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ABSTRACT

Association mapping (AM) methods are used in genome-wide asso-
ciation (GWA) studies to test for statistically significant associations
between genotypic and phenotypic data. The genotypic and pheno-
typic data share common evolutionary origins — namely, the evo-
lutionary history of sampled organisms — introducing covariance
which must be distinguished from the covariance due to biological
function that is of primary interest in GWA studies. A variety of
methods have been introduced to perform AM while accounting
for sample relatedness. However, the state of the art predominantly
utilizes the simplifying assumption that sample relatedness is ef-
fectively fixed across the genome. In contrast, population genetic
theory and empirical studies have shown that sample relatedness
can vary greatly across different loci within a genome. This phenom-
enon - referred to as local genealogical variation — is commonly
encountered in many genomic datasets. New AM methods are
needed to better account for local variation in sample relatedness
within genomes.

We address this gap by introducing Coal-Miner, a new statistical
AM method. The Coal-Miner algorithm takes the form of a method-
ological pipeline. The initial stages of Coal-Miner seek to detect
candidate loci, or loci which contain putatively associated markers.
Subsequent stages of Coal-Miner perform test for association using
a linear mixed model with multiple effects which account for sam-
ple relatedness locally within candidate loci and globally across the
entire genome. Using synthetic and empirical datasets, we compare
the statistical power and type I error control of Coal-Miner against
state-of-the-art AM methods. The simulation conditions reflect a
variety of genomic architectures for complex traits and incorporate
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a range of evolutionary scenarios, each with different evolutionary
processes that can generate local genealogical variation. Across the
datasets in our study, we find that Coal-Miner consistently offers
comparable or typically better statistical power and type I error
control compared to the state-of-the-art methods.
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1 INTRODUCTION

Genome-wide association (GWA) studies aim to pinpoint loci with
genetic contributions to a phenotype by uncovering significant
statistical associations between genomic markers and a phenotypic
trait under study. We refer to the computational methods used in a
GWA analysis as association mapping (AM) methods. Among the
most widely studied organisms in GWA studies are natural human
populations and laboratory strains of house mouse. Recently, GWA
approaches have been applied to natural populations of other or-
ganisms sampled from across the Tree of Life. For example, the 1001
Genomes Consortium study [7] published whole genome sequences
for over a thousand samples from globally distributed Arabidopsis
populations. In combination with phenotypic data, the genomic
sequence data was used in a GWA analysis to pinpoint genomic
loci involved in flowering time at two different temperatures. Other
recent GWA studies such as the study of Porter et al. [24] have
focused on bacteria and other microbes (see [6] for a review of
relevant literature).

Regardless of sampling strategy — from one or more closely
related populations involving a single species to multiple popula-
tions from divergent species - it is well understood that sample
relatedness can be a confounding factor in GWA analyses unless
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properly accounted for. Intuitively, the genotypes and phenotypes
of present-day samples reflect their shared evolutionary history,
or phylogeny. For this reason, covariance due to a functional rela-
tionship between genotypic markers and a phenotypic character
must be distinguished from shared covariance due to common
evolutionary origins. A number of AM methods have been devel-
oped to address this issue. EIGENSTRAT [26] is a popular AM
method which accounts for sample relatedness as a fixed effect.
Other statistical AM methods have utilized linear mixed models
(LMMs) to capture sample relatedness using random effects; these
include EMMAX [17] and GEMMA [31]. Local variation in func-
tional covariance across the genome is a crucial signature that AM
methods use to uncover putatively associated markers. In contrast,
virtually all of the most widely used state-of-the-art AM methods
assume that covariance due to sample relatedness does not vary
appreciably across the genome. Sample relatedness is therefore
evaluated “globally” across the genome, eliding over “local” ge-
nealogical variation across loci. The latter has been observed by
many comparative genomic and phylogenomic studies (see [10] for
areview of relevant literature). It is now well understood that local
genealogical variation within genomes is pervasive across a range
of evolutionary divergence — from structured populations within a
single species to multiple species at various scales up to the Tree
of Life, the evolutionary history of all living organisms on Earth.
The evolutionary processes that can contribute to local genealogi-
cal variation include genetic drift and incomplete lineage sorting,
recombination, gene flow, positive selection, and the combination
of all of these processes (and others) [10].

Computational approaches for detecting local genealogical varia-
tion are broadly characterized by their modeling assumptions. One
class of methods makes use of the Four-Gamete Test [14], which
requires the simplifying assumption that sequence evolution can be
described by the infinite sites model. The LRScan algorithm [29] be-
longs to this class of methods. Another class consists of parametric
methods that make use of finite-sites models of sequence evolu-
tion. These include methods such as RecHMM [30]. More recently,
coalescent-based methods such as PhyloNet-HMM [19] have been
developed to infer local coalescent histories and explicitly ascribe
local genealogical variation to different evolutionary processes.

Building upon these insights, we previously developed Coal-Map
[12], an AM method that utilizes a fixed effects model to account
for global sample relatedness and, depending upon whether the test
marker is located within a locus containing putatively associated
markers, local sample relatedness as well. The latter condition
is evaluated using model selection criteria. Coal-Map requires
local-phylogeny-switching breakpoints as input. We conducted a
simulation study which demonstrated that Coal-Map’s statistical
power and type I error control was comparable or better than other
state-of-the-art methods that account for global sample relatedness
using fixed effects.

2 METHODS

2.1 Overview of Coal-Miner algorithm

In this study, we introduce Coal-Miner, a new statistical AM method
which accounts for local variation of sample relatedness across
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genomic sequences as well as global sample relatedness. Coal-
Miner’s contributions relative to the state of the art (including Coal-
Map) consist of the following. First, Coal-Miner utilizes an LMM
with multiple effects to explicitly capture the genomic architecture
of a phenotype, where both genotypic and phenotypic characters
are the product of a complex evolutionary history which can cause
sample relatedness to vary locally across genomic loci. The LMM
captures global sample relatedness as a random effect, in contrast to
the fixed-effect approach used by Coal-Map. Second, the pipeline-
based design of Coal-Miner incorporates an intermediate stage to
infer “candidate loci” for use in the new LMM, where a candidate
locus is a locus that is inferred to contain one or more putatively
associated SNPs.

We begin by introducing the high-level design of Coal-Miner.
The input to the Coal-Miner algorithm consists of: (1) an n Xk multi-
locus sequence data matrix X, (2) an n X 1 vector y which represents
a phenotypic character, and (3) €*, the number of candidate loci
used during analysis. The output consists of an association score
for each site x € X.

Coal-Miner’s statistical model captures the relationship between
genotypic data X and the phenotypic character y in the form of a
linear mixed model (LMM). The LMM incorporates multiple effects
to capture the phenotypic contributions of and local genealogical
variation among multiple candidate loci. A candidate locus is repre-
sented by a fixed effect, and a random effect is included to capture
global sample relatedness as measured across all loci in X. Ideally,
the set of candidate loci identified during a Coal-Miner analysis is
identical to the set of causal loci (i.e., loci containing causal SNPs)
for the trait under study; in practice, the set of candidate loci are
inferred as part of the Coal-Miner algorithm, which we discuss in
greater detail below. The LMM takes the following form (based on
the notation of Zhou and Stephens [31]):

y=Wa+xf+u+e
u-~ MVNn(O, )'T_IKglobal)
€ ~ MVN,,(0,77'I,))

The fixed effects are represented by ¢ covariates in the n X ¢ matrix
W, which include covariates that capture local sample relatedness
within each candidate locus, the ¢ X 1 vector & of corresponding
coefficients, and the test SNP is represented by the n X 1 vector
x with effect size . Global sample relatedness (i.e., sample re-
latedness as measured across all loci in the genotypic data X) is
specified by the n X n relatedness matrix Kyjopa1 computed using X,
following the approach of state-of-the-art LMM-based AM methods
(e.g., GEMMA [31]). The n X 1 vectors u and € represent random
effects which account for global sample relatedness and residual
error, respectively. Each of the two random effects follows an n-
dimensional multivariate normal distribution (abbreviated “MVN”)
with mean 0. The random effects u have covariance )'T_lKglobal
and the random effects € have covariance 7~ !I,,, where A is the
relative ratio between the two, I, is the n X n identity matrix, and
the residual errors have variance 771,

The design of the Coal-Miner algorithm takes the form of a
methodological pipeline. We now discuss each pipeline stage in
turn.
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Stage one of Coal-Miner: inferring local-phylogeny-switching of A in the range of [107>, 1] using the optimization heuristic im-

breakpoints. The input to the first stage of Coal-Miner is the geno-
typic data matrix X. The output consists of a set of local-phylogeny-
switching breakpoints b which partition the sites in X into loci
{X;}, where 1 < i < ¢ and ¢ is the number of loci. We require
that €* < ¢. (The ratio of ¢* and ¢ depends upon the genomic
architecture of the trait corresponding to character y.)

The general approach to address this computational problem is to
infer local coalescent histories under an appropriate multi-species
extension of the coalescent model [18], and then to assign break-
points based upon gene tree discordance. Each pair of neighboring
breakpoints delineates a locus for use in downstream stages of the
Coal-Miner pipeline. The specific choice of model/method depends
upon the relevant evolutionary processes involved in multi-locus
sequence evolution, particularly regarding the source(s) of local
genealogical discordance.

In this study, we use one of two different methods, depending
upon assumptions about biomolecular sequence evolution. In the
simulation study, the simulations make use of the infinite sites
model. We therefore used the LRScan algorithm [29] to compute
local-topology-switching breakpoints based upon the Four Gamete
Test (FGT) [14]. In the empirical study, we did not make use of
the infinite sites model and its assumptions about sequence evolu-
tion. Furthermore, multiple evolutionary processes were known
to be involved in multi-locus sequence evolution, including ge-
netic drift/incomplete lineage sorting (ILS), recombination/gene
conversion, gene flow/horizontal gene transfer (HGT), and natural
selection. Breakpoint inference under the corresponding extended
coalescent model is suspected to be a computationally difficult prob-
lem. Existing methods for this problem (e.g., PhyloNet-HMM [19])
did not have sufficient scalability for the dataset sizes examined in
our study. As a more feasible alternative, we inferred local-topology-
switching breakpoints using Rec-HMM [30]. Rec-HMM performs
fixed-species-phylogeny inference of local genealogies under a sta-
tistical model that combines a finite-sites substitution model and a
hidden Markov model which is meant to capture intra-sequence
dependence (such as arises from recombination).

