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Abstract

AI plays an increasingly prominent role in society since de-
cisions that were once made by humans are now delegated
to automated systems. These systems are currently in charge
of deciding bank loans, criminals’ incarceration, and the hir-
ing of new employees, and it’s not difficult to envision that
they will in the future underpin most of the decisions in so-
ciety. Despite the high complexity entailed by this task, there
is still not much understanding of basic properties of such
systems. For instance, we currently cannot detect (neither ex-
plain nor correct) whether an AI system is operating fairly
(i.e., is abiding by the decision-constraints agreed by soci-
ety) or it is reinforcing biases and perpetuating a preceding
prejudicial practice. Issues of discrimination have been dis-
cussed extensively in legal circles, but there exists still not
much understanding of the formal conditions that an auto-
mated system must adhere to be deemed fair. In this paper, we
use the language of structural causality (Pearl, 2000) to fill in
this gap. We start by introducing three new fine-grained mea-
sures of transmission of change from stimulus to effect called
counterfactual direct (Ctf-DE), indirect (Ctf-IE), and spurious
(Ctf-SE) effects. Building on these measures, we derive the
causal explanation formula, which allows the AI designer to
quantitatively evaluate fairness and explain the total observed
disparity of decisions through different discriminatory mech-
anisms. We apply these results to various discrimination anal-
ysis tasks and run extensive simulations, including detection,
evaluation, and optimization of decision-making under fair-
ness constraints. We conclude studying the trade-off between
different types of fairness criteria (outcome and procedural),
and provide a quantitative approach to policy implementation
and the design of fair decision-making systems.

Introduction

Automated systems based on artificial intelligence, ma-
chine learning, and statistics have been increasingly applied
throughout a wide range of real-world decision-making sce-
narios, including in healthcare, law enforcement, educa-
tion, and finance (Mahoney and Mohen 2007; Brennan,
Dieterich, and Ehret 2009; Khandani, Kim, and Lo 2010;
Sweeney 2013; Angwin et al. 2016). It is no longer far-
fetched to envision a future where fully autonomous AI sys-
tems will be driving entire business decisions and, more
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broadly, supporting large-scale decision-making infrastruc-
ture to solve society’s most challenging problems. Issues
of unfairness and discrimination are pervasive when deci-
sions are being made by humans, which, unfortunately, are
not automatically solved, and can even be amplified, when
machines are put in control. For instance, an AI system de-
signed to decide incarceration of recidivist criminals may be
trained with data that contains historical biases of judges that
discriminated against certain races, which potentially may
lead to even more discriminatory practices without much
transparency or accountability. If our goal is to design sys-
tems that are ethical and fair, it is imperative to have a
more refined understanding of the properties of automated
decision-making in complex and uncertain scenarios.

Discrimination can be broadly partitioned into two com-
ponents: direct and indirect (Council 2004). The former is
concerned with settings where individuals receive less fa-
vorable treatments on the basis of a protected attribute X
such as race, religion, or gender. Some extreme cases of di-
rect discrimination include voting rights and unequal pay-
ment based on race and gender (Altonji and Blank 1999;
Derfner 1973). The latter is concerned with individuals who
receive treatments on the basis of inadequately justified fac-
tors that are somewhat related with (but not the same as)
the protected attribute. These cases are arguably more com-
plex to characterize, and require a more refined reasoning.
One well-known example is redlining, where financial in-
stitutions (e.g., banks, insurance companies) deny services
to residents of geographic areas in different rates, which
wouldn’t be necessarily a problem by itself, if not for the fact
that these areas have considerably different racial and ethnic
compositions. In practice, this may entail that the given in-
stitution is using the location of the applicants as a proxy to
an obviously discriminatory attribute (e.g., race).

These types of discrimination (direct and indirect) are
supported by two legal frameworks applied in large bodies
of cases throughout the US and the EU – disparate treatment
and disparate impact (Council 2004; Barocas and Selbst
2016). The disparate treatment framework enforces proce-
dural fairness, namely, the equality of treatments that pro-
hibits the use of the protected attribute in the decision pro-
cess. The disparate impact framework guarantees outcome
fairness, namely, the equality of outcomes among protected
groups. Disparate impact discrimination occurs if a facially
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neutral practice has an adverse impact on members of the
protected attribute.

