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Abstract—Initial access at millimeter wave frequencies is a
challenging problem due to hardware non-idealities and low SNR
measurements prior to beamforming. Prior work has exploited
the observation that mmWave MIMO channels are sparse in
the spatial angle domain and has used compressed sensing based
algorithms for channel estimation. Most of them, however, ignore
hardware impairments like carrier frequency offset and phase
noise, and fail to perform well when such impairments are
considered. In this paper, we develop a compressive channel
estimation algorithm for narrowband mmWave systems, which
is robust to such non idealities. We address this problem by
constructing a tensor that models both the mmWave channel and
CFO, and estimate the tensor while still exploiting the sparsity
of the mmWave channel. Simulation results show that under
the same settings, our method performs better than comparable
algorithms that are robust to phase errors.

Index Terms—Millimeter wave channel estimation, tensor com-
pressed sensing, analog beamforming, channel estimation

I. INTRODUCTION

Millimeter wave (mmWave) communication is a potential
candidate for 5G systems due to the enormous amount of
spectrum available at mmWave frequencies [1]. Such systems
are likely to employ large antenna arrays and use highly
directional beamforming to provide sufficient received signal
power [2]. Channel estimation at mmWave, however, is chal-
lenging as the best beams have to be estimated using low
SNR measurements [2]. A naive way to estimate the best
beams would be to perform an exhaustive beam search at
the transmitter (TX) and receiver (RX) to operate with the
beam pair corresponding to the maximum received SNR. This
method, however, incurs a lot of training overhead.

Unlike the lower frequency systems, MIMO channels at
mmWave are marginally sparse in the spatial angle domain due
to clustering in the propagation environment [2]. The sparse
nature of mmWave MIMO channels has been exploited to
estimate the channel using compressed sensing (CS) [3][4][5].
Most of the existing methods, however, assume an ideal CS
measurement model and fail to perform well in the presence
of hardware impairments like phase noise, carrier frequency
offset (CFO) etc. Although the exhaustive beam search method
(which considers just the magnitude of beam space measure-
ments) is robust to such non idealities, it does not make use of
the fact that mmWave channels are sparse. Hence, there is a
need to develop better channel estimation algorithms that are
simultaneously robust to such non-idealities and require fewer

measurements by exploiting the sparsity of mmWave channel.
To the best of our knowledge, the only work that addresses
this problem is [5], where the optimal beam pair for analog
beamforming is estimated using the components of the channel
matrix along specially designed measurement matrices, that
satisfy hardware constraints. Although it performs better than
the conventional CS based algorithms that do not model CFO,
it ignores noise and neglects the phase of measurements in its
model. Our approach handles both these issues.

In this paper, we propose a compressive algorithm to
jointly estimate the CFO and channel for narrowband analog
beamforming systems (having a single RF chain) with uniform
linear arrays (ULAs) at the base station (BS) and the mobile
station (MS). Extension of our method to uniform planar
arrays is straightforward. We assume that timing synchro-
nization is already performed and that the channel is sparse
per the virtual channel model [2]. Our key contributions
are in modeling the MIMO channel and CFO using a third
order tensor and compressively estimating the tensor using
the available measurements. We highlight the fact that unlike
in [5] where just the angle-of-arrivals (AoAs) and angle-of-
departures (AoDs) are found, our method estimates the channel
matrix and CFO. Further, simulations show that our algorithm
performs better than that proposed in [5] for the same setting.

We use the following notation: A is a matrix, a is a column
vector, A is a tensor and a,A denote scalars. Using this
notation, ā is the complex conjugate of a, A∗ is the conjugate
transpose of A and A(i) denotes the ith row of A. We use
[N ] to denote the set {1, 2, 3, ..N}. The symbols } and ⊗ are
used to denote the outer product [6] and kroenecker product
respectively. The matrix UN ∈ CN×N denotes a DFT matrix
of dimension N and is given by UN (k, `) = e−j

2π(k−1)(`−1)
N ,

for k, ` ∈ [N ]. We define en ∈ CM×1 to be a cannonical basis
vector with its nth entry as 1.

II. PRELIMINARIES ON TENSORS

In this section, we provide necessary definitions from tensor
algebra that will aid in understanding the subsequent sections.
We limit our discussion to tensors of order 3, as it suffices to
model our problem.

