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Abstract

A variational model for epitaxially strained films accounting for the presence of disloca-
tions is considered. Existence, regularity and some qualitative properties of solutions are
addressed.
Résumé: Um modèle variationnel pour les films épitaxialement tendus tenant compte de
la présence de dislocations est considéré. L’éxistence, la régularité et certaines propriétés
qualitatives des solutions sont abordées.

Keywords: Epitaxially strained elastic films, misfit dislocations, free boundary
problems, regularity
2000 MSC: 49J10, 49J40, 74K35, 74B05

1. Introduction

The ability to control the morphology of elastically stressed thin films is paramount in
the manufacturing of microelectronics and optical devices. Due to the misfit between the
film and the substrate lattice constants, the film may undergo a morphological change,
known as the Asaro-Grinfeld-Tiller (AGT) instability (see [4], [30]). This is a stress
relief mechanism, by which the system decreases the elastic energy by allowing non-
planar morphologies when a critical thickness is achieved. Such threshold effect is usually
explained as the result of two competing forms of energy: the surface energy, which favors
flat configurations, and the bulk elastic energy, which in turn is decreased by wavy or
corrugated configurations.

An extensive literature is devoted to the modeling and to the numerical analyis of
strained epitaxial films; see for instance [26], [46], [47], [48] and the references therein.
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Several variational models have been proposed to study epitaxial growth, both in the
static case (see [5, 8, 9, 10, 11, 21, 25, 29]) as well as in the time-dependent setting (see
[22, 23, 44]), starting with the free-energy approach of [31].

Experiments indicate that the nucleation of dislocations is a further mode of strain
relief (in addition to the already mentioned profile buckling) for sufficiently thick films
(see, for instance, [19, 26, 33, 36, 49]). Indeed, when a cusp-like morphology is formed,
the resulting local stress at a surface valley has a greater energy than that produced
by the nucleation of a dislocation. Once the dislocation is formed, it migrates to the
film/substrate interface, and the film surface relaxes towards a planar-like morphology.

In this paper we propose a mathematical model, which takes into account the forma-
tion of misfits dislocations. We start by recalling the variational formulation studied in
[10] and [21] (see also [12] and [15]) within the context of equilibrium configurations of
epitaxially strained films without dislocations. As in those papers we work within the
theory of linear elasticity. We consider two-dimensional configurations, corresponding to
three-dimensional morphologies with planar symmetry. The reference configuration of
the film is described as

Ωh :=
{
z = (x, y) ∈ R2 : 0 < x < `, 0 < y < h (x)

}
,

where the function h : [0, `] → [0,∞) represents the free-profile of the film. The vector
field u : Ωh → R2 represents the displacement of the film and

E (u) :=
1

2

(
∇u + ∇Tu

)

its strain. The presence of a mismatch between the lattice constants of the film and the
substrate is incorporated in the model by prescribing a Dirichlet boundary condition of
the form u(x, 0) = (e0x, 0) at the interface, with e0 6= 0. This corresponds to the case of
a film growing on an infinitely rigid substrate.

As customary in the physical literature, we also require the periodicity conditions
h(0) = h(`) and ∇u(0, y) = ∇u(`, y). The energy associated with a dislocation-free
configuration (h, u), when h is smooth, is given by

G(h, u) :=

∫

Ωh

[
µ|E(u)|2 +

λ

2
(divu)2

]
dz + γH1(Γh) ,

where µ and λ are the Lamé coefficients of the material, γ is the surface tension on the
profile of the film, Γh denots the graph of h, and H1 stands for the one-dimensional
Hausdorff measure.

Equilibrium configurations corresponf to local or global minimizers of G among all
admissible configurations, with prescribed volume. Notice that smooth minimizing se-
quences may converge to irregular configurations, with the profile h being a lower semi-
continuous function of bounded variation. In particular, vertical parts and cuts may
appear in the (extended) graph of h. This requires extending the definition of G to a
larger class of possibly irregular reachable configurations, through a relaxation proce-
dure. This has been done in [10] and [21] (see also [12] and [15]), and it leads to the
relaxed energy:

G(h, u) =

∫

Ωh

[
µ|E(u)|2 +

λ

2
(divu)2

]
dz + γH1(Γh) + 2γH1(Σh) , (1.1)
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where Σh is the set of vertical cuts defined as

Σh := {(x, y) : x ∈ [0, `), h(x) < y < min{h(x−), h(x+)}} ,

with h(x±) denoting the right and left limit at x. Note that the factor 2 appearing in
the last term of (1) is due to the fact that in the approximation procedure vertical cuts
result from the collapsing of needle-like smooth profiles into a segment whose length in
the limit is counted twice.

Next we modify G to account for the presence of isolated misfit dislocations in the
film. The mathematical modeling of dislocations has been studied by several authors;
see for instance [1, 3, 6, 16, 17, 20, 27, 34, 35, 40, 45], and the references therein.

Volterra’s dislocations may be viewed as topological point singularities of the field
(see [41]). To be precise, given a set of points {z1, . . . , zk} ⊂ Ωh and a set of vectors
{b1, . . . ,bk} ⊂ R2, a strain field H is compatible with a system of dislocations located
at z1, . . . , zk and having Burgers vectors b1, . . . ,bk if

curlH =

k∑

i=1

biδzi , (1.2)

where δz denotes the Dirac delta at z. Since the elastic continuum model is not valid
near the singularities, some kind of regularization is needed. A standard approach in the
engineering literature (see [41]) is to remove a core Br0(zi) of radius r0 > 0 around each
dislocation and associate with H the (finite) elastic energy

∫

Ωh\∪k
i=1Br0

(zi)

[
µ|Hsym|2 +

λ

2
(tr(H))2

]
dz ,

where Hsym := (H + HT )/2. The mathematical study of this energy can be found, e.g.,
in [13, 17, 28, 40].

In this paper, following [33], we consider a variant of this approach, which consists in

regularizing the dislocation measure σ :=
∑k

i=1 biδzi through a convolution procedure.
To be precise, we replace (2) with the compatibility condition

curlH = σ ∗ %r0 , (1.3)

where %r0 := (1/r20)%(·/r0) is a convolution kernel, with % a standard mollifier compactly
supported in the unit ball. Here r0 > 0 is a fixed constant that may be interpreted as
before as the core radius. Since the set of strain fields H satisfying condition (3) and
with finite energy, i.e.,

∫

Ωh

[
µ|Hsym|2 +

λ

2
(tr(H))2

]
dz < +∞ (1.4)

is non-empty, for any given profile h and any given dislocation measure σ, the compatible
strain field H minimizing the elastic energy (4) is well defined and satisfies the div-curl
system {

curlH = σ ∗ %r0 in Ωh.
µ divH + (λ + µ)∇(tr(H)) = 0

(1.5)
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Note that the above system admits an equivalent formulation in terms of the so-called
Airy stress function w associated with H through the identity

∇2w =
1

2

(
(2µ + λ)H22 + λH11 −µ(H12 + H21)

−µ(H12 + H21) (2µ + λ)H11 + λH22

)
,

see [24, Chapter 12]. Indeed, (5) can be rewritten as (see [33])

∆2w = curl(σ ∗ %r0) in Ωh .

Adopting the above convolution-based regularization, the total energy associated with
a profile h, a dislocation measure σ, and a strain field H, satisfying the compatibility
conditions (3), is given by

F (h, σ,H) :=

∫

Ωh

[
µ|Hsym|2 +

λ

2
(tr(H))2

]
dz + γH1(Γh) + 2γH1(Σh) . (1.6)

In Section 2 we assume that a finite number k of dislocations, with given Burgers vectors
B := {b1, . . . ,bk} ⊂ R2, are already present in the film, and we address the problem of
finding the optimal configuration, i.e., the profile h and the location z1, . . . , zk of the k
dislocations which minimize the total energy, under a given volume constraint |Ωh| = d.
To be precise, denoting by X(e0;B) the set of admissible triples (h, σ,H), in Theorem
2.4 below, we prove

Theorem 1.1. The minimization problem

min{F (h, σ,H) : (h, σ,H) ∈ X(e0;B), |Ωh| = d} . (1.7)

admits a solution.

We then show that the equilibrium profile h obtained above satisfies the same regu-
larity properties proved in [21] (see also [18, 25]) in the dislocation-free case. Namely,

Theorem 1.2. Let (h̄, σ̄, Hh̄,σ̄) ∈ X(e0;B) be a minimizer of (7). Then h̄ has at most
finitely many cusp points and vertical cracks, its graph is of class C1 away from this
finite set, and of class C1,α, α ∈ (0, 1

2 ) away from this finite set and off the substrate.

For a more detailed qualitative description of this regularity result we refer to Theorem
2.15 below. The overall strategy to prove this theorem is the same used in [21]. However,
there are many new technical issues due to the presence of dislocations, which require
new ideas. In particular, a major difficulty arises in showing that the volume constraint
can be replaced by a volume penalization. In the dislocation-free case this was based
on a straightforward truncation argument, which fails in the present setting because
dislocations cannot be removed in this way. Indeed they act as a sort of obstacle when
touching the profile, and this is overcome in Theorem 2.5, where it is shown that a
delicate truncation construction is still possible without affecting the dislocations.

In Theorem 2.18 we provide analytical support to the experimental evidence that,
after nucleation, dislocations lie at the bottom.

Theorem 1.3. Assume B 6= ∅, d > 2r0`. Then there exist ē > 0 and γ̄ > 0 such
that whenever |e0| > ē, γ > γ̄, and e0(bj · e1) > 0 for all bj ∈ B, then any minimizer
(h̄, σ̄, H̄) of the problem (7) has all dislocations lying at the bottom of Ωh, in the sense
that the centers zi are of the form zi = (xi, r0).
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In the last part of the paper we study the nucleation of dislocations and we investigate
conditions under which it is energetically favorable to create dislocations. To this pur-
pose, we modify the energy (6) by adding a term that accounts for the energy dissipated
to create dislocations. Following the physical literature (see for instance [41]), we assume
that the energy cost of a new dislocation is proportional to the square of the norm of
the corresponding Burgers vector. This leads to an energetic contribution N(σ), given
in (60). Therefore, our new variational problem is to

minimize F (h, σ,H) + N(σ) (1.8)

among all admissible configurations (h, σ,H), under a volume constraint, but without
fixing the number of dislocations nor the Burgers vectors, which are allowed to be any
integer multiple of certain fundamental directions in a set Bo ⊂ R2.

The regularity results of Section 2 apply to the minimizers of (8). On the other
hand, local and global minimizers of the minimum problem studied in Section 2 may
be regarded as local minimizers of (8). Finally, in Theorem 3.5 we identify a range of
parameters for which all global minimizers have nontrivial dislocation measures (see [38]
for an analogous result in heterogeneous nanowires).

Theorem 1.4. Assume that there exists b ∈ Bo such that b · e1 6= 0, and let d > 2r0`.
Then there exists γ̄ > 0 such that whenever |e0| > ē, and γ > γ̄, where ē is as in Theorem
1.3, any minimizer (h̄, σ̄, H̄) of the problem (8) has nontrivial dislocations, i.e., σ̄ 6= 0.

2. Epitaxial elastic films with dislocations

2.1. Setting of the Problem

We assume that the substrate is rigid and occupies the semi-infinite strip (0, `) ×
(−∞, 0), and that the reference configuration of the elastic film is given by

Ωh := {z = (x, y) : 0 ≤ x < `, 0 < y < h (x)}

with h : [0, `] → [0,∞). The graph of h represents the free profile of the film and the
line y = 0 corresponds to the film/substrate interface. The space of admissible profiles
is defined by

AP (0, `) := {h : R → [0,+∞) :h is lower semicontinuous

and `-periodic, Var(h; 0, `) < +∞} .