There is a growing literature in AI that is concerned with
issues of transparency and fairness following, more or less
explicitly, these two legal frameworks, including (not ex-
haustively) (Dwork et al. 2012; Romei and Ruggieri 2014;
Mancuhan and Clifton 2014; Datta, Sen, and Zick 2016;
Barocas and Selbst 2016; Hardt et al. 2016; Zhang, Wu,
and Wu 2016; Kusner et al. 2017; Zafar et al. 2017b; 2017a;
Chouldechova 2017; Kilbertus et al. 2017; Pleiss et al. 2017;
Bonchi et al. 2017). Despite all the recent progress in the
field, there is still not a clear understanding of the various
metrics used to evaluate each type of discrimination indi-
vidually. In practice, this translates into the current state of
affairs where the fairness criterion is, almost invariably, cho-
sen without much discussion or justification. Our goal is to
fill in this gap by providing a principled approach to as-
sist the data scientist making an informed decision about the
metric used to ascertain fairness while being fully aware of
the tradeoffs involved with her choice.

We build on the language of causality (Pearl 2000;
Halpern 2000; Bareinboim and Pearl 2016) to express di-
rect and indirect discrimination through the different paths
connecting the protected attribute X and the outcome Y in
the underlying causal diagram (see Fig. 1). For instance,
direct discrimination is modeled by the direct causal path
from X to Y (X ! Y in Fig. 1(a)). Indirect discrimi-
nation can be further divided into two categories based on
the causal mechanisms evoked to transmit change, namely:
indirect causal discrimination, captured by indirect causal
paths, i.e., one-directional paths that trace arrows pointing
from X to Y except for the direct link X ! Y (e.g.,
X ! W ! Y ); indirect spurious discrimination, corre-
sponding to all paths between X and Y but the causal ones
(direct and indirect), called spurious paths (e.g., the back-
door path X  Z ! Y ). We will refer to these discrimina-
tory mechanisms as direct, indirect, and spurious discrimi-
nation, respectively. We will soon show that no discrimina-
tion (or fairness) measure is capable of detecting and distin-
guishing the effects of the different discrimination mecha-
nisms commonly found decision-making settings.

Our proposed method will decompose the observed dis-
parities (measured as the total variation, to be defined)
according to the different paths in the underlying causal
(decision-making) diagram. The study of effect decompo-
sition is indeed not new, going back to Wright’s method
of path analysis in linear causal models (Wright 1923;
1934) (for a survey, see (Pearl 2000, Ch. 5)). The path anal-
ysis method gained momentum in the social sciences during
1960’s, becoming extremely popular in the form of the me-
diation formula in which the total effect of X on Y is de-
composed into direct and indirect components (Baron and
Kenny 1986; Bollen 1989; Duncan 1975; Fox 1980). 1 The
bulk of this literature, however, required a commitment to a
particular parametric form, thus falling short of providing a
general method for analyzing natural and social phenomena

1Google Scholar currently counts Baron’s paper, where the me-
diation formula appeared, as having more than 70,000 citations.
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Figure 1: The causal diagrams for (a) a non-confounding
model where X stands for the protected attribute, Y for the
outcome, W the mediator, and Z an observed confounder;
(b) the standard model where Z could also affect W ; (c) the
extended standard model that allows for the presence of un-
observed confounders. See also footnote 3.

with nonlinearities and interactions (MacKinnon 2008).