A tensor is a multidimensional array, which is essentially
an extension of vectors and matrices. For example, a matrix
X ∈ CN1×N2 is a tensor of order 2 and dimension N1N2.
Similarly A ∈ CN1×N2×N3 is a tensor of order 3 and has



dimension N1N2N3. For two tensors A,B, their inner product
is defined as

〈A,B〉 =
∑

k∈[N3],j∈[N2],i∈[N1]

A (i, j, k) B̄ (i, j, k) , (1)

and the norm of a A is given by
√
〈A,A〉. The `1- norm of

A is given by

‖A‖`1 =

N1∑
i=1

N2∑
j=1

N3∑
k=1

|A (i, j, k)| . (2)

The mode 3 unfolding of A is a matrix denoted by A(3) ∈
CN3×N1N2 and is given by A(3) =

[vec (A (:, :, 1)) , vec (A (:, :, 2)) , .., vec (A (:, :, N3))]
T
. (3)

III. SYSTEM MODEL

In this paper, we focus on initial access in narrowband
mmWave systems with analog beamforming at the TX and
RX. Consider a point-to-point link with ULAs of Nt and
Nr antennas at the BS (TX) and MS (RX) respectively.
The antenna arrays at the TX and RX are connected to
their corresponding RF chain through a network of digitally
controlled phase shifters. For the nth measurement, let fn and
wn be the unit norm beam training vectors applied to the phase
shifters at the TX and RX respectively, with

√
Ntfn ∈ QNt ,√

Nrwn ∈ QNr . As the phase shifters are digitally controlled,
we have Q =

{
ejθ1 , ejθ2 , ..., ejθq

}
, where θi = 2πi

q for a q
level phase quantization. For a sequence of M measurements,
let r [n] be the received symbol and

(
y [n] = s∗[n]r[n]

‖s[n]‖2

)
be the

measurement corresponding to the transmitted symbol s [n],
with ‖s[n]‖ =

√
ρ, ∀n ∈ [M ]. The nth received symbol and

measurement are given by

r [n] = w∗nHfne
j(ωen+φn)s[n] + ṽ[n]

y[n] = w∗nHfne
j(ωen+φn) + v[n], ∀n ∈ [M ] (4)

where H ∈ CNr×Nt is the channel matrix; ṽ ∼
CN

(
0, σ2IM×M

)
, v ∼ CN

(
0, σ

2

ρ IM×M

)
; φn|φn−1

∼
N
(
φn−1, τ

2
)

is considered to be a Wiener phase noise process
[7] (with φ0 = 0); ωe = 2πfeT , with T as the symbol duration
and fe (Hz) as the carrier frequency offset.

Consider a propagation environment with Nc` clusters and
Nn

ray rays in the nth cluster. For the mth path of the nth

cluster, let γn,m denote the complex gain and θrn,m
(
θtn,m

)
denote the AoA(AoD). Let λ be the carrier wavelength and
d be the antenna spacing in the ULAs at the BS and MS.
With ωr

n,m := 2πd
λ sin(θr

n,m), ωt
n,m := 2πd

λ sin(θt
n,m) and the

following definition

a
N

(θ) =
[
1 ejθ ej2θ · · · ej(N−1)θ

]T
, (5)

the MIMO channel matrix H, in baseband is given by

H =
1√
Nc`

Nc∑̀
n=1

1√
Nn

ray

Nnray∑
m=1

γn,ma
Nr

(
ωr
n,m

)
a∗
Nt

(
ωt
n,m

)
.

(6)

At mmWave carrier frequencies, H in (6) is marginally
sparse matrix in the spatial DFT basis [2]. The channel matrix
would be exactly sparse if the spatial frequencies align exactly
on the grid; when it is not the case, a grid of finer resolution
can be chosen to increase compressibility at the expense of
higher dimensionality. We assume that the spatial frequencies
(of the form (ωx, ωy) ) of H come from a discrete set, i.e, ωx ∈{

0, 2π
Nt
, 4π
Nt
, .., 2π(Nt−1)

Nt

}
, ωy ∈

{
0, 2π

Nr
, 4π
Nr
, .., 2π(Nr−1)

Nr

}
for

our analysis; off grid extensions can be made using [3][8]. We
test our algorithm using off-grid parameters in the simulations.
The channel matrix in (4) can be expressed as

H =

Nr∑
i=1

Nt∑
j=1

α
ij
a
Nr

(
2πi

Nr

)
} a

Nt

(
2πj

Nt

)
, (7)

With the assumption that H is sparse in the spatial DFT basis,
C :=

{
αij
}Nr,Nt
i,j=1

is now a sparse matrix, of sparsity K in
NrNt dimension.