Stage two of Coal-Miner: identifying candidate loci. The
input to the second stage of Coal-Miner consists of the genotypic
data matrix X, the set of breakpoints b which partition X into loci
{X;}, where 1 < i < { and ¢ is the number of loci, the phenotypic
character y, and ¢*, the number of candidate loci to identify. Note
that the input b is an output of the preceding stage of Coal-Miner.
The output is a set of candidate loci {X}’} C {X;} where 1 < j < £*.

Our general approach to this problem consists of a search among
possible sets of candidate loci {X;.‘} using optimization under a
“null” version of Coal-Miner’s LMM, where we do not consider a
test SNP (i.e., f = 0 in Coal-Miner’s LMM) and the phenotypic con-
tributions from putatively associated SNPs in each candidate locus
XJ’.‘ is captured by covariates {w;} C W. Since we compare fitted
LMMs that may have varying fixed effects, our optimization crite-
rion consists of the LMM log-likelihood £L(A, 7, &, f) = 7 log(z) —
2 log(2m)— % log |H|- %1'(y—Wot—xﬁ)TH_1 (y—W a—xp) where
H = AKjgjoba1 +In (reproduced from equation (3) in [31]). Due to the
computational difficulty of this optimization problem, numerical
optimization procedures are typically used. We obtained estimates
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plemented in the GEMMA software library [31], which combines
Brent’s method [5] and the Newton-Raphson method.

For each candidate locus XJ".‘, local sample relatedness was evalu-
ated using principal component analysis (PCA) [16] of X; - similar
to techniques that are widely used by AM methods to account for
global sample relatedness as fixed effects [26]. The phenotypic con-
tribution of candidate locus X; was represented using covariates
{wj} which consisted of the top five principal components, where
the zth principal component corresponds to the sample covariance
matrix eigenvector with the zth largest eigenvalue and the num-
ber of covariates was based upon a design experiment in [12]. For
added computational efficiency, we substituted the following search
heuristic in place of set-based search among all possible £*-size
sets of candidate loci. For each locus X;, we used MLE to fit an
equivalent LMM, except that the covariates W included only the
covariates {w;} for locus X; (as computed using the above PCA-
based procedure). The output set of candidate loci consists of the
top £* loci based upon fitted LMM likelihood.

Stage three of Coal-Miner: SNP-based association testing.
The input to the third stage of Coal-Miner consists of the genotypic
data matrix X, the set of breakpoints b which partition X into loci
{X;}, where 1 < i < { and ¢ is the number of loci, the phenotypic
character y, and the set of candidate loci {X]’f‘}. Note that the in-
puts b and {X;} are outputs of stages one and two of Coal-Miner,
respectively. The output of this stage is Coal-Miner’s final output.

Each test SNP x is tested for association under Coal-Miner’s
LMM. Variation in local sample relatedness across candidate loci
{X;} is captured by covariates in W': specifically, if the test SNP x
is located within a candidate locus X7, the covariates W include a
corresponding covariate w; which consists of the top principal com-
ponent from PCA applied to X]’f‘ (see above discussion of previous
stage), and otherwise not. (Stages two and three of the Coal-Miner
pipeline utilize different covariates W due to the absence or pres-
ence of a test SNP effect in their respective LMMs.) The LMM is
fitted using the likelihood-based numerical optimization procedures
that are also used in stage two of Coal-Miner, and the association
score is computed using a likelihood ratio test of the fitted model
against a null model with no SNP effect.

2.2 Simulation study

Neutral simulations of multi-locus sequence data were based upon
either tree-like or non-tree-like evolutionary scenarios. The evo-
lutionary scenarios shared a species phylogeny that we used in a
prior simulation study (Supplementary Figure S1 in the Supporting
Online Materials (SOM)). We used ms [13] to simulate coalescent
histories (and embedded gene trees) under an extension of the
coalescent model [18] which allows instantaneous unidirectional
admixture (IUA) [9]. Under this model, the parameterization of
the model phylogeny includes an admixture proportion y. Appro-
priate choices of y allow us to explore the impact of tree-like and
non-tree-like evolution in our simulation study, where we set y to
either 0.0 or 0.5, respectively. Each replicate dataset sampled 10
independently and identically distributed loci and 1000 individuals;
taxa A, B, and C were represented by 250, 250, and 500 samples,
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respectively. Bi-allelic sequence evolution was simulated under the
infinite sites model to obtain 250 bp per locus, resulting in total
sequence length of 2.5 kb per replicate dataset.

As a means to investigate the impact of the genomic architecture
of phenotypes, we simulated phenotypic characters using the ap-
proach from our previous work [12]. For each synthetic multi-locus
sequence dataset in the neutral simulations, we randomly selected
either 10%, 20%, or 30% of loci as causal. Twenty causal SNPs were
then randomly selected from causal loci such that each causal locus
contained at least one causal SNP and causal SNPs had minor allele
frequency between 0.1 and 0.3. Given a set of causal SNPs §, we
sampled character y under an extension of the quantitative trait
model used by Long and Langley [20]. The trait value for the ith

=L 4 (1 - 7)N(0,0.01)

individual is represented as y; = 7 ), 5]
jed

where 7 specifies the ratio between the genotypic contribution and
an environmental residual, Q is 1 if sample i has the derived allele at
the jth causal SNP and 0 otherwise, and the environmental residual
is normally distributed with mean 0 and standard deviation 0.01.
Our simulations utilized a ratio & of 0.5.

Our simulation study also included non-neutral simulations that
incorporated positive selection. We used msms [11] to conduct
forward-time coalescent simulations of genotypic sequence evolu-
tion (in place of an otherwise equivalent neutral backward-time
coalescent simulation using ms), where causal loci were evolved un-
der deme-dependent positive selection with a finite sites mutation
model and all other loci evolved neutrally (as discussed above in
the neutral simulation procedure). We used a selection coefficient
of s = 0.56, which is in line with estimates from prior studies of
positive selection in natural Mus populations [28]. Quantitative
traits were simulated using the above procedure.

The simulation study experiments involving quantitative traits
with varying genomic architectures included 12 different model
conditions in total. To recap, the model conditions differed in terms
of the proportion of causal loci (either 10%, 20%, or 30%), model
phylogeny (either tree-like or non-tree-like), and the presence or
absence of positive selection. For each model condition, we repeated
the simulation procedure to obtain 20 replicate datasets.

Performance evaluation. The other methods in our study
consisted of Coal-Map, GEMMA, and EIGENSTRAT. We followed
the procedure from [12] to obtain FGT-based local-phylogeny-
switching breakpoints and run Coal-Map analyses. For consis-
tency with the other LMM-based AM methods in our study, we
ran GEMMA using an IBS kinship matrix as our measure of global
sample relatedness and MLE and LRT to obtain association scores.
EIGENSTRAT was run with default settings using the top ten prin-
cipal components from the genotypic data matrix X, following the
recommendations of Price et al. [26]. Detailed software commands
are listed in the SOM Appendix.

We evaluated performance based on statistical power, type I
error, and AUROC. To compare AUROC, we performed DeLong et
al. tests [8] using the Daim v. 1.1.0 package [25] in R [27]. Custom
scripts were used to conduct the simulation study. All scripts are
provided under an open source license. See SOM Appendix for
details and download instructions.
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2.3 Empirical study

We re-analyzed an Arabidopsis dataset which consists of whole
genome sequence (WGS) data and phenotypic data for two quan-
titative traits: flowering time at 10 °C and 16 °C. A total of 1,135
samples from natural populations across the globe are represented.
The phylogeny shown in SOM Supplementary Figure S16 depicts
the geographic origins of and evolutionary relationships among the
samples. The dataset was originally published and analyzed by the
1001 Genomes Consortium [7], and we obtained genomic sequences
and quantitative trait data from the 1001 Genomes Project database
(accessible at www.1001genomes.org); the former includes both
assembled WGS data and variant calls for a total of 10,707,430 bi-
allelic SNPs. (Details about sequencing, assembly, filtering, quality
controls, and variant calling are described in the 1001 Genomes
Consortium study [7].)

Stage one of the Coal-Miner pipeline made use of RecHMM [30]
to infer local-phylogeny-switching breakpoints. For computational
efficiency, the breakpoint inference utilized a subset of taxa rather
than the full set of taxa. The subset was chosen to maximize evolu-
tionary divergence and was comprised of one sample from each of
the following geographic regions: Spain, Sweden, USA, and Russia.
For chromosomes 1 through 5, the analysis in stage one resulted in
1876, 991, 783, 559, and 913 loci with an average locus length of 16
kb, 19 kb, 30 kb, 33 kb, and 29 kb, respectively.

Using the loci obtained in stage one as input, the second stage
of Coal-Miner was run on both trait characters. The 10 °C analysis
identified 179, 99, 108, 109, and 95 candidate loci in chromosomes
1 through 5, respectively. The 16 °C analysis identified 115, 42, 88,
65, and 89 candidate loci in chromosomes 1 through 5, respectively.
Coal-Miner also requires that £*, the number of candidate loci,
be provided as an input parameter. In practice, model selection
approaches are typically used in this context. Our study utilized
the following procedure to determine a suitable value for £*. We
calculated the likelihood score of the fitted “null” LMM for each
locus (see above), and we examined the distribution of likelihood
scores (Supplementary Figure S15 in the SOM). We then assigned
£* based on the distribution’s inflection point.

The inputs to the third stage of Coal-Miner consisted of the set
of candidate loci, a quantitative trait character (flowering time at
either 10 °C or 16 °C), and the genotypic sequence data matrix
which consisted of sites with minor allele frequency threshold of
0.03 (i.e., sites having a minor allele frequency less than or equals
to 0.03 were removed). The third stage of Coal-Miner was run using
the same settings as in the simulation study.

3 RESULTS
3.1 Simulation study

We conducted experiments that varied the proportion of causal loci
as a means to investigate the impact of the genomic architecture of
a trait on AM method performance. The model conditions utilized
simulations with between 10% and 30% causal loci and either neutral
or non-neutral evolution on either tree-like or non-tree-like model
phylogenies. The methods under study included Coal-Miner, our
new AM method, as well as representative methods from different
classes of state-of-the-art methods: Coal-Map, an AM method that
accounts for local and global sample relatedness as fixed effects,
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GEMMA, a LMM-based AM method that accounts for global sample
relatedness as a random effect (but does not account for local sample
relatedness), and EIGENSTRAT, an AM method that accounts for
global sample relatedness as a fixed effect (but does not account
for local sample relatedness). We compared the statistical power
and type I error control of each method using receiver operating
characteristic (ROC) curves (Supplementary figures S2 through
S5 in the SOM), and Table 1 compares the area under ROC curve
(AUROC) of each method.

