 30%, respectively.
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Supplementary Figure S3: Results for neutral model conditions with tree-like

model phylogenies that include drift/ILS (γ = 0). Coal-Miner has an equal or

better power and comparable type I error to Coal-Map, EIGENSTRAT, and GEMMA.

Figure layout and description are otherwise similar to Supplementary Figure S2.
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Supplementary Figure S4: Results for non-neutral model conditions with non-

tree-like model phylogenies that include drift/ILS, gene flow, and positive

selection. Coal-Miner has an equal or better power and comparable type I error to

Coal-Map, EIGENSTRAT and GEMMA. Figure layout and description are otherwise

similar to Supplementary Figure S2.
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Supplementary Figure S5: Results for non-neutral model conditions with tree-

like model phylogenies that include drift/ILS and positive selection. Coal-

Miner has an equal or better power and comparable type I error to Coal-Map, EIGEN-

STRAT, and GEMMA. Figure layout and description are otherwise similar to Supple-

mentary Figure S2.
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Supplementary Figure S6: Results for neutral model conditions with tree-like

model phylogenies that include drift/ILS (γ = 0) and divergence time t1 =

1.0 (in coalescent units). Coal-Miner has an equal or better power and comparable

type I error to Coal-Map, EIGENSTRAT, and GEMMA. Figure layout and description

are otherwise similar to Supplementary Figure S2.
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Supplementary Figure S7: Results for neutral model conditions with tree-like

model phylogenies that include drift/ILS (γ = 0) and divergence time t1 =

2.9 (in coalescent units). Coal-Miner has an equal or better power and comparable

type I error to Coal-Map, EIGENSTRAT, and GEMMA. Figure layout and description

are otherwise similar to Supplementary Figure S2.
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Supplementary Figure S8: Results for neutral model conditions with non-tree-

like model phylogenies that include drift/ILS and gene flow (γ = 0.5), and

admixture time t1 = 1 (in coalescent units). Coal-Miner has an equal or better

power and comparable type I error to Coal-Map, EIGENSTRAT, and GEMMA. Figure

layout and description are otherwise similar to Supplementary Figure S2.
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Supplementary Figure S9: Results for neutral model conditions with non-tree-

like model phylogenies that include drift/ILS and gene flow (γ = 0.5), and

admixture time t1 = 2.9 (in coalescent units). Coal-Miner has an equal or better

power and comparable type I error to Coal-Map, EIGENSTRAT, and GEMMA. Figure

layout and description are otherwise similar to Supplementary Figure S2.
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Supplementary Figure S10: Results for neutral model conditions with tree-like

model phylogenies incorporating recombination. Coal-Miner has an equal or

better power and comparable type I error to Coal-Map, EIGENSTRAT, and GEMMA.

Figure layout and description are otherwise similar to Supplementary Figure S2.
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Supplementary Figure S11: Results for neutral model conditions with non-

tree-like model phylogenies incorporating an isolation-with-migration (IM)

model of gene flow. Coal-Miner has an equal or better power and comparable type

I error to Coal-Map, EIGENSTRAT, and GEMMA. Figure layout and description are

otherwise similar to Supplementary Figure S2.
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Supplementary Figure S16: The phylogeny inferred from the 1,135 Arabidopsis

strains using RAxML. Each tip in the phylogeny is colored according to its country

code. The legend represents the different countries in the analysis (BUL: Bulgaria, CZE:

Czech Republic, ESP: Spain, FRA: France, GER: Germany, ITA: Italy, OTHER: Other

countries, RUS: Russia, SWE: Sweden, UK: United Kingdom, USA: United States of

America)
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Supplementary Figure S17: A qq-plot showing the expected distribution of p-

values compared to the observed p-values. The observed distribution of p-values

(y-axis) is obtained by simulating a trait under h = 0.5. The expected distribution of

p-values (x-axis) is obtained by simulating a trait under h ∼ 0. Test statistic scores are

reported as −log10 p-value.
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