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Abstract

A variational model for epitaxially strained films accounting for the presence of disloca-
tions is considered. Existence, regularity and some qualitative properties of solutions are
addressed.

Résumé: Um modele variationnel pour les films épitaxialement tendus tenant compte de
la présence de dislocations est considéré. L’éxistence, la régularité et certaines propriétés
qualitatives des solutions sont abordées.
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1. Introduction

The ability to control the morphology of elastically stressed thin films is paramount in
the manufacturing of microelectronics and optical devices. Due to the misfit between the
film and the substrate lattice constants, the film may undergo a morphological change,
known as the Asaro-Grinfeld-Tiller (AGT) instability (see [4], [30]). This is a stress
relief mechanism, by which the system decreases the elastic energy by allowing non-
planar morphologies when a critical thickness is achieved. Such threshold effect is usually
explained as the result of two competing forms of energy: the surface energy, which favors
flat configurations, and the bulk elastic energy, which in turn is decreased by wavy or
corrugated configurations.

An extensive literature is devoted to the modeling and to the numerical analyis of
strained epitaxial films; see for instance [26], [46], [47], [48] and the references therein.
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Several variational models have been proposed to study epitaxial growth, both in the
static case (see [5, 8, 9, 10, 11, 21, 25, 29]) as well as in the time-dependent setting (see
[22, 23, 44]), starting with the free-energy approach of [31].

Experiments indicate that the nucleation of dislocations is a further mode of strain
relief (in addition to the already mentioned profile buckling) for sufficiently thick films
(see, for instance, [19, 26, 33, 36, 49]). Indeed, when a cusp-like morphology is formed,
the resulting local stress at a surface valley has a greater energy than that produced
by the nucleation of a dislocation. Once the dislocation is formed, it migrates to the
film/substrate interface, and the film surface relaxes towards a planar-like morphology.

In this paper we propose a mathematical model, which takes into account the forma-
tion of misfits dislocations. We start by recalling the variational formulation studied in
[10] and [21] (see also [12] and [15]) within the context of equilibrium configurations of
epitaxially strained films without dislocations. As in those papers we work within the
theory of linear elasticity. We consider two-dimensional configurations, corresponding to
three-dimensional morphologies with planar symmetry. The reference configuration of
the film is described as

Qh::{z:(x,y)eRQ:0<x<€,0<y<h(x)},

where the function h : [0,¢] — [0, 00) represents the free-profile of the film. The vector
field u : ), — R? represents the displacement of the film and

E (u) := % (Vu + VTU)

its strain. The presence of a mismatch between the lattice constants of the film and the
substrate is incorporated in the model by prescribing a Dirichlet boundary condition of
the form u(z,0) = (egz, 0) at the interface, with ey # 0. This corresponds to the case of
a film growing on an infinitely rigid substrate.

As customary in the physical literature, we also require the periodicity conditions
h(0) = h(f) and Vu(0,y) = Vu(f,y). The energy associated with a dislocation-free
configuration (h,w), when h is smooth, is given by

G(h,u) :== /ﬂ [M|E(u)|2 + %(divu)ﬂ dz +~vyH' (T4,

where p and \ are the Lamé coefficients of the material, - is the surface tension on the
profile of the film, I';, denots the graph of h, and H!' stands for the one-dimensional
Hausdorff measure.

Equilibrium configurations corresponf to local or global minimizers of G among all
admissible configurations, with prescribed volume. Notice that smooth minimizing se-
quences may converge to irregular configurations, with the profile h being a lower semi-
continuous function of bounded variation. In particular, vertical parts and cuts may
appear in the (extended) graph of h. This requires extending the definition of G to a
larger class of possibly irregular reachable configurations, through a relaxation proce-
dure. This has been done in [10] and [21] (see also [12] and [15]), and it leads to the
relaxed energy:

G(h,u) :/Q [u\E(u)|2+ %(divu)Q dz +yH(Th) + 29H (2h), (1.1)
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where Y, is the set of vertical cuts defined as
p=A{(z,y) : 2 €[0,0), h(z) <y <min{h(z—), h(z+)}},

with h(z+) denoting the right and left limit at z. Note that the factor 2 appearing in
the last term of (1) is due to the fact that in the approximation procedure vertical cuts
result from the collapsing of needle-like smooth profiles into a segment whose length in
the limit is counted twice.

Next we modify G to account for the presence of isolated misfit dislocations in the
film. The mathematical modeling of dislocations has been studied by several authors;
see for instance [1, 3, 6, 16, 17, 20, 27, 34, 35, 40, 45], and the references therein.

Volterra’s dislocations may be viewed as topological point singularities of the field

(see [41]). To be precise, given a set of points {z1,...,2x} C Q) and a set of vectors
{by,...,bi} C R? a strain field H is compatible with a system of dislocations located
at z1,..., 2z, and having Burgers vectors b, ..., by if
k
curl H = Zbiém ; (1.2)
i=1

where ¢, denotes the Dirac delta at z. Since the elastic continuum model is not valid
near the singularities, some kind of regularization is needed. A standard approach in the
engineering literature (see [41]) is to remove a core By, (z;) of radius ro > 0 around each
dislocation and associate with H the (finite) elastic energy

A
/ N|Hsym|2 + *(tI‘(H))ﬂ dz’
QAU Brg (1) 2

where Hgyp, := (H + HT)/2. The mathematical study of this energy can be found, e.g.,
in [13, 17, 28, 40).

In this paper, following [33], we consider a variant of this approach, which consists in
regularizing the dislocation measure o := Zle b;0., through a convolution procedure.

To be precise, we replace (2) with the compatibility condition
curl H = o * g , (1.3)

where o, := (1/r¢)o(-/70) is a convolution kernel, with ¢ a standard mollifier compactly
supported in the unit ball. Here ro > 0 is a fixed constant that may be interpreted as
before as the core radius. Since the set of strain fields H satisfying condition (3) and
with finite energy, i.e.,

/ [u|Hsym|2 + %(tr(H))Q dz < 400 (1.4)
Qp

is non-empty, for any given profile h and any given dislocation measure o, the compatible
strain field H minimizing the elastic energy (4) is well defined and satisfies the div-curl
system
curl H = o x
{ T = e in Q. (1.5)

pdivH + (A + p)V(tr(H)) =0
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Note that the above system admits an equivalent formulation in terms of the so-called
Airy stress function w associated with H through the identity

V20 — 1 (2u+ AN Haz + AHpy —p(Hyo + Hay)
—u(Hy2 + Hoy) (2u+ N)Hyy + AHao )

2
see [24, Chapter 12]. Indeed, (5) can be rewritten as (see [33])
A?w = curl(o * or,) in Q.

Adopting the above convolution-based regularization, the total energy associated with
a profile h, a dislocation measure o, and a strain field H, satisfying the compatibility
conditions (3), is given by

F(h,o,H) := / [MHSWF + %(tr(H))ﬂ dz + yH (Th) + 29HY(Sh) . (1.6)
Qp

In Section 2 we assume that a finite number k of dislocations, with given Burgers vectors
B := {by,...,b;} C R? are already present in the film, and we address the problem of
finding the optimal configuration, i.e., the profile h and the location zi, ...,z of the k
dislocations which minimize the total energy, under a given volume constraint |Q| = d.
To be precise, denoting by X (eg; B) the set of admissible triples (h, o, H), in Theorem
2.4 below, we prove

Theorem 1.1. The minimization problem
min{F (h,o,H) : (h,0,H) € X(ep;B), || =d}. (1.7)
admits a solution.

We then show that the equilibrium profile i obtained above satisfies the same regu-
larity properties proved in [21] (see also [18, 25]) in the dislocation-free case. Namely,

Theorem 1.2. Let (h,5,Hj;, ;) € X(eo;B) be a minimizer of (7). Then h has at most
finitely many cusp points and vertical cracks, its graph is of class C* away from this
finite set, and of class CH%, a € (0, %) away from this finite set and off the substrate.

For a more detailed qualitative description of this regularity result we refer to Theorem
2.15 below. The overall strategy to prove this theorem is the same used in [21]. However,
there are many new technical issues due to the presence of dislocations, which require
new ideas. In particular, a major difficulty arises in showing that the volume constraint
can be replaced by a volume penalization. In the dislocation-free case this was based
on a straightforward truncation argument, which fails in the present setting because
dislocations cannot be removed in this way. Indeed they act as a sort of obstacle when
touching the profile, and this is overcome in Theorem 2.5, where it is shown that a
delicate truncation construction is still possible without affecting the dislocations.

In Theorem 2.18 we provide analytical support to the experimental evidence that,
after nucleation, dislocations lie at the bottom.

Theorem 1.3. Assume B # 0, d > 2rqf. Then there exzist € > 0 and 5 > 0 such
that whenever |eg| > €, v > 7, and eq(b; - e1) > 0 for all b; € B, then any minimizer
(h,&,H) of the problem (7) has all dislocations lying at the bottom of Qy,, in the sense
that the centers z; are of the form z; = (x;,10).
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In the last part of the paper we study the nucleation of dislocations and we investigate
conditions under which it is energetically favorable to create dislocations. To this pur-
pose, we modify the energy (6) by adding a term that accounts for the energy dissipated
to create dislocations. Following the physical literature (see for instance [41]), we assume
that the energy cost of a new dislocation is proportional to the square of the norm of
the corresponding Burgers vector. This leads to an energetic contribution N (o), given
in (60). Therefore, our new variational problem is to

minimize F(h,o, H) + N (o) (1.8)

among all admissible configurations (h, o, H), under a volume constraint, but without
fixing the number of dislocations nor the Burgers vectors, which are allowed to be any
integer multiple of certain fundamental directions in a set B° C R2.

The regularity results of Section 2 apply to the minimizers of (8). On the other
hand, local and global minimizers of the minimum problem studied in Section 2 may
be regarded as local minimizers of (8). Finally, in Theorem 3.5 we identify a range of
parameters for which all global minimizers have nontrivial dislocation measures (see [38]
for an analogous result in heterogeneous nanowires).

Theorem 1.4. Assume that there exists b € B° such that b-e; # 0, and let d > 2ryl.
Then there exists ¥ > 0 such that whenever |eg| > €, and v > 5, where € is as in Theorem
1.3, any minimizer (h,a, H) of the problem (8) has nontrivial dislocations, i.e., & # 0.