Regardless of the proportion of causal loci and the evolutionary
scenario explored in these model conditions, Coal-Miner’s AUROC
was significantly better than the next best method in our study
(either Coal-Map or GEMMA) based upon the corrected test of
DeLong et al. [8] (Table 1). A similar observation was made when
measuring performance using true positive rate (TPR) at a false
positive rate (FPR) of 0.1 (Supplementary Table S2 in the SOM),
except that Coal-Miner’s performance advantage over the next best
method was even more pronounced. The TPR difference was 0.158
on average and ranged as high as 0.248. Across these model condi-
tions, we observed a consistent ranking of AM methods by AUROC
(with two minor exceptions): Coal-Miner first, Coal-Map second,
GEMMA third, and EIGENSTRAT fourth. The minor exceptions
involved the two lowest AUROC values on the neutral, non-tree-
like model condition with 10% or 20% causal loci, where GEMMA
and EIGENSTRAT swapped rankings. We noted that Coal-Map’s
AUROC was second best on model conditions with the smallest pro-
portion of causal loci, but its performance tended to degrade as the
proportion increased. Coal-Map’s AUROC was only marginally bet-
ter than GEMMA on model conditions with the highest proportion
of causal loci.

The impact of varying the proportion of causal loci was similar
for all methods: AUROC tended to degrade as the proportion of
causal loci increased from 10% to 30%. However, Coal-Miner’s
performance advantage relative to the other AM methods was flat
or improved as the proportion of causal loci increased.

The model conditions included different combinations of genetic
drift/incomplete lineage sorting and/or gene flow - evolutionary
processes which can generate local variation in sample relatedness.
Note that model conditions with non-tree-like model phylogenies
incorporated all of these evolutionary processes (including genetic
drift/incomplete lineage sorting). The impact of the different evolu-
tionary processes varied across the methods. Coal-Miner’s AUROC
tended to be larger on model conditions involving both drift/ILS
and gene flow as sources of local genealogical variation, and Coal-
Map’s AUROC was similarly affected. On the other hand, GEMMA’s
AUROC was comparable (within 0.01) based on this comparison,
with the exception of non-neutral model conditions involving 10%
or 20% causal loci.

A comparison of model conditions that differed only with re-
spect to neutral versus non-neutral evolution revealed the impact of
positive selection on AM method performance. We note that, in our
experiments, the evolution of causal loci differed from non-causal
loci since positive selection acted only upon the former but not
the latter. Coal-Miner and Coal-Map returned comparable AUROC
(within 0.025) regardless of neutral versus non-neutral evolution.
GEMMA and EIGENSTRAT performed similarly, although slightly
greater variability (within 0.035) was observed. For LMM-based
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methods, there was no obvious trend in terms of direction of change
when comparing neutral versus non-neutral experiment results.
There was an apparent trend for EIGENSTRAT, however: positive
selection tended to reduce EIGENSTRAT’s AUROC, with one ex-
ception (model conditions with a tree-like model phylogeny and
10% causal loci).

3.2 Empirical study

We used Coal-Miner to re-analyze an Arabidopsis dataset which
was originally studied by the 1001 Genomes Consortium [7]. The
dataset includes samples from 1,135 high quality re-sequenced nat-
ural lines adapted to different environments with varying local
climates [7]. The sampled data included whole genome sequences
and quantitative trait data for two traits: flowering time under high
and low temperature — 16 °C and 10 °C, respectively.

A key component of the 1001 Genomes Consortium study was
a GWA analysis of the genomic sequences and quantitative trait
data using EMMAX [17], another state-of-the-art statistical AM
method (see [31] for a comparison of EMMAX and other state-
of-the-art statistical AM methods). A major focus of the analysis
was a set of five genes which are known to regulate flowering
and contribute to flowering time variation at 10 °C in Arabidopsis
[7]: FLOWERING LOCUS T (FT), SHORT VEGETATIVE PHASE
(SVP), FLOWERING LOCUS C (FLC), DELAY OF GERMINATION
1 (DOG1), and VERNALIZATION INSENSITIVE 3 (VIN3). Plants
rely on both endogenous and environmental (e.g. temperature and
photoperiod) cues to initiate flowering [1, 2]. These five genes
encode major components of the vernalization (exposure to the
prolonged cold) and autonomous pathways known to regulate the
initiation of flowering in Arabidopsis. Allelic and copy number
variants (CNV) for many of these genes, including FLC, are known
to serve important roles in generating novel variation in flowering
time and permit plants to adapt to new climates [21-23]. DOG1
is known to be involved in determining seasonal timing of seed
germination and influences flowering time in Arabidopsis [15].

Under a conservative Bonferroni-corrected threshold [4], Coal-
Miner identified significant peaks associated with flowering time
under high and low temperature (16 °C and 10 °C, respectively). In
particular, Coal-Miner identified significantly associated markers
in all five genes (FT, SVP, FLC, DOG1, and VIN3) for both the
16 °C dataset and the 10 °C dataset (Supplementary Figure S12 in
the SOM). Within the five genes, Coal-Miner analyses returned
peaks which largely agreed across the 10 °C and 16 °C datasets.
Some differences involved association scores that were borderline
significant in one dataset but not the other.

Table 2 compares the Coal-Miner analysis with similar analyses
using two other state-of-the-art statistical AM methods. The EM-
MAX analysis in the 1001 Genomes Consortium study [7] identified
significant associations for three of the genes at 10 °C, and associ-
ation score peaks were marginally below a Bonferroni-corrected
threshold in the other two genes (SVP and FLC). Furthermore, signif-
icant peaks were only detected in DOG1 at 16 °C, but no significant
peaks were detected in the other four genes for this dataset. (See
Figure 2 in the 1001 Genomes Consortium study [7] for the original
Manhattan plot.) GEMMA’s performance was qualitatively simi-
lar to EMMAX (Supplementary Figure S13 in the SOM). At 10 °C,
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Model condition AUROC
Neutral vs. Model Percentage of
non-neutral | phylogeny | causalloci (%) Coal-Miner Coal-Map GEMMA EIGENSTRAT q-value
Neutral | Non-tree-like 10 0.962 (0.009) | 0.939 (0.009) | 0.866 (0.017) | 0.871 (0.014) || < 0.00001
20 0.921 (0.010) | 0.899 (0.009) | 0.849 (0.015) | 0.859 (0.012) || < 0.00001
30 0.904 (0.013) | 0.882 (0.009) | 0.847 (0.017) | 0.832(0.018) || < 0.00001
Neutral Tree-like 10 0.943 (0.014) | 0.922 (0.010) | 0.870 (0.009) | 0.833 (0.019) 0.0053
20 0.904 (0.016) | 0.847 (0.011) | 0.843 (0.010) | 0.813 (0.016) || < 0.00001
30 0.904 (0.013) | 0.853 (0.009) | 0.844 (0.008) | 0.799 (0.022) 0.00003
Non-neutral | Non-tree-like 10 0.959 (0.009) | 0.933 (0.013) | 0.896 (0.014) | 0.836 (0.022) || < 0.00001
20 0.926 (0.009) | 0.897 (0.009) | 0.856 (0.017) | 0.847 (0.013) || < 0.00001
30 0.894 (0.015) | 0.863 (0.010) | 0.832(0.018) | 0.816 (0.014) < 0.00001
Non-neutral | Tree-like 10 0.954 (0.014) | 0.922 (0.010) | 0.856 (0.012) | 0.841 (0.018) || < 0.00001
20 0.890 (0.015) | 0.850 (0.013) | 0.832 (0.014) | 0.796 (0.020) || 0.00003
30 0.879 (0.014) | 0.836 (0.011) | 0.830 (0.009) | 0.783 (0.018) 0.0007

Table 1: The impact of the genomic architecture of a quantitative trait on the performance of Coal-Miner and the other AM
methods. Multi-locus sequences were simulated under neutral or non-neutral evolution on tree-like or non-tree-like model
phylogenies, and quantitative traits were simulated using causal markers sampled from 10%, 20%, or 30% of loci (see Methods
section for more details). The performance of each AM method was evaluated based on the area under its receiver operating
characteristic (ROC) curve, or AUROC. We report each method’s AUROC as an average (and standard error in parentheses)
across twenty replicate datasets for each model condition. Coal-Miner’s AUROC is shown in bold where it significantly im-
proved upon the AUROC of the most accurate of the other AM methods, based upon the test of DeLong et al. [8] (n = 20;
a = 0.05). We corrected for multiple tests using the approach of Benjamini and Hochberg [3], and corrected q-values are
shown. (The corresponding ROC plots are shown in Supplementary Figures S2 through S5 in the SOM.)

GEMMA recovered significant associations in three of the genes
but not in the remaining two (SVP and FLC); at 16 °C, no significant
peaks were detected in three genes, a peak just above the threshold
of significance was detected in FT, and another peak was detected
in DOGL1.

4 DISCUSSION

Simulation study. For the model conditions that varied the pro-
portion of causal loci with neutral or non-neutral evolution on
tree-like or non-tree-like model phylogenies, Coal-Miner had bet-
ter performance than all of the other state-of-the-art methods in
our study, as measured using AUROC and TPR at an FPR of 0.1.
This suggests that Coal-Miner’s performance advantage is robust to
the specific proportion of causal loci that contribute genetic effects
to a quantitative trait, which relates to trait architecture, as well as
the evolutionary processes involved. We note that, as even more
causal loci are added beyond the proportions explored in our study,
the effects contributed by any individual locus becomes more dif-
fuse, and global sample structure will become a more reasonable
approximation of different causal loci with different local sample
structures. In general, we found traits with “diffuse” genomic archi-
tecture (i.e., traits with a relatively high proportion of causal loci)
to be challenging for all methods. Coal-Miner tended to cope better
with the challenge relative to the other methods in our study, which
we attribute to the design of the second stage in the Coal-Miner
pipeline (i.e., candidate locus detection). Consistent performance
trends were observed when comparing neutral versus non-neutral
simulations. This suggests that, for the model conditions that we
explored in our study, Coal-Miner’s performance is robust to the
presence or absence of positive selection. A similar outcome was
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observed when comparing ITUA model-based experiments involving
two different types of model phylogenies — tree-like and non-tree-
like.

Taken together, the model conditions included multiple sources
of local genealogical variation, including genetic drift/ILS, gene
flow, positive selection, and combinations thereof. The specific
evolutionary processes contributing to local genealogical variation
did not seem to matter as much as the presence of local genealog-
ical variation, and Coal-Miner’s performance advantage was not
necessarily predicated on specific evolutionary cause(s) of local
genealogical discordance. These findings seem to suggest that
Coal-Miner’s model and algorithm may be generalized to other
evolutionary scenarios, so long as the breakpoint inference method
used in the Coal-Miner pipeline suitably accounts for evolutionary
processes with first-order contributions to genome evolution. An
additional consideration is that the simulations utilized minor allele
frequencies of at least 0.1, and future work is needed to understand
Coal-Miner’s performance in GWA studies involving rare variants.