Pearl introduced the causal mediation formula for arbi-
trary non-parametric models, which decomposes the total
effect into what was called the natural direct (NDE) and
indirect (NIE) effects (Pearl 2001) (see also (Imai, Keele,
and Yamamoto 2010; Imai et al. 2011; VanderWeele 2015).
By and large, the literature of mediation analysis has then
been focused almost exclusively on decomposing total ef-
fects, which we note needs to be relaxed to satisfy the re-
quirements of fairness analysis. In particular, one is not con-
cerned with how controlling the attribute X may bring about
change in Y , but in understanding how natural variations of
X affect the outcome Y , which also happens through con-
founding variables (e.g., redlining). Specifically, we general-
ize mediation analysis through the following contributions:

• We define the counterfactual direct (Ctf-DE), indirect
(Ctf-IE), and spurious (Ctf-SE) effects based on the lan-
guage of non-parametric structural causal models. These
measures allow one, for the first time, to precisely detect
and distinguish the three most natural types of discrimi-
nation, namely, direct, indirect, and spurious.

• We derive the causal explanation formula, which allows
one to understand how the total X � Y variation can be
non-parametrically decomposed in terms of the counter-
factual measures (Ctf-DE, IE, SE). In practice, this allows
one to explain the effect of a certain discriminatory mech-
anism in terms of the observed disparity found in the data.

• We quantify explicitly the trade-off between the two fair-
ness principles encountered in the literature (procedural
and outcome) and study its implication in designing new
policies in unfair settings. This result is relevant since the
design of reparatory policies (e.g., affirmative actions) has
been a more informal than principled exercise. Our results
show that an even more unfair state of affairs may come
about depending on how the reparatory policy is designed.

Preliminaries

Variables will be denoted by capital letters (e.g., X) and
their values by small letters (x). We will use Structural
Causal Models (SCMs) as the basic semantical framework
of our analysis (Pearl 2000, Ch. 7), which is defined next.



Definition 1 (SCM (Pearl 2000)). A structural causal model
(SCM) M is a 4-tuple hU, V, F, P (U)i where:

• U is a set of exogenous (unobserved) variables, which are
determined by factors outside of the model;

• V is a set {V1, . . . , Vn} of endogenous (observed) vari-
ables that are determined by variables in the model (i.e.,
by the variables in U [ V );

• F is a set of structural functions {f1, . . . , fn} where each
fi is a process by which Vi is assigned a value vi  
fi(v, u) in response to the current values of V and U ;

• P (u) is a distribution over the exogenous variables U .

Each SCM M is associated with a causal diagram G,
which is a directed acyclic graph where nodes correspond
to the endogenous variables (V ) and the directed edges the
functional relationships. Any exogenous in U is not shown
explicitly in the graph, but for when it affects more than one
endogenous variable. In this case, a bi-directed edge will be
used to indicate the presence of the unobserved confounder
(UC) affecting both variables (e.g., Fig. 1(c)).

An intervention, denoted by do(X = x) (Pearl 2000,
Ch. 3), represents a model manipulation where the values
of a set of variables X are set fixed to x regardless of how
their values are ordinarily determined (fx). We use the coun-
terfactual distribution P (YX=x = y) to denote the causal ef-
fect of the intervention do(X = x) on the outcome Y , where
the counterfactual variable YX=x (Yx, for short) denotes the
potential response of Y to intervention do(X = x). We will
consistently use the abbreviation P (yx) for the probabilities
P (YX=x = y), so does P (y|x) = P (Y = y|X = x).

We next introduce state-of-the-art discrimination mea-
sures for both procedural and outcome fairness. 2 In this
paper, we will let X be the sensitive feature (whose effect
we seek to assess), and Y be the outcome variable. We will
let Z stand for the observed common ancestors of X and Y
(called confounders), and W for all the observed interme-
diate variables between X and Y (called mediators); for an
example, see Fig. 1(b), which we name the standard fairness
model (for short, standard model) for its generality. Formally
speaking, the standard model can fit any observational dis-
tribution over X,Y, Z,W since it implies no independence
constraint.3 We will denote by value x1 the disadvantaged
group and x0 the advantaged one, which we will use as the
baseline to measure changes of the outcome. One popular
criterion for the outcome fairness is the demographic parity
(Zafar et al. 2015), measured by the total variation:

Definition 2 (Total Variation (TV)). The total variation of
event X = x1 on Y = y (with baseline x0) is defined as:

TVx0,x1
(y) = P (y|x1)� P (y|x0) (1)

2We will not discuss in this paper the measure known as equal-
ized odds (EO) (Hardt et al. 2016) since it is specifically defined for
supervised learning tasks. EO measures the disparate mistreatment
(Zafar et al. 2017a), which is somewhat orthogonal to the disparate
treatment and disparate impact frameworks.