2. Epitaxial elastic films with dislocations

2.1. Setting of the Problem

We assume that the substrate is rigid and occupies the semi-infinite strip (0,¢) x
(—00,0), and that the reference configuration of the elastic film is given by

QU ={z=(2,9): 0<2 <L, 0<y<h(x)}

with h : [0,£] — [0,00). The graph of h represents the free profile of the film and the
line y = 0 corresponds to the film/substrate interface. The space of admissible profiles
is defined by

AP(0,£) :={h : R — [0,400) : h is lower semicontinuous
and f-periodic, Var(h;0,£) < o0} .

Here Var(h;0,¢) denotes the pointwise total variation of h over the interval (0, ¢), given
by

k
Var(h;0,¢) := supz |h(x;) — h(zi—1)] < 400,
i=1
where the supremum is taken over all partitions {xg,z1,...,z%}, with 0 < 2o < 27 <

oo < x < £k € N. Since h € AP(0,¢) is {-periodic, its pointwise total variation is
finite over any bounded interval of R. Therefore, it admits right and left limits at every
x € R denoted by h(z+) and h(z—), respectively. In what follows we use the notation

ht(z) := max{h(z+), h(z—)}, - h™(x) := min{h(z+), h(z—)}. (2.1)



We set
QF = {(z,9) :z €R, 0 <y < h(z)}

to be the open set obtained by repeating copies of (2, ¢-periodically in the z-direction.
We define

Dy i={(z,y) 2 €[0,0), b~ (z) <y < h¥(2)},

and the set of vertical cracks
S = {(,y) 12 € [0,6), h(z) < h™(2), hiz) <y < h™(x)}. (2:2)

We also set

and we will use the notation
¥ = {(z,y) eR*: z € R, h~(z) <y < h(x)}.
Similarly we define Z# and fh#
Observe that if h € AP(0,¢), then

1/ Q
1h]]co < Z/o hdx 4+ Var(h;0,¢) < % +HNTh). (2.3)

We work within the theory of small elastic deformations, so that
1
E(u) := 3 (Vu+ vu™)

represents the strain, with u : Q;, — R? the planar displacement. The elastic energy
density is

1
W(E) = 5CE:E= ulE)? + %[tr(E)]Q, (2.4)
where ( )
24+ N)Eq1 + AEa 2uFn 2
CE = 2.5
( 2‘[LE12 (2# + )\)EQQ + >\E11 ) ( )

and the Lamé coefficients p and A satisfy the ellipticity conditions
w>0 and w+A>0. (2.6)

Throughout this section we assume the presence of k dislocations with given Burgers
vectors B := {by,...,b,} C R? and centers {z1,..., 2} C Qp such that B, (z) C Qf,
with 7o € (0,€/2) a (small) positive constant representing the core radius of the dislo-
cations. With any such collection of dislocations we associate the £-periodic dislocation

measure
k
o= E biéﬁ,
i=1

where, given z € ), we denote by 67 the (-periodic extension of the Dirac delta §,, i.e.,

5? = Z(;Z-‘rkfel .

keZ
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To regularize o, we fix a nonnegative radially symmetric ¢ € C2°(B1(0)), with [, odz =

1, and we define
1 z
0ro(2) i= 739(%) and gff) = O *5#. (2.7

Note that gff) is the f-periodic extension in the z-direction of the function g, .
Given h € AP(0,¢) we denote by Mg;5(25; B) the subset of the space of vector valued
Radon measures .M(Q?fb7 R?) defined by

k
Mis(Q; B) == {a € M(Q3R?) - 0 =) bid#, 2 € Qu, with By, (z) C Q#}.

=1

Observe that we are not requiring that the centers of the k dislocations are all distinct,
thus allowing for superpositions of different dislocations.

We recall that the curl of a function H with values in M2*? is defined by

OH15 O0Hy1 0Hsy  OHo
curl H := ( — , — ) .
ox oy ox dy

The total energy functional will depend on the film profile h and on the disloca-
tion measure o € M4;5(Q2) via the associated strain field H satisfying the constraint
curl H = o0 * g, which accounts also for the interactions between the different disloca-
tions. Moreover, the presence of a mismatch between the film and the substrate lattices
is modeled by enforcing a Dirichlet boundary condition at the interface {y = 0}, namely
by requiring that the tangential trace of H on the interface equals epe, where e; := (1, 0)
and ey # 0. To be precise, we introduce the following set of admissible triples

X(eo;B) := {(h,a, H): he AP(0,0), 0 € Mais(Q; B), H € Hy (curl; Qy; M2*2)
such that curl H = o % g,y in Qp, and H[e1 ] = egeq on {y = O}} , (2.8)

where we are using the fact that admissible fields H admit a tangential trace (see, e.g.,
Chapter 4 in [7]), and where, denoting by H# the {-periodic extension in the 2-direction
of H,

Hy (curl; Qp; M?%?) .=
{H € L} .(Qn; M?*?) : curl H € L*(Qp,;R?) and curl H* € L} (Q#;RQ)}. (2.9)

loc

The total energy of the system is given by

F(hyo,H) = | W(Hgsym)dz +yH" (Th) +29H (Zh) (2.10)
Qp
for every admissible configuration (h,o, H) € X(eo;B), where we recall that Hyy,, =
(H + HT)/2 and 7 is a positive constant depending on the material properties.
For every fixed profile h € AP(0, ) and dislocation measure o we denote by H}, , the
unique strain field that minimizes

H— W(Hsym) dz
Qp,



over all H € Hy(curl; Qp,; M?*?) such that (h,0,H) € X(eop;B). The existence and
uniqueness of Hj, , follow from the coercivity and strict convexity of the energy (18) (see
(13) and (14)) and the fact that the Dirichlet condition in (16) is preserved under weak
convergence in the space Hy (curl; Q,; M?*?) (see (17)). Note that Hj, , is determined
as the unique solution in Hy (curl; Q5; M?%2) to the system

curl Hy o = 0 % 0r, in Qp,
divC(Hp,o)sym =0 in Qp,
C(Hh,o)sym[V] =0 onTp,
Hpole1] =eoer on {y = 0}.

(2.11)

Note also that if (h,o, Hy ) € X(ep;B) is a (locally) minimizing configuration, with
h € C’i([O,E]) and h > 0, then by considering smooth variations of h supported in
the complement of the projection of U¥_, B, (z;) on the [0,¢], we obtain by standard
arguments the following Euler-Lagrange equation

K+ W((Hpo)sym) = A on I'y\ UfZIBTO (), (2.12)

where

oY
Ki=—| —
()
denotes the curvature of I';, and A is the constant Lagrange multiplier associated with
the volume constraint. This motivates the following definition.

Definition 2.1. Let (h,0, Hy;) € X (eo; B), with h € C5([0,4€]) and h > 0. We say that
(h,0,Hps) is a critical configuration if (19) and (20) are satisfied.

In the sequel we will use the following canonical decomposition of Hj, ,:
Hyp o = eoDup + Kp o,

where wuy, is the elastic equilibrium in € such that uy(x,0) = (x,0), that is the unique
solution to the system

div CE(’LLh) =0 in Qh,
CE(up)[v]=0 onTy, (2.13)
up(z,0) = (2,0) on {y =0},
such that (z,y) € Q% — uy(z,y) — (x,0) belongs to
LDy (Qy;R?):= {v €L} (Qh#;RQ) s o(z,y) = v(x+L,y)

loc
for (z,y) € Of , E(v)la, € LR},
and K}, , is the unique solution in Hy (curl; p,; M2*2) to

curl Ky, o =0 * 0, In Qp,
divC(Kpo)sym =0 in O,
C(Kh,o)sym¥] =0 on Ty,
Kp,le1]=0 . on {y = 0}.

(2.14)



We set
—\y

’UO(l‘,ZJ) = (Qf, 2'u+)\

Observe that v is the elastic equilibrium corresponding to the flat configuration and
€y = 1.

) and  Wo := W(E(w)). (2.15)

2.2. Existence
We start with the following Korn-type inequality.

Lemma 2.2. Let Q C R? be a bounded open simply connected set with Lipschitz boundary
and let T’ be a non-empty connected relatively open subset of OQ. Then, there exists a
constant C' > 0 depending only on Q) and I' such that

HH||L2(Q;M2X2) S O(HHsym||L2(Q;M2X2) —|— H CuI‘lH||L2(Q;R2)) (216)
for all H € H(curl; Q; M?*?) with tangential trace H[t] =0 on T.

Proof. Step 1. We start by assuming that H!(9Q\I') > 0 and, without loss of generality,
that Hgym € L?(€; M2*?). Let

L —Dywl Dzwl
K= < —DyUIQ mez >’

where w = (w7, wz) is the unique solution to

Aw=curl H in Q,
w=0 on 0N\ T,
D,w=0 onlI'.

By multiplying Aw; = (curl H); by w;, ¢ = 1,2 and integrating by parts, it follows from
the Poincaré inequality

HKHLQ(Q;M2X2) = ||Dw||L2(Q;M2><2) < CH Cur1H||L2(Q;R2) . (2.17)

Since curl(H — K) = 0 in Q, by the Helmholtz decomposition theorem (see, e.g., Theorem
3.3.7 in [39]) there exists u € H'(£2;R?) such that Du = H — K. Moreover, u is unique
up to a constant. Since (H — K)[r] = 0 on I, we can take u = 0 on I". Using Korn’s
inequality (see, e.g., [43]), we have

[ Dul|p2@mzx2)y < CllE(w)|z2@m2x2) = CllHsym — Koym||12(m2x2)
S C(HHsym||L2(Q;I\\/JI2><2) + H Cur1H||L2(Q;R2)) s (218)
where in the last inequality we have used (25). By (25) and (26), we obtain (24).

Step 2. If #}(0Q\ ') = 0, then the argument is similar, and it suffices to replace the
condition w = 0 on IN\ T by [, wdz=0. O

The next lemma provides a useful elliptic estimate for the solutions to systems of the
type (22).