Empirical study. The empirical datasets in our study were
more challenging than the simulated datasets because the former
likely involved more complex evolutionary evolutionary scenarios
compared to the latter. Additional evolutionary processes which
may have played an important role include other types of natural
selection and demographic events (e.g., fluctuations in effective
population size).

For both of the Arabidopsis datasets, Coal-Miner was able to
detect significant associations in all five positive control regions.
In contrast, neither GEMMA nor EMMAX - the statistical AM
method used in the 1001 Genomes Consortium study [7] — were
able to do the same. The vernalization requirement for flowering in
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Significantly associated markers detected?
Dataset Positive control gene Coal-Miner | EMMAX GEMMA
10°C FLOWERING LOCUS T (FT) Yes Yes Yes
10°C SHORT VEGETATIVE PHASE (SVP) Yes No* No
10°C FLOWERING LOCUS C (FLC) Yes No* No
10°C DELAY OF GERMINATION 1 (DOG1) Yes Yes Yes
10°C | VERNALIZATION INSENSITIVE 3 (VIN3) Yes Yes Yes
16°C FLOWERING LOCUS T (FT) Yes No Yes
16°C SHORT VEGETATIVE PHASE (SVP) Yes No No
16°C FLOWERING LOCUS C (FLC) Yes No No
16°C DELAY OF GERMINATION 1 (DOG1) Yes Yes Yes
16°C | VERNALIZATION INSENSITIVE 3 (VIN3) Yes No No

Table 2: A comparison of Coal-Miner and two other state-of-the-art statistical AM methods based upon analyses of the two
Arabidopsis datasets. The other AM methods are GEMMA and EMMAX, the statistical AM method used in the 1001 Genomes
Consortium study [7]. We evaluated whether the three AM methods detected significantly associated markers in five genomic
regions centered on positive control genes which are known to regulate flowering time in Arabidopsis. We used a Bonferroni-
corrected threshold for significance. For two of the five genomic regions in the 10 °C dataset, EMMAX returned association
scores that were near the threshold of significance (marked using an asterisk). The corresponding Manhattan plots for the Coal-
Miner and GEMMA analyses are shown in Supplementary Figures $12 and S13 in the SOM, respectively. The corresponding
Manhattan plot for the EMMAX analysis is shown as Figure 2 in the 1001 Genomes Consortium study [7].

Arabidopsis suggests that the flowering response at 16 °C presents
a greater AM challenge than at 10 °C. Our findings were consistent
with a need for more statistical power for the former as compared
with the latter as well as the overall findings in the simulation
study, which suggested that Coal-Miner offered improved statis-
tical power relative to the state of the art. As noted above, the
empirical datasets likely involved relatively complex evolutionary
histories as compared to the synthetic datasets in our study, and an
expanded simulation study would be needed to confirm our initial
comparison of performance findings using synthetic and empirical
data. Furthermore, Coal-Miner analysis of the Arabidopsis dataset
identified putatively novel markers (i.e., markers which were not
flagged using other AM methods). Additional comparative and
functional analyses are needed to interpret these findings.

5 CONCLUSIONS

Across the range of genomic architectures and evolutionary scenar-
ios explored in our study, Coal-Miner had comparable or typically
improved statistical power and type I error control compared to
state-of-the-art AM methods. The scenarios included different evo-
lutionary processes such as genetic drift and ILS, positive selection,
gene flow, and recombination - all of which can generate local
genealogical variation that differs from the true species phylogeny.
More work needs to be done to explore additional evolutionary
processes which have first-order impacts on genome evolution (e.g.,
gene duplication and loss, other genome rearrangement events,
etc.). As more divergent samples are included in a GWA study,
more evolutionary processes potentially will become relevant to
AM analysis. We fully expect that more algorithmic development
will need to be done in this case, particularly regarding the break-
point inference stage of Coal-Miner.

We conclude with our thoughts on future work. As an alternative
to the pipeline-based design of Coal-Miner, simultaneous inference
of local coalescent histories and AM model parameters will avoid
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error propagation across different stages of a pipeline-based algo-
rithm. Furthermore, viewed through the lens of evolution, genotype
and phenotype are arguably two sides of the same coin. The same
could be said of “intermediate-scale” characters (e.g., interactomic
characters). A combination of the extended coalescent models and
LMMs could be used to capture evolutionary relatedness of and
functional dependence between heterogeneous biological charac-
ters across multiple scales of complexity and at higher evolutionary
divergences.

6 SUPPORTING ONLINE MATERIALS (SOM)

SOM files are located at https://doi.org/10.6084/m9.figshare.5165470.
v1. These materials include: (1) an appendix with supplementary
text, tables, and figures, (2) source code for software used in this
study, and (3) datasets analyzed in this study. All materials are
provided under open and free licenses.
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Commands and software options used in simulation

study

Simulation study

Neutral with non-tree-like model phylogeny. The following ms command was
used to generate a multiple sequence alignment for the neutral model conditions with

non-tree-like model phylogenies that include drift/ILS and gene flow:

ms 1000 10 -t 4.0 -s 250 -T -I 4 250 250 Ca Cb -ej 3.0 2 1 -ej 2.0 3
1 -ej 2.0 4 2

where the number of taxa is 1000, the number of gene trees is 10, the -t switch
represents the mutation parameter 4 Nou where Ny is the diploid population size (Ny =
2.5 x 10°) and p is the neutral mutation rate for a locus (= 4 x 107°), the number of
segregating sites is 250, the -T parameter outputs the gene trees, which represent the
evolutionary history of the sampled taxa. The -I parameter is followed by the number
of subpopulations (k = 4) and a list of integers (n-A = 250, n_B = 250, n_-Ca = Ca,
n_Cb = Cb) that represent the number of taxa sampled for each subpopulation. Ca
and Cb vary across loci and are dependent on «y. The -ej switch (-ej t i j) moves all

lineages from subpopulation i to subpopulation j at time t.

1



We further investigated the impact of different admixture times by simulating two
more datasets with admixture occurring at ¢; = 1.0 and ¢; = 2.9. We used the following

ms commands to generate the aforementioned simulations:

ms 1000 10 -t 4.0 -s 250 -T -I 4 250 250 Ca Cb -ej 3.0 2 1 -ej 1.0 3
1 -ej 1.0 4 2

ms 1000 10 -t 4.0 -s 250 -T -I 4 250 250 Ca Cb -ej 3.0 2 1 -ej 2.9 3
1-ej 2.9 42

Neutral with tree-like model phylogeny. The following ms command was
used to generate a multiple sequence alignment for the neutral model conditions with

tree-like model phylogenies that include drift/ILS:

ms 1000 10 -t 4.0 -s 250 -T -I 3 250 250 500 -ej 2.0 3 2 -ej 3.0 2 1

We further investigated the impact of different split times by simulating two more
datasets with divergence occurring at ¢t; = 1.0 and ¢; = 2.9. We used the following ms

commands to generate the aforementioned simulations:

ms 1000 10 -t 4.0 -s 250 -T -I 3 250 250 500 -ej 1.0 3 2 -ej 3.0 2 1
ms 1000 10 -t 4.0 -s 250 -T -I 3 250 250 500 -ej 2.9 3 2 -¢j 3.0 2 1

Isolation with migration. ms [1] was used to simulate a multiple sequence
alignment for the neutral model conditions with non-tree-like model phylogenies incor-

porating an isolation-with-migration (IM) model of gene flow:

ms 1000 10 -t 4.0 -s 250 -T -I 3 250 250 500 -ej 2.0 3 2 -ej 3.0 2 1



-em 1131

where the -em switch (-em t i j x) sets 4Ngm;; (m;; = 107%) to x at time t and my; is
the fraction of subpopulation i in each generation which consist of migrants from sub-

population j. The migration rate used in this simulation is inline with previous studies

2].

Recombination. We further simulated a multiple sequence alignment under
the coalescent model with uniform recombination rate across a locus. We used a total
sequence length of 2.5 kb, and a p parameter of 0.35, which is 4Nyr, where r is the prob-
ability of cross-over per generation between the ends of the locus. The per-generation
crossover probability of 1079%° between adjacent sites was used. Therefore, the proba-
bility of cross-over between the ends of the locus is: 107%% x (2500 — 1) = 3.5 x 1077
and p = 4 x 2.5 x 10° x 3.5 x 1077 = 0.35. On average, we obtained 10 recombinant
regions per replicate.

The following ms command was used to generate a multiple sequence alignment for the

neutral model conditions with tree-like model phylogenies incorporating recombination:

ms 1000 1 -t 4.0 -s 2500 -T -I 3 250 250 500 -ej 2.0 3 2 -ej 3.0 2 1
-r 0.35 2500

Non-neutral with non-tree-like model phylogeny. = We used msms [3] to
generate a forward-time simulation that explicitly modeled positive selection for the
causal loci in the “neutral with non-tree-like model phylogeny” model conditions. The
msms-based simulation utilized a sequence mutation model that allowed recurrent mu-
tations between two alleles. Our forward-time coalescent simulation used a selection
coefficient s = 0.56 which was based upon previously reported estimates from natu-
ral mouse populations that were involved in adaptive introgression linkage to emulate

the genomic patterns of positive selection. The following msms command was used



to generate a multiple sequence alignment for the non-neutral model conditions with

non-tree-like model phylogenies that include drift /ILS, gene flow, and positive selection:

java -jar msms.jar 1000 <Number of causal loci> -t 4.0 -s 250 -T -I
4 250 250 Ca Cb 0 -ej 3.0 21 -ej 2.03 1 -ej 2.04 2 -SI 2.0400
0 0 -Sc 0 4 11200 6272 0 -Sc 0 3 11200 6272 O Smu 4.0 -N 10000

where the -SI switch (-SI t <number of populations> A B Ca Cb) sets the start
of selection to time t forward in time from this point, the -Sc switch (-Sc t 1 aaa @4,
Qq) sets the selection strength in population i pastward from time t to 2/Ns, the -Smu
switch sets the forward mutation rate for the selected allele, and the -N switch is the

effective population size.