3To avoid clutter in Fig. 1(b), we just depict Z ! X but note
that under the standard model, Z  �� ! X (Z and X are
correlated) is an equally valid relationship that may be present.

The TV is nothing more than the difference between the
conditional distributions of Y when (passively) observing X
changing from x0 to x1. Another common fairness criterion
is the total effect (Council 2004), which measures the differ-
ence of outcome Y while physically controlling the values
of X , namely, TEx0,x1

(y) = P (yx1
) � P (yx0

). Control in
this case is usually achieved through the process of random-
ization. Outcome fairness can also be measured using coun-
terfactual quantities. One fundamental counterfactual metric
is the effect of treatment on the treated (Pearl 2000), i.e., :

Definition 3 (Effect of Treatment On the Treated (ETT)).
The effect of treatment on the treated of intervention X =
x1 on Y = y (with baseline x0) is defined as:

ETTx0,x1
(y) = P (yx1

|x0)� P (y|x0) (2)

The first factor P (yx1
|x0) is a counterfactual quantity that

read as “the probability of Y woud be y had X been x1

(counterfactually), given that in the actual (factual) world
X = x0.” (Kusner et al. 2017) studied fairness using the
ETT conditioned on the sub-population Z = z,W = w.

Procedural fairness, which prohibits direct discrimination,
is arguably the most intuitive fairness criterion found in the
literature. Some even believe that it is the only valid rationale
for antidiscrimination law (Barocas and Selbst 2016). In or-
der to detect direct discrimination, one popular approach is
to use the controlled direct effect (CDE), which measures the
effect of X on Y while holding all the other variables W,Z
fixed (also known as the ceteris paribus condition). For-
mally, CDEx0,x1

(yz,w) = P (yx1,z,w)�P (yx0,z,w). (Datta,
Sen, and Zick 2016) introduced a set of Quantitative Input
Influence (QII) measures which identify the direct discrimi-
nation when parents of Y are fully observed.

(Pearl 2001) introduced natural direct (NDE) and indirect
(NIE) effects to measure the effect of, respectively, the di-
rect and indirect causal paths on the total effect of X on Y .
For example, the natural direct effect in Fig. 1(a) is writ-
ten as NDEx0,x1

(y) = P (yx1,Wx0
) � P (yx0

), which mea-
sures the effect of the direct causal path X ! Y and dif-
fers from the CDEs since the mediator W is set the Wx0

,
the level that it would have naturally attained under the ref-
erence condition X = x0. The definition of NDEs can
be turned around and provide an operational definition for
the indirect effect. The natural indirect effect is defined as
NIEx0,x1

(y) = P (yx0,Wx1
)�P (yx0

), which compares the
effect of the mediator W at levels Wx0

and Wx1
on the out-

come Y had X been x0. This framework has been used as
the basis for a discrimination discovery analysis under the
assumption that X has no parent node in the causal diagram
(no spurious discrimination) (Zhang, Wu, and Wu 2016).

Counterfactual Fairness Analysis

Despite the recent surge of interest in discrimination anal-
ysis and fairness learning in AI, two fundamental ques-
tions have rarely been discussed – (1) What discrimination’s
mechanism is the target of the analysis? and (2) What empir-
ical measures would allow this mechanism to be identified
and potentially controlled? In this section, we start by illus-
trating these points by showing how previous state-of-the-art





probability of the outcome Y would be y (e.g., to hire) !had
X been x1, while mediators W (e.g., location) is kept at
the level they would have naturally attained (had X been
x0) for the individuals that X = x0.5 Despite the appar-
ently non-trivial reading of this nested counterfactual sen-
tence, DEx0,x1

(y|x) simply captures, mathematically, the
existence of disparate treatment., which is shown below.