Lemma 2.3. Let h € AP(0,¢) N Lip(0,¢), h > cog > 0, ||W]loo < M and let f €
L?(0,¢;R?). Then, there exists a constant C > 0, depending only on co and M, such
that if H € Hy (curl; Qp,; M2%2) is the solution to

curlH = f in Qp,
divCH,ym =0 in Qp,
CHsym[v] =0 onTy,
Hle;]=0 on {y = 0},
then
| H || L2 (02, azx2) < C|l fllL2(0,02) - (2.19)

Proof. Since h > ¢y > 0, the set ) is connected, and since its complement is also
connected, we have that 2 is simply connected. Hence, we can argue as in the proof of
Lemma 2.2 to split H = Du + K, where K is defined

_ —Dywl DI’U.)l
K= < —Dng wag )

with w = (wy,wsy) the unique solution to
Aw=f in Qp,

w=0 on I'y,
D,w=0 on {y=0}

As before we have that || K||2(q, mex2) < Ol fll22(q,r2)- Note that u € Hj (Q4; R?) can
be chosen to be identically 0 on {y = 0} and solves

divCE(u) = —divCKgy,, in Qp,
CE(u)[v] = —CKym[V] on I'y,
u=0 on {y =0}.

Multiplying both sides of the equation above by w, integrating by parts, and using the
fact that if H € M?*? is symmetric, then so is CH (see (13)), we get

CE(u): E(u)dz = — CKeym : E(u)dz.
Qp Qp

Hence, also by Korn’s inequality, we have
[ Dullr2(0;m2x2) < ClIK || L2, m2x2) < Cllfll2(0nir2)
and we conclude that (27) holds. O
Theorem 2.4. The minimization problem
min{F(h,o,H): (h,0,H) € X(eg;B), || =d}. (2.20)

admits a solution.
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Proof. Let {(hn,0n, Hy)} C X(ep;B) be a minimizing sequence. By the compactness
results in [21, Proposition 2.2 and Lemma 2.5], we may assume that, up to a subsequence
(not relabeled), there exists h € AP(0,¢) such that

i) hy, — hin LY(0,0);
i) R?\ Qﬁn — R2\ Qﬁ in the sense of the Hausdorff metric.

Moreover, in [10, Lemma 2.1] it is shown that

HYUTL) 4 2HN () < lim inf [H'(Th,) +2H (Sh,)] - (2.21)

Setting o,, = Zle biéﬁn, we can assume (up to extracting a further subsequence if

needed) that z; , — 2; € Qp, with B, (2i) C Q# Note that if z; - e; = £ using the lateral
periodicity we can assume that z; - e; = 0, and so by (2.1) we have that z; € 2.

Set Vi, := Qp, U((0,£) x (—=1,0]) and V := Q,U((0, £) x (—1,0]). Since Hy,[e1] = epex
on {y = 0}, by setting H,, := Vug in (0,¢) x (—1,0], where uo(z,y) := (e, 0), we have
that H,, € H(curl; V,,; M2X2). Note that the sets V), are simply connected. Consider an
increasing sequence of simply connected Lipschitz sets U; C V such that (0,¢) x (—1,0] C
U;, 0U; NT}, = 0 and UjenU; = V. By Lemma 2.2 we have that for every j, the strain
fields H,, are equibounded in L?(U;; M?*?). Note also that curl H,, = 0, % 0, — 0 * 01,
in L?(V;R?), where o := Ele b;6%. Thus, by a diagonalization argument, we may
find H € H(curl; V;M?*2) such that curl H = o * g,,, and, up to the extraction of a
further subsequence (not relabeled), H,, — H weakly in L?(U;; M2*?) for every j. Since
H, = Vug in (0,¢) x (—1,0], we have that H = Vug in (0,¢) x (—=1,0], and, in turn,
Hlei] = ege; on {y = 0} NOQy,. It follows that (h,o, H) € X(eg; B) and for every j € N

/ W (Hsym) dz < liminf W((Hp)sym) dz
U;NQy, " U;NQp

< lim inf W((Hp)sym) dz. (2.22)

n Qn,
By (29) and (30) and the arbitrariness of j we conclude that
F(h,o,H) < liminf F(hy,, 0., Hy) .

Thus (h, o, H) is a global minimizer. O

2.8. Regularity

In this subsection we establish the regularity properties of minimizers of problem
(28). We shall follow the general strategy developed in [21, 25] to which we refer for all
parts of the proofs that will remain unchanged.

Theorem 2.5. Let d > 2rol and let (h, 7, Hj, 5) be a minimizing configuration for prob-
lem (28) such that h™ is not flat. There exist 3 > 0 depending only on ||h — d/€||12(0.0)
and F(h,o,Hy}, ), and A > 0 depending on p, A, eg, ro and 3, such that (h,, Hy, ;) is
also a minimizer of

¢
min{F(h,J,H)—i—B/ \h— h|* dz + A||Qn] — d| : (h,0,H) EX(eO;B)}. (2.23)
0
11



Before giving the proof we need the following technical lemma.
Lemma 2.6. For all ¢ > 0 there exists A(e) (depending also on B, p, A, eq, and ro)
with the following property: For all A > A(e) if (9,7, Hy,+) s a minimizer of (31), with
Q] > d, 7 = Zle b;6%, and if I' C 0B, (z;) N Ty for some j € {1,...,k}, with

zi?

zj - €a > 1, is any connected arc, then H*(I') <e.

Proof. In order to prove the lemma observe that in B, (z;) we can write Hy , = Dv+ K,

where
K ki O
. < k2 O > ’
k

Yy
ki(w,y) == (b ez)/ of (@ — @y, t —y;) dt for 1 = 1,2,
0

i=1

where o7 is defined in (15), and v € H;&(Qh;Rz) satisfies

with

divCE(v) = —divCK,ym in Qg,
CE()[v] = =CKgym[v]  onTy,
v=0 on {y =0}.

Since K and I" are both smooth, v is smooth in B,,(z;) UI". Let I'" C I' be the
subarc with the center of I and such that H'(I") = 2H*(I"). By elliptic estimates for
the Lamé system (see for instance [25, Proposition 8.9]) there exists a constant Cy > 0
depending only on H*(I"”), ro, the Lamé coefficients 1 and A, and on F(h, &, Hj, ), such
that

sup |Dv| < Cy.

T

In particular, the constant C; = C4(I') above is uniformly bounded if #!(I') is bounded
away from 0. In turn, we obtain

sup |Hg7-r| <Ci{+0Cy, (224)
F//

where the constant Cy > 0 depends only on 7.
Fix ¢ € C(I), ¢ > 0, where [ is an open interval contained in the projection of I
onto the z-axis. Since z; - ea > rg, for ¢t > 0 sufficiently small we have that B,,(z; —

t]¢lloo) C Qjﬂw and so we can take as admissible competitor the triple (g — tp, o, Hy),

where 7; := Z#j biéﬁ + bﬂz H,:=H, + K;, where

—tllpllces’
(k1 O
o (i 1),
with

Yy Yy
kei(z,y) 1=—</0 Qﬁ(x—xjas—yj—t||<P||oo)dS—/0 Qﬁ)(fﬂ—xjas—yj)dé’)bj'el
12



for [ = 1,2. By minimality, we have
¥/
Flg —to. 1) + 5 [ 19—t = hl* do + A% -1s] )
0

¥/
> Flg,r H,.) +B/ g — B2 dz + A(9| — d).
0

By dividing both sides by ¢ > 0 and letting ¢t — 0T, we obtain

| S s agm) : By [ W(Hy )y 90 (0)
Q I

9
N

g¥
PV S S
/1497

dmf2ﬁ/1(gfﬁ)g0dfo/1godx20, (2.25)

where

: ki ko/2
Ksym = ( k2;2 20/ ) ) kl(xvy) = ||SO||OOQ7”0(Z - Zj)bj e for [ = 1,2.

Since I'" C 0By, (z;) NIy, integrating by parts we get

ge v
—y | ———=dz < — |||t -
114 g7 7”0H |
Thus, by taking a sequence {p,} as above converging pointwise to 1 in I, from (33) we

get that there exists C3 > 0 depending only on 7y and the Lamé coefficients A, p, such
that

AHNT) < e(ro) ALY (D) (2.26)

f _
< o [ Wyl e+ t50p Hy 2+ 245 [ lg =l ac).
NG 0 I

g

where we used the fact that H'(I"") = $H'(I”). Now assume by contradiction that
there exist A, — 400 and minimizers (gn, Tn, Hg, -,) of (31), with |Q,.| > d, 7, =

S bis# | and T, C Ty N 0By, (2)n) for some j € {1,...,k}, with
i%le(F’n) > 0.

Thus, from (32) we deduce that

| < Cu,

nsTn

sup |H,
T
with Cy independent of n. Recalling (34) and observing that by mininimality

¢
Sup(H(qum)sym||L2(an;M2><2) + 5/ |gn — h|? dx) < 400,
n 0
we conclude that
AHIT,) <C

for some constant C' independent of n, which is impossible since A,, — +oc. O
13



Proof of Theorem 2.5. We fix 3 such that

F(h,a, Hy, ;) B/’hff (2.27)

In order to prove the result we will show that any minimizing configuration (g, 7, Hy ;)
for (31) satisfies the volume constraint || = d, provided that A is sufficiently large. We
argue by contradiction and consider several cases.
Step 1. If |Qy| < d, then define h := g + (d — |Q4]|)/¢ and for all (z,y) € Q4
d—1|Q

eoDvg(z,y) if0<y< % ,
H(z,y) :=
d— |Qg|

e )

Hgn(x’y— d_TJQgU ify>

where vy is defined as in (23) and o is the dislocation measure obtained by moving in
the ey direction all the centers z;, i = 1,...,k of 7 by the vector (d — |Q4|)ez/¢. Then
by (23),

¥4
F(h,a,H)+5/ |h — h>dz + A||Qn| — d| — F(g, 7, Hy.7)
0
é —_
fﬁ/ |g—h|2d:c—A||Qg|—d|

A0
(g —h) + ngl)dx—A(d—ng

= GOWO

< egWo(d — |Q]) — A(d — |9 \)

where we used the fact that f(fgdx =1 < d= f(f hdx. By taking A > e2W,, we
obtain a contradiction to the minimality of (g, 7, Hy ).