Here Var(h; 0, `) denotes the pointwise total variation of h over the interval (0, `), given
by

Var(h; 0, `) := sup

k∑

i=1

|h(xi) − h(xi−1)| < +∞ ,

where the supremum is taken over all partitions {x0, x1, . . . , xk}, with 0 < x0 < x1 <
· · · < xk < `, k ∈ N. Since h ∈ AP (0, `) is `-periodic, its pointwise total variation is
finite over any bounded interval of R. Therefore, it admits right and left limits at every
x ∈ R denoted by h(x+) and h(x−), respectively. In what follows we use the notation

h+(x) := max{h(x+), h(x−)} , h−(x) := min{h(x+), h(x−)} . (2.1)
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We set
Ω#

h := {(x, y) : x ∈ R, 0 < y < h(x)}
to be the open set obtained by repeating copies of Ωh `-periodically in the x-direction.
We define

Γh := {(x, y) : x ∈ [0, `), h−(x) ≤ y ≤ h+(x)} ,
and the set of vertical cracks

Σh := {(x, y) : x ∈ [0, `) , h(x) < h−(x), h(x) ≤ y ≤ h−(x)} . (2.2)

We also set
Γ̃h := Γh ∪ Σh ,

and we will use the notation

Γ#
h := {(x, y) ∈ R2 : x ∈ R, h−(x) ≤ y ≤ h+(x)} .

Similarly we define Σ#
h and Γ̃#

h .
Observe that if h ∈ AP (0, `), then

‖h‖∞ ≤ 1

`

∫ `

0

h dx + Var(h; 0, `) ≤ |Ωh|
`

+ H1(Γh) . (2.3)

We work within the theory of small elastic deformations, so that

E(u) :=
1

2

(
∇u + ∇uT

)

represents the strain, with u : Ωh → R2 the planar displacement. The elastic energy
density is

W (E) :=
1

2
CE : E = µ|E|2 +

λ

2

[
tr(E)

]2
, (2.4)

where

CE =

(
(2µ + λ)E11 + λE22 2µE12

2µE12 (2µ + λ)E22 + λE11

)
(2.5)

and the Lamé coefficients µ and λ satisfy the ellipticity conditions

µ > 0 and µ + λ > 0 . (2.6)

Throughout this section we assume the presence of k dislocations with given Burgers
vectors B := {b1, . . . ,bk} ⊂ R2 and centers {z1, . . . , zk} ⊂ Ωh such that Br0(zi) ⊂ Ω#

h ,
with r0 ∈ (0, `/2) a (small) positive constant representing the core radius of the dislo-
cations. With any such collection of dislocations we associate the `-periodic dislocation
measure

σ :=

k∑

i=1

biδ
#
zi ,

where, given z ∈ Ωh we denote by δ#z the `-periodic extension of the Dirac delta δz, i.e.,

δ#z :=
∑

k∈Z

δz+k`e1 .
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To regularize σ, we fix a nonnegative radially symmetric % ∈ C∞
c (B1(0)), with

∫
R2 % dz =

1, and we define

%r0(z) :=
1

r20
%
( z

r0

)
and %#r0 := %r0 ∗ δ#0 . (2.7)

Note that %#r0 is the `-periodic extension in the x-direction of the function %r0 .
Given h ∈ AP (0, `) we denote by Mdis(Ωh;B) the subset of the space of vector valued

Radon measures M(Ω#
h ;R2) defined by

Mdis(Ωh;B) :=

{
σ ∈ M(Ω#

h ;R2) : σ =

k∑

i=1

biδ
#
zi , zi ∈ Ωh, with Br0(zi) ⊂ Ω#

h

}
.

Observe that we are not requiring that the centers of the k dislocations are all distinct,
thus allowing for superpositions of different dislocations.

We recall that the curl of a function H with values in M2×2 is defined by

curlH :=
(∂H12

∂x
− ∂H11

∂y
,
∂H22

∂x
− ∂H21

∂y

)
.

The total energy functional will depend on the film profile h and on the disloca-
tion measure σ ∈ Mdis(Ωh) via the associated strain field H satisfying the constraint
curlH = σ ∗ %r0 , which accounts also for the interactions between the different disloca-
tions. Moreover, the presence of a mismatch between the film and the substrate lattices
is modeled by enforcing a Dirichlet boundary condition at the interface {y = 0}, namely
by requiring that the tangential trace of H on the interface equals e0e1, where e1 := (1, 0)
and e0 6= 0. To be precise, we introduce the following set of admissible triples

X(e0;B) :=
{

(h, σ,H) : h ∈ AP (0, `), σ ∈ Mdis(Ωh;B), H ∈ H#(curl; Ωh;M2×2)

such that curlH = σ ∗ %r0 in Ωh and H[ e1 ] = e0e1 on {y = 0}
}
, (2.8)

where we are using the fact that admissible fields H admit a tangential trace (see, e.g.,
Chapter 4 in [7]), and where, denoting by H# the `-periodic extension in the x-direction
of H,

H#(curl; Ωh;M2×2) :=

{H ∈ L2
loc(Ωh;M2×2) : curlH ∈ L2(Ωh;R2) and curlH# ∈ L2

loc(Ω
#
h ;R2)} . (2.9)

The total energy of the system is given by

F (h, σ,H) :=

∫

Ωh

W (Hsym) dz + γH1(Γh) + 2γH1(Σh) (2.10)

for every admissible configuration (h, σ,H) ∈ X(e0;B), where we recall that Hsym :=
(H + HT )/2 and γ is a positive constant depending on the material properties.

For every fixed profile h ∈ AP (0, `) and dislocation measure σ we denote by Hh,σ the
unique strain field that minimizes

H 7→
∫

Ωh

W (Hsym) dz

7



over all H ∈ H#(curl; Ωh;M2×2) such that (h, σ,H) ∈ X(e0;B). The existence and
uniqueness of Hh,σ follow from the coercivity and strict convexity of the energy (18) (see
(13) and (14)) and the fact that the Dirichlet condition in (16) is preserved under weak
convergence in the space H#(curl; Ωh;M2×2) (see (17)). Note that Hh,σ is determined
as the unique solution in H#(curl; Ωh;M2×2) to the system





curlHh,σ = σ ∗ %r0 in Ωh,

divC(Hh,σ)sym = 0 in Ωh,

C(Hh,σ)sym[ν] = 0 on Γh,

Hh,σ[ e1 ] = e0e1 on {y = 0}.

(2.11)

Note also that if (h, σ,Hh,σ) ∈ X(e0;B) is a (locally) minimizing configuration, with
h ∈ C2

#([0, `]) and h > 0, then by considering smooth variations of h supported in

the complement of the projection of ∪k
i=1B̄r0(zi) on the [0, `], we obtain by standard

arguments the following Euler-Lagrange equation

κ + W ((Hh,σ)sym) = Λ on Γh \ ∪k
i=1B̄r0(zi) , (2.12)

where

κ := −
(

h′

√
1 + h′2

)′

denotes the curvature of Γh and Λ is the constant Lagrange multiplier associated with
the volume constraint. This motivates the following definition.

Definition 2.1. Let (h, σ,Hh,σ) ∈ X(e0;B), with h ∈ C2
#([0, `]) and h > 0. We say that

(h, σ,Hh,σ) is a critical configuration if (19) and (20) are satisfied.

In the sequel we will use the following canonical decomposition of Hh,σ:

Hh,σ = e0Duh + Kh,σ ,

where uh is the elastic equilibrium in Ωh such that uh(x, 0) = (x, 0), that is the unique
solution to the system 




divCE(uh) = 0 in Ωh,

CE(uh)[ ν ] = 0 on Γh,

uh(x, 0) = (x, 0) on {y = 0},

(2.13)

such that (x, y) ∈ Ω# 7→ uh(x, y) − (x, 0) belongs to

LD#(Ωh;R2):=
{
v ∈ L2

loc(Ω
#
h ;R2) : v(x, y) = v(x+`, y)

for (x, y) ∈ Ω#
h , E(v)|Ωh

∈ L2(Ωh;R2)
}
,

and Kh,σ is the unique solution in H#(curl; Ωh;M2×2) to





curlKh,σ = σ ∗ %r0 in Ωh,

divC(Kh,σ)sym = 0 in Ωh,

C(Kh,σ)sym[ν] = 0 on Γh,

Kh,σ[ e1 ] = 0 on {y = 0}.

(2.14)
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We set

v0(x, y) :=
(
x,

−λy

2µ + λ

)
and W0 := W (E(v0)) . (2.15)

Observe that v0 is the elastic equilibrium corresponding to the flat configuration and
e0 = 1.

2.2. Existence

We start with the following Korn-type inequality.

Lemma 2.2. Let Ω ⊂ R2 be a bounded open simply connected set with Lipschitz boundary
and let Γ be a non-empty connected relatively open subset of ∂Ω. Then, there exists a
constant C > 0 depending only on Ω and Γ such that

‖H‖L2(Ω;M2×2) ≤ C
(
‖Hsym‖L2(Ω;M2×2) + ‖ curlH‖L2(Ω;R2)

)
(2.16)

for all H ∈ H(curl; Ω;M2×2) with tangential trace H[τ ] = 0 on Γ.

Proof. Step 1. We start by assuming that H1(∂Ω\Γ) > 0 and, without loss of generality,
that Hsym ∈ L2(Ω;M2×2). Let

K :=

(
−Dyw1 Dxw1

−Dyw2 Dxw2

)
,

where w = (w1, w2) is the unique solution to





∆w = curlH in Ω,

w = 0 on ∂Ω \ Γ,

Dνw = 0 on Γ.

By multiplying ∆wi = (curlH)i by wi, i = 1, 2 and integrating by parts, it follows from
the Poincaré inequality

‖K‖L2(Ω;M2×2) = ‖Dw‖L2(Ω;M2×2) ≤ C‖ curlH‖L2(Ω;R2) . (2.17)

Since curl(H−K) = 0 in Ω, by the Helmholtz decomposition theorem (see, e.g., Theorem
3.3.7 in [39]) there exists u ∈ H1(Ω;R2) such that Du = H −K. Moreover, u is unique
up to a constant. Since (H − K)[τ ] = 0 on Γ, we can take u = 0 on Γ. Using Korn’s
inequality (see, e.g., [43]), we have

‖Du‖L2(Ω;M2×2) ≤ C‖E(u)‖L2(Ω;M2×2) = C‖Hsym −Ksym‖L2(Ω;M2×2)

≤ C
(
‖Hsym‖L2(Ω;M2×2) + ‖ curlH‖L2(Ω;R2)

)
, (2.18)

where in the last inequality we have used (25). By (25) and (26), we obtain (24).
Step 2. If H1(∂Ω \ Γ) = 0, then the argument is similar, and it suffices to replace the
condition w = 0 on ∂Ω \ Γ by

∫
Ω
w dz = 0.

The next lemma provides a useful elliptic estimate for the solutions to systems of the
type (22).
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Lemma 2.3. Let h ∈ AP (0, `) ∩ Lip(0, `), h ≥ c0 > 0, ‖h′‖∞ ≤ M and let f ∈
L2(0, `;R2). Then, there exists a constant C > 0, depending only on c0 and M , such
that if H ∈ H#(curl; Ωh;M2×2) is the solution to





curlH = f in Ωh,

divCHsym = 0 in Ωh,

CHsym[ν] = 0 on Γh,

H[ e1 ] = 0 on {y = 0},

then
‖H‖L2(Ωh;M2×2) ≤ C‖f‖L2(0,`;R2) . (2.19)

Proof. Since h ≥ c0 > 0, the set Ωh is connected, and since its complement is also
connected, we have that Ωh is simply connected. Hence, we can argue as in the proof of
Lemma 2.2 to split H = Du + K, where K is defined

K =

(
−Dyw1 Dxw1

−Dyw2 Dxw2

)

with w = (w1, w2) the unique solution to





∆w = f in Ωh,

w = 0 on Γh,

Dνw = 0 on {y = 0}.

As before we have that ‖K‖L2(Ωh;M2×2) ≤ C‖f‖L2(Ωh;R2). Note that u ∈ H1
#(Ωh;R2) can

be chosen to be identically 0 on {y = 0} and solves





divCE(u) = −divCKsym in Ωh,

CE(u)[ν] = −CKsym[ν] on Γh,

u = 0 on {y = 0}.

Multiplying both sides of the equation above by u, integrating by parts, and using the
fact that if H ∈ M2×2 is symmetric, then so is CH (see (13)), we get

∫

Ωh

CE(u) : E(u) dz = −
∫

Ωh

CKsym : E(u) dz .

Hence, also by Korn’s inequality, we have

‖Du‖L2(Ωh;M2×2) ≤ C‖K‖L2(Ωh;M2×2) ≤ C‖f‖L2(Ωh;R2) ,

and we conclude that (27) holds.