Property 1. For a SCM M , if X has no direct causal
path connecting Y in the causal diagram G, then
DEx0,x1

(y|x) = 0, for any x, y, x0 6= x1.

In other words, if DEx0,x1
(y|x) 6= 0, for some values

x, y, x0 6= x1, one can conclude that the function fy uses
the sensitive feature X as an input to decide for the values
of outcome Y , i.e., the existence of direct discrimination.
Similarly, we could turn around the definition of Ctf-DE and
formally define the counterfactual notion of indirect effect.

Definition 5 (Counterfactual Indirect Effect (Ctf-IE)).
Given a SCM M , the counterfactual indirect effect of in-
tervention X = x1 on Y = y (relative to baseline X = x0)
conditioned on X = x is:

IEx0,x1
(y|x) = P (yx0,Wx1

|x)� P (yx0
|x) (4)

Syntactically, the definition of counterfactual IE is iden-
tical to counterfactual DEs except for the switch of x0 and
x1 in the first term. For x = x0, IEx0,x1

(y|x0) measures
changes in the probability of the outcome Y would be y had
X been x0, while changing W to whatever level it would
have obtained had X been x1, in particular, for the indi-
viduals that (naturally) have X = x0. The following prop-
erty establishes the relationship between the existence of
IEx0,x1

(y|x) and indirect causal paths between X and Y .

Property 2. For a SCM M , if X has no indirect causal path
connecting Y in the causal diagram G, then IEx0,x1

(y|x) =
0, for any y, x, x0 6= x1.

Prop. 2 implies that indirect discrimination could be suffi-
ciently identified by checking the condition IEx0,x1

(y|x) 6=
0. In words, the doubly hypothetical criterion used in Ctf-IE
correctly describes the meaning of indirect discrimination.

Finally, we provide a novel operational definition to quan-
titatively capture spurious associations between the pro-
tected attribute X and the outcome Y .

Definition 6 (Counterfactual Spurious Effect (Ctf-SE)).
Given a SCM M , the spurious effect of event X = x1 on
Y = y (relative to baseline x0) is defined as:

SEx0,x1
(y) = P (yx0

|x1)� P (y|x0) (5)

SEx0,x1
(y) measures the difference in the outcome Y =

y had X been x0 (written yx0
) for the individuals that would

naturally choose X to be x0 versus x1. For all settings con-
sidered in this paper, the spurious paths will be fully charac-
terized by the back-door paths, i.e., paths between X and Y
with an arrow into X (Pearl 2000, Sec. 3.3.1). We show next
that Ctf-SE uncovers the spurious relations between X and
Y through confounding variables (ancestors of X and Y ).

all x, then NDEx0,x1
(y) = 0.

5Confounders Z remain the same regardless of interventions on
X , since Z is a non-descendant node of X , Zx = Z.

Property 3. For a SCM M , if X has no back-door path
connecting Y in the corresponding causal diagram G, then
SEx0,x1

(y) = 0, for any y, x0 6= x1.

This guarantees that the condition SEx0,x1
(y) 6= 0 can be

seen as a sufficient test for the existence of back-door paths
connecting X and Y , i.e., the spurious discrimination.

Explaining Discrimination

After having formally defined fine-grained counterfactual
measures and studied their relations with the mechanisms
capable of bringing about discrimination in the world, in this
section, we consider (1) how these measures are quantita-
tively related and (2) how they can be estimated from data.

Decomposing the Total Variation

We first note that the counterfactual SE is closely related to
the ETT – i.e., SE measures differences in outcome across
units that would naturally choose x0 and x1 had they in fact
been assigned X = x0, while ETT measures the difference
in outcome x1 versus x0 for the units which would have nat-
urally chosen X = x0. If we put this together with Eq. 1
(TV), the following decomposition can be derived:

Lemma 1. The total variation, counterfactual spurious ef-
fect, and the effect of the treatment on the treated obey the
following non-parametric relationships:

TVx0,x1
(y) = SEx0,x1

(y)� ETTx1,x0
(y) (6)

TVx0,x1
(y) = ETTx0,x1

(y)� SEx1,x0
(y) (7)

In words, Eq. 6 implies that the total disparity (TV) expe-
rienced by the individuals naturally attaining x1 relative to
the ones attaining x0 equals to the disparity experienced due
to the spurious discrimination minus the advantage the ones
attaining x1 would have gained had they been x0. (Recall,
x0 = advantaged and x1 = disadvantaged groups.)