Step 2. If |Q,] > d, we distinguish two cases. Let yq, be the maximal height of points
inT,and forall i = 1,...,k write z; = (x4, ¥i)-

Case 1. If y; < Ymaoe —70 forall i = 1,..., k, we truncate g in such a way that, denoting
by h the resulting function, we still have B,,(z;) C Qh# for all 4 and Q| > d. Since
h < g, we can estimate

4
F(h,7,H, )+ ﬁ/ \h— h>dz + A(|Qn| — d) — F(g, 7, Hy 7)
0

¥/
—5/0 lg— B2 dz — A (12| - d)
YA l
<B | (g—h)2h—h—g)de—A [ (9—h)dx
0 0
V4

¢
< (28l = 4) [ (9= H)de < @5Co- 1) [ (g-n)ds <0,
0 0
provided A > 23Cjy, which would contradict the minimality of (h,&, H). Note that the
constant Cy bounding ||[|s from above only depends on F(h, 5, Hj, ;) (see (11)).
14



Case 2. Assume now that there exists j such that y; = Ymaz — 70. We claim that
for every ¢ € {1,...,k} the intersection I'y N 0B, (2;) is either empty or a (possibly
degenerate) connected arc. Indeed, if this were not true for some i € {1,...,k}, we could
find two points wy, we € I'yNOB;,(2;) such that the graph of g is detached from 0B, (;)
above the arc w;ws; connecting w;, and w, on 0By, (%;). Denote by D the region bounded
by wiws and the arc on I'y connecting the two points. Fix a point w in the interior of
wiws and consider the tangent to 0By, (7)) at w. Moving this tangent outward in the
direction w — z;, we cut out a region D’ C D bounded by this line and I'y such that
|D’| < |©2,] —d. Note that by doing so we get a new profile § such that H'(I'y) < H*(Ty)
and, in turn,

F(g,7.Hyr) < F(g,7,Hg 7). (2.28)
Therefore, arguing as in the previous step, we contradict the minimality of (g, 7, Hy ;),
provided that A is chosen as before. Thus, the claim holds.
Set
J = {] € {1,...,]{1}: Yj :ymamfro}-
Since Ymazl > |Qq] > d > 2rgl, we have that ypmas — 219 =: 6 > 0. Hence, y; = ro + 0
for every j € J. Let

0 < e < min{d, £}/k. (2.29)
Let A: > 0 be so large that
1
XF(h,&, Hy ;) <e (2.30)

for all A > A.. Fix j € J and assume that 0 < x; < ¢ (the cases ; = 0 and z; = ¢
are similar). By the previous claim, the set I'y N 0B,,(2;) is a (possibly degenerate)
connected arc I'; of left endpoint p; and right endpoint g;.

Since y; > 7o + 6, we may apply Lemma 2.6 to conclude that, choosing a possibly
larger A., then H'(I';) < e. Let Il : R* — R be the projection onto the y-axis. Then
LY (I2(T;) < HY(T;) < e. Hence,

qj'e22ymam_5:27"0+5—6. (231)
If ¢; belongs to I'y N 0By, (z;,) for some j; # j, then by (37) and (39),
Y = (25, —qj)-e2+qj-e2> —rg+2rg+0—e=rg+d—¢

Let g;, be the right endpoint of the (possibly degenerate) connected arc I'y N IB,, (25, )-
Since y;, > 19 by Lemma 2.6 and (39) we obtain as before that the arc I';, of endpoints
g; and g;, has length less than ¢ and that g; - ea > 2rg + 3 — 2. If g;, belongs to
I'yNOB,(z;,) for some jo # j1, we continue this process, otherwise we stop and repeat a
similar procedure for the left endpoint p;. Let J; be the set of the indices i € {1,...,k}
corresponding to balls selected in this procedure. Note that by construction y; > rq for
every ¢ € Jj, and so

SO LMDy N 0By (2:) < D> H (T NOBy,(2) < ke

jeJicd; jeJicd;

Since the union of all the arcs I'y N 0B, (2;) is connected and I'; is one of them this
implies that
Ymaz — k& S g(ﬂf) S Ymax (232)
15



for all € (0,¢) such that (z,g(x)) € I'y N 0B, (z) for some i € J;.
Let II; : R2 — R be the projection onto the z-axis. Since

SN LML (g N 0By (2:) <> H Ty NOBy,(2:) < ke < £,

jeJicd; jeJicd;

the open set U := (0,¢) \ Ujes Uies; I11(T'y N OB, (2;)) is nonempty.

Case 2a. Assume that there exists a connected component I; of U and s < t € I; such
that I'y N (s, t) x R lies strictly above the segment  connecting (s, g~ (s)) with (¢,97 (¢)).
Let v be the unit vector orthogonal to v and pointing upward. Moving ~ in the direction
of v, we can choose 7 > 0 so that the region D bounded by the segment + + nr and
[, N (s,t) x R satisfies |D| < Q]| —d and DNUY_, B, (2;) = 0. Then, arguing as in the
proof of (36) we get a contradiction provided that A is chosen as before.

Case 2b. For every connected component I; of the set U we have that ¢~ is a convex
function in the interval I;. In this case we claim that there exists a constant ¢ > 0
independent of g such that

Ymax — CE < g(l‘) < Ymax for all z € (O,E) . (233)

In view of (40) it suffices to prove (41) in each I;. Fix I; and let a; be its left endpoint.
Then the point (a;, g(a;)) belongs to one of the balls B, (2;) for some j € J and I € J;.
Let 0; be the angle that the oriented segment of endpoints z; and (a;, g(a;)) forms with
the z-axis. By (40), we have that ¢; > 7 for ¢ sufficiently small. Since g is a convex
function in the interval I;, it lies above the line

t s (as, g(ai)) + t<1, _ o8 0i>

sin 92

tangent to the ball 9B, (z) at (a;,g(a;)). Since H'(Ly N IB,,(2)) < €, we have that
cosf; < cos(w/2 —e/ro) = sin(e/rg) < &/ro. Hence, for t > 0,
0; tv/2 /2
C.OS 2 g(az) - ig 2 Ymazxz — kE - i’sv
sin 6; T 7o

where in the last inequality we used (40). This proves that (41) holds. By (31) we have

b
F(g,T,Hg,THﬁ/ lg— R? de + A||Q,| - d| < F(h,a, Hy ,)
0

and so by (38), [|Q] — d| < e. In turn, by (41),
d < Ymazl < d+ (14 cb)e,
which, again by (41), yields
d
—ce < g(w) — 7S (14 cl)e/t (2.34)
for all € (0,¢). It follows that ||g — d/¢||2 < ce for a possibly larger constant c still
independent of g. Hence, using the minimality of (g, 7, H, -) and (35), we obtain

_ _ 1 -
[h—d/lll2 < [lh—gll2+[lg —d/t]l2 < BF(h@Hn,a) + llg —d/2ll2

1 -
< §||h*d/€||2+c€,
16



which is a contradiction if we choose € small enough. O

Next we show that volume constrained minimizing configurations are also a unilateral
minimizers of a simpler penalized problem.

Theorem 2.7. Let d > 0 and let (h, &, Hj, ;) be a minimizing configuration for problem
(28). Fiz A > e}Wy. Then (h,5,Hj, ;) is a minimizer of

min{F(h, o, H) + A(d — |Qu]) : (hyo, H) € X(eg; B), || < d} . (2.35)

Proof. The proof is similar to the one of Step 1 of the proof of Theorem 2.5, with
B=0. O

The next lemma is proved in [25, Lemma 6.5] and will be used to prove the interior
ball condition stated in Lemma 2.9 below.

Lemma 2.8. Let k € AP(0,¢) be nonnegative, let B,(z9) be a ball such that B,(z) C
{(z,y) : x € (0,¢) andy < k(x)}, and let z1 = (x1,y1) and z2 = (x2,y2) be points in
0B,(z0) N (T UXy). Let v be the shortest arc on 0B,(zy) connecting z1 and zg (any of
the two possible arcs if z1 and z2 are antipodal) and let v be the arc on T'yUXy connecting
z1 and z9. Then

1
HO) =H () = 1Dl
where D is the region enclosed by vU«'.

Lemma 2.9. Let A > 0 and let (9,7, Hy ) € X(eo;B) be a minimizing configuration
for the problem (43). If o < min{1/A,ro}, then for all z € Ty UX, there exists a ball
By(z0) € Q¥ U (R x (—00,0]) such that dBy(z0) N (T UX,) = {z}.

Proof. Fix o < min{rg,1/A}. We argue by contradiction and assume that there exists
By(z0) € Q¥ U (R x (—00,0]) touching fg =T4,UX, in at least two points wy = (s1,t1),
wy = (s2,t2) € S (20), where S} (z) denotes the upper half of 9B, (z). Consider
the region D bounded by the arc v on Sz{(zo) connecting w; and wy and fg. Since
0 < 79, necessarily D NUY_, B, (2;) = 0. Hence we may modify g by replacing it with
the function § which coincides with g in [0,£) \ (s1, s2) and whose graph on (s1, s2) is
given by 7. Denote by +' the arc on fg connecting w; and ws. Then we have

F(g,v) + A(d = [Qg]) = F(g,v) = A(d = Q) <H'(7) = H'(¥') + AID] <0,

where the last inequality is a consequence of Lemma 2.8 and the fact that ¢ < 1/A. This
contradicts the minimality of (g, 7, Hy ;). The conclusion of the lemma follows arguing
as in [14, Lemma 2] or [21, Proposition 3.3, Step 2]. O

Theorem 2.5 will be used to study the regularity of those profiles for which the function
h~ defined in (9) is not flat. Note the assumption that h~ is flat does not exclude a
priori the presence of vertical cuts (see (10)). This possibility is ruled out by the next
result.
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Theorem 2.10. Let (h, &, Hj, 5) be a minimizing configuration of problem (28) such that
h~ is constant. Then X5 = ().

Proof. By Theorem 2.7 and Lemma 2.9 we deduce that QB# U (R x (—00,0]) satisfies
an interior ball condition with ¢ < min{rg, 1/(e3Ws)}. If 3;, were nonempty, then each
vertical cut would meet the (horizontal) graph of h~ perpendicularly, but this would
prevent the existence of an interior sphere at the corner. Hence, X7 = () and the proof is

complete. O

We now recall some regularity estimates, based on the theory developed by Grisvard
([32]), proved in [21] for solutions of the Lamé system in planar domains with a corner.
Let © be a bounded open set in R? whose boundary can be decomposed in three
curves
0N =T7UlUl},

where I'; and T’y are two segments meeting at the origin with an (internal) angle w €
(m,2m) and I's is a smooth curve joining the two remaining endpoints of I'; and I's in a
smooth way and not passing through the origin. We shall refer to such an open set as a
regular domain with corner angle w.