Non-neutral with tree-like model phylogeny. The following msms command
was used to generate a multiple sequence alignment for the non-neutral model condi-

tions with tree-like model phylogenies that include drift/ILS and positive selection:

java -jar msms.jar 1000 <Number of causal loci> -t 4.0 -s 250 -T -I
3 250 250 500 0 -ej 2.0 3 2 -ej 3.02 1 -8 2.03 00 0 -Sc 0 3 11200
6272 0 -Smu 4.0 -N 10000

EIGENSTRAT

EIGENSTRAT [4] utilizes a fixed effect model and uses Principal Component Analysis
(PCA) to infer population structure in genetic data. From an n by m genotypic matrix
X where n is the number of SNPs and m is the number of individuals, an m by m
covariance matrix ¢ is computed. The top k principal components are defined as the

top k eigenvectors of ¢ (e.g. k eigenvectors of the k largest eigenvalues). Using the top



k principal components as covariates, EIGENSTRAT corrects for population structure

using the following:

Xij,adjusted - Xij — Ay (1)

where ¢ =1 to n, j =1 to m, «; is the regression coefficient, and a; is the axis of
variation. After genetic and phenotypic adjustment based on the top principal com-
ponents using equation (1), EIGENSTRAT applies a x? association analysis between

each genetic locus and the phenotype.

The following command was used to generate the principal components:

smartpca.perl -i example.geno -a example.snp -b example.ind -k 10 -q YES -o

example.pca -p example.plot -e example.eval -1 example.log -m 5 -t 2 -s 6

where the -i parameter specifies the genotype file, the -a parameter specifies the snp
file, the -b parameter specifies the individual file, the k parameter specifies the number
of principal components to output, the -q parameter specifies whether the phenotype
is quantitative, the -o parameter specifies the output file of principal components, the
-p parameter specifies the prefix of output plot files of top 2 principal components, the
-e parameter specifies the output file of all eigenvalues, the -1 parameter specifies the
output log file, the -m parameter specifies the maximum number of outlier removal
iterations, the -t parameter specifies the number of principal components along which
to remove outliers, and the -s parameter specifies the number of standard deviations

which an individual must exceed to be removed as an outlier.

The following command was used to apply the association analysis:

smarteigenstrat.perl -i example.geno -a example.snp -b example.ind -q YES -p



example.pca -k 10 -o example.chisq -1 example.log

where the -p parameter specifies the input file of principal components, the -k param-
eter specifies the number of principal components along which to correct for population
structure, the -o parameter specifies the y? association statistics, and the -1 parameter

specifies the standard output file.

GEMMA

We used GEMMA [5] which utilizes a linear mixed model to account for sample struc-
ture. GEMMA represents the phenotype Y as a function of fixed (Wa + X ) and

random (u + €) effects:

y=Wa+zf+u+e (2a)
u~ MVN,(0, 7 'K) (2b)
€~ MVN,(0,77'I,) (2¢)

where y is the phenotype vector, W includes the fixed effects, a contains the coef-
ficients of the covariates located in W, x is the test locus, § is the effect size of =,
u is a random effect that follows an n-dimensional multivariate normal distribution,
K is a kinship matrix which is represented as a pairwise genotypic similarity between
individuals, A is the ratio between two variance components (genetic and environmen-
tal effects), 7 is the variance of residual errors, € is a random effect that follows an
n-dimensional multivariate normal distribution and is used to model any unexplained
variation in y, and I,, is an n by n identity matrix. The parameters &, 37 7, and A
are estimated using maximum likelihood where the association test statistics for x; are
generated using likelihood-ratio test between the fitted model against a null model with

no SNP effect.



The following command was used to generate a kinship matrix:

gemma -g <specify input genotype file name> -p <specify input phenotype file
name> -a <specify input SNPs annotation file name> -gk 1 <kinship/relatedness

matrix type> -o <specify output file prefix>
The following command was used to run the association test:

gemma -g <specify input genotype file name> -p <specify input phenotype file
name> -a <specify input SNPs annotation file name> -n 1 <specify phenotype
column in the phenotype file> -maf 0 <specify minor allele frequency threshold>
-r2 1 <specify r-squared threshold> -k <specify input kinship/relatedness matrix
file name> -lmm 2 <specify frequentist analysis choice> -0 <specify output file

prefix>

Coal-Map

We applied Coal-Map [6] that models the local genealogical variation using a linear
mixed model. Details on how to run Coal-Map are shown here https://gitlab.msu.edu/liulab/Coal-
Map. We represented each of the global and local sample structures using five principal

components.

Simulation study experiments involving alternative
scenarios of neutral evolution

Multi-locus sequence evolution in our simulation study (see main manuscript) is im-
pacted by genetic drift and incomplete lineage sorting, admixture, positive selection,

and combinations of these processes. Our simulation study also included additional



model conditions that involved alternative models of multi-locus sequence evolution.
Each model condition was an extension of the above neutral model condition with 10%
causal loci. One set of model conditions varied split time ¢; in the model tree shown in
Figure S1 panel (a). Another set of model conditions varied admixture time ¢; in the
model phylogeny network shown in Figure S1 panel (b), where v = 0.5. The impact
of recombination was explored in a model condition which made use of the coalescent-
with-recombination model [7]. The simulations generated 2.5 kb alignments under a
finite-sites model of recombination with per-generation crossover probability between
adjacent sites of 1079 which is 1-2 orders of magnitude smaller than estimates for
mouse, rat and human [8]. We further explored the impact of gene flow using a model
condition which substituted the isolation-with-migration model [9] in place of the I[UA
model.

Supplementary Table S1 shows an AUROC comparison of Coal-Miner and the other
AM methods on the additional model conditions.

For model conditions that varied divergence time, involved recombination, or in-
corporated an isolation-with-migration (IM) model of gene flow, Coal-Miner returned
significantly improved AUROC compared to the next best method based upon the test
of DeLong et al. [10], and the other AM methods were ranked similarly to the ex-
periments which varied the proportion of causal loci. A similar ranking was obtained
when performance was measured using TPR at an FPR of 0.1 (Supplementary Table
S3). Coal-Miner returned a comparable AUROC (within 0.027) as the divergence time
t; increased from 1.0 to 2.9. The other methods performed similarly, except that the
AUROC difference was larger (within 0.031). In the IM-based model condition, all
methods returned AUROC that was comparable relative to experiments using the IUA
model that were otherwise equivalent.

For IUA-based model conditions that varied the admixture time ¢;, Coal-Map and
Coal-Miner had comparable AUROC which was better than GEMMA and EIGEN-
STRAT. When comparing TPR at an FPR of 0.1, Coal-Miner returned a significant

performance improvement relative to Coal-Map and the other AM methods (Supple-



mentary Table S3). As seen in Supplementary Figures S8 and S9, Coal-Miner’'s TPR
was better than Coal-Map when the false positive rate was 0.1 or less; the reverse was
true only for large false positive rates (greater than around 0.15 for the ¢; = 1.0 model
condition and greater than around 0.2 for the ¢; = 2.9 model condition). Among the
AM methods in our study, Coal-Miner’s AUROC was least impacted by the choice of
admixture time and differed by at most 0.029 as the time ¢; increased from 1.0 to 2.9.
The AUROC of the other AM methods became smaller as the admixture time became
more ancient, and the AUROC difference was relatively greater than Coal-Miner (as
much as 0.086).

Overall, Coal-Miner retained its performance advantage relative to the state-of-
the-art, with one exception: Coal-Miner and Coal-Map had comparable AUROC on
model conditions involving neutral evolution on non-tree-like model phylogenies and
10% causal loci, although Coal-Miner’s TPR at an FPR of 0.1 was significantly better
than Coal-Map’s. These model conditions involved the smallest proportion of causal
loci in our study. We note that Coal-Map’s performance tended to degrade more rapidly
than Coal-Miner as the proportion of causal loci increased, and the relative performance
of the two methods may have changed for model conditions with higher proportions of

causal loci that are otherwise equivalent.

Additional empirical datasets

To demonstrate the flexibility of the Coal-Miner framework, we conducted Coal-Miner
analyses of three empirical datasets which spanned a range of GWAS settings. Each of
the three datasets sampled taxa from a different kingdom and ranged from well-studied
organisms to relatively novel organisms about which little is known. Specifically, the
datasets sampled (1) natural populations of a single plant species (see main manuscript),
(2) multiple closely related butterfly species where gene flow is a countervailing force
versus genetic isolation, and (3) divergent bacterial species where horizontal gene trans-

fer is suspected to be rampant. The datasets also varied in terms of the evolutionary



processes with first-order impacts upon genome/phenotype evolution. The empirical
analyses served two purposes: methodological validation using positive and negative
controls based upon previous literature, and generation of new hypotheses for future
study.

Heliconius erato dataset. We re-analyzed data from the study of Supple et al. [11].
The dataset includes 45 H. erato samples collected from four hybrid zones located in
Peru, Ecuador, French Guiana, and Panama. Each sample exhibits one of two red
phenotypes — postman and rayed — where 28 samples had the postman phenotype and
17 samples had the rayed phenotype. The genotypic data were sequenced from the
400 kb genomic region referred to as the D interval in H. erato. The D interval spans
56,862 biallelic SNPs and is known to modulate red phenotypic variation. Coal-Miner
was run on the H. erato dataset using the same approach as in the Arabidopsis dataset
analysis (see main manuscript). The first stage of Coal-Miner identified seven loci and
the second stage inferred a single candidate locus.

Burkholderiaceae dataset. Bacteria belonging to the Burkholderiaceae are of interest
given their importance in human and plant disease, but also given their role as plant and
fungal endosymbionts and their metabolic capacity to degrade xenobiotics. Fully se-
quenced (closed) genomes belonging to Burkholderiaceae were selected and downloaded
from the PATRIC web portal (www.patricbrc.org/) [12]. Supplementary Table S8 lists
sampled species names along with other information (IDs, groups, and pathogenic-
ity). We chose to maximize phylogenetic and ecological diversity in this sampling, so
we included available genomes belonging to free-living, pathogenic, and endosymbiotic
species spanning across the genera Burkholderia, Ralstonia, Pandoraea, Cupriavidus,
Mycoavidus, and Polynucleobacter. A total of 57 samples were included, of which 52
samples were free-living and 5 were endosymbionts. Genomes ranged in size from 1.56
Mb to 9.70 Mb and spanned between 2,048 and 9,172 coding DNA sequences (CDS).
The software package Proteinortho [13] was run using default parameters to detect sin-
gle copy orthologs in the selected genomes. A total of 549 orthologs were recovered

in the Proteinortho analysis. We analyzed a phenotype that identified each sample’s
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status as either an animal pathogen or non-animal pathogen. Coal-Miner was used to
analyze the genomic sequence data and phenotypic character using the same approach
as in the other empirical analyses (see above). The initial stages of Coal-Miner identi-
fied 55 candidate loci. Genes with significant associations based upon the Coal-Miner
analysis were further classified based upon their Gene Ontology [14] and KEGG [15]
pathway assignments.