Theorem 2.4. The minimization problem

min{F (h, σ,H) : (h, σ,H) ∈ X(e0;B), |Ωh| = d} . (2.20)

admits a solution.
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Proof. Let {(hn, σn, Hn)} ⊂ X(e0;B) be a minimizing sequence. By the compactness
results in [21, Proposition 2.2 and Lemma 2.5], we may assume that, up to a subsequence
(not relabeled), there exists h ∈ AP (0, `) such that

i) hn → h in L1(0, `);

ii) R2 \ Ω#
hn

→ R2 \ Ω#
h in the sense of the Hausdorff metric.

Moreover, in [10, Lemma 2.1] it is shown that

H1(Γh) + 2H1(Σh) ≤ lim inf
n

[
H1(Γhn

) + 2H1(Σhn
)
]
. (2.21)

Setting σn =
∑k

i=1 biδ
#
zi,n , we can assume (up to extracting a further subsequence if

needed) that zi,n → zi ∈ Ωh, with Br0(zi) ⊂ Ω#
h . Note that if zi ·e1 = ` using the lateral

periodicity we can assume that zi · e1 = 0, and so by (2.1) we have that zi ∈ Ωh.
Set Vn := Ωhn

∪((0, `)×(−1, 0]) and V := Ωh∪((0, `)×(−1, 0]). Since Hn[ e1 ] = e0e1
on {y = 0}, by setting Hn := ∇u0 in (0, `) × (−1, 0], where u0(x, y) := (e0x, 0), we have
that Hn ∈ H(curl;Vn;M2×2). Note that the sets Vn are simply connected. Consider an
increasing sequence of simply connected Lipschitz sets Uj ⊂ V such that (0, `)×(−1, 0] ⊂
Uj , ∂Uj ∩ Γh = ∅ and ∪j∈NUj = V . By Lemma 2.2 we have that for every j, the strain
fields Hn are equibounded in L2(Uj ;M

2×2). Note also that curlHn = σn ∗ %r0 → σ ∗ %r0
in L2(V ;R2), where σ :=

∑k
i=1 biδ

#
zi . Thus, by a diagonalization argument, we may

find H ∈ H(curl;V ;M2×2) such that curlH = σ ∗ %r0 , and, up to the extraction of a
further subsequence (not relabeled), Hn ⇀ H weakly in L2(Uj ;M

2×2) for every j. Since
Hn = ∇u0 in (0, `) × (−1, 0], we have that H = ∇u0 in (0, `) × (−1, 0], and, in turn,
H[e1] = e0e1 on {y = 0} ∩ ∂Ωh. It follows that (h, σ,H) ∈ X(e0;B) and for every j ∈ N

∫

Uj∩Ωh

W (Hsym) dz ≤ lim inf
n

∫

Uj∩Ωh

W ((Hn)sym) dz

≤ lim inf
n

∫

Ωhn

W ((Hn)sym) dz. (2.22)

By (29) and (30) and the arbitrariness of j we conclude that

F (h, σ,H) ≤ lim inf
n

F (hn, σn, Hn) .

Thus (h, σ,H) is a global minimizer.

2.3. Regularity

In this subsection we establish the regularity properties of minimizers of problem
(28). We shall follow the general strategy developed in [21, 25] to which we refer for all
parts of the proofs that will remain unchanged.

Theorem 2.5. Let d ≥ 2r0` and let (h̄, σ̄, Hh̄,σ̄) be a minimizing configuration for prob-

lem (28) such that h̄− is not flat. There exist β > 0 depending only on ‖h̄− d/`‖L2(0,`)

and F (h̄, σ̄, Hh̄,σ), and Λ > 0 depending on µ, λ, e0, r0 and β, such that (h̄, σ̄, Hh̄,σ̄) is
also a minimizer of

min

{
F (h, σ,H) + β

∫ `

0

|h− h̄|2 dx + Λ
∣∣|Ωh| − d

∣∣ : (h, σ,H) ∈ X(e0;B)

}
. (2.23)
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Before giving the proof we need the following technical lemma.

Lemma 2.6. For all ε > 0 there exists Λ(ε) (depending also on β, µ, λ, e0, and r0)
with the following property: For all Λ ≥ Λ(ε) if (g, τ,Hg,τ ) is a minimizer of (31), with

|Ωg| > d, τ =
∑k

i=1 biδ
#
zi , and if Γ′ ⊂ ∂Br0(zj) ∩ Γg for some j ∈ {1, . . . , k}, with

zj · e2 > r0, is any connected arc, then H1(Γ′) ≤ ε.

Proof. In order to prove the lemma observe that in Br0(zj) we can write Hg,τ = Dv+K,
where

K :=

(
k1 0
k2 0

)
,

with

kl(x, y) := −
k∑

i=1

(bi · el)
∫ y

0

%#r0(x− xi, t− yi) dt for l = 1, 2,

where %#r0 is defined in (15), and v ∈ H1
#(Ωh;R2) satisfies





divCE(v) = −divCKsym in Ωg,

CE(v)[ν] = −CKsym[ν] on Γg,

v = 0 on {y = 0}.

Since K and Γ′ are both smooth, v is smooth in Br0(zj) ∪ Γ′. Let Γ′′ ⊂ Γ′ be the
subarc with the center of Γ′ and such that H1(Γ′′) = 1

2H1(Γ′). By elliptic estimates for
the Lamé system (see for instance [25, Proposition 8.9]) there exists a constant C1 > 0
depending only on H1(Γ′), r0, the Lamé coefficients µ and λ, and on F (h̄, σ̄, Hh̄,σ̄), such
that

sup
Γ′′

|Dv| ≤ C1 .

In particular, the constant C1 = C1(Γ′) above is uniformly bounded if H1(Γ′) is bounded
away from 0. In turn, we obtain

sup
Γ′′

|Hg,τ | ≤ C1 + C2 , (2.24)

where the constant C2 > 0 depends only on r0.
Fix ϕ ∈ C∞

c (I), ϕ ≥ 0, where I is an open interval contained in the projection of Γ′′

onto the x-axis. Since zj · e2 > r0, for t > 0 sufficiently small we have that Br0(zj −
t‖ϕ‖∞) ⊂ Ω#

g−tϕ and so we can take as admissible competitor the triple (g − tϕ, σt, Ht),

where τt :=
∑

i 6=j biδ
#
zi + bjδ

#
zj−t‖ϕ‖∞e2

, Ht := Hg,τ + Kt, where

Kt :=

(
kt,1 0
kt,2 0

)
,

with

kt,l(x, y) := −
(∫ y

0

%#r0(x− xj , s− yj − t‖ϕ‖∞) ds−
∫ y

0

%#r0(x− xj , s− yj) ds

)
bj · el

12



for l = 1, 2. By minimality, we have

F (g − tϕ, τt,Ht) + β

∫ `

0

|g − tϕ− h̄|2 dx + Λ(|Ωg−tϕ| − d)

≥ F (g, τ,Hg,τ ) + β

∫ `

0

|g − h̄|2 dx + Λ(|Ωg| − d) .

By dividing both sides by t > 0 and letting t → 0+, we obtain

∫

Ωg

C((Hg,τ )sym) : K̇sym dz +

∫

I

W ((Hg,τ )sym)(x, g(x))ϕ(x) dx

− γ

∫

I

g′ϕ′

√
1 + g′2

dx− 2β

∫

I

(g − h̄)ϕdx− Λ

∫

I

ϕdx ≥ 0 , (2.25)

where

K̇sym :=

(
k̇1 k̇2/2

k̇2/2 0

)
, k̇l(x, y) := ‖ϕ‖∞%r0(z − zj)bj · el for l = 1, 2.

Since Γ′′ ⊂ ∂Br0(zj) ∩ Γg, integrating by parts we get

−γ

∫

I

g′ϕ′

√
1 + g′2

dx ≤ γ

r0
‖ϕ‖∞` .

Thus, by taking a sequence {ϕn} as above converging pointwise to 1 in I, from (33) we
get that there exists C3 > 0 depending only on r0 and the Lamé coefficients λ, µ, such
that

ΛH1(Γ′) ≤ c(r0)ΛL1(I) (2.26)

≤ C3

(∫

Ωg

|(Hg,τ )sym| dz + ` sup
Γ′′

|Hg,τ |2 +
γ`

r0
+ β

∫

I

|g − h̄| dx
)
,

where we used the fact that H1(Γ′′) = 1
2H1(Γ′). Now assume by contradiction that

there exist Λn → +∞ and minimizers (gn, τn, Hgn,τn) of (31), with |Ωgn | > d, τn =∑k
i=1 biδ

#
zi,n , and Γ′

n ⊂ Γgn ∩ ∂Br0(zj,n) for some j ∈ {1, . . . , k}, with

inf
n

H1(Γ′
n) > 0 .

Thus, from (32) we deduce that

sup
Γ′′
n

|Hgn,τn | ≤ C4 ,

with C4 independent of n. Recalling (34) and observing that by mininimality

sup
n

(
‖(Hgn,τn)sym‖L2(Ωgn ;M2×2) + β

∫ `

0

|gn − h̄|2 dx
)

< +∞ ,

we conclude that
ΛnH1(Γ′

n) ≤ C

for some constant C independent of n, which is impossible since Λn → +∞.
13



Proof of Theorem 2.5. We fix β such that

F (h̄, σ̄, Hh̄,σ̄) <
β

4

∫ b

0

∣∣∣h̄− d

b

∣∣∣
2

dx . (2.27)

In order to prove the result we will show that any minimizing configuration (g, τ,Hg,τ )
for (31) satisfies the volume constraint |Ωg| = d, provided that Λ is sufficiently large. We
argue by contradiction and consider several cases.
Step 1. If |Ωg| < d, then define h := g + (d− |Ωg|)/` and for all (x, y) ∈ Ωh

H(x, y) :=





e0Dv0(x, y) if 0 < y <
d− |Ωg|

`
,

Hg,τ

(
x, y − d− |Ωg|

`

)
if y ≥ d− |Ωg|

`
,

where v0 is defined as in (23) and σ is the dislocation measure obtained by moving in
the e2 direction all the centers zi, i = 1, . . . , k of τ by the vector (d − |Ωg|)e2/`. Then
by (23),

F (h, σ,H) + β

∫ `

0

|h− h̄|2 dx + Λ
∣∣|Ωh| − d

∣∣− F (g, τ,Hg,τ )

− β

∫ `

0

|g − h̄|2 dx− Λ
∣∣|Ωg| − d

∣∣

= e20W0(d− |Ωg|) + β

∫ `

0

d− |Ωg|
`

(
2(g − h̄) +

d− |Ωg|
`

)
dx− Λ(d− |Ωg|)

≤ e20W0(d− |Ωg|) − Λ(d− |Ωg|) ,

where we used the fact that
∫ `

0
g dx = |Ωg| < d =

∫ `

0
h̄ dx. By taking Λ > e20W0, we

obtain a contradiction to the minimality of (g, τ,Hg,τ ).
Step 2. If |Ωg| > d, we distinguish two cases. Let ymax be the maximal height of points
in Γg and for all i = 1, . . . , k write zi = (xi, yi).
Case 1. If yi < ymax− r0 for all i = 1, . . . , k, we truncate g in such a way that, denoting
by h the resulting function, we still have Br0(zi) ⊂ Ω#

h for all i and |Ωh| ≥ d. Since
h ≤ g, we can estimate

F (h, τ,Hg,τ ) + β

∫ `

0

|h− h̄|2 dx + Λ
(
|Ωh| − d

)
− F (g, τ,Hg,τ )

− β

∫ `

0

|g − h̄|2 dx− Λ
(
|Ωg| − d

)

≤ β

∫ `

0

(g − h)(2h̄− h− g) dx− Λ

∫ `

0

(g − h) dx

≤
(
2β‖h̄‖∞ − Λ

) ∫ `

0

(g − h) dx ≤ (2βC0 − Λ)

∫ `

0

(g − h) dx < 0 ,

provided Λ > 2βC0, which would contradict the minimality of (h̄, σ̄, H̄). Note that the
constant C0 bounding ‖h̄‖∞ from above only depends on F (h̄, σ̄, Hh̄,σ̄) (see (11)).