The next result is a particular case of [32, Théoreme IJ.

Theorem 2.11. Let Q C R? be a regular domain with corner angle w € (w,27) and let
w € HY(Q;R?) be a weak solution of the Neumann problem

CE(w)v] =g on 99, (2.36)

{div(CE(w) =f inQ,
where f € LP ((R?) and g € W1/PP(9Q\ {0};R?), p € (1,2). Then, there exist
numbers cq, ¢, such that w may be decomposed as

W = Wreg + anSa + ZC;%SQ7

where Wyeqg € W2P(Q;R?) and in the first sum « ranges among all complex numbers with
Rea € (0, @) which are solutions of the equation

sin? aw = o sin? w, (2.37)
and in the second sum « ranges only among solutions with multiplicity two of (45) in the
same strip. Moreover, the functions S, are independent of f and in polar coordinates

So (r,0) =1r%gs (0)

for some smooth function g,. The above decomposition holds provided that (45) has no

solutions with real part equal to %.

Though this result gives no information about the roots of equation (45), it is clear
that the solutions contained in the strip 0 < Rea < 1 are bounded. Hence, by analyticity,
they are finitely many. A more precise information is provided by the following result,
proved in [42, Theorem 2.2].

18



1
Theorem 2.12. Ifw € (0,27), then equation (45) has no roots in the strip 0 < Rea < 7

We will use the two previous results to get an a priori estimate for the solutions to
(44). We recall that an infinitesimal rigid motion is an affine displacement of the form
a + Az, where A is a skew symmetric 2 X 2 matrix and a is a constant vector.

Proposition 2.13. Let Q2 be as in Theorem 2.11. There exist p € (4/3,2) and C > 0
such that if f € LP(Q;R?), g € WI=1/PP(90\ {0};R?) and w € WH2(Q;R?) is a weak
solution to problem (44), then

[wllw2r@rz) < C(llwllLr@rz) + 1 £l Lr @2y + l9llwi-1/00000\(0):R2)) - (2.38)

Proof. As observed above, the strip 0 < Rea < 1 contains only finitely many solutions
to equation (45). Hence, by Theorem 2.12 there exists € > 0 such that all solutions
are contained in the strip % + ¢ < Rea < 1. Therefore, if we choose p > 4/3 such
that 2 — % < % + ¢, from Theorem 2.11 we get that any weak solution to (44), with
f € LP(;R?) and g € WI1/PP(9Q \ {0};R?) is in W2P(Q; R?).

To prove (46), set V := W2P(Q;R?)/ ~, where for every u,v € W2P(Q;R?), we have
set u ~ v if and only if v — v is an infinitesimal rigid motion. We define a norm in V'
setting

I[ulllv == 1E()|l e @z2) + V0]l Lo
for every equivalence class [u], with u € W2P(Q;R?). Note that this definition is well
posed, since if u ~ v, then E(u) = E(v) and VZu = V?v. Note also that in view of
Korn’s inequality, V' is a Banach space.

Consider now the operator L : V — LP(Q;R?) x W=1/Pr(9Q \ {0};R?) defined for

any [u] €V as

Liu] := (divCE(u), CE(u)[v]) .
By the first part of the proof we have that L is a linear, continuous, and invertible
operator between two Banach spaces. Therefore, the conclusion follows from the open
mapping theorem. O

Proposition 2.14. Let Q be a regular domain with corner w € (w,2m) and let u €
H'(Q;R?) be a weak solution to the Neumann problem

divCE(w) = f in Q,
CE(w)[v] =g on 'y Uy,

with f € LP(;R?) and g € W1=1pp((T; UTy) \ {0};R?). Then, there exist ¥ > 0,
with Bz(0) NT's =0, C > 0, and o > 1/2, depending only on A, u, w, || f|rrmr2) and
gllwi-1/p.0((0,urs)\fo}sR2), Such that for all v € (0,7),

/ |Vw|* dz < Crza/ (14 |w]* + |[Vw|?) d=. (2.39)
B, (0)N2 Q

Proof. Set B; := B;(0) and fix # > 0 such that B, NT's =0 and 0B; NT'; UTs # @, and
0 <7< 7. Let ¢ € C°(B;) be such that ¢ =1 on Br. From the equation satisfied by
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we and from (46) we get

lwgllwer@rz) < C(lwllwir@re) + | fllr@r2)
+ [lgllwr-1/p.0 (v, urs\fo}iR2) T ||w”Wl*l/P:P(BQ\{O};]R?))
< C(llwllwrrre) + 1f @2y + Ngllwr-1/m0(@,0rn (0322
4

for some 3 < p < 2 and some C' > 0 depending only on A, u and w. Thus, if 0 <r <7,
using the Sobolev imbedding theorem we have

2-p
2 P 4(p—1) 4(p—1)
[owepasse( [ mwanBas) e <o uple
B,NQ B,.NQ

4(p—1)
e 7 (14 [wlwisoms)” < ‘”"2&/ (1+ [w]” + [Vwl?) dz,
Q

where a 1= 2(p — 1) /p is strictly greater than 1/2 since p > 4/3. O

For g € AP(0,¢) we denote the set of cusp points by

/

Yge = {(z,9(x)): x€[0,0),9 (z) = g(x), and g, (x) = =g’ (z) = +o0},

where ¢~ is defined in (9), while ¢/, and g’ denote the right and left derivatives, respec-
tively.

As usual, the set Zﬁc is obtained by replacing [0, ¢) by R in the previous formula and
coincides with the /-periodic extension of ¥ ..

Theorem 2.15 (Regularity). Let (ﬁ,&,H;L,a) € X(eo;B) be a minimizer of (28), with
o= Zf:l biéﬁ- Then:

(i) h has at most finitely many cusp points and vertical cracks [0,£), i.e.,

card ({z € [0,0) : (z,y) € B U, . for somey > 0}) < 400}
(ii) the curve FE# is of class C' away from Zﬁ# U Zﬁ#c and

lim B'(x) =400 for every wo s.t. (w0, h(zp)) € SFUSE ;

=+
T—Tq

(i) Fﬁ# N{y > 0} is of class C1* away from Zﬁ# U Z}—ﬁc for all a € (0,1/2);

(iv) setting - _
A= {(z,y) € R? . h(zx) > 0, h continuous at x},

FE# is analytic in A\ UX_, Upez By, (2i + mler).

The proof of the regularity theorem is based upon the strategy introduced in [21] (see
also [25]). We only outline the main steps, by highlighting the changes needed in the
present situation and referring the reader to the aforementioned papers for the details.
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Proof of Theorem 2.15. We start by observing that we may assume that A~ is not con-
stant, since otherwise the conclusion follows from Theorem 2.10. Note also the if d < 2ry/,
then necessarily B = (J, and thus the result follows from [18, Theorem 2.5] (see also [25,
Theorem 2.7]). Therefore, from now on we shall assume that d > 2rf and h~ is not
constant.

Step 1. (Lipschitz partial regularity) From Theorem 2.7 and Lemma 2.9 we have that
I; satisfies an interior ball condition with radius ¢ < min{1/(e2Wy),70}. By applying
[14, Lemma 3] we get that I';, has the following properties: For any z € I'; there exist
an orthonormal basis i, j € R? and a rectangle

Q:={z+si+tj: —d <s<ad,-b <t<b},

with @', " > 0, such that Q; N Q has one of the following two representations:
(j) There exists a Lipschitz function f: (—a’,a’) — (=¥, b’) such that f(0) = 0 and

QN Q={z+sittj: —a' <s<d, b <t<f(s)}N((0,0)xR).

Moreover, the function f admits at every point left and right derivatives, which are left
and right continuous, respectively.

(jj) There exist two Lipschitz functions fy, fo : [0,a’) — (=b,b’) such that f; (0) =
(fi)(0)=0fori=1,2 f < fo,and

G NQ={z20+si+tj: 0<s<d, =V <t<fi(s) or faf(s) <t <V'}.

Moreover, the functions f;, fo admit at every point left and right derivatives, which are
left and right continuous, respectively. Note that (j) and (jj) imply statement (i) of the
theorem and the fact that

lim_ h! (z) = +o0 for every zg s.t. (zo, h(zo)) € ¥5 U .

T—Ty

Step 2. (Cl-regularity) From property (j) of Step 1 we have that the curve T, is
locally Lipschitz in [0,¢) x R away from finitely many singularities of cusp or cut type.
Moreover, outside the singular set, I'; admits left and right tangent, which are left and
right continuous respectively. Therefore, to prove statement (ii) it is enough to show
that left and right tangents coincide at every point zo & ¥ U Xj, ..
Assume by contradiction that this does not happen for some 2o = (w0, y0) & X3 U%j, ...

If yo = 0, then by interior ball condition we can say that there are no dislocation balls
in a neighborhood B, (20) of zo and thus Hj, 5 in such a neighborhood is a gradient Dv,
with v satisfying

divCE(v) =0 in 5 N By (20),

CE(w)[v] =0 on I'y, N By (%),

v(z,0) = eg(z,0) on {y=0}N B.(20)-

We may therefore apply the argument used in [18, Theorem 4.9 and Proposition 5.1] to
obtain a contradiction.
Assume now that yo > 0. In this case we decompose Hj, ;, = Dv + K, where

(kO
K,(k20>,
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with
k

y
ki(x,y) = — Z(bl . el)/ Oro (@ — iyt —y;) dt for 1 =1,2,
i=1 0
and v satisfies
divCE(v) = —divCKyy,, in Qj,
CE(v)[v] = —CKsym[V] on I';.

Using (47) in place of [21, Equation (3.52)] and arguing as in [21, Theorem 3.13], we can
prove that there exist C' > 0, a radius ¥ > 0, and o € (%, 1) such that

/ Vo2 dz < Cr?® for all r < 7.
By (20)nQ¥

In turn, since K is smooth this implies that for a possibly larger constant

/ |Hy ,|>dz < Cr?®  forall 7 < 7.
By (z0)nQ2 '
Moreover, by Theorem 2.5 there exist A, 3 > 0 such that (h, 7, Hj, ;) is a minimizer of
é —
min{F(h,a, H) + B/ \h— h|* dz + A||Qn] — d| : (h,0,H) € X(eO;B)} . (2.40)
0

To fix the ideas let us assume that zy = (o, h(xg)) does not belong to a vertical segment
of T;; i.e., h is continuous at x¢. The other case can be dealt with similarly.