Coal-Miner re-analysis of the Heliconious erato dataset. Supplementary Figure
S14 displays the Manhattan plot generated after applying Coal-Miner on the H. er-
ato dataset across the D interval. We identified two significant peaks ranging from
502 kb to 592 kb and 658 kb to 682 kb, respectively. The second peak is located at
the 3’ of the optix transcription factor, a gene previously shown to be behind the red
phenotype variation in Heliconius [11]. The first peak is located in a noncoding region
more distant from the 3’ of the optix transcription factor.

Coal-Miner analysis of the Burkholdericeae dataset. We applied Coal-Miner on an
empirical dataset of complete genomes of bacteria belonging to the Burkholderiaceae
and spanning a diversity of ecological states including animal and plant pathogens.
Supplementary Table S7 shows the genes inferred by Coal-Miner to be associated with
human pathogenicity, along with their inferred KEGG pathway and gene ontology
assignments. In total, we identified 16 genes associated with human pathogenicity in
Burkholderia. Four of these genes have been implicated in pathogenicity by others, and
in some cases validated through gene knockout and experimental evolution experiments.
For example, the cell division protein FtsK that Coal-Miner associated with human
pathogenicity was found to be one of three genes under positive selection in Burkholderia
multivorans during a 20-year cystic fibrosis infection [16]. Modifications of another
gene identified by Coal-Miner, DNA gyrase subunit A, are well known to be implicated
with virulence and antibiotic resistance to quinolone and ciprofloxacin in pathogenic
Burkholderia [17, 18]. For example, Lieberman et al. [19] found that the DNA gyrase
subunit A gene was under positive selection during a Burkholderia dolosa outbreak

among multiple patients with cystic fibrosis [19]. Another gene identified by Coal-
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Miner, Excinuclease ABC subunit A, has been shown to bind to previously published
vaccine targets [20]. Coal-Miner also associated the protein dihydrofolate synthase with
animal pathogenicity. Point mutations leading to nonsynonymous base changes in the
dihydrofolate reductase gene have previously been demonstrated to be associated with
trimethoprim resistance in cystic fibrosis patients infected by Burkholderia cenocepacia

21, 22].

Inferring local-phylogeny-switching break-points

The local partition breakpoint vector b for the simulated data required as input to Coal-
Miner was inferred using the Four-Gamete Test [23], which identifies segregating sites
that did not arise without either recombination or a repeat mutation. The Four-Gamete
Test is an appropriate choice to detect breakpoints due to the simplifying assumptions
of our simulation study (infinite sites model, free recombination between markers, and

complete linkage within each marker).

For our empirical studies, we used RecHMM [24], an HMM-based method for comput-
ing local-phylogeny-switching breakpoints. The following command was used to run

RecHMM:

./runTraining.py <FASTA input alignment> -1b -prefix <empty existing working

directory> -k 2 <number of hidden states> -It

Using 2 states for the -k option corresponds to two parental trees for the model network.

Sensitivity of breakpoint inference

We tested the sensitivity of inferring local-phylogeny-switching breakpoints using a

variant of the LRScan algorithm [25] on the performance of Coal-Miner using neutral
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and non-tree-like model conditions that included 10% causal loci. The AUROC results
for Coal-Miner, Coal-Map, GEMMA, and EIGENSTRAT were 0.962, 0.939, 0.866, and
0.871, respectively, with Coal-Miner significantly more accurate (q-value < 0.00001)
than the next best method (Coal-Map). The Coal-Miner results are similar to the
results obtained when using the LRScan algorithm for breakpoint inference, which

suggests that Coal-Miner is robust to breakpoint inference.

Leaving-one-chromosome-out (LOCO) analysis

We demonstrate that Coal-Miner works better than an approach that performs stan-
dard linear mixed model association analysis, where the relatedness is controlled for all
other loci when testing for each SNP. The performance advantage of Coal-Miner over
the leaving-one-chromosome-out standard approach was significantly more accurate by
0.066 based on AUROC on model conditions that included neutral and non-tree-like

model phylogenies with 10% causal loci.

Running time

We explored the running time of different stages of Coal-Miner using neutral and non-
tree-like model conditions that included 10% causal loci. On average, the running
time of the Coal-Miner pipeline across twenty replicates was 1.43 hours (with standard
error of 0.02). The first stage of Coal-Miner, which involves inferring local-phylogeny-
switching breakpoints, took approximately 70 minutes to complete while the other
stages (stages two and three) took no more than 15 minutes to complete the analysis.
These results suggest that stage one of Coal-Miner could pose a performance bottleneck
as either the number of taxa or length of the multiple sequence alignment increases.
We recommend performing sampling of taxa to mitigate the computational impact of

this dimension of scale on the computational performance of stage one.
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Impact of the number of loci

The impact of the number of loci on the performance of Coal-Miner was explored using
a simulation study containing 20 loci (250 sites per locus) for neutral and non-tree-
like model conditions that included 10% causal loci. The AUROC results for Coal-
Miner, Coal-Map, GEMMA, and EIGENSTRAT were 0.965, 0.933, 0.841, and 0.866,
respectively. Coal-Miner was significantly more accurate compared to the next most
accurate method (Coal-Map) using a corrected test of DeLong et al. [10]. These results
suggest that increasing the number of loci from 10 to 20 preserves the performance

advantage of Coal-Miner over the other AM methods.

Additional trait model

We simulated a continuous additive trait using the following:

y=XpB+e

where X is an n by p genotype matrix at p causal SNPs. Twenty causal SNPs were
randomly selected from causal loci such that each causal locus contained at least one
causal SNP and causal SNPs had minor allele frequency between 0.1 and 0.3. (8 follows
a normal distribution with mean of zero and variance of h;f (h is the heritability of the
trait), and € is the residual effect generated from a normal distribution with mean of 0
and variance of (X ) x (75 — 1).

We explored the performance of Coal-Miner and the other methods on neutral and
non-tree-like model conditions that included 10% causal loci using the above continuous
additive trait model across a range of heritability values (h = 0.25, 0.5, and 0.75). For
h = 0.5, the AUROC results for Coal-Miner, Coal-Map, GEMMA, and EIGENSTRAT
were 0.952, 0.924, 0.865, and 0.869, respectively, with Coal-Miner significantly more
accurate than the next most accurate method (Coal-Map) using a corrected test of

DeLong et al. [10]. Furthermore, the TPR values at an FPR value of 0.1 for Coal-
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Miner, Coal-Map, GEMMA, and EIGENSTRAT were 0.915, 0.799, 0.689, and 0.587,
respectively. The results for the other heritability values are shown in Tables S5 and
S6. These results suggest that Coal-Miner performs better than the other AM methods
under a more complex continuous trait model with varying effect size. We compared
the performance of Coal-Miner under the above trait model with h = 0.5 relative to
h ~ 0. Results are shown in Figure S17, suggesting that Coal-Miner’s performance is

better relative to the null.

Bonferroni correction

The simulations used Benjamini-Hochberg procedure [26] to correct for multiple tests.
We further used Bonferroni corrected by the number of independent loci, which is 10,
for multiple tests correction. The results are shown in Table S4 and are consistent with

the results shown in Table 1.

Vary recombination rate

A multiple sequence alignment under the coalescent model with uniform recombination
rate across a locus, with a total sequence length of 10 kb and a p parameter of 1, was
simulated using ms. The model condition included 10% causal loci. The AUROC results
for Coal-Miner, Coal-Map, GEMMA, and EIGENSTRAT were 0.827, 0.772, 0.799, and
0.732, respectively, with Coal-Miner significantly more accurate than the next most
accurate method (GEMMA) using a corrected test of DeLong et al. [10]. Furthermore,
the TPR values at an FPR value of 0.1 for Coal-Miner, Coal-Map, GEMMA, and
EIGENSTRAT were 0.485, 0.317, 0.446, and 0.296, respectively. These results suggest
that increasing the recombination rate does not impact the performance advantage of

Coal-Miner over the other AM methods.
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Vary sequence length

We demonstrate the performance of Coal-Miner relative to the other AM methods
by simulating larger sequence length datasets using neutral and non-tree-like model
conditions that included 10% causal loci. Furthermore, the simulations contained 10
loci per replicate (0.1 Mb per locus), with a total sequence length of 1 Mb. The AUROC
results for Coal-Miner, Coal-Map, GEMMA, and EIGENSTRAT were 0.946, 0.889,
0.862, and 0.851, respectively, with Coal-Miner significantly more accurate relative to
the next most accurate method (Coal-Map) using a corrected test of DeLong et al.
[10]. Furthermore, the TPR values at an FPR value of 0.1 for Coal-Miner, Coal-Map,
GEMMA, and EIGENSTRAT were 0.923, 0.750, 0.739, and 0.513, respectively. These
results suggest that increasing the sequence length preserves the performance advantage

of Coal-Miner over the other AM methods.

SI Tables

AUROC

Model condition Coal-Miner | Coal-Map | GEMMA | EIGENSTRAT g-value

Non-tree-like model phylogeny with admixture time ¢; = 1.0 0.959 0.963 0.922 0.905 0.9959
Non-tree-like model phylogeny with admixture time ¢; = 2.9 0.933 0.922 0.836 0.843 < 0.00001
Tree-like model phylogeny with split time ¢, = 1.0 0.959 0.899 0.884 0.852 < 0.00001
Tree-like model phylogeny with split time ¢; = 2.9 0.932 0.895 0.853 0.849 < 0.00001
Coalescent-with-recombination 0.841 0.768 0.77 0.738 < 0.00001
Isolation-with-migration 0.953 0.931 0.881 0.868 < 0.00001

Supplementary Table S1: Additional evolutionary scenarios exploring other
evolutionary processes that can generate local genealogical variation. The
additional model conditions were variants of the model condition with neutral evolution
on a tree-like model phylogeny and 10% causal loci (see Table 1 in the main manuscript).
Each model condition incorporated an alternative evolutionary scenario (see Methods
section for more details). Otherwise, table layout and description are identical to Table

1 in the main manuscript.
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Model condition | Model phylogeny | Percentage of causal loci (%) PR g-value
Coal-Miner | Coal-Map | GEMMA | EIGENSTRAT

10 0.934 0.806 0.678 0.654 0.0102

Neutral Non-tree-like 20 0.823 0.645 0.667 0.539 0.0003

30 0.785 0.616 0.63 0.546 0.0005

10 0.782 0.76 0.582 0.51 0.2299

Neutral Tree-like 20 0.804 0.488 0.556 0.443 0.00003

30 0.766 0.549 0.556 0.489 <107°

10 0.934 0.841 0.698 0.619 0.0062

Non-neutral Non-tree-like 20 0.841 0.639 0.651 0.505 0.0002

30 0.788 0.527 0.645 0.455 0.0016

10 0.93 0.725 0.561 0.524 0.0033

Non-neutral Tree-like 20 0.714 0.532 0.523 0.426 0.0009

30 0.643 0.469 0.483 0.426 0.0006

Supplementary Table S2: The true positive rate (TPR) values of Coal-Miner,
Coal-Map, GEMMA, and EIGENSTRAT at false positive rate (FPR) value
of 0.1 across different model conditions. The most accurate method for each model
condition is highlighted in bold. We report the corrected g-value of the performance
advantage of Coal-Miner over the next most accurate method, which were compared

using a pairwise t-test with Benjamini-Hochberg correction [26].