IV. MODELING CFO AND THE CHANNEL USING TENSORS

The notion behind modeling the channel and CFO in a ten-
sor comes from the intuition to consider the spatial frequencies
corresponding to AoAs, AoDs and the CFO (ωe) along three
different dimensions. It may be observed from (4) that y [n]
is a noisy version of the inner product between an unknown
matrix (HejΩn ) with a known measurement matrix wnf

∗
n,

where Ωn = ωen + φn. We model a collection of M such
matrices using a tensor χ ∈ CNr×Nt×M such that the kth

frontal slab [6] of χ is given by χ(:, :, k) = HejΩk . Hence

χ = H} e
Ω
, (8)

where e
Ω

=
(
ejΩ1 , ejΩ2 , .., ejΩM

)T
. We expand e

Ω
∈ CM×1

in the M dimensional discrete fourier basis as

e
Ω

=
M∑
k=1

β
k
a
M

(
2πk

M

)
, (9)

with a
M

(.) defined according to (5). Unlike C, p ,
(β1, β2, .., βM )

T is not assumed to be exactly sparse because
it is unrealistic to assume that CFO (ωe) lies on the grid.
Moreover phase noise distorts the spectrum corresponding to
CFO. From (7), (8) and (9), the tensor χ can be expressed as

χ =
∑
i,j,k

G (i, j, k)a
Nr

(
2πi

Nr

)
}a

Nt

(
2πj

Nt

)
}a

M

(
2πk

M

)
,

(10)
where G ∈ CNr×Nt×M is another tensor, with G (i, j, k) =
α
ij
β
k
. Using the tensor notation, the measurements in (4) can

now be expressed as

y[n] =
〈
χ, wn } f̄n } en

〉
+ v [n]

= 〈G,Mn〉+ v [n] , (11)

where Mn = UNrwn } UNt f̄n } UMen. We have thus
modelled the channel and CFO using a tensor χ, and their
joint estimation is now a tensor estimation problem.
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Fig. 1. Magnitude plot of the third order tensor G, for Nr = Nt = 32,
Nc` = 4 clusters , CFO ωe = 2π

3
, τ = 0.1. For illustrative purposes as well

as simulations, the on grid assumption on ωrk, ωtk is waived.

Although χ is a tensor of size NrNtM , it is just an
outer product of a rank K matrix with a vector and hence
tensor rank (χ) ≤ K [6]. Further, χ is a tensor compressible
in the 3D DFT basis, due to sparsity of C and marginal
sparsity of p (as G

ijk
= α

ij
β
k
), as shown in Fig.1. Hence, low

rank recovery [9] or CS based [10] algorithms for tensors can
be used to reconstruct χ. We use compressed sensing because
the sparsity basis of χ is known and CS exploits this fact
unlike low rank tensor recovery algorithms.

V. COMPRESSED SENSING BASED RECOVERY

Similar to the vector case in which a sparse vector can
be recovered using projections onto a carefully chosen lower
dimensional subspace, a higher dimensional sparse tensor can
also be recovered from a lower dimensional one, under certain
constraints. An extensive theory on CS for sparse tensor
recovery can be found in [10]. The recovery of G in (11)
using the standard `1 minimization algorithm can be given as,

minimize ‖F‖`1 (12)

s.t
∑M
n=1 |y [n]− 〈F ,Mn〉|2 ≤ σ2

N
.

The simplest way to solve (12) would be to use Kroenecker
Compressed Sensing (KCS), i.e, to vectorize the tensor and
then apply the well known techniques of vector compressed
sensing to this problem. Though KCS can recover the sparse
tensor, it has huge complexity and the structural information
conveyed by the tensor may be lost due to vectorization. We
use orthogonal matching pursuit (OMP), a greedy algorithm
for sparse tensor recovery. For a given set of measurement ten-
sors {Mn}Mn=1, we define a linear operator P:CN1×N2×M →

CM and an adjoint P∗ :CM → CN1×N2×M as

P (G) = (〈G,M1〉 , 〈G,M2〉 , ..., 〈G,Mn〉)T , (13)

P∗ (y) =
M∑
n=1

y[n]Mn. (14)

From (11), (13), we have y = P (G) + v.

A. Tensor estimation algorithm

Let ε := E [v∗v] be the stopping threshold and Niter be the
maximum allowed iterations for the OMP based recovery of
G.

Input: y, P , ε, F0 = 0,D0 = φ, n = 1;
while

∥∥y − P (F (n−1)
)∥∥2

> ε and n ≤ Niter

do
Υ(n) = argmax

∣∣P∗ (y − P (F (n−1)
))∣∣

D(n) = Υ(n) ∪ D(n−1)

F (n) = arg min
V:supp(V)=D(n)

‖y − P (V)‖`2
end
Result: Ĝ = F (n).