Observe that by a standard extension argument we may define v in a fixed neighbor-
hood of 2y in such a way that, denoting by v the resulting function, for all 0 < r < 7 we

have
/ V2 dz < c(L)/ Vol dz,
BT(Z()) Br(zo)ﬂﬂfz

where the constant c¢(L) depends only on the Lipschitz constant L of the function h.
Finally set H := Dv + K and observe that

/ |H|?dz < Or*® for all r < 7. (2.41)
B, (z0)

For r > 0 (sufficiently small) we denote
2! := max{x € (0,£) : x < zo and there exists y such that (z,y) € Ty, N B,(20)},

z! :==min{z € (0,/) : & > x¢, and there exists y such that (z,y) € T';, N dB,(20)},

and we let (z).,h(z})) and (z)/,h(z])) be the corresponding points on I';, N 9B, (z0).
Construct h, as the greatest lower semicontinuous function coinciding with h outside

[x]., 2] and with the affine function

x> h(z)) + hiay) = hlzr) h,(:c’r) (x — )

" __
! —

T
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in (a),2). For r > 0 sufficiently small (h,,5, H) is admissible for the penalized mini-

ry Ly

mization problem (48) . Hence,

)

b
F(h,o,H; ) < F(hy,&,H) + 5/ \hy — h|* dz + A||Q%, | —d] .
0

Since h, = h outside [z}, ]| and H = Hj, ; outside B, (z), using (49), we get

ryIr

/T\/l+(fz’)2dx g/ "I+ (h)Edx +C \H|? dz + Cr?

’ Br(z0) (2.42)

g/ " /Tt (R)Edx + Cr2e

for r small enough. On the other hand, since the right and the left derivatives i_z’+ and
h’_ exist and are continuous in a neighborhood of z, it can be checked that (see [21,
Proof of Theorem 3.14])

/T\/1+(ﬁ’)2dx—/T\/1+(h;)2deC’0r

for r sufficiently small, where Cy > 0 depends only on the angle at the corner point zg.
Since 2a: > 1 this contradict (50).

Step 3. (C'“-regularity) Fix an open subarc I' C I'; \ (X U X} ) not intersecting
{y = 0}. As in Step 2, we consider only the case in which T' does not contain vertical
parts, the other case being analogous. Let I be the projection of I" onto the z-axis. By
taking T' smaller, if needed, we may assume that I x (0,00) intersects at most one ball
B,y (%), 7 = 1,...,k and, by Step 2, that h € C(I). Fix J CC I and consider the
decomposition of Hj, 5 introduced in Step 2. For any « € (0, 1) there exist C', 7 > 0 such

that if z9 = (xo, h(xo)), o € J, then

/ |Vo|?dz < Cr?® for all r < 7.
By (z0)nQ2¥

Such a decay estimate can be established exactly as in [21, Theorem 3.16]. Note that
both C' and 7 are uniform with respect to o € J. Arguing as in the previous step, we
may extend Hj, 5 to Br(z0) in such a way that the resulting strain field H satisfies

/ |H|?dz < Or*® for all r <7, (2.43)
B, (z0)

for a possibly larger constant C' still independent of zy. Fix r < 7 and consider the
affine function s connecting zo and (zg + 7, h(zo +7)). If the graph of s over the interval
(0,20 + 7) does not intersect any of the balls B, (z;), j = 1,...,k, we can proceed as
in [25, Step 5 of the proof of Theorem 6.9]. Thus assume that the graph of s over the
interval (zg,xo + r) intersects a ball B,,(z;). Note that by construction of I there can
only be one such ball. Define h, as

hy(z) = {ﬁ(x) z€10,0)\ (zo, 20 +7),

max{f;(z),s(z)} € [xo,x0+Tr],
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where f;(x) = y; + /r§ — (x —x;)?. Note that (h,,, H) is admissible for problem
(48). Then using the minimality of (h,a, Hj, ;), the decay estimate (51), and arguing as
in Step 2 we obtain

To+r — zo+r
/ \/1+(h’)2d;v§0r20‘+/ V1+ (h)2dx,
xo Zo

for some constant C' independent of xy € J. This inequality can be equivalently written

/IO—H\/ h/zdx—\/ h(zog + 1) — h(z0))2 + 12

§0r2“+/x0+T(\/1+ h)2 =1+ (s )

0

SOt /(I07$0+7“)ﬂ{fj>8}< )

o [ T4 (7 =1+ (F@)) de < O (240
(zo,xo+r)N{f; >S}<\/ \/ ! )

Note that in the second equality we used the fact that since h > f; and the graph of s
joins two points of the graph of h, it must intersect the graph of fj twice. Hence, by the
mean value theorem we may find Z € (zo,zo +7) N {f; > s} such that f}(z) = s'(Z). In
the last inequality we used the fact that fj’ is Lipschitz. On the other hand, using the
inequality

a(b—a) n (b—a)?
VI+aZz 2(1+ max{a?,b?})3/2
with a := f;oﬁr h' dx and b := h/(z), and integrating the result in (zg,z¢ + 1), we get

1 xo+T -, xo+7r -, 2
- R (z) —][ W ds) de
2(1 + M2)3/2 ][ ( g )

0

\/md]} — *\/ 3;‘0 + 7') B(.’Eo))Q + r2 < Cl,rQa—l ,

V1I+02—/1+a2>

xo+T

where M is the Lipschitz constant of h in I and we used (52). In particular,

xo+7r B xo+T B )
][ B (z) —][ I ds‘ de < C"r*" 2.
o xr

0

A similar inequality holds also in the interval (zg — 7, 20). Hence, by the arbitrariness
of 29 € J and [2, Theorem 7.51] we conclude that h € C*~z2(J) for all a € (1/2,1), as
claimed. This concludes the proof of statement (iii) of the theorem.

Step 4. To prove the analytic regularity, observe that in A\ UX_; U,,ez B, (zi) we can
perform variations of the profile A to prove that (20) holds in the weak sense. Thus, in
particular, the curvature & is of class C%% in A\ U¥_| U,ez By, (2:) for all a € (0, 2) A
standard bootstrap argument implies the C'°*°-regularity. Analyticity then follows from
Theorem 4.9 and the remarks at the end of Section 4.2 in [37]. O
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2.4. Dislocations accumulate at the bottom

In this subsection we consider nearly flat profiles h. We will show that if ey is
sufficiently large and (h,o, H) is any admissible configuration in X(eg;B), then, by
moving the dislocations centers of ¢ in the direction —es, the elastic energy decreases.
This is made precise by the following proposition.

Proposition 2.16. Given d > 2rogl and o € (0, 1), there exist € > 0 and § > 0 such that
if eo(b;-e1) >0 for allb, € B, i =1,....k and |eg| > €, then for every (h,o,H} ) €
X (eo;B), with ||h — d/£||C#a(O’Z) < and o = Zf:l b;6%, with z; - ea > 0 for some
je{l,...,k}, we have

W((Hhﬁs)sym) dz < W((Hh,a)sym) dz
Qp Qn

for all s > 0 sufficiently small, where o5 := Zk £ bﬁﬁ + bj5i_se2. In particular, if

i=1
(h,o,Hp ) is a minimizer of (28), then all dislocations lie at the bottom of Qp, that is

all the centers z; are of the form z; = (x;,79).

Proof. Assume, without loss of generality, that ey > 0. It is enough to show that for eq
sufficiently large and ¢ small

d
*F(hw Os, Hh,os)

0 2.45
ds > 9 ( )

s=0

where (h,o0, Hy o) € X (eo; B) is as in the statement. For simplicity set
H, := Hyp 0, and H:=Hy=Hp,.

and recall that, by (19), H; is the unique periodic solution to the following system

k
curl Hy, = Z bigfz(- —zi)—i—bjgfg(-—zj —sez) in Qp,
i=1,i#]
div C(H, ) sym = 0 in Oy,
C(Hs)symlv] =0 on I'y,
Hg[ei] = ege on {y =0}.

Then the derivative in (53) reduces to

1 .
a1 C(Hs)sym : (Hs)sym dz = CHsym : Hsym dz, (2.46)
ds\2 Jq, Q,

s=

where H = d%HS‘ _, Is determined as the unique periodic solution to

curl H = —b;Dyo# (- — z;) in Qp,

divCHyypm = 0 in Qp, (2.47)
(CHsym[l/] =0 on I'y, '
H[e;]=0 on {y = 0}.
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We now consider the canonical decomposition H = egDuy + K}, o, where u; and
K}, » are defined as in (21) and (22), respectively. Moreover, we decompose also H as
H = Dv + K, where

-D w1 D w1
K = vy 4 2.48
< —Dyywa  Dyywo > ( )

with w = (wy,ws) the unique solution in Hi# (Q4;R?) to

Aw = —b;o, (- — 2;) in Qp,

w=0 on I'y,

w=0 on {y = 0}.
We note that since Dy,w = 0 and g, ((2,0) — z;) = 0 on {y = 0} (the last condition
comes from the fact that B, (z;) C Q4), from the equation satisfied by w we deduce that

Dy,w =0 on {y = 0}, which in turn implies that K[e; ] = —Duv[e; ] = 0. Thus, v can
be chosen to be identically zero on {y = 0}. Then, by (21) we have

/ CHgym : Hsym dz = eo/ CE(up) : Hsym dz + C(Khn,o)sym : Hsym dz
Qh, Qh, Qh,

= ey CE(up) : E(v)dz + eg CE(up) : Ksym dz + C(Kh,0)sym : Hsym dz
Qp Qn n

=e¢o | CE(up): Keymdz+ | C(Kho)sym : Hoym dz
Qp Qpn

= e CE(vg) : Keym dz + eo/ ((CE(uh) — (CE(vO)) t Koym dz
Qh Qh

+/ C(Khn,o)sym : Hgym dz.
Qpn

(2.49)
By [22, Lemma 6.10] for every € > 0 there exists § > 0 such that |Jup _UoHcl#,a(Qh.Rg) <

where vg is defined in (23). Hence,
’((CE(uh) — CE(wv)) : Ksym’ dz < Ce (2.50)
h

for some positive constant C independent of eg. Observe now that, using (13), (23), (55),
and (56), we have

dp(p+A)