Model condition Model phylogeny Percentage of causal loci (%) PR g-value
Coal-Miner | Coal-Map | GEMMA | EIGENSTRAT

Neutral Non-tree-like with admixture-time ¢; = 1.0 10 0.913 0.894 0.822 0.771 0.5572
Neutral Non-tree-like with admixture-time t; = 2.9 10 0.885 0.726 0.676 0.599 0.0002
Neutral Tree-like with split-time ¢; = 1.0 10 0.888 0.726 0.633 0.55 0.0018
Neutral Tree-like with split-time ¢; = 2.9 10 0.827 0.674 0.542 0.519 0.0463
Neutral Tree-like with recombination 10 0.493 0.328 0.379 0.27 0.073
Neutral Non-tree-like with isolation-with-migration 10 0.89 0.727 0.712 0.607 0.029

Supplementary Table S3: The true positive rate (TPR) values of Coal-Miner,
Coal-Map, GEMMA, and EIGENSTRAT at false positive rate (FPR) value
of 0.1 across different model conditions. Table layout and description are other-

wise similar to Supplementary Table S2.
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Model condition
Neutral vs. Model Percentage of g-value
non-neutral | phylogeny | causal loci (%)
Neutral Non-tree-like 10 < 0.00001
20 < 0.00001
30 < 0.00001
Neutral Tree-like 10 0.0006
20 < 0.00001
30 0.00008
Non-neutral | Non-tree-like 10 < 0.00001
20 < 0.00001
30 < 0.00001
Non-neutral Tree-like 10 < 0.00001
20 0.00009
30 0.002

Supplementary Table S4: Coal-Miner’s AUROC improvement upon the AU-
ROC of the most accurate of the other AM methods, based upon the test
of [10] (n = 20; a = 0.05). We corrected for multiple tests using the approach

of Bonferroni, and corrected g-values are shown.
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AUROC
Heritability value || Coal-Miner | Coal-Map | GEMMA | EIGENSTRAT || g-value
0.25 0.949 0.913 0.860 0.863 <1075
0.5 0.952 0.924 0.865 0.869 <107
0.75 0.940 0.934 0.887 0.848 <1075

Supplementary Table Sb:

The AUROC values of Coal-Miner,

Coal-Map,

GEMMA, and EIGENSTRAT across different heritability trait values. The
most accurate method for each model condition is highlighted in bold. We report Coal-
Miner’s AUROC improvement upon the AUROC of the most accurate of the other AM
methods, based upon the test of [10] (n = 20; o = 0.05). We corrected for multiple tests

using the approach of Benjamini-Hochberg [26], and corrected g-values are reported.

TPR
Heritability value || Coal-Miner | Coal-Map | GEMMA | EIGENSTRAT || g-value
0.25 0.912 0.788 0.694 0.576 0.0092
0.5 0.915 0.799 0.689 0.587 0.0022
0.75 0.817 0.833 0.682 0.580 0.726

Supplementary Table S6: The true positive rate (TPR) values of Coal-Miner,
Coal-Map, GEMMA, and EIGENSTRAT at false positive rate (FPR) value
of 0.1 across different heritability trait values. The most accurate method for
each model condition is highlighted in bold. We report the corrected g-value of the
performance advantage of Coal-Miner over the next most accurate method, which were

compared using a pairwise t-test with Benjamini-Hochberg correction [26].

Supplementary Table S7: Empirical study results involving bacteria belonging
to the Burkholderiaceae. Results are shown for proteins inferred to be associated with

human pathogenicity along with their KEGG pathway and gene ontology assignments.

Proteins Pathway Assignments Gene Ontology Assignments

Dihydrofolate synthase KEGG:00790 Folate biosynthesis G0:0008841 dihydrofolate synthase activ-
ity, GO0:0004326 tetrahydrofolylpolyglu-

tamate synthase activity

19



Aspartokinase

KEGG:00260 Glycine,
KEGG:00270 Cys-

serine and thre-
onine metabolism,
metabolism,

KEGG:00300 Lysine biosynthesis

teine and methionine

GO0:0004072 aspartate kinase activity

NADH-ubiquinone oxidoreductase chain
G

KEGG:00190 Oxidative phosphorylation,
KEGG:00910 Nitrogen metabolism

G0:0008137 NADH dehydrogenase

(ubiquinone) activity

Excinuclease ABC subunit A - GO0O:0005524 ATP binding, GO:0016887
ATPase activity

Carboxyl-terminal protease - -

Homoserine O-acetyltransferase KEGG:00270 Cysteine and methion- G0:0004414 homoserine O-

ine metabolism, KEGG:00920 Sulfur

metabolism

acetyltransferase activity

Glutamate-ammonia-ligase adenylyl-

transferase

G0O:0008882

[glutamate-ammonia-ligase]

adenylyltransferase activity

Undecaprenyl-diphosphatase

KEGG:00550 Peptidoglycan biosynthesis

GO0:0050380 undecaprenyl-diphosphatase

activity

Cell division protein FtsK

DNA gyrase subunit A

GO:0003918 DNA topoisomerase (ATP-
hydrolyzing) activity

Diaminohydroxyphosphori-

bosylaminopyrimidine deaminase

KEGG:00740 Riboflavin metabolism

GO0:0008703 5-amino-6-(5-

phosphoribosylamino)uracil reductase

activity, GO:0008835 diaminohydrox-
yphosphoribosylaminopyrimidine deami-

nase activity

Ribonucleotide reductase of class Ia (aer-

obic), alpha subunit

KEGG:00230
KEGG:00240 Pyrimidine
KEGG:00480 Glutathione metabolism

Purine metabolism,

metabolism,

G0:0004748 ribonucleoside-diphosphate

reductase activity

DNA gyrase subunit B

GO0:0003918 DNA topoisomerase (ATP-
hydrolyzing) activity

Ketol-acid reductoisomerase KEGG:00290 Valine, leucine and G0:0004455 ketol-acid reductoisomerase
isoleucine  biosynthesis, KEGG:00770 activity
Pantothenate and CoA biosynthesis

Phosphoribosylformylglycinamidine syn- KEGG:00230 Purine metabolism G0O:0004642 phosphoribosylformylglyci-

thase, synthetase subunit

namidine synthase activity

DNA polymerase I

KEGG:00230
KEGG:00240 Pyrimidine metabolism

Purine metabolism,

GO:0003887 DNA-directed DNA poly-

merase activity

Supplementary Table S8: Empirical study data involving bacteria belonging to
the Burkholderiaceae. The PATRIC accession numbers along with the species names,

and group and pathogenicity categories are shown.

PATRIC Species Group Pathogenicity
Number
13373.18 Burkholderia-mallei Ingroup Human and animal pathogen
13373.19 Burkholderia-mallei Ingroup Human and animal pathogen
882378.3 Burkholderia-rhizoxinica Ingroup Fungal endosymbiont, plant pathogen
224135.3 Glomeribacter- Ingroup Fungal endosymbiont
endosymbiont-AG77
452638.4 Polynucleobacter- Outgroup Freshwater bacterium, endosymbiont of protist
necessarius-subsp-
necessarius-STIR1
339670.8 Burkholderia-ambifaria Ingroup Opportunistic animal pathogen (cystic fibrosis)
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398577.6

331271.8

95486.54

1009846.3

999541.3

626418.3

595500.3
87883.36
395019.8

342113.3
391038.7

398527.4

1435365.3
28450.84
28450.87
1487955.3
640510.4

640511.6

640512.4

416344.3
758793.3
758796.3
1439853.3
1097668.3
1241582.3
57975.4
269482.11

266265.5

36873.6

68895.5

266264.9

1042878.5

164546.7

93218.7

93220.9

1416914.3

93221.4

1380774.3
93222.6

Burkholderia-ambifaria-
MC40-6

Burkholderia-cenocepacia

Burkholderia-cenocepacia

Burkholderia-cepacia

Burkholderia-gladioli

Burkholderia-glumae-
BGR1
Burkholderia-glumae-PG1
Burkholderia-multivorans
Burkholderia-multivorans-
ATCC-17616
Burkholderia-oklahomensis
Burkholderia-phymatum-
STM815

Burkholderia-
phytofirmans-PsJN
Burkholderia-pseudomallei
Burkholderia-pseudomallei
Burkholderia-pseudomallei
Burkholderia-sp-BGK
Burkholderia-sp-
CCGE1001
Burkholderia-sp-
CCGE1002
Burkholderia-sp-
CCGE1003
Burkholderia-sp-KJ006
Burkholderia-sp-RPE64
Burkholderia-sp-RPE67
Burkholderia-sp-TSV202
Burkholderia-sp-Y123
Burkholderia-thailandensis
Burkholderia-thailandensis

Burkholderia-vietnamiensis

Burkholderia-xenovorans
Burkholderia-xenovorans
Cupriavidus-basilensis-
4G11
Cupriavidus-metallidurans-
CH34

Cupriavidus-necator-N-1

Cupriavidus-taiwanensis
Pandoraea-apista-TF81F4
Pandoraea-pnomenusa
Pandoraea-pnomenusa-
3kgm
Pandoraea-pulmonicola-
DSM-16583
Pandoraea-sp-RB-44
Pandoraea-sputorum-DSM-

21091

Ingroup

Ingroup

Ingroup

Ingroup

Ingroup

Ingroup

Ingroup
Ingroup
Ingroup

Ingroup

Ingroup

Ingroup

Ingroup
Ingroup
Ingroup
Ingroup

Ingroup

Ingroup

Ingroup

Ingroup
Ingroup
Ingroup
Ingroup
Ingroup
Ingroup
Ingroup
Ingroup

Ingroup

Ingroup

Outgroup
Outgroup
Outgroup
Outgroup
Outgroup
Outgroup
Outgroup

Outgroup

Outgroup
Outgroup
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Opportunistic animal pathogen (cystic fibrosis)

Opportunistic animal pathogen (cystic fibrosis),
pathogen

Opportunistic animal pathogen (cystic fibrosis),
pathogen

Opportunistic animal pathogen (cystic fibrosis),
pathogen

Opportunistic animal pathogen, opportunistic
pathogen, plant and fungal symbiont

Plant pathogen

Plant pathogen
Opportunistic animal pathogen (cystic fibrosis)

Opportunistic animal pathogen (cystic fibrosis)

Opportunistic human pathogen

Plant symbiont (N-fixation)

Plant symbiont

Human and animal pathogen
Human and animal pathogen
Human and animal pathogen
Unknown

Unknown

Plant symbiont

Unknown

Plant-endophyte and symbiont (growth promoter)
Insect endosymbiont (acquired from soil)

Insect endosymbiont (acquired from soil)
Unknown

soil (xenobiotic degrader)

Plant-associate, opportunistic human pathogen
Plant-associate, opportunistic human pathogen
Opportunistic animal pathogen, opportunistic
pathogen, plant symbiont

Soil bacterium (degrades xenobiotics)

Soil bacterium (degrades xenobiotics)

Unknown

plant

plant

plant

plant

plant

Soil bacterium (degrades xenobiotics; metal tolerant)

Soil bacterium (metal tolerant); bacterium and fungal

predator

Plant symbiont (N-fixation)

Opportunistic animal pathogen (cystic fibrosis)
Opportunistic animal pathogen (cystic fibrosis)

Opportunistic animal pathogen (cystic fibrosis)

Opportunistic animal pathogen (cystic fibrosis)

Soil bacterium

Opportunistic animal pathogen



312153.5 Polynucleobacter- Outgroup Freshwater bacterium
necessarius-subsp-

asymbioticus

381666.6 Ralstonia-eutropha-H16 Outgroup Soil bacterium

264198.6 Ralstonia-eutropha- Outgroup Soil bacterium
JMP134

428406.5 Ralstonia-pickettii-12D Outgroup Soil and freshwater bacterium, opportunistic human

pathogen

1366050.3 Ralstonia-pickettii- Outgroup Soil and freshwater bacterium, opportunistic human
DTP0602 pathogen

859656.5 Ralstonia-solanacearum- Outgroup Plant pathogen
CFBP2957

859655.3 Ralstonia-solanacearum- Outgroup Plant pathogen
CMR15

1262456.3 Ralstonia-solanacearum- Outgroup Plant pathogen
FQY_ 4

267608.8 Ralstonia-solanacearum- Outgroup Plant pathogen
GMI1000

564065.5 Ralstonia-solanacearum- Outgroup Plant pathogen
MolK2

1031711.3 Ralstonia-solanacearum- Outgroup Plant pathogen
Po82

859657.5 Ralstonia-solanacearum- Outgroup Plant pathogen
PSI07
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SI Figures

A~ e B

Supplementary Figure S1: Model phylogenies used in the simulation study.

(a) Tree-like phylogeny, (b) Non-tree-like phylogeny with instantaneous unidirectional
admixture (IUA), and (c¢) Non-tree-like phylogeny incorporating an isolation-with-

migration (IM) model of gene flow.

23



Coal-Miner —
Coal-Map — EIGENSTRAT —

10% causal loci

1.0

0.4 0.6 0.8

0.2

0.0

20% causal loci

1.0

TPR
04 06 08

0.2

0.0

30% causal loci

Kf//

00 02 04 06 08 10
FPR

1.0

0.2 0.4 0.6 0.8

0.0

Supplementary Figure S2: Results for neutral model conditions with non-tree-
like model phylogenies that include drift/ILS and gene flow (y = 0.5). Coal-
Miner has an equal or better power and comparable type I error to Coal-Map, EIGEN-
STRAT, and GEMMA. The receiver operating characteristic (ROC) curve shows the
relationship between false positive rate (FPR) versus the true positive rate (TPR). Re-
sults are shown for three genomic architectures of quantitative traits with proportion

of causal loci of 10%, 20%, and 30%, respectively.
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Supplementary Figure S3: Results for neutral model conditions with tree-like
model phylogenies that include drift/ILS (v = 0). Coal-Miner has an equal or
better power and comparable type I error to Coal-Map, EIGENSTRAT, and GEMMA.

Figure layout and description are otherwise similar to Supplementary Figure S2.
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Supplementary Figure S4: Results for non-neutral model conditions with non-
tree-like model phylogenies that include drift/ILS, gene flow, and positive
selection. Coal-Miner has an equal or better power and comparable type I error to

Coal-Map, EIGENSTRAT and GEMMA. Figure layout and description are otherwise

similar to Supplementary Figure S2.
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Supplementary Figure S5: Results for non-neutral model conditions with tree-
like model phylogenies that include drift/ILS and positive selection. Coal-
Miner has an equal or better power and comparable type I error to Coal-Map, EIGEN-
STRAT, and GEMMA. Figure layout and description are otherwise similar to Supple-
mentary Figure S2.

27



Coal-Miner —

Coal-Map — EIGENSTRAT —
| 10% causal I‘oci |
o
= —
7
|
o
©|
o
o
o
'—
< |
o
o
o
o
o
0.0 02 04 06 08 1.0

FPR

Supplementary Figure S6: Results for neutral model conditions with tree-like
model phylogenies that include drift/ILS (7 = 0) and divergence time t; =
1.0 (in coalescent units). Coal-Miner has an equal or better power and comparable
type I error to Coal-Map, EIGENSTRAT, and GEMMA. Figure layout and description

are otherwise similar to Supplementary Figure S2.
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Supplementary Figure S7: Results for neutral model conditions with tree-like
model phylogenies that include drift/ILS (7 = 0) and divergence time t; =
2.9 (in coalescent units). Coal-Miner has an equal or better power and comparable
type I error to Coal-Map, EIGENSTRAT, and GEMMA. Figure layout and description

are otherwise similar to Supplementary Figure S2.
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Supplementary Figure S8: Results for neutral model conditions with non-tree-
like model phylogenies that include drift/ILS and gene flow (v = 0.5), and
admixture time t; = 1 (in coalescent units). Coal-Miner has an equal or better

power and comparable type I error to Coal-Map, EIGENSTRAT, and GEMMA. Figure

layout and description are otherwise similar to Supplementary Figure S2.
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Supplementary Figure S9: Results for neutral model conditions with non-tree-
like model phylogenies that include drift/ILS and gene flow (v = 0.5), and
admixture time ¢t; = 2.9 (in coalescent units). Coal-Miner has an equal or better
power and comparable type I error to Coal-Map, EIGENSTRAT, and GEMMA. Figure

layout and description are otherwise similar to Supplementary Figure S2.

31



Coal-Miner —

Coal-Map — EIGENSTRAT —
| 10% causal I‘oci |
o
co.i /
o
© |
o
o
o
'_
=
o
o
o
ol |
o
0.0 02 04 06 08 1.0

FPR

Supplementary Figure S10: Results for neutral model conditions with tree-like
model phylogenies incorporating recombination. Coal-Miner has an equal or
better power and comparable type I error to Coal-Map, EIGENSTRAT, and GEMMA.

Figure layout and description are otherwise similar to Supplementary Figure S2.
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Supplementary Figure S11: Results for neutral model conditions with non-
tree-like model phylogenies incorporating an isolation-with-migration (IM)
model of gene flow. Coal-Miner has an equal or better power and comparable type
I error to Coal-Map, EIGENSTRAT, and GEMMA. Figure layout and description are

otherwise similar to Supplementary Figure S2.
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Supplementary Figure S12: Selected Manhattan plots showing Coal-Miner anal-
yses of two Arabidopsis datasets. Results are shown for the (a) 10°C dataset and
(b) 16°C dataset. Each Manhattan plot shows Coal-Miner association scores (blue
dots) and a Bonferroni-corrected threshold of significance (red line) for selected regions
of the Arabidopsis genome. The genomic regions are centered on five genes which are
known to regulate flowering in Arabidopsis and were the focus of similar AM analyses
in the study of [27]: FLOWERING LOCUS T (FT), SHORT VEGETATIVE PHASE
(SVP), FLOWERING LOCUS C (FLC), DELAY OF GERMINATION 1 (DOG1), and
VERNALIZATION INSENSITIVE 3 (VIN3).
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Supplementary Figure S13: Results showing the Manhattan plots after applying
GEMMA on the Arabidopsis dataset using two model conditions: flowering
time at 10°C (top panel a) and flowering time at 16°C (bottom panel b).
The x axis represents the genomic position, and the y axis shows the —logyy p-value for
all SNPs. The genome-wide significant, threshold (p-value = 5 x 107%) is indicated by
the red line. Each sub-panel represents a gene, which was inferred by Coal-Miner to be
significantly associated with flowering, and its nearby region. Minor allele frequency of

0.03 was used in the analysis.
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Supplementary Figure S14: Manhattan plot showing the empirical study results
involving Heliconius erato butterflies across the D interval. The x axis represents
the genomic position across the D interval, and the y axis shows the —log;g p-value for
all SNPs. The genome-wide significant threshold (p-value = 5 x 107%) is indicated by the
dotted black line. The dots indicate genotype by phenotype association calculated for
biallelic SNPs using Coal-Miner for four hybrid zones: Peru, Ecuador, French Guiana,
and Panama (number of postman = 28; number of rayed = 17). The magenta and blue

regions represent the two significant peaks identified by Coal-Miner.
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Supplementary Figure S15: Distribution of likelihood scores in stage two of
Coal-Miner for loci in chromosome 5 (Arabidopsis dataset). The x axis represents
chromosome 5, and the y axis represents the likelihood scores. Results are shown for the
flowering time at 10 °C model condition. Each circle represents a genomic locus. The
blue line represents the threshold, which is the point of inflection in the distribution,
that was used to detect candidate loci (i.e. loci that contain putatively causal SNPs).

Any circles located above the threshold are considered candidate loci.
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Supplementary Figure S16: The phylogeny inferred from the 1,135 Arabidopsis
strains using RAxML. Each tip in the phylogeny is colored according to its country
code. The legend represents the different countries in the analysis (BUL: Bulgaria, CZE:
Czech Republic, ESP: Spain, FRA: France, GER: Germany, ITA: Italy, OTHER: Other
countries, RUS: Russia, SWE: Sweden, UK: United Kingdom, USA: United States of

America)
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Supplementary Figure S17: A qq-plot showing the expected distribution of p-
values compared to the observed p-values. The observed distribution of p-values
(y-axis) is obtained by simulating a trait under h = 0.5. The expected distribution of
p-values (x-axis) is obtained by simulating a trait under h ~ 0. Test statistic scores are

reported as —logio p-value.
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