In fact, the ETT of the transition from x0 to x1 can be
further decomposed as the difference between the counter-
factual direct effect of that transition and the counterfactual
indirect effect of the reverse transition (from x1 to x0), i.e.:

Lemma 2. The effect of treatment on the treatment and the
counterfactual direct and indirect effects obey the following
non-parametric relationships:

ETTx0,x1
(y) = DEx0,x1

(y|x0)� IEx1,x0
(y|x0) (8)

Lems. 1 and 2 combined lead to a general, non-parametric
decomposition of the total variation, namely:

Theorem 1 (Causal Explanation Formula). The total vari-
ation, counterfactual spurious, direct, and indirect effects
obey the following relationships

TVx0,x1
(y) =SEx0,x1

(y) + IEx0,x1
(y|x1)

�DEx1,x0
(y|x1) (9)

TVx0,x1
(y) =DEx0,x1

(y|x0)

� SEx1,x0
(y)� IEx1,x0

(y|x0) (10)

Thm. 1 provides a quantitative explanation based on the
underlying causal mechanisms for the disparities observed
in TV. For instance, Eq. 9 explicates that the total disparity



experienced by the individuals who have naturally attained
x1 (relative to x0) equals to the disparity experienced asso-
ciated with spurious discrimination (Property. 3), plus the
advantage it lost due to indirect discrimination (Property. 2),
minus the advantage it would have gained without direct dis-
crimination (Property. 1). In the religion discrimination ex-
ample, if direct discrimination exists (DEx1,x0

(y|x1) > 0),
Eq. 9 implies that it will lower the hiring rate for people with
religious beliefs. Perhaps surprisingly, this result holds non-
parametrically, which means that the counterfactual effects
decompose following Thm. 1 for any functional form of the
underlying (generating) structural functions and for any dis-
tribution of the unobserved exogenous variables (U ). Owed
to their generality and ubiquity, we refer to this family of
equations as the “Causal Explanation Formula” (or simply
Explanation Formula).

The definitions and properties discussed so far are based
on probability distributions (e.g., P (y)). We extend counter-
factual DE, IE, and SE using expectations (E[Y ]), denoted
by DEx0,x1

(Y |x), IEx0,x1
(Y |x), and SEx0,x1

(Y ), respec-
tively. As a corollary, one could verify that the Explanation
Formula also holds for expectation measures.

Identifying Counterfactual Measures from Data

The Causal Explanation Formula provides the precise rela-
tion between the counterfactual quantities, but it does not
specify how they should be estimated from data. In this sec-
tion, we study the conditions under which these counterfac-
tual measures can be computed in practice. We start with the
standard model (Fig. 1(b)) and derive a set of identification
equations for the Explanation Formula when only observa-
tional data is available.

Leveraging the assumption implied by the standard model
that latent confounders are independent, we can show the
following general observational explanation formula:

Theorem 2 (Causal Explanation Formula (Standard
model)). Under the standard model, DEx0,x1

(y|x),
IEx0,x1

(y|x), and SEx0,x1
(y) can be estimated, respec-

tively, from the observational distribution as follows:
X

z,w

(P (y|x1, w, z)� P (y|x0, w, z))P (w|x0, z)P (z|x),

X

z,w

P (y|x0, w, z)(P (w|x1, z)� P (w|x0, z))P (z|x),

X

z,w

P (y|x0, w, z)P (w|x0, z)(P (z|x1)� P (z|x0)).

These equations provide general guidance for discrimina-
tion analysis applicable to any nonlinear system, any distri-
bution, and any type of variables. Moreover, all the quanti-
ties in Thm. 2 are expressible in terms of conditional distri-
butions and do not involve any counterfactual, which means
that they are readily estimable by any method from the ob-
servational distribution (e.g., regression, deep nets).

The Explanation Formula in the standard model is closely
related to the “Mediation Formula” used for mediation
analysis, which was introduced in (Pearl 2001) and is
widely popular throughout the empirical sciences (see (Pearl

2012) for a survey). In fact, if no back-door paths be-
tween X and Y (X 6 Z and Z 6! Y ) exist, it’s not
difficult to see that SEx0,x1

(y) = 0, and the identifi-
cation of DEx0,x1

(y|x) and IEx0,x1
(y|x) coincides with

NDEx0,x1
(y) and NIEx0,x1

(y) in the mediation formula.
We next state the identifiability result for the explanation

formula under the standard model for when the more strin-
gent assumption that the underlying structural functions are
linear is imposed (linear-standard model). 6

Theorem 3 (Causal Explanation Formula (Linear Models)).
Under the assumptions of the linear-standard model, the
counterfactual DE, IE, and SE of event X = x1 on Y (rela-
tive to baseline x0) can be estimated as follows:

DEx0,x1
(Y |x) = γyx.zw(x1 � x0),

IEx0,x1
(Y |x) = γyw.xzγwx.z(x1 � x0),

SEx0,x1
(Y ) = γxz(γyz.xw + γyw.xzγwz.x)(x1 � x0),

where γ are the corresponding (partial) regression coeffi-
cient (e.g., γyx.zw is the partial regression coefficient of Y
on X). The causal explanation formula decomposes as:

TVx0,x1
(Y ) = SEx0,x1

(Y ) + IEx0,x1
(Y |x) +DEx0,x1

(Y |x)

In contrast to the non-parametric case, the outcome dis-
parity in linear systems can be explained by the intuitively
clean, and usually expected, sum of the counterfactual spu-
rious, indirect, and direct effects.

We consider now a relaxation of the standard model to
allow for unobserved confounding, see Fig. 1(c). Follow-
ing the conventions in the field, latent variables are repre-
sented graphically through the dashed-bidirected arrows. We
call the set of models encompassing this set of assumptions
by the extended fairness model (for short, extended model).
We present in the sequel a sufficient condition under which
the corresponding effects in the explanation formula can be
identified from ETT-like counterfactual distributions.

Theorem 4 (Counterfactual Identification). Under the
extended model (Fig. 1(c)), if distributions P (yx|x

0),
P (yx,w|x

0, w0) and P (w|x) are identifiable, then measures
SEx0,x1

(y), DEx0,x1
(y|x0), and IEx0,x1

(y|x1) are identi-
fiable as well.

The distribution P (w|x) can be estimated from observa-
tional data, which is often easily available. Further, the dis-
tribution P (yx|x

0) and P (yx,w|x
0, w0) can be estimated fol-

lowing the new counterfactual randomization procedure in-
troduced in (Bareinboim, Forney, and Pearl 2015).

Applications and Simulations

We conduct experiments in different fairness tasks, includ-
ing discrimination detection, explanation, and design of
reparatory policies. Details of the experiments are provided
in the full technical report (Zhang and Bareinboim 2018).
If not stated explicitly, we assume x0 = 0, x1 = 1, and
y = 1. We shorten the notation of direct effect and write
DEx0,x1

(y|x0) = DE, and similarly to IE and SE.

6In fact, the wide popularity of the mediation formula first came
about under this specific set of assumptions (see also footnote 1).
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Appendix I. Proofs

Proofs build on three inference rules called do-calculus
(Pearl, 2000, Sec. 3.4), the exclusion and independence re-
strictions rules of SCMs (Pearl, 2000, pp. 232), and three
axioms of structural counterfactuals: composition, effective-
ness, and reversibility (Pearl, 2000, Sec.7.3.1).