CFE  Koym dz = — D, d
Qn (v0) um 42 2p+ X Ja, w2
4MM+M[ 1
_ Aw; dz — D, . dH
Y o, wy dz . w1 (v-eq) (2)

dp(p+A)
> B (b, e /Qh 0ro(z = 23) dz — £ D w2y 1B — 4/l oo
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where the second equality is due to the fact that D,w; is ¢-periodic in the z-direction.
From the above inequality, recalling (54), (57), (58), and the assumption on h we get

d 4 A
—F(h,05,Hp0,) > eg M(bjwel)/ Ory (2 — 2;)dz — C(e +0)
Qn

ds oo 20+ A
+/ C(Kh,a)sym : Hsym dZ,
Qp
for a possibly larger constant C' depending on the L bounds on Dw, hence on the C1®

norm of h. Claim (53) follows by taking ¢ small enough and ej large enough. Indeed, by
Lemma 2.3, (22), and (55),

C(Kn,o)sym : Heym dz| < C|by||[Dyoollr2rz)llo = of | 12 (0, m2) -
Qh

where C' is a constant depending only on the Lipschitz constant of h. O

Remark 2.17. It can be shown that when |eg| is sufficiently large dislocations with
Burgers vectors b satisfying

eo(b . e1) >0

are energetically favorable compared to dislocations having the same centers but opposite
Burgers vectors, see Corollary 3.4.

In the next theorem we show that for suitable choices of the parameters global mini-
mizers must have all the dislocations lying on the film/substrate interface.

Theorem 2.18. Assume B # 0, fiz d > 2rol and let |eg| > €, where € is as in Proposi-
tion 2.16. Assume also eg(b; - e1) > 0 for all b; € B. Then there exists 7 such that if

v > 7 any global minimizer (h,&, H) of the problem (28) has all dislocations lying at the
bottom of Qy,, i.e., 7 = Zle b;67, where all the centers z; are of the form z; = (x;,70).

zi?

Proof. Tt is enough to show that given 7, — +o0o and corresponding global minimiz-
ers (hp,on, Hp,.0,) € X(eo;B) of (28) with ~, in place of v, then for n sufficiently
large the dislocation measures o, have all the centers lying at the bottom. Note that
(hn,0n, Hp, 5,) is a global minimizers of

min{Gn(h,a,H) : (hyo,H) € X(eg;B), || = d},

where G,, is the rescaled functional

1
Gn(h,o,H) = - W (Hgym) dz +H (Th) + 2H (Zh) -
n JQp

Step 1. (Uniform convergence to the flat configuration) By the compactness result in
[21, Proposition 2.2 and Lemma 2.5] and the semicontinuity proved in [10, Lemma 2.1],
there exist h € AP(0,¢) and a subsequence (not relabeled) such that h,, — h in L'(0, /)

and
H'(Th) + 2HY(Sy) < liminf (7' (Th,) +2H' (Zh,)) -
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Thus, if we consider any g € AP(0, ¢) such that |Q,| = d and (o, H) such that (g,0, H) €
X(GO; B)a

HY(Tp) +2H (S,) < liminf (K (Th,) + 2K (Zh,)
<liminf G,,(hn,on, Hp,, 5,)

< liminf G,(g,0, H) = H'(T,) + 2H'(%,).

Therefore A minimizes
g HYT,) + 2H (Z,)

among all functions in AP(0,¢) such that Q4| = d. Hence h is the flat profile h = d/¢.
Note that from the above chain of inequalities, taking g = d/¢, we have in particular that

0=H"(Tqye) = lim(H' (Tn,) + 2H' (Tn,)) -

Up to a subsequence we may assume that {T'y, UX, } converge in the Hausdorff metric to
some compact connected set K. By the compactness result [21, Proposition 2.2], we have
that, up to a subsequence (not relabeled), R?\ Q# — R2\ (R x (0,d/¢)) in the Hausdorff
metric. From this convergence it follows (see the proof of [21, Lemma 2.5]) that I'y/, C K.

Hence, by Golab’s theorem and observing that H' (T, UXy, ) = H'(Tp, US4, ), we have

H' (Taye) < HUK) < lim H (Dp, USh,) = H' Taye) -
Therefore, H'(K \ Ty/¢) = 0. Since K is the Hausdorff limit of graphs, for all z € [0, ]
the section K N ({x} x R) is connected. Hence, K = fd/g. From this equality and the
definition of Hausdorff convergence, we get that supjq 4 |hn — d/€] — 0 as n — oo.
Step 2. (Penalization) We now show that there exists A sufficiently large and indepen-
dent of n such that every minimizer of

min {Gy,(h, 0, H) + A||{Q| —d| : (h,0,H) € X(eo;B)} (2.51)

satisfies the volume constraint associated with d. We argue by contradiction and assume
that there are sequences {A,, } with A,,, — oo and {n,, }, and minimizers (g, T, Hy,, =)
in X (eo;B) of (59) with n = n,, such that |, | # d. Arguing as in Step 1 of the proof
of Theorem 2.5, one can show that for n large enough |Q, | > d. We can now proceed
as in Step 2 of the same proof to show that either we can cut out a small region from
Qg,., thus strictly reducing the total energy and contradicting the minimality, or we can
show that g,, — d/b uniformly (see (42)) and for every m there exist a dislocation ball
By (2m) touching 'y~ at a point of maximum height. In particular, up to a subsequence
(not relabeled), 7, — 7 with 7 = Zle b;0% such that we have z; = (z;,d/l — ro) for
some j € {1,...,k};i.e., the corresponding ball B,,(z;) is tangent to I'y ;. Note also that
H, . — Hin LIQOC(Qd/£§ M2%2) with curl H = 7 * o,,, and that H[e; ] = ege;. This can
be shown arguing as in the proof of Theorem 2.4. Observe now that given n € (0,d/¢),
o € Mgis(Qaj—n;B) and H € H#(curl;Qd/g+n;M2X2) such that curl H = o * gg in
Qq/04+n and H[e1 ] = epeq, since g, — d/b uniformly, we have that g, (z) < d/{+ n for
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all z € (0,¢) and all m sufficiently large. Hence, by the minimality of (¢, Tm, Hg,, 7. )
and lower semicontinuity we have

( _Sym) dz < lim inf/ W((Hy,, 7.)sym) dz
Qaye m Qg

< lim inf W (Hgym)dz = W (Hsym) dz .
m Qg Qaye

Since d > 2rol, by the arbitrariness of 1, 0 and H we conclude that H = Hgyye, and
(1, Hgp,-) is a solution of

min{ W(Hgym)dz : H € Hy(curl; Qd/g;Mzw),
Qd/@

0 € Mais(Qq/¢;B) such that (d/¢,0,H) € X(eO;B)} ,

which contradicts Proposition 2.16, since |eg| > € and there is at least one dislocation
which is not lying on the bottom.
Step 3. (C'-convergence) By Step 2 and Lemma 2.9, we deduce that Q#ﬂ satisfies a
uniform interior ball condition with any radius ¢ < min{1/A,r¢} and thus independent
of n. This property, together with the uniform convergence proved in Step 1, implies
that for n large 35, UX, . = (0. This can be shown arguing as in Step 2 of the proof of
[25, Theorem 6.9]. In turn, by Theorem 2.15, we deduce that for n sufficiently large I‘_jfn
is of class O for all o € (0,1/2). We now show that in fact h, — d/¢ in Cy([0,4]).
To this aim, fix ¢ < min{1/A,ro}. By Step 1 we have a,, := sup,¢g ) |hn(z) —d/l| —
0. Take now z = (z, hy,(z)) and the corresponding ball B,(zp) C an U (R x (—o0,0])
touching I'y,, at z. If h,(x) = d/¢ — a,, then h/,(z) = 0 since h,, > d/¢ — a,. Otherwise,
let us set Iy, := dB,(20) N {(z,y) : y > d/l — a,}. Since a, — 0 we have H*(T',) — 0.
Therefore, since z € T, the slope of the tangent to dB,(z0) at z is bounded by a small
constant w(H!(T,,)), where w is a continuity modulus such that w(0+) = 0. This shows
that A}, — 0 uniformly in [0, ¢] as claimed.
Step 4. (C1*-convergence and conclusion) Write o, = Zle b6
We now decompose Hy,, ,, = Dv, + K,,, where 1

(kim0
Kn._<k2m O),
k

Y
kl,n(xvy) = _Z(bz : el)/o Qro(m - xi,nat - yz,n) dtv fOf l = 1723
i=1

y Zin — ($i77uyi,n)~

with

and v,, satisfies

divCE(vy,) = —divC(K,,)sym 1n Qyp,,,
CE(vn)[v] = —C(K}) sym [V] onTy, .

Since h!, — 0 uniformly, we can argue as in [25, Theorem 6.10] to prove that for every
B e (%, 1) there exist C' > 0 and a radius 7 > 0, both independent of n, such that for all
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20 € I'y,, and for all » <7,

/ |Vo,|? dz < Cr?P
Br(zo)ﬂﬂh#n

for n large enough. In turn, since K, is smooth this implies that for a possibly larger
constant C' > 0 (still independent of n)

/ |th70"n
By (Zo)nﬂﬁn

for all z9 € I'y,,, for all » < 7, and for n large enough. From this estimate, arguing
exactly as in Step 3 of Theorem 2.15, we deduce that there exists a constant C' > 0 such
that for all n sufficiently large

xo+T _ To+r N
][ h;(x)—][ h;ds)deCrB_i
xo X

0

2dz < Cr*

for all € [0,¢) and r < 7. By [2, Theorem 7.51], this implies that ||hn|\0115,%([0 0 is
# ’
uniformly bounded for n sufficiently large. By the arbitrariness of 5 € (%, 1), we have
shown that h, — d/¢ in C’#a([o,é]) for all a € (0,3). Recalling the choice of e, the
conclusion of the theorem follows from Proposition 2.16. O

3. The nucleation energy

In this section we will address the nucleation of dislocations. Fix a finite set B°
of fundamentals Burgers vectors, which are linearly independent with respect to integer

linear combinations; i.e., if b, ..., b%; are distinct elements of B° such that vazl n;by =
0, with n; € Z, then n; = --- = ny = 0. Define
N
Bi={> mbf: miczb¢eB, NeN}.
i=1

For every b € B we set
N
Ibl[Fe == Y Imallbg]?,
i=1

where the coefficients m; are such that b =3~  m;b?.
Given h € AP(0,¢), we now define the admissible dislocation measures in Qf, by
setting

Mis(Qp) =

k
{a e M(QFR?) : 0= > bis%, b; € B, 2 € Qp, with By, (2;) C OF ke N} .

i=1
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If o = Zle biéff € Muais(Qp), where the z;’s are all distinct, then the corresponding
nucleation energy will be defined as

k
N(o)=coy_ [billo , (3.1)
=1

for some (material) constant ¢, > 0.