14



Case 2. Assume now that there exists j such that yj = ymax − r0. We claim that
for every i ∈ {1, . . . , k} the intersection Γg ∩ ∂Br0(zi) is either empty or a (possibly
degenerate) connected arc. Indeed, if this were not true for some i ∈ {1, . . . , k}, we could
find two points w1, w2 ∈ Γg∩∂Br0(zi) such that the graph of g is detached from ∂Br0(zi)
above the arc ŵ1w2 connecting w1 and w2 on ∂Br0(zi). Denote by D the region bounded
by ŵ1w2 and the arc on Γg connecting the two points. Fix a point w in the interior of
ŵ1w2 and consider the tangent to ∂Br0(zi) at w. Moving this tangent outward in the
direction w − zi, we cut out a region D′ ⊂ D bounded by this line and Γg such that
|D′| ≤ |Ωg|−d. Note that by doing so we get a new profile ĝ such that H1(Γĝ) < H1(Γg)
and, in turn,

F (ĝ, τ,Hg,τ ) < F (g, τ,Hg,τ ) . (2.28)

Therefore, arguing as in the previous step, we contradict the minimality of (g, τ,Hg,τ ),
provided that Λ is chosen as before. Thus, the claim holds.

Set
J := {j ∈ {1, . . . , k} : yj = ymax − r0} .

Since ymax` ≥ |Ωg| > d ≥ 2r0`, we have that ymax − 2r0 =: δ > 0. Hence, yj = r0 + δ
for every j ∈ J . Let

0 < ε < min{δ, `}/k . (2.29)

Let Λε > 0 be so large that
1

Λ
F (h̄, σ̄, Hh̄,σ̄) < ε (2.30)

for all Λ > Λε. Fix j ∈ J and assume that 0 < xj < ` (the cases xj = 0 and xj = `
are similar). By the previous claim, the set Γg ∩ ∂Br0(zj) is a (possibly degenerate)
connected arc Γj of left endpoint pj and right endpoint qj .

Since yj ≥ r0 + δ, we may apply Lemma 2.6 to conclude that, choosing a possibly
larger Λε, then H1(Γj) < ε. Let Π2 : R2 → R be the projection onto the y-axis. Then
L1(Π2(Γj) ≤ H1(Γj) < ε. Hence,

qj · e2 ≥ ymax − ε = 2r0 + δ − ε . (2.31)

If qj belongs to Γg ∩ ∂Br0(zj1) for some j1 6= j, then by (37) and (39),

yj1 = (zj1 − qj) · e2 + qj · e2 ≥ −r0 + 2r0 + δ − ε = r0 + δ − ε

Let qj1 be the right endpoint of the (possibly degenerate) connected arc Γg ∩ ∂Br0(zj1).
Since yj1 > r0 by Lemma 2.6 and (39) we obtain as before that the arc Γj1 of endpoints
qj and qj1 has length less than ε and that qj1 · e2 ≥ 2r0 + δ − 2ε. If qj1 belongs to
Γg∩∂Br0(zj2) for some j2 6= j1, we continue this process, otherwise we stop and repeat a
similar procedure for the left endpoint pj . Let Jj be the set of the indices i ∈ {1, . . . , k}
corresponding to balls selected in this procedure. Note that by construction yi > r0 for
every i ∈ Jj , and so

∑

j∈J

∑

i∈Jj

L1(Π2(Γg ∩ ∂Br0(zi))) ≤
∑

j∈J

∑

i∈Jj

H1(Γg ∩ ∂Br0(zi)) ≤ kε .

Since the union of all the arcs Γg ∩ ∂Br0(zi) is connected and Γj is one of them this
implies that

ymax − kε ≤ g(x) ≤ ymax (2.32)
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for all x ∈ (0, `) such that (x, g(x)) ∈ Γg ∩ ∂Br0(zi) for some i ∈ Jj .
Let Π1 : R2 → R be the projection onto the x-axis. Since

∑

j∈J

∑

i∈Jj

L1(Π1(Γg ∩ ∂Br0(zi))) ≤
∑

j∈J

∑

i∈Jj

H1(Γg ∩ ∂Br0(zi)) ≤ kε < ` ,

the open set U := (0, `) \ ∪j∈J ∪i∈Jj Π1(Γg ∩ ∂Br0(zi)) is nonempty.
Case 2a. Assume that there exists a connected component Ii of U and s < t ∈ Ii such
that Γg ∩ (s, t)×R lies strictly above the segment γ connecting (s, g−(s)) with (t, g−(t)).
Let ν be the unit vector orthogonal to γ and pointing upward. Moving γ in the direction
of ν, we can choose η > 0 so that the region D bounded by the segment γ + ην and
Γg ∩ (s, t) ×R satisfies |D| ≤ |Ωg| − d and D ∩∪k

i=1Br0(zi) = ∅. Then, arguing as in the
proof of (36) we get a contradiction provided that Λ is chosen as before.
Case 2b. For every connected component Ii of the set U we have that g− is a convex
function in the interval Ii. In this case we claim that there exists a constant c > 0
independent of g such that

ymax − cε ≤ g(x) ≤ ymax for all x ∈ (0, `) . (2.33)

In view of (40) it suffices to prove (41) in each Ii. Fix Ii and let ai be its left endpoint.
Then the point (ai, g(ai)) belongs to one of the balls Br0(zl) for some j ∈ J and l ∈ Jj .
Let θi be the angle that the oriented segment of endpoints zl and (ai, g(ai)) forms with
the x-axis. By (40), we have that θi ≥ π

4 for ε sufficiently small. Since g is a convex
function in the interval Ii, it lies above the line

t 7→ (ai, g(ai)) + t

(
1,−cos θi

sin θi

)

tangent to the ball ∂Br0(zl) at (ai, g(ai)). Since H1(Γg ∩ ∂Br0(zl)) ≤ ε, we have that
cos θi ≤ cos(π/2 − ε/r0) = sin(ε/r0) ≤ ε/r0. Hence, for t > 0,

g(ai) − t
cos θi
sin θi

≥ g(ai) −
t
√

2

r0
ε ≥ ymax − kε− `

√
2

r0
ε ,

where in the last inequality we used (40). This proves that (41) holds. By (31) we have

F (g, τ,Hg,τ ) + β

∫ b

0

|g − h̄|2 dx + Λ
∣∣|Ωg| − d

∣∣ ≤ F (h̄, σ̄, Hh̄,σ̄)

and so by (38),
∣∣|Ωg| − d

∣∣ < ε. In turn, by (41),

d ≤ ymax` ≤ d + (1 + c`)ε ,

which, again by (41), yields

−cε ≤ g(x) − d

`
≤ (1 + c`)ε/` (2.34)

for all x ∈ (0, `). It follows that ‖g − d/`‖2 ≤ cε for a possibly larger constant c still
independent of g. Hence, using the minimality of (g, τ,Hg,τ ) and (35), we obtain

‖h̄− d/`‖2 ≤ ‖h̄− g‖2 + ‖g − d/`‖2 ≤
√

1

β
F (h̄, σ̄, Hh̄,σ̄) + ‖g − d/`‖2

<
1

2
‖h̄− d/`‖2 + cε ,
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which is a contradiction if we choose ε small enough.

Next we show that volume constrained minimizing configurations are also a unilateral
minimizers of a simpler penalized problem.

Theorem 2.7. Let d > 0 and let (h̄, σ̄, Hh̄,σ̄) be a minimizing configuration for problem

(28). Fix Λ > e20W0. Then (h̄, σ̄, Hh̄,σ̄) is a minimizer of

min

{
F (h, σ,H) + Λ

(
d− |Ωh|

)
: (h, σ,H) ∈ X(e0;B), |Ωh| ≤ d

}
. (2.35)

Proof. The proof is similar to the one of Step 1 of the proof of Theorem 2.5, with
β = 0.

The next lemma is proved in [25, Lemma 6.5] and will be used to prove the interior
ball condition stated in Lemma 2.9 below.

Lemma 2.8. Let k ∈ AP (0, `) be nonnegative, let B%(z0) be a ball such that B%(z0) ⊂
{(x, y) : x ∈ (0, `) and y < k(x)}, and let z1 = (x1, y1) and z2 = (x2, y2) be points in
∂B%(z0) ∩ (Γk ∪ Σk). Let γ be the shortest arc on ∂B%(z0) connecting z1 and z2 (any of
the two possible arcs if z1 and z2 are antipodal) and let γ′ be the arc on Γk∪Σk connecting
z1 and z2. Then

H1(γ′) −H1(γ) ≥ 1

%
|D| ,

where D is the region enclosed by γ ∪ γ′.

Lemma 2.9. Let Λ > 0 and let (g, τ,Hg,τ ) ∈ X(e0;B) be a minimizing configuration
for the problem (43). If % < min{1/Λ, r0}, then for all z ∈ Γg ∪ Σg there exists a ball
B%(z0) ⊂ Ω#

g ∪
(
R× (−∞, 0]

)
such that ∂B%(z0) ∩ (Γg ∪ Σg) = {z}.

Proof. Fix % < min{r0, 1/Λ}. We argue by contradiction and assume that there exists

B%(z0) ⊂ Ω#
g ∪

(
R× (−∞, 0]

)
touching Γ̃g = Γg ∪Σg in at least two points w1 = (s1, t1),

w2 = (s2, t2) ∈ S+
% (z0), where S+

% (z0) denotes the upper half of ∂Br0(z0). Consider

the region D bounded by the arc γ on S+
% (z0) connecting w1 and w2 and Γ̃g. Since

% < r0, necessarily D ∩ ∪k
i=1Br0(zi) = ∅. Hence we may modify g by replacing it with

the function g̃ which coincides with g in [0, `) \ (s1, s2) and whose graph on (s1, s2) is

given by γ. Denote by γ′ the arc on Γ̃g connecting w1 and w2. Then we have

F (g̃, v) + Λ
(
d− |Ωg̃|

)
− F (g, v) − Λ

(
d− |Ωg|

)
≤ H1(γ) −H1(γ′) + Λ|D| < 0 ,

where the last inequality is a consequence of Lemma 2.8 and the fact that % < 1/Λ. This
contradicts the minimality of (g, τ,Hg,τ ). The conclusion of the lemma follows arguing
as in [14, Lemma 2] or [21, Proposition 3.3, Step 2].

Theorem 2.5 will be used to study the regularity of those profiles for which the function
h− defined in (9) is not flat. Note the assumption that h− is flat does not exclude a
priori the presence of vertical cuts (see (10)). This possibility is ruled out by the next
result.
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Theorem 2.10. Let (h̄, σ̄, Hh̄,σ̄) be a minimizing configuration of problem (28) such that

h̄− is constant. Then Σh̄ = ∅.

Proof. By Theorem 2.7 and Lemma 2.9 we deduce that Ω#

h̄
∪
(
R × (−∞, 0]

)
satisfies

an interior ball condition with % < min{r0, 1/(e20W0)}. If Σh̄ were nonempty, then each
vertical cut would meet the (horizontal) graph of h̄− perpendicularly, but this would
prevent the existence of an interior sphere at the corner. Hence, Σh̄ = ∅ and the proof is
complete.

We now recall some regularity estimates, based on the theory developed by Grisvard
([32]), proved in [21] for solutions of the Lamé system in planar domains with a corner.

Let Ω be a bounded open set in R2 whose boundary can be decomposed in three
curves

∂Ω = Γ1 ∪ Γ2 ∪ Γ3,

where Γ1 and Γ2 are two segments meeting at the origin with an (internal) angle ω ∈
(π, 2π) and Γ3 is a smooth curve joining the two remaining endpoints of Γ1 and Γ2 in a
smooth way and not passing through the origin. We shall refer to such an open set as a
regular domain with corner angle ω.

The next result is a particular case of [32, Théorème I].

Theorem 2.11. Let Ω ⊂ R2 be a regular domain with corner angle ω ∈ (π, 2π) and let
w ∈ H1(Ω;R2) be a weak solution of the Neumann problem

{
divCE(w) = f in Ω,

CE(w)[ν] = g on ∂Ω,
(2.36)

where f ∈ Lp
(
Ω;R2

)
and g ∈ W 1−1/p,p(∂Ω \ {0};R2), p ∈ (1, 2). Then, there exist

numbers cα, c
′
α such that w may be decomposed as

w = wreg +
∑

α

cαSα +
∑

α

c′α
∂

∂α
Sα,

where wreg ∈ W 2,p(Ω;R2) and in the first sum α ranges among all complex numbers with

Reα ∈
(

0, 2(p−1)
p

)
which are solutions of the equation

sin2 αω = α2 sin2 ω, (2.37)

and in the second sum α ranges only among solutions with multiplicity two of (45) in the
same strip. Moreover, the functions Sα are independent of f and in polar coordinates

Sα (r, θ) = rαgα (θ) ,

for some smooth function gα. The above decomposition holds provided that (45) has no

solutions with real part equal to 2(p−1)
p .

Though this result gives no information about the roots of equation (45), it is clear
that the solutions contained in the strip 0 < Reα < 1 are bounded. Hence, by analyticity,
they are finitely many. A more precise information is provided by the following result,
proved in [42, Theorem 2.2].
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Theorem 2.12. If ω ∈ (0, 2π), then equation (45) has no roots in the strip 0 < Reα ≤ 1

2
.

We will use the two previous results to get an a priori estimate for the solutions to
(44). We recall that an infinitesimal rigid motion is an affine displacement of the form
a + Ax, where A is a skew symmetric 2 × 2 matrix and a is a constant vector.

Proposition 2.13. Let Ω be as in Theorem 2.11. There exist p ∈ (4/3, 2) and C > 0
such that if f ∈ Lp(Ω;R2), g ∈ W 1−1/p,p(∂Ω \ {0};R2) and w ∈ W 1,2(Ω;R2) is a weak
solution to problem (44), then

‖w‖W 2,p(Ω;R2) ≤ C
(
‖w‖Lp(Ω;R2) + ‖f‖Lp(Ω;R2) + ‖g‖W 1−1/p,p(∂Ω\{0};R2)

)
. (2.38)

Proof. As observed above, the strip 0 < Reα < 1 contains only finitely many solutions
to equation (45). Hence, by Theorem 2.12 there exists ε > 0 such that all solutions
are contained in the strip 1

2 + ε < Reα < 1. Therefore, if we choose p > 4/3 such
that 2 − 2

p < 1
2 + ε, from Theorem 2.11 we get that any weak solution to (44), with

f ∈ Lp(Ω;R2) and g ∈ W 1−1/p,p(∂Ω \ {0};R2) is in W 2,p(Ω;R2).
To prove (46), set V := W 2,p(Ω;R2)/ ∼, where for every u, v ∈ W 2,p(Ω;R2), we have

set u ∼ v if and only if u − v is an infinitesimal rigid motion. We define a norm in V
setting

‖[u]‖V := ‖E(u)‖Lp(Ω;R2) + ‖∇2u‖Lp(Ω)

for every equivalence class [u], with u ∈ W 2,p(Ω;R2). Note that this definition is well
posed, since if u ∼ v, then E(u) = E(v) and ∇2u = ∇2v. Note also that in view of
Korn’s inequality, V is a Banach space.

Consider now the operator L : V → Lp(Ω;R2) ×W 1−1/p,p(∂Ω \ {0};R2) defined for
any [u] ∈ V as

L[u] := (divCE(u),CE(u)[ν]) .

By the first part of the proof we have that L is a linear, continuous, and invertible
operator between two Banach spaces. Therefore, the conclusion follows from the open
mapping theorem.

Proposition 2.14. Let Ω be a regular domain with corner ω ∈ (π, 2π) and let u ∈
H1(Ω;R2) be a weak solution to the Neumann problem

{
divCE(w) = f in Ω,

CE(w)[ν] = g on Γ1 ∪ Γ2,

with f ∈ Lp(Ω;R2) and g ∈ W 1−1/p,p((Γ1 ∪ Γ2) \ {0};R2). Then, there exist r̄ > 0,
with Br̄(0) ∩ Γ3 = ∅, C > 0, and α > 1/2, depending only on λ, µ, ω, ‖f‖Lp(Ω;R2) and
‖g‖W 1−1/p,p((Γ1∪Γ2)\{0};R2), such that for all r ∈ (0, r̄),

∫

Br(0)∩Ω

|∇w|2 dz ≤ Cr2α
∫

Ω

(
1 + |w|2 + |∇w|2

)
dz . (2.39)

Proof. Set Br̂ := Br̂(0) and fix r̂ > 0 such that Br̂ ∩ Γ3 = ∅ and ∂Br̂ ∩ Γ1 ∪ Γ2 6= ∅, and
0 < r̄ < r̂. Let ϕ ∈ C∞

c (Br̂) be such that ϕ ≡ 1 on Br̄. From the equation satisfied by
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wϕ and from (46) we get

‖wϕ‖W 2,p(Ω;R2) ≤ C
(
‖w‖W 1,p(Ω;R2) + ‖f‖Lp(Ω;R2)

+ ‖g‖W 1−1/p,p((Γ1∪Γ2)\{0};R2) + ‖w‖W 1−1/p,p(∂Ω\{0};R2)

)

≤ C
(
‖w‖W 1,p(Ω;R2) + ‖f‖Lp(Ω;R2) + ‖g‖W 1−1/p,p((Γ1∪Γ2)\{0};R2)

)

for some 4
3 < p < 2 and some C > 0 depending only on λ, µ and ω. Thus, if 0 < r < r̄,

using the Sobolev imbedding theorem we have

∫

Br∩Ω

|∇w|2 dz ≤ c

(∫

Br∩Ω

|∇(wϕ)| 2p
2−p dz

) 2−p
p

r
4(p−1)

p ≤ cr
4(p−1)

p ‖wϕ‖2W 2,p(Ω;R2)

≤ cr
4(p−1)

p
(
1 + ‖w‖W 1,p(Ω;R2)

)2 ≤ cr2α
∫

Ω

(
1 + |w|2 + |∇w|2

)
dz ,

where α := 2(p− 1)/p is strictly greater than 1/2 since p > 4/3.

For g ∈ AP (0, `) we denote the set of cusp points by

Σg,c := {(x, g(x)) : x ∈ [0, `) , g−(x) = g(x) , and g′+(x) = −g′−(x) = +∞} ,

where g− is defined in (9), while g′+ and g′− denote the right and left derivatives, respec-
tively.

As usual, the set Σ#
g,c is obtained by replacing [0, `) by R in the previous formula and

coincides with the `-periodic extension of Σg,c.

Theorem 2.15 (Regularity). Let (h̄, σ̄, Hh̄,σ̄) ∈ X(e0;B) be a minimizer of (28), with

σ̄ =
∑k

i=1 biδ
#
zi . Then:

(i) h̄ has at most finitely many cusp points and vertical cracks [0, `), i.e.,

card
(
{x ∈ [0, `) : (x, y) ∈ Σh̄ ∪ Σh̄,c for some y ≥ 0}

)
< +∞ ;

(ii) the curve Γ#

h̄
is of class C1 away from Σ#

h̄
∪ Σ#

h̄,c
and

lim
x→x±

0

h̄′(x) = ±∞ for every x0 s.t. (x0, h̄(x0)) ∈ Σ#

h̄
∪ Σ#

h̄,c
;

(iii) Γ#

h̄
∩ {y > 0} is of class C1,α away from Σ#

h̄
∪ Σ#

h̄,c
for all α ∈ (0, 1/2);

(iv) setting
A := {(x, y) ∈ R2 : h̄(x) > 0, h̄ continuous at x} ,

Γ#

h̄
is analytic in A \ ∪k

i=1 ∪m∈Z Br0(zi + m`e1).

The proof of the regularity theorem is based upon the strategy introduced in [21] (see
also [25]). We only outline the main steps, by highlighting the changes needed in the
present situation and referring the reader to the aforementioned papers for the details.
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Proof of Theorem 2.15. We start by observing that we may assume that h̄− is not con-
stant, since otherwise the conclusion follows from Theorem 2.10. Note also the if d < 2r0`,
then necessarily B = ∅, and thus the result follows from [18, Theorem 2.5] (see also [25,
Theorem 2.7]). Therefore, from now on we shall assume that d ≥ 2r0` and h̄− is not
constant.
Step 1. (Lipschitz partial regularity) From Theorem 2.7 and Lemma 2.9 we have that

Γ̃h̄ satisfies an interior ball condition with radius % < min{1/(e20W0), r0}. By applying

[14, Lemma 3] we get that Γ̃h̄ has the following properties: For any z0 ∈ Γ̃h̄ there exist
an orthonormal basis i, j ∈ R2 and a rectangle

Q := {z0 + si + tj : −a′ < s < a′, −b′ < t < b′},

with a′, b′ > 0, such that Ωh̄ ∩Q has one of the following two representations:
(j) There exists a Lipschitz function f : (−a′, a′) → (−b′, b′) such that f (0) = 0 and

Ωh̄ ∩Q = {z0 + si + tj : −a′ < s < a′, −b′ < t < f(s)} ∩ ((0, `) × R) .

Moreover, the function f admits at every point left and right derivatives, which are left
and right continuous, respectively.
(jj) There exist two Lipschitz functions f1, f2 : [0, a′) → (−b′, b′) such that fi (0) =
(fi)

′
+ (0) = 0 for i = 1, 2, f1 ≤ f2, and

Ωh̄ ∩Q = {z0 + si + tj : 0 < s < a′, −b′ < t < f1(s) or f2(s) < t < b′} .

Moreover, the functions f1, f2 admit at every point left and right derivatives, which are
left and right continuous, respectively. Note that (j) and (jj) imply statement (i) of the
theorem and the fact that

lim
x→x±

0

h̄′
±(x) = ±∞ for every x0 s.t. (x0, h̄(x0)) ∈ Σh̄ ∪ Σh̄,c.

Step 2. (C1-regularity) From property (j) of Step 1 we have that the curve Γh̄ is
locally Lipschitz in [0, `) × R away from finitely many singularities of cusp or cut type.
Moreover, outside the singular set, Γh̄ admits left and right tangent, which are left and
right continuous respectively. Therefore, to prove statement (ii) it is enough to show
that left and right tangents coincide at every point z0 6∈ Σh̄ ∪ Σh̄,c.

Assume by contradiction that this does not happen for some z0 = (x0, y0) 6∈ Σh̄∪Σh̄,c.
If y0 = 0, then by interior ball condition we can say that there are no dislocation balls
in a neighborhood Br(z0) of z0 and thus Hh̄,σ̄ in such a neighborhood is a gradient Dv,
with v satisfying 




divCE(v) = 0 in Ωh̄ ∩Br(z0),

CE(v)[ν] = 0 on Γh̄ ∩Br(z0),

v(x, 0) = e0(x, 0) on {y = 0} ∩Br(z0).

We may therefore apply the argument used in [18, Theorem 4.9 and Proposition 5.1] to
obtain a contradiction.

Assume now that y0 > 0. In this case we decompose Hh̄,σ̄ = Dv + K, where

K :=

(
k1 0
k2 0

)
,
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with

kl(x, y) := −
k∑

i=1

(bi · el)
∫ y

0

%r0(x− xi, t− yi) dt for l = 1, 2,

and v satisfies {
divCE(v) = −divCKsym in Ωh̄,

CE(v)[ν] = −CKsym[ν] on Γh̄.

Using (47) in place of [21, Equation (3.52)] and arguing as in [21, Theorem 3.13], we can
prove that there exist C > 0, a radius r̄ > 0, and α ∈ ( 1

2 , 1) such that

∫

Br(z0)∩Ω#

h̄

|∇v|2 dz ≤ Cr2α for all r ≤ r̄.

In turn, since K is smooth this implies that for a possibly larger constant

∫

Br(z0)∩Ω#

h̄

|Hh̄,σ̄|2 dz ≤ Cr2α for all r ≤ r̄.

Moreover, by Theorem 2.5 there exist Λ, β > 0 such that (h̄, σ̄, Hh̄,σ̄) is a minimizer of

min

{
F (h, σ,H) + β

∫ `

0

|h− h̄|2 dx + Λ
∣∣|Ωh| − d

∣∣ : (h, σ,H) ∈ X(e0;B)

}
. (2.40)

To fix the ideas let us assume that z0 = (x0, h̄(x0)) does not belong to a vertical segment
of Γh̄; i.e., h̄ is continuous at x0. The other case can be dealt with similarly.

Observe that by a standard extension argument we may define v in a fixed neighbor-
hood of z0 in such a way that, denoting by ṽ the resulting function, for all 0 < r ≤ r̄ we
have ∫

Br(z0)

|∇ṽ|2 dz ≤ c(L)

∫

Br(z0)∩Ωh̄

|∇v|2 dz ,

where the constant c(L) depends only on the Lipschitz constant L of the function h̄.
Finally set H := Dṽ + K and observe that

∫

Br(z0)

|H|2 dz ≤ Cr2α for all r ≤ r̄. (2.41)

For r > 0 (sufficiently small) we denote

x′
r := max{x ∈ (0, `) : x ≤ x0 and there exists y such that (x, y) ∈ Γh̄ ∩ ∂Br(z0)} ,

x′′
r := min{x ∈ (0, `) : x ≥ x0, and there exists y such that (x, y) ∈ Γh̄ ∩ ∂Br(z0)} ,

and we let (x′
r, h̄(x′

r)) and (x′′
r , h̄(x′′

r )) be the corresponding points on Γh̄ ∩ ∂Br(z0).
Construct hr as the greatest lower semicontinuous function coinciding with h̄ outside
[x′

r, x
′′
r ] and with the affine function

x 7→ h̄(x′
r) +

h̄(x′′
r ) − h̄(x′

r)

x′′
r − x′

r

(x− x′
r)
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in (x′
r, x

′′
r ). For r > 0 sufficiently small (hr, σ̄, H) is admissible for the penalized mini-

mization problem (48) . Hence,

F (h̄, σ̄, Hh̄,σ̄) ≤ F (hr, σ̄, H) + β

∫ b

0

|hr − h̄|2 dx + Λ
∣∣|Ωhr | − d

∣∣ .

Since hr = h̄ outside [x′
r, x

′′
r ] and H = Hh̄,σ̄ outside Br(z0), using (49), we get

∫ x′′
r

x′
r

√
1 + (h̄′)2 dx ≤

∫ x′′
r

x′
r

√
1 + (h′

r)2 dx + C

∫

Br(z0)

|H|2 dz + Cr2

≤
∫ x′′

r

x′
r

√
1 + (h′

r)2 dx + Cr2α
(2.42)

for r small enough. On the other hand, since the right and the left derivatives h̄′
+ and

h̄′
− exist and are continuous in a neighborhood of x0, it can be checked that (see [21,

Proof of Theorem 3.14])

∫ x′′
r

x′
r

√
1 + (h̄′)2 dx−

∫ x′′
r

x′
r

√
1 + (h′

r)2 dx ≥ C0r

for r sufficiently small, where C0 > 0 depends only on the angle at the corner point z0.
Since 2α > 1 this contradict (50).
Step 3. (C1,α-regularity) Fix an open subarc Γ ⊂ Γh̄ \ (Σh̄ ∪ Σh̄,c) not intersecting
{y = 0}. As in Step 2, we consider only the case in which Γ does not contain vertical
parts, the other case being analogous. Let I be the projection of Γ onto the x-axis. By
taking Γ smaller, if needed, we may assume that I × (0,∞) intersects at most one ball
Br0(zj), j = 1, . . . , k and, by Step 2, that h̄ ∈ C1(Ī). Fix J ⊂⊂ I and consider the
decomposition of Hh̄,σ̄ introduced in Step 2. For any α ∈ (0, 1) there exist C, r̄ > 0 such

that if z0 = (x0, h̄(x0)), x0 ∈ J , then
∫

Br(z0)∩Ω#

h̄

|∇v|2 dz ≤ Cr2α for all r ≤ r̄ .

Such a decay estimate can be established exactly as in [21, Theorem 3.16]. Note that
both C and r̄ are uniform with respect to x0 ∈ J . Arguing as in the previous step, we
may extend Hh̄,σ̄ to Br̄(z0) in such a way that the resulting strain field H satisfies

∫

Br(z0)

|H|2 dz ≤ Cr2α for all r ≤ r̄, (2.43)

for a possibly larger constant C still independent of z0. Fix r < r̄ and consider the
affine function s connecting z0 and (x0 + r, h̄(x0 + r)). If the graph of s over the interval
(x0, x0 + r) does not intersect any of the balls Br0(zj), j = 1, . . . , k, we can proceed as
in [25, Step 5 of the proof of Theorem 6.9]. Thus assume that the graph of s over the
interval (x0, x0 + r) intersects a ball Br0(zj). Note that by construction of I there can
only be one such ball. Define hr as

hr(x) :=

{
h̄(x) x ∈ [0, `) \ (x0, x0 + r),

max{fj(x), s(x)} x ∈ [x0, x0 + r],
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where fj(x) := yj +
√
r20 − (x− xj)2. Note that (hr, σ̄, H) is admissible for problem

(48). Then using the minimality of (h̄, σ̄, Hh̄,s̄), the decay estimate (51), and arguing as
in Step 2 we obtain

∫ x0+r

x0

√
1 + (h̄′)2 dx ≤ Cr2α +

∫ x0+r

x0

√
1 + (h′

r)2 dx ,

for some constant C independent of x0 ∈ J . This inequality can be equivalently written
as
∫ x0+r

x0

√
1 + (h̄′)2 dx−

√
(h̄(x0 + r) − h̄(x0))2 + r2

≤ Cr2α +

∫ x0+r

x0

(√
1 + (h′

r)2 −
√

1 + (s′)2
)
dx

= Cr2α +

∫

(x0,x0+r)∩{fj>s}

(√
1 + (f ′

j)
2 −

√
1 + (s′)2

)
dx

= Cr2α +

∫

(x0,x0+r)∩{fj>s}

(√
1 + (f ′

j)
2 −

√
1 + (f ′

j(x̄))2
)
dx ≤ C ′r2α . (2.44)

Note that in the second equality we used the fact that since h̄ ≥ fj and the graph of s
joins two points of the graph of h̄, it must intersect the graph of fj twice. Hence, by the
mean value theorem we may find x̄ ∈ (x0, x0 + r) ∩ {fj > s} such that f ′

j(x̄) = s′(x̄). In
the last inequality we used the fact that f ′

j is Lipschitz. On the other hand, using the
inequality

√
1 + b2 −

√
1 + a2 ≥ a(b− a)√

1 + a2
+

(b− a)2

2(1 + max{a2, b2})3/2

with a := −
∫ x0+r

x0
h̄′ dx and b := h̄′(x), and integrating the result in (x0, x0 + r), we get

1

2(1 + M2)3/2
−
∫ x0+r

x0

(
h̄′(x) −−

∫ x0+r

x0

h̄′ ds
)2

dx

≤ 1

r

∫ x0+r

x0

√
1 + h̄′2 dx− 1

r

√
(h̄(x0 + r) − h̄(x0))2 + r2 ≤ C ′r2α−1 ,

where M is the Lipschitz constant of h̄ in I and we used (52). In particular,

−
∫ x0+r

x0

∣∣∣h̄′(x) −−
∫ x0+r

x0

h̄′ ds
∣∣∣ dx ≤ C ′′rα−

1
2 .

A similar inequality holds also in the interval (x0 − r, x0). Hence, by the arbitrariness

of x0 ∈ J and [2, Theorem 7.51] we conclude that h̄ ∈ C1,α− 1
2 (J) for all α ∈ (1/2, 1), as

claimed. This concludes the proof of statement (iii) of the theorem.
Step 4. To prove the analytic regularity, observe that in A \ ∪k

i=1 ∪m∈Z Br0(zi) we can
perform variations of the profile h̄ to prove that (20) holds in the weak sense. Thus, in
particular, the curvature κ is of class C0,α in A \ ∪k

i=1 ∪m∈Z Br0(zi) for all α ∈ (0, 1
2 ). A

standard bootstrap argument implies the C∞-regularity. Analyticity then follows from
Theorem 4.9 and the remarks at the end of Section 4.2 in [37].
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2.4. Dislocations accumulate at the bottom

In this subsection we consider nearly flat profiles h. We will show that if e0 is
sufficiently large and (h, σ,H) is any admissible configuration in X(e0;B), then, by
moving the dislocations centers of σ in the direction −e2, the elastic energy decreases.
This is made precise by the following proposition.

Proposition 2.16. Given d > 2r0` and α ∈ (0, 1), there exist e > 0 and δ > 0 such that
if e0(bi · e1) > 0 for all bi ∈ B, i = 1, . . . , k and |e0| > e, then for every (h, σ,Hh,σ) ∈
X(e0;B), with ‖h − d/`‖C1,α

# (0,`) ≤ δ and σ =
∑k

i=1 biδ
#
zi , with zj · e2 > 0 for some

j ∈ {1, . . . , k}, we have
∫

Ωh

W ((Hh,σs
)sym) dz <

∫

Ωh

W ((Hh,σ)sym) dz

for all s > 0 sufficiently small, where σs :=
∑k

i=1,i 6=j biδ
#
zi + bjδ

#
zj−se2

. In particular, if
(h, σ,Hh,σ) is a minimizer of (28), then all dislocations lie at the bottom of Ωh, that is
all the centers zi are of the form zi = (xi, r0).

Proof. Assume, without loss of generality, that e0 > 0. It is enough to show that for e0
sufficiently large and δ small

d

ds
F (h, σs, Hh,σs)∣∣

s=0

> 0 , (2.45)

where (h, σ,Hh,σ) ∈ X(e0;B) is as in the statement. For simplicity set

Hs := Hh,σs and H := H0 = Hh,σ .

and recall that, by (19), Hs is the unique periodic solution to the following system





curlHs =

k∑

i=1,i 6=j

bi%
#
r0(· − zi) + bj%

#
r0(· − zj − se2) in Ωh,

divC(Hs)sym = 0 in Ωh,

C(Hs)sym[ν] = 0 on Γh,

Hs[ e1 ] = e0e1 on {y = 0}.

Then the derivative in (53) reduces to

d

ds

(
1

2

∫

Ωh

C(Hs)sym : (Hs)sym dz

)
∣∣
s=0

=

∫

Ωh

CHsym : Ḣsym dz , (2.46)

where Ḣ = d
dsHs|s=0

is determined as the unique periodic solution to





curl Ḣ = −bjDy%
#
r0(· − zj) in Ωh,

divCḢsym = 0 in Ωh,

CḢsym[ν] = 0 on Γh,

Ḣ[ e1 ] = 0 on {y = 0}.

(2.47)
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We now consider the canonical decomposition H = e0Duh + Kh,σ, where uh and

Kh,σ are defined as in (21) and (22), respectively. Moreover, we decompose also Ḣ as

Ḣ = Dv + K, where

K :=

(
−Dyyw1 Dxyw1

−Dyyw2 Dxyw2

)
(2.48)

with w = (w1, w2) the unique solution in H1
#(Ωh;R2) to





∆w = −bj%r0(· − zj) in Ωh,

w = 0 on Γh,

w = 0 on {y = 0}.

We note that since Dxxw = 0 and %r0((x, 0) − zj) = 0 on {y = 0} (the last condition
comes from the fact that Br0(zj) ⊂ Ωh), from the equation satisfied by w we deduce that
Dyyw = 0 on {y = 0}, which in turn implies that K[ e1 ] = −Dv[ e1 ] = 0. Thus, v can
be chosen to be identically zero on {y = 0}. Then, by (21) we have

∫

Ωh

CHsym : Ḣsym dz = e0

∫

Ωh

CE(uh) : Ḣsym dz +

∫

Ωh

C(Kh,σ)sym : Ḣsym dz

= e0

∫

Ωh

CE(uh) : E(v) dz + e0

∫

Ωh

CE(uh) : Ksym dz +

∫

Ωh

C(Kh,σ)sym : Ḣsym dz

= e0

∫

Ωh

CE(uh) : Ksym dz +

∫

Ωh

C(Kh,σ)sym : Ḣsym dz

= e0

∫

Ωh

CE(v0) : Ksym dz + e0

∫

Ωh

(
CE(uh) − CE(v0)

)
: Ksym dz

+

∫

Ωh

C(Kh,σ)sym : Ḣsym dz.

(2.49)
By [22, Lemma 6.10] for every ε > 0 there exists δ > 0 such that ‖uh−v0‖C1,α

# (Ωh;R2) ≤ ε,

where v0 is defined in (23). Hence,

∫

Ωh

∣∣(CE(uh) − CE(v0)
)

: Ksym

∣∣ dz ≤ Cε (2.50)

for some positive constant C independent of e0. Observe now that, using (13), (23), (55),
and (56), we have

∫

Ωh

CE(v0) : Ksym dz = −4µ(µ + λ)

2µ + λ

∫

Ωh

Dyyw1 dz

= −4µ(µ + λ)

2µ + λ

[∫

Ωh

∆w1 dz −
∫

Γh

Dxw1(ν · e1) dH1(z)

]

≥ 4µ(µ + λ)

2µ + λ

[
(bj · e1)

∫

Ωh

%r0(z − zj) dz − `‖Dw1‖L∞(Ωh;R2)‖h− d/`‖C1,α
# (0,`)

]
,
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where the second equality is due to the fact that Dxw1 is `-periodic in the x-direction.
From the above inequality, recalling (54), (57), (58), and the assumption on h we get

d

ds
F (h, σs, Hh,σs

)∣∣
s=0

> e0

[
4µ(µ + λ)

2µ + λ
(bj · e1)

∫

Ωh

%r0(z − zj) dz − C(ε + δ)

]

+

∫

Ωh

C(Kh,σ)sym : Ḣsym dz ,

for a possibly larger constant C depending on the L∞ bounds on Dw1, hence on the C1,α

norm of h. Claim (53) follows by taking ε small enough and e0 large enough. Indeed, by
Lemma 2.3, (22), and (55),

∣∣∣∣
∫

Ωh

C(Kh,σ)sym : Ḣsym dz

∣∣∣∣ ≤ C|bj|‖Dy%0‖L2(R2)‖σ ∗ %#r0‖L2(Ωh;R2) ,

where C is a constant depending only on the Lipschitz constant of h.

Remark 2.17. It can be shown that when |e0| is sufficiently large dislocations with
Burgers vectors b satisfying

e0(b · e1) > 0

are energetically favorable compared to dislocations having the same centers but opposite
Burgers vectors, see Corollary 3.4.

In the next theorem we show that for suitable choices of the parameters global mini-
mizers must have all the dislocations lying on the film/substrate interface.

Theorem 2.18. Assume B 6= ∅, fix d > 2r0` and let |e0| > ē, where ē is as in Proposi-
tion 2.16. Assume also e0(bj · e1) > 0 for all bj ∈ B. Then there exists γ̄ such that if
γ > γ̄ any global minimizer (h̄, σ̄, H̄) of the problem (28) has all dislocations lying at the

bottom of Ωh, i.e., σ̄ =
∑k

i=1 biδ
#
zi , where all the centers zi are of the form zi = (xi, r0).

Proof. It is enough to show that given γn → +∞ and corresponding global minimiz-
ers (hn, σn, Hhn,σn) ∈ X(e0;B) of (28) with γn in place of γ, then for n sufficiently
large the dislocation measures σn have all the centers lying at the bottom. Note that
(hn, σn, Hhn,σn) is a global minimizers of

min
{
Gn(h, σ,H) : (h, σ,H) ∈ X(e0;B), |Ωh| = d

}
,

where Gn is the rescaled functional

Gn(h, σ,H) :=
1

γn

∫

Ωh

W (Hsym) dz + H1(Γh) + 2H1(Σh) .

Step 1. (Uniform convergence to the flat configuration) By the compactness result in
[21, Proposition 2.2 and Lemma 2.5] and the semicontinuity proved in [10, Lemma 2.1],
there exist h ∈ AP (0, `) and a subsequence (not relabeled) such that hn → h in L1(0, `)
and

H1(Γh) + 2H1(Σh) ≤ lim inf
n

(
H1(Γhn) + 2H1(Σhn

)
) .
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Thus, if we consider any g ∈ AP (0, `) such that |Ωg| = d and (σ,H) such that (g, σ,H) ∈
X(e0;B),

H1(Γh) + 2H1(Σh) ≤ lim inf
n

(
H1(Γhn) + 2H1(Σhn

)

≤ lim inf
n

Gn(hn, σn, Hhn,σn
)

≤ lim inf
n

Gn(g, σ,H) = H1(Γg) + 2H1(Σg) .

Therefore h minimizes
g 7→ H1(Γg) + 2H1(Σg)

among all functions in AP (0, `) such that |Ωg| = d. Hence h is the flat profile h ≡ d/`.
Note that from the above chain of inequalities, taking g = d/`, we have in particular that

` = H1(Γd/`) = lim
n

(
H1(Γhn

) + 2H1(Σhn
)
)
.

Up to a subsequence we may assume that {Γhn∪Σhn} converge in the Hausdorff metric to
some compact connected set K. By the compactness result [21, Proposition 2.2], we have
that, up to a subsequence (not relabeled), R2 \Ω#

n → R2 \ (R× (0, d/`)) in the Hausdorff
metric. From this convergence it follows (see the proof of [21, Lemma 2.5]) that Γd/` ⊂ K.

Hence, by Go la̧b’s theorem and observing that H1(Γhn ∪ Σhn) = H1(Γhn ∪Σhn), we have

H1(Γd/`) ≤ H1(K) ≤ lim
n→∞

H1(Γhn ∪ Σhn) = H1(Γd/`) .

Therefore, H1(K \ Γd/`) = 0. Since K is the Hausdorff limit of graphs, for all x ∈ [0, `]

the section K ∩ ({x} × R) is connected. Hence, K = Γd/`. From this equality and the
definition of Hausdorff convergence, we get that sup[0,`] |hn − d/`| → 0 as n → ∞.
Step 2. (Penalization) We now show that there exists Λ sufficiently large and indepen-
dent of n such that every minimizer of

min
{
Gn(h, σ,H) + Λ||Ωh| − d| : (h, σ,H) ∈ X(e0;B)

}
(2.51)

satisfies the volume constraint associated with d. We argue by contradiction and assume
that there are sequences {Λm} with Λm → ∞ and {nm}, and minimizers (gm, τm, Hgm,τm)
in X(e0;B) of (59) with n = nm such that |Ωgm | 6= d. Arguing as in Step 1 of the proof
of Theorem 2.5, one can show that for n large enough |Ωgn | > d. We can now proceed
as in Step 2 of the same proof to show that either we can cut out a small region from
Ωgm , thus strictly reducing the total energy and contradicting the minimality, or we can
show that gm → d/b uniformly (see (42)) and for every m there exist a dislocation ball
Br0(zm) touching Γgm at a point of maximum height. In particular, up to a subsequence

(not relabeled), τm ⇀ τ with τ =
∑k

i=1 biδ
#
zi such that we have zj = (xj , d/` − r0) for

some j ∈ {1, . . . , k}; i.e., the corresponding ball Br0(zj) is tangent to Γd/`. Note also that
Hgm,τm ⇀ H̄ in L2

loc(Ωd/`;M
2×2) with curl H̄ = τ ∗%r0 and that H̄[ e1 ] = e0e1. This can

be shown arguing as in the proof of Theorem 2.4. Observe now that given η ∈ (0, d/`),
σ ∈ Mdis(Ωd/`−η;B) and H ∈ H#(curl; Ωd/`+η;M2×2) such that curlH = σ ∗ %0 in
Ωd/`+η and H[ e1 ] = e0e1, since gm → d/b uniformly, we have that gm(x) ≤ d/` + η for
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all x ∈ (0, `) and all m sufficiently large. Hence, by the minimality of (gm, τm, Hgm,τm)
and lower semicontinuity we have

∫

Ωd/`

W (H̄sym) dz ≤ lim inf
m

∫

Ωgm

W ((Hgm,τm)sym) dz

≤ lim inf
m

∫

Ωgm

W (Hsym) dz =

∫

Ωd/`

W (Hsym) dz .

Since d > 2r0`, by the arbitrariness of η, σ and H we conclude that H̄ = Hd/`,τ and
(τ,Hd/b,τ ) is a solution of

min

{∫

Ωd/`

W (Hsym) dz : H ∈ H#(curl; Ωd/`;M
2×2),

σ ∈ Mdis(Ωd/`;B) such that (d/`, σ,H) ∈ X(e0;B)

}
,

which contradicts Proposition 2.16, since |e0| > ē and there is at least one dislocation
which is not lying on the bottom.
Step 3. (C1-convergence) By Step 2 and Lemma 2.9, we deduce that Ω#

hn
satisfies a

uniform interior ball condition with any radius % < min{1/Λ, r0} and thus independent
of n. This property, together with the uniform convergence proved in Step 1, implies
that for n large Σhn

∪Σhn,c = ∅. This can be shown arguing as in Step 2 of the proof of
[25, Theorem 6.9]. In turn, by Theorem 2.15, we deduce that for n sufficiently large Γ#

gn
is of class C1,α for all α ∈ (0, 1/2). We now show that in fact hn → d/` in C1

#([0, `]).
To this aim, fix % < min{1/Λ, r0}. By Step 1 we have an := supx∈[0,`) |hn(x)−d/`| →

0. Take now z = (x, hn(x)) and the corresponding ball B%(z0) ⊂ Ω#
hn

∪ (R × (−∞, 0])
touching Γhn

at z. If hn(x) = d/`− an then h′
n(x) = 0 since hn ≥ d/`− an. Otherwise,

let us set Γn := ∂B%(z0) ∩ {(x, y) : y ≥ d/` − an}. Since an → 0 we have H1(Γn) → 0.
Therefore, since z ∈ Γn, the slope of the tangent to ∂B%(z0) at z is bounded by a small
constant ω(H1(Γn)), where ω is a continuity modulus such that ω(0+) = 0. This shows
that h′

n → 0 uniformly in [0, `] as claimed.

Step 4. (C1,α-convergence and conclusion) Write σn =
∑k

i=1 biδ
#
zi,n , zi,n = (xi,n, yi,n).

We now decompose Hhn,σn = Dvn + Kn, where

Kn :=

(
k1,n 0
k2,n 0

)
,

with

kl,n(x, y) := −
k∑

i=1

(bi · el)
∫ y

0

%r0(x− xi,n, t− yi,n) dt , for l = 1, 2,

and vn satisfies {
divCE(vn) = −divC(Kn)sym in Ωhn

,

CE(vn)[ν] = −C(Kn)sym[ν] on Γhn .

Since h′
n → 0 uniformly, we can argue as in [25, Theorem 6.10] to prove that for every

β ∈ ( 1
2 , 1) there exist C > 0 and a radius r̄ > 0, both independent of n, such that for all
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z0 ∈ Γhn and for all r ≤ r̄,

∫

Br(z0)∩Ω#
hn

|∇vn|2 dz ≤ Cr2β

for n large enough. In turn, since Kn is smooth this implies that for a possibly larger
constant C > 0 (still independent of n)

∫

Br(z0)∩Ω#
hn

|Hhn,σn |2 dz ≤ Cr2α

for all z0 ∈ Γhn
, for all r ≤ r̄, and for n large enough. From this estimate, arguing

exactly as in Step 3 of Theorem 2.15, we deduce that there exists a constant C > 0 such
that for all n sufficiently large

−
∫ x0+r

x0

∣∣∣h̄′
n(x) −−

∫ x0+r

x0

h′
n ds

∣∣∣ dx ≤ Crβ−
1
2

for all x ∈ [0, `) and r < r̄. By [2, Theorem 7.51], this implies that ‖hn‖
C

1,β− 1
2

# ([0,`])
is

uniformly bounded for n sufficiently large. By the arbitrariness of β ∈ ( 1
2 , 1), we have

shown that hn → d/` in C1,α
# ([0, `]) for all α ∈ (0, 1

2 ). Recalling the choice of ē, the
conclusion of the theorem follows from Proposition 2.16.

3. The nucleation energy

In this section we will address the nucleation of dislocations. Fix a finite set Bo

of fundamentals Burgers vectors, which are linearly independent with respect to integer
linear combinations; i.e., if bo

1, . . . , bo
N are distinct elements of Bo such that

∑N
i=1 nib

o
i =

0, with ni ∈ Z, then n1 = · · · = nN = 0. Define

B :=
{ N∑

i=1

mib
o
i : mi ∈ Z, bo

i ∈ Bo, , N ∈ N

}
.

For every b ∈ B we set

‖b‖2Bo :=

N∑

i=1

|mi||bo
i |2 ,

where the coefficients mi are such that b =
∑N

i=1 mib
o
i .

Given h ∈ AP (0, `), we now define the admissible dislocation measures in Ω#
h , by

setting

Mdis(Ωh) :=
{
σ ∈ M(Ω#

h ;R2) : σ =

k∑

i=1

biδ
#
zi , bi ∈ B, zi ∈ Ωh, with Br0(zi) ⊂ Ω#

h , k ∈ N

}
.

30



If σ =
∑k

i=1 biδ
#
zi ∈ Mdis(Ωh), where the zi’s are all distinct, then the corresponding

nucleation energy will be defined as

N(σ) := co

k∑

i=1

‖bi‖2Bo , (3.1)

for some (material) constant co > 0.

3.1. The minimization problem

For any fixed mismatch strain e0 6= 0 we introduce the space of admissible configura-
tions

Xe0 :=
{

(h, σ,H) : h ∈ AP (0, `), σ ∈ Mdis(Ωh), H ∈ H#(curl; Ωh;M2×2)

such that curlH = σ ∗ %r0 and H[ e1 ] = e0e1

}
,

In this section we shall discuss the minimization problem

min
{
F (h, σ,H) + N(σ) : (h, σ,H) ∈ Xe0 , |Ωh| = d

}
, (3.2)

where F is defined as in (18) and d > 0 is the given total mass. We start by observing
that the minimization problem has a solution.

Theorem 3.1. The minimization problem (61) admits a solution.

Proof. Let {(hn, σn, Hn)} ⊂ Xe0 be a minimizing sequence. Since supn N(σn) < ∞
and min{‖b‖Bo : b ∈ B \ {0}} > 0, we have that the number kn of centers of the

dislocation measures σn =
∑kn

i=1 bi,nδ
#
zi,n is uniformly bounded and supi,n ‖bi,n‖Bo <

+∞. Moreover, arguing as in the proof of Theorem 2.4 we have, up to a subsequence,
that

i) hn → h in L1(0, `);

ii) R2 \ Ω#
hn

→ R2 \ Ω#
h in the sense of the Hausdorff metric,

for some h ∈ AP (0, `). Therefore, up to extracting a further subsequence (not relabeled),

if needed, we can assume that there exists k ∈ N such that σn =
∑k

i=1 bi,nδ
#
zi,n , where

bi,n → bi ∈ B and zi,n → zi ∈ Ωh, with Br0(zi) ⊂ Ω#
h . Setting σ =

∑k
i=1 biδ

#
zi and

observing that
N(σ) ≤ lim inf

n
N(σn) ,

we may now conclude arguing exactly as in the proof of Theorem 2.4.

Remark 3.2 (Regularity). Let (h̄, σ̄, Hh̄,σ) ∈ Xe0 be a minimizer of problem (61).

Writing σ̄ =
∑k

i=1 biδ
#
zi , with zi 6= zj if i 6= j, set B := {b1, . . . ,bk}. Observe that

(h̄, σ̄, Hh̄,σ̄) ∈ X(e0;B) is also a minimizer of (28). Therefore the regularity Theo-
rem 2.15 applies.
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3.2. Existence of configurations with non trivial dislocations

We start by fixing a profile h and considering a minimizer (σ,Hh,σ) of the correspond-
ing energy, i.e., (h, σ,Hh,σ) ∈ Xe0 and

∫

Ωh

W ((Hh,σ)sym) dz + N(σ)

= min

{∫

Ωh

W (Hsym) dz + N(τ) : (τ,H) s.t. (h, τ,H) ∈ Xe0

}
. (3.3)

We want to show that if e0 is large enough and h is nearly flat, then any minimal
configuration (σ,Hh,σ) has a nontrivial dislocation measure σ and its total variation
blows up as |e0| → ∞.

Proposition 3.3. Assume that Bo contains a vector b such that b · e1 6= 0. For every
d > 2r0b, M ≥ 0, and α ∈ (0, 1) there exist e > 0 and δ > 0 such that if |e0| > e,
h ∈ AP (0, `) and ‖h− d/`‖C1,α

# (0,`) ≤ δ, then for every minimizer (σ,Hh,σ) of (62), the

dislocation measure σ is nontrivial and the total variation |σ|(Ωh) > M .

Proof. We only treat the case e0 > 0. Assume that |σ|(Ωh) ≤ M . We want to show that
if e0 is large enough, this leads to a contradiction. Fix z0 = (x0, y0) ∈ Ωh and consider
the dislocation σ := σ + bδ#z0 ∈ Mdis(Ωh) for some b ∈ B such that b · e1 > 0. Such a
vector exists by our assumption on Bo.

We consider the canonical decomposition of Hh,σ, i.e, Hh,σ = e0Duh + Kh,σ, where
Kh,σ is the unique `-periodic solution to the system





curlKh,σ = σ ∗ %r0 in Ωh,

divC(Kh,σ)sym = 0 in Ωh,

C(Kh,σ)sym[ν] = 0 on Γh,

Kh,σ[ e1 ] = 0 on {y = 0},

and uh is the elastic equilibrium in Ωh satisfying uh(x, 0) = (x, 0). Observe that by [22,
Lemma 6.10] for every ε > 0 there exists δ > 0 such that

‖h− d/`‖C1,α
# (0,`) ≤ δ =⇒ ‖uh − v0‖C1,α

# (Ωh)
≤ ε , (3.4)

where v0 is defined in (23). Write b = (b1, b2) and consider the strain field e0Duh +
Kh,σ + K, where

K :=

(
k1 0
k2 0

)
, with ki(x, y) := −bi

∫ y

0

%r0(x− x0, t− y0) dt , for i = 1, 2.

Note that by construction curlK = b δ#z0 ∗ %r0 and K[ e1 ] = 0 on {y = 0}.
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A simple calculation shows that
∫

Ωh

W ((Hh,σ)sym + Ksym) dz −
∫

Ωh

W ((Hh,σ)sym) dz

=

∫

Ωh

W (Ksym) dz +

∫

Ωh

C(Hh,σ)sym : Ksym dz

=

∫

Ωh

W (Ksym) dz +

∫

Ωh

C(Kh,σ)sym : Ksym dz + e0

∫

Ωh

CE(uh) : Ksym dz

=

∫

Ωh

W (Ksym) dz +

∫

Ωh

C(Kh,σ)sym : Ksym dz + e0

∫

Ωh

CE(v0) : Ksym dz

+ e0

∫

Ωh

(
CE(uh) − CE(v0)

)
: Ksym dz.

Observe that ‖σ ∗ %r0‖L2(Ωh;R2) ≤ C, where C = C(M) is a constant depending only on
M . Therefore, Lemma 2.3 implies that

‖Kh,σ‖L2(Ωh;M2×2) ≤ C‖σ ∗ %r0‖L2(Ωh;R2) ≤ C(M) .

Moreover, we clearly have
N(σ) −N(σ) ≤ C ,

for a possibly different constant depending on b. Thus, since b · e1 > 0 we have
∫

Ωh

CE(v0) : Ksym dz =
4µ(µ + λ)

2µ + λ

∫

Ωh

k1 dz < 0 .

Hence, also by (63), we conclude that there exist two positive constants c1 and c2 (de-
pending only on d, M , b, and the Lamé coefficients) such that

∫

Ωh

W ((Hh,σ)sym + Ksym) dz) + N(σ̄) −
∫

Ωh

W ((Hh,σ)sym) dz −N(σ)

≤ c1 + e0
4µ(µ + λ)

2µ + λ

∫

Ωh

k1 dz + c2e0‖uh−v0‖C1,α
# (Ωh)

< c1 + e0

(
4µ(µ + λ)

2µ + λ

∫

Ωh

k1 dz + c2ε

)
< 0

provided that ε is sufficiently small and e0 is sufficiently large. This contradicts the
minimality of (σ,Hh,σ).

Corollary 3.4. For every d > 0, M > 0, and α ∈ (0, 1) there exist e > 0 and δ > 0 such

that if |e0| > e, h ∈ AP (0, `) and ‖h− d/`‖C1,α
# (0,`) ≤ δ and σ =

∑k
i=1 biδ

#
zi ∈ Mdis(Ωh)

with |σ|(Ωh) ≤ M , e0(bj · e1) < 0 for j ∈ J ⊂ {1, . . . , k}, J 6= ∅, then
∫

Ωh

W ((Hh,σ)sym) dz >

∫

Ωh

W ((Hh,σ̃)sym) dz ,

where
σ̃ =

∑

i 6∈J

biδ
#
zi −

∑

i∈J

biδ
#
zi .
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Proof. It is enough to show that the energy strictly decreases whenever we replace bj ,
with j ∈ J , by −bj . Indeed, set σ̄ := σ − 2bjδ

#
zj . Arguing exactly as in Proposition 3.3,

we have that for |e0| sufficiently large
∫

Ωh

W ((Hh,σ̄)sym) dz −
∫

Ωh

W ((Hh,σ)sym) dz

≤
∫

Ωh

W ((Hh,σ + K)sym) dz −
∫

Ωh

W ((Hh,σ)sym) dz < 0 ,

where

K :=

(
k1 0
k2 0

)
, with ki(x, y) := −2(bj · ei)

∫ y

0

%r0(x− x0, t− y0) dt , for i = 1, 2.

As an application of Proposition 3.3 and of the theory developed in [25], we show
that for suitable values of e0 and γ the global minimizers display a nontrivial dislocation
part.

Theorem 3.5 (Minimizers with dislocations). Assume that Bo contains a vector b such
that b ·e1 6= 0, fix d > 2r0` and let |e0| > ē, where ē is as in Proposition 3.3. Then there
exists γ̄ such that if γ > γ̄, then any global minimizer (h̄, σ̄, H̄) of the problem (61) has
nontrivial dislocations, i.e., σ̄ 6= 0.

Proof. Assume without loss of generality that e0 > ē and assume by contradiction that
there exists a sequence γn → +∞ and a corresponding sequence (hn, σn, Hn) ∈ Xe0

of global minimizers for (61), with γ replaced by γn, such that σn = 0. In particular
Hn = e0,nDuhn , where uhn is the elastic equilibrium in Ωhn (see (21)). It follows that
(hn, uhn) is a global minimizer of

min
{
Gn(h, u) : (h, 0, Du) ∈ X1, |Ωh| = d

}
,

where

Gn(h, u) :=
1

γn

∫

Ωh

W (E(u)) dz + H1(Γh) + 2H1(Σh) .

Arguing exactly as in Step 1 of the proof of Theorem 2.18 we can show that sup[0,`) |hn−
d/`| → 0. We claim that

hn = d/` for n large enough. (3.5)

To this aim, we argue by contradiction assuming supx∈[0,`] |hn(x) − d/`| > 0 for a (not
relabeled) subsequence, Note that we may rewrite the functional Gn as

Gn(h, u) :=

∫

Ωh

Wn(E(u)) dz + H1(Γh) + 2H1(Σh) ,

where Wn is defined as in (12), with µ and λ replaced by µn := µ 1
γn

and λn := λ 1
γn

,

respectively. Since µn → 0 and λn → 0, we may apply the local minimality result in [25,
Theorem 2.9], to conclude that there exist n0 and δ > 0 such that

Gn0
(d/`, ud/`) < Gn0

(k, uk) (3.6)
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whenever k ∈ AP (0, `), |Ωk| = d, and 0 < supx∈[0,`] |k(x) − d/`| ≤ δ.
Take n > n0 so large that

0 < sup
x∈[0,`]

|hn(x) − d/`| ≤ δ and
γn0

γn
< 1 .

From the inequalities above and (65), we get

Gn(d/`, ud/`) =
γn0

γn
Gn0

(d/`, ud/`) +

(
1 − γn0

γn

)
H1(Γd/`)

<
γn0

γn
Gn0(hn, uhn) +

(
1 − γn0

γn

)(
H1(Γhn) + 2H1(Σhn)

)

= Gn(hn, uhn),

thus contradicting the minimality of (hn, uhn). This proves claim (64). In turn, by
Proposition 3.3 we deduce that for n sufficiently large σn 6= 0, in contrast with our initial
contradiction assumption.
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