Algorithm 1: OMP to recover G

It may be noted that argmax |A| returns a tuple corre-
sponding to the location where the tensor takes its maximum
(in magnitude). In a nutshell, the OMP algorithm iteratively
estimates G, with F (n) being the estimate at the nth iteration.
In every iteration, it identifies a tensor element that maximally
explains the residue and finds a tensor accordingly, using a
least squares estimate. A detailed treatment on OMP can be
found in [11].

Having obtained Ĝ using Algorithm 1, we now need to
split it into a matrix and a vector, corresponding to C and p
respectively, as G = C} p. This decomposition is performed
using singular value decomposition (svd) of Ĝ(3), the mode 3
unfolding of Ĝ. In other words, p̂ and vec

(
¯̂
C
)

are the left and
right singular vectors corresponding to the maximum singular
value of Ĝ(3). The final step of unfolding the tensor along
mode 3 followed by the SVD is inspired by [12]. It may be
noted that p̂ is an estimate of (β1, β2, . . .βM ), the DFT of
eΩ in (9). Hence, an estimate of CFO (ωe) can be obtained
from p̂, using a kalman filter based approach, that accounts
for the Wiener phase noise. Due to space constraints, we omit
the discussion on CFO estimation and focus only on beam
alignment in the subsequent sections.

B. Analog beamforming

With Ĉ, the channel estimate can be given by Hest =
U∗NrĈU∗Nt , upto a scale factor. For data transmission, the
beamforming vectors fest ∈ QNt and west ∈ QNr have
to be chosen such that |w∗estHestfest| is maximized. We
find fest,west by performing the SVD of Hest followed
by element-wise phase quantization of the singular vectors,
corresponding to the maximum singular value.



C. Advantages of modeling using tensors

The most important advantage of modeling the MIMO
channel and CFO estimation problem using tensors is that it
maintains the structural information, which is otherwise lost
when vectorization is used. Modeling with tensors provides
scope for spectral compressed sensing [8], which deals with
problem of off the grid CS. Using the techniques in [8], finer
estimates of CFO and spatial frequencies of the channel matrix
can be obtained. Further, it can be seen from Fig.1, that most
of the mass in the tensor G is concentrated along a set of
horizontal slabs around ω = ωe. This information can be used
to apply structured CS algorithms [13] to either reduce the
number of CS measurements or provide better estimates with
the same number of measurements.

D. Reducing the dimension of our problem

In typical systems fe ∈ [−fmax, fmax], where fmax depends
on the quality of local oscillators used at TX and RX, and is
typically in the order of parts per millions (ppms) of the carrier
frequency. As a DFT grid of finite resolution ( 2π

M ) is used to
model CFO, a spectral leakage factor of γ ∈

[
1, (2Tfmax)

−1
]

is considered and the components that lie on the DFT grid
within the range [−γfmax, γfmax] are recovered. With P =
dMγfmaxT e, the following approximation for eΩ in (9) is
used.

eΩ =
P∑
k=1

βkaM

(
2πk

M

)
+

M∑
k=M−P

βkaM

(
2πk

M

)
(15)

The limits of k in (10) change accordingly and we now need
to solve for a tensor of dimension NtNr (2P + 1) rather than
NtNrM . It may be noted that this approximation does not hold
for high values of phase noise variance (τ ), as the magnitude
spectrum of e

Ω
would not be concentrated about ωe in such

case.

E. Analogy with lifting techniques

Although we started with the intuition to model spatial
frequency and CFO along different dimensions, we have es-
sentially moved to a higher dimensional space. Our framework
of modeling CFO, channel using tensors is analogous to lifting
techniques that exist in the literature [14] [12]. The mode 3
unfolding of G can also be derived using lifting [12], a method
that convexifies a nonconvex optimization problem by moving
to a higher dimensional space, and is illustrated below.

Let the phase error free measurements be given by z [n] =
w∗nHfn + v [n]. From (7), it follows that H = U∗

Nr
CU∗

Nt
in

the spatial DFT basis. Using properties of kroenecker products,
it can be shown that z [n] =

(
fTnU

∗
Nt

)
⊗
(
w∗nU

∗
Nr

)
vec (C) +

v [n]. On stacking all the phase error free measurements we
get z = Ax + v, where A(n) =

(
fTnU

∗
Nt

)
⊗
(
w∗nU

∗
Nr

)
, and

x = vec (C) is a K sparse vector. The observed measurements
in (4) can now be given by,

y = diag
(
ejΩ1 , ejΩ2 , .., ejΩn

)
Ax + v

= diag (U∗Mp)Ax + v (16)

Hence, we have

y [n] = U
∗(n)
M pA(n)x + v [n] = U

∗(n)
M pxT

(
A(n)

)T
+ v [n]

(17)
By defining X = pxT , we have y = P1 (X) + v, where
P1 is a linear operator defined in accordance with (17). It is
proposed in [12] to recover X, by minimizing it’s `1 norm
and then perform SVD to obtain estimates of p,x, upto a
scale factor. From a signal processing perspective, the tensor
based approach can model and recover a sparse tensor with
arbitrary locations of sparsity (eg:- finding three dimensional
frequency of a third order tensor). Lifting can be considered as
a specific instance of the tensor approach, where the locations
of sparsity are constrained around a plane.

VI. SIMULATION RESULTS

In this section, we compare the performance of our tensor
based algorithm with Agile Link [5] and OMP (CFO ignored).
We consider the system model in Section III, with ULAs of
size Nt = 32 and Nr = 16, antenna spacing of d = λ

2 for each
of the ULAs and a narrowband mmWave channel in (6) with
Nc` = 2 clusters, each comprising of Nray = 10 paths and
3 degrees of angular spread. We consider the complex path
gains γn,m

IID∼ CN (0, 1), ∀m,n. To increase the compress-
ibility of the corresponding channel matrix, we choose a 2×
oversampled DFT grid along the AoA and AoD dimensions,
corresponding to resolutions of π

Nr
and π

Nt
respectively. We

consider a carrier frequency of fc = 28GHz, the maximum
CFO limit to be 10ppm of fc i.e., fmax = 280KHz and the
spectral leakage factor(γ) to be 2. The symbol duration T is
chosen to be 0.5µs, which is much larger than the maximum
delay spread given in [15] at 28GHz and hence our narrowband
assumption is justified.
We assume a digital phase control of 3 bits (q = 8) at the
BS and MS. For each measurement n ∈ [M ], the vectors
wn, fn, have unit `2 norm and are chosen independently
and uniformly at random from a quantized set. Element wise
phase quantization of 3 bits is performed on the unquantized
beamforming weights, also of unit norm. The achievable
rate R = log

2

(
1 +

ρ|w∗
estHfest|2
σ2

)
was averaged over 1000

realizations of H for all the three algorithms.
Agile Link was evaluated with the same system model

and beamtraining vectors as proposed in [5]. In addition, we
perform 3 bit quantization on these vectors and normalize
them. The number of CS measurements required for Agile
Link[5] is given by BrBtNhash, with Br, Bt = O (K) and
Nhash = O (log (NtNr)). Under the same settings, we also
evaluate the standard OMP [11] when phase noise and CFO
are ignored. We evaluate our algorithm in the worst case
scenario i.e, when fe is close to fmax = 280KHz and is
maximally off-grid (considering a DFT grid of resolution

1
MT = 31.25KHz, for M = 64). Hence fe = 265.625KHz
is chosen. For Agile Link Br, Bt, Nhash were optimized and
set to (4, 4, 4) and (4, 4, 8) for 64 and 128 measurements
respectively. The proposed tensor based approach, however,
demands 2P + 1 times higher complexity in memory and
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time than [5] or standard OMP, which is well justified by
the significant performance gains relative to the other two
as seen in Fig.2. Agile Link considers the magnitude of
the noisy measurements which deteriorates its performance
at low SNRs. It may be noted that although Agile Link is
robust to CFO errors at high SNRs, it needs larger number of
measurements to identify the optimal beamforming weights
compared to our tensor based approach, because the former
ignores the phase of the measurements. Furthermore, our
proposed method estimates the channel matrix unlike Agile
Link which finds just the beam steering vectors. From Fig.3,
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it can be seen that the tensor based algorithm is better than
Agile Link in a wide range of τ . The practical value of τ is
given by 2πfc

√
cTs [7], where c = 4.7 × 10−18 (rad.Hz)

−1,
and it can be verified that τ = 0.27rad for our settings.

VII. CONCLUSION AND FUTURE WORK

We have proposed a compressive channel estimation tech-
nique for narrowband mmWave systems using analog beam-
forming, that is robust to synchronization impairments. The
essence of our paper is to model CFO and channel in a tensor,
and to recover the tensor, while still exploiting the sparsity of
the mmWave channel. With few measurements, our method
is able to do beam alignment better than the existing ones,
in addition to estimating the carrier frequency offset. Con-
sidering timing mismatch, investigating performance bounds
for the proposed method as a function of synchronization
impairments, reducing the computational complexity using
structured CS algorithms and developing robust CS algorithms
for wideband mmWave systems are interesting directions for
future work.
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