3.1. The minimization problem

For any fixed mismatch strain ey # 0 we introduce the space of admissible configura-
tions

Xy 1= {(h,o, H): he AP(0,0), 0 € Mais(), H € Hy (curl; Qp; M?*?)
such that curl H = o * g,,, and H[e;] = eoel} ,

In this section we shall discuss the minimization problem
min{F(h,0,H) + N(0) : (h,0,H) € X¢,, || =d}, (3.2)

where F' is defined as in (18) and d > 0 is the given total mass. We start by observing
that the minimization problem has a solution.

Theorem 3.1. The minimization problem (61) admits a solution.

Proof. Let {(hy,on,Hy,)} C X, be a minimizing sequence. Since sup, N(o,) < 00
and min{||b|jze : b € B\ {0}} > 0, we have that the number k, of centers of the
dislocation measures o, = Zf;l bi,néjﬁ)n is uniformly bounded and sup, , [[binl5e <
400. Moreover, arguing as in the proof of Theorem 2.4 we have, up to a subsequence,
that

) B — hin LY(0,0);
i) R%\ Q#ﬂ — R?\ QF in the sense of the Hausdorff metric,

for some h € AP(0,¢). Therefore, up to extracting a further subsequence (not relabeled),
if needed, we can assume that there exists & € N such that o,, = Zle bimdff .» where
b;n — b, € B and z;, = 2z € Qp, with B, (2;) C Q# Setting o = Zle biéjf and
observing that

N(o) <liminf N(oy,),

we may now conclude arguing exactly as in the proof of Theorem 2.4. O

Remark 3.2 (Regularity). Let (h,6,Hy,) € X, be a minimizer of problem (61).
Writing ¢ = Zle b;0%, with z; # zj if i # j, set B := {by,...,by}. Observe that
(h,o,Hy ;) € X(eo;B) is also a minimizer of (28). Therefore the regularity Theo-
rem 2.15 applies.
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3.2. Emistence of configurations with non trivial dislocations

We start by fixing a profile h and considering a minimizer (o, Hy, ) of the correspond-
ing energy, i.e., (h,o0, Hy, ) € X, and

; W((Hn,o)sym) dz + N(0)

= min{ W(Hgym)dz + N(7): (1, H) st. (h,7,H) € Xeo} . (3.3)
Qp

We want to show that if ey is large enough and h is nearly flat, then any minimal
configuration (o, Hy ) has a nontrivial dislocation measure ¢ and its total variation
blows up as |eg| — co.

Proposition 3.3. Assume that B° contains a vector b such that b -e; # 0. For every
d > 2rgb, M > 0, and o € (0,1) there exist € > 0 and & > 0 such that if |eg] > €,
h e AP(0,¢) and ||h — d/[”C«#a(O’E) < 0, then for every minimizer (o, Hp ) of (62), the

dislocation measure o is nontrivial and the total variation |o|(Qy) > M.

Proof. We only treat the case eg > 0. Assume that |o|(Q)) < M. We want to show that
if eg is large enough, this leads to a contradiction. Fix zg = (z9,y0) € Q5 and consider
the dislocation @ := o + bdjg € Ma;s(Qp) for some b € B such that b-e; > 0. Such a
vector exists by our assumption on 5°.

We consider the canonical decomposition of Hj, », i.e, Hp » = egDup, + K}, », where
K}, » is the unique {-periodic solution to the system

curl Kp o =0 % op, in Qp,
divC(Kh,o)sym =0 in Qp,
C(Kno)symv] =0 onTy,
Knoler]=0 on {y = 0},

and wy, is the elastic equilibrium in , satisfying up(x,0) = (2,0). Observe that by [22,
Lemma 6.10] for every € > 0 there exists 6 > 0 such that

1=/t o0, < 6 = lun = woll ey < & (3.4)

where vg is defined in (23). Write b = (b1, b2) and consider the strain field egDuy, +
Ky - + K, where

y
K := ( Zl 8 ) , with k;(z,y) := —bi/ Oro (T — T, t — yo) dt, fori=1,2.
2 0

Note that by construction curl K = béf(i * 07, and K[e;] =0 on {y = 0}.
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A simple calculation shows that
W((Hh,tf)sym + Ksym) dz — W((Hh,a)sym) dz
Qp Qn

= W(Ksym) dz + C(Hp,o)sym : Ksym dz
Qh Qh

= W (Ksym) dz Jr/ C(Kh,o)sym : Ksym dz + eo/ CE(up) : Ksym dz
Qp Qp Qp

= W(Ksym) dz + C(Kho)sym : Ksym dz + eg CE(vg) : Koym dz
Qpn Qp Qp

+ eo/ ((CE(uh) — (CE(U())) P Koym dz.
Qp

Observe that || * 0y ||L2(q,r2) < C, where C' = C(M) is a constant depending only on
M. Therefore, Lemma 2.3 implies that

[ Kn,o

|2 (uimzx2y < Cllo * ory || 20, r2) < C(M).

Moreover, we clearly have
N(z)— N(o) <C,

for a possibly different constant depending on b. Thus, since b - e; > 0 we have

4u(u+>\)/
CE(vg) : Kgyp dz = ——= kidz <0.
o (v0) Y 2u+ X Ja, !

Hence, also by (63), we conclude that there exist two positive constants ¢; and co (de-
pending only on d, M, b, and the Lamé coefficients) such that

0 W((Hp,o)sym + Ksym) dz) + N(7) — o W((Hhn,o)sym)dz — N (o)

4
<erralfl [ bt nlep,
Qp,

dp(p+A) /
_ kid 0
<cl+eo( 2/L+>\ o, 1dz +coe | <
provided that e is sufficiently small and ey is sufficiently large. This contradicts the
minimality of (o, Hp o). O
Corollary 3.4. For everyd > 0, M > 0, and o € (0, 1) there existe > 0 and 6 > 0 such
that if |eo| >, h € AP(0,0) and ||h —d/t|| 1004 < 6 and o = SF  bio# € Mais(Q)
with |o|(Qr) < M, eg(bj-e1) <0 forjeJC{l,...,k}, J#0, then

W((Hn,o)sym) dz > | = W((Hpz)sym) dz,

Qh Qh
where
P Y bt - Y bt
igJ ied
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Proof. 1t is enough to show that the energy strictly decreases whenever we replace b,
with j € J, by —b;. Indeed, set 6 := o — 2bj($f§. Arguing exactly as in Proposition 3.3,
we have that for |eg| sufficiently large

W (Hnhoym) dz — [ W (Hpo)ogm) d2
Qp Qn
< | W((Hno + K)sym)dz — | W((Hn.o)sym) dz <0,
Qh Qh
where
ki 0O . Y .
K= e 0 ) with k;(z,y) == —2(b; - €;) Oro (T — g, t —yp) dt, fori=1,2.
2 0

O

As an application of Proposition 3.3 and of the theory developed in [25], we show
that for suitable values of ey and v the global minimizers display a nontrivial dislocation
part.

Theorem 3.5 (Minimizers with dislocations). Assume that B° contains a vector b such
that b-e; # 0, fir d > 2rol and let |eg| > €, where € is as in Proposition 3.3. Then there
exists 7 such that if v > 7, then any global minimizer (h,&, H) of the problem (61) has
nontrivial dislocations, i.e.,  # 0.

Proof. Assume without loss of generality that eqg > € and assume by contradiction that
there exists a sequence v, — +o0o and a corresponding sequence (hy,,on, H,) € X,
of global minimizers for (61), with ~ replaced by 7, such that o, = 0. In particular
H,, = egnDuy,, where up, is the elastic equilibrium in Qj,, (see (21)). It follows that
(hn,up, ) is a global minimizer of

min{Gn(h, u): (h,0,Du) € Xy, || = d},

where )
Gn(h,u) := - W(E(u))dz + H'(Th) + 2H' (Z4) .
n JQp

Arguing exactly as in Step 1 of the proof of Theorem 2.18 we can show that supy ¢ [l —
d/¢| — 0. We claim that
hy, =dJt for n large enough. (3.5)

To this aim, we argue by contradiction assuming sup,co ¢ |hn(z) — d/¢| > 0 for a (not
relabeled) subsequence, Note that we may rewrite the functional G,, as

Grn(h,u) := W (E(u)) dz +H(Th) + 2H (Zh),
Qh
where W, is defined as in (12), with p and A replaced by p, = u,%n and A, = )\7%,
respectively. Since p, — 0 and A\, — 0, we may apply the local minimality result in [25,
Theorem 2.9], to conclude that there exist ng and 6 > 0 such that

Gno (d/g? Ud/g) < Gno (ka Uk) (36)
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whenever k € AP(0,4), [Q| = d, and 0 < sup ¢ ¢ |k(z) — d/l| < 6.

Take n > ng so large that

<1.

0< sup |hp(z)—d/¢)<d and Tno
z€(0,¢] Tn

From the inequalities above and (65), we get

Gn(d/l,uaye) = %Gng(d/ﬁ,udﬂ;) + (1 _ 1"(’)711(“/@)

< MGno(hn, up,) + (1 - 1’“) (H'(Tn,) + 21 (Zh,))
= Gn(hnvuhn)a

thus contradicting the minimality of (hy,,up, ). This proves claim (64). In turn, by
Proposition 3.3 we deduce that for n sufficiently large o,, # 0, in contrast with our initial

contradiction assumption. O
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