Proof of Property. 1. By definition,

P (yx1,Wx0
|x)� P (yx0

|x)

=
X
w,z

(P (yx1,w|x,wx0
, z)� P (yx0

|x,wx0
, z))P (wx0

, z|x)

By the exclusion restrictions rule, Z = Zx. Thus,X
w,z

(P (yx1,w|x,wx0
, z)� P (yx0

|x,wx0
, z))P (wx0

, z|x)

=
X
w,z

(P (yx1,w|x,wx0
, zx1,w)� P (yx0,w|x,wx0

, zx0,w))

· P (wx0
, z|x)

=
X
w,z

(P (yx1,w,z|x,wx0
, zx0,w)� P (yx0,w,z|x,wx0

, zx0,w))

· P (wx0
, z|x)

The last step holds by the composition axiom: for any
x,w, z,

Zx,w = z ) Yx,w = Yx,w,z

Since X has no direct link connecting Y , Yx,w,z = Yw,z for
any x,w, z (the exclusion restrictions rule), which gives:X

w,z

(P (yx1,w,z|x,wx0
, zx0,w)� P (yx0,w,z|x,wx0

, zx0,w))

· P (wx0
, z|x)

=
X
w,z

(P (yw,z|x,wx0
, zx0,w)� P (yw,z|x,wx0

, zx0,w))

· P (wx0
, z|x) = 0

Proof of Property. 2. If X has no indirect causal pathway
connecting Y in the causal diagram G, this means that there
is no intermediate variable between X and Y , i.e., W = ;.
We thus have P (yx0,Wx1

|x) = P (Yx0
|x), which implies

IEx0,x1
(y) = P (yx0,Wx1

|x)� P (yx0
|x) = 0

Copyright c� 2018, Association for the Advancement of Artificial
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Proof of Property. 3. The back-door criterion (Pearl, 2000,
Sec. 11.3.2) implies Yx ?? X , i.e.,

P (yx0
|x1) = P (yx0

|x0) = P (yx0
)

By the composition axiom, P (y|x0) = P (yx0
|x0). Ctf-SE

is thus equal to:

SEx0,x1
(y) = P (yx0

|x1)� P (y|x0)

= P (yx0
|x1)� P (yx0

|x0)

= P (yx0
)� P (yx0

) = 0

Proof of Lemma. 1. By definition, TVx0,x1
(y) can be writ-

ten as:

TVx0,x1
(y) = P (y|x1)� P (y|x0)

= P (y|x1)� P (yx0
|x1) + P (yx0

|x1)� P (y|x0)

= �ETTx1,x0
(y) + SEx0,x1

(y)

Similarly, we can switch x0 and x1 in the decomposing term
P (yx0

|x1) and write TVx0,x1
(y) as:

TVx0,x1
(y) = P (y|x1)� P (y|x0)

= P (y|x1)� P (yx1
|x0) + P (yx1

|x0)� P (y|x0)

= �SEx1,x0
(y) + ETTx0,x1

(y)

Proof of Lemma. 2. By definition, ETTx0,x1
(y) is equal to

ETTx0,x1
(y) = P (yx1

|x0)� P (y|x0)

= P (yx1
|x0)� P (yx1,Wx0

|x0)

+ P (yx1,Wx0
|x0)� P (yx0

|x0)

= �IEx1,x0
(Y |x0) +DEx0,x1

(Y |x0)

Proof of Theorem. 1. By Eq. 6 in Lem. 1,

TVx0,x1
(y) = SEx0,x1

(y)� ETTx1,x0
(y)

Replace ETTx1,x0
(y) with Eq. 8 (Lem. 2),

TVx0,x1
(y) = SEx0,x1

(y) + IEx0,x1
(y|x1)�DEx1,x0

(y|x1)

Similarly, Eq. 7 (Lem. 1) and Eq. 8 combined give

TVx0,x1
(y) = ETTx0,x1

(y)� SEx1,x0
(y)

= DEx0,x1
(y|x0)� SEx1,x0

(y)� IEx1,x0
(y|x0)



Proof of Theorem. 2. We first consider the following equa-
tions, which will be useful later on in the proof

P (z, w|x) = P (w|x, z)P (z|x) (11)

P (yx,z,w) = P (y|x, z, w) (12)

P (z, wx0 |x) = P (w|x0, z)P (z|x) (13)

Eq. 11 is licensed by Bayes rule. Eq. 12 holds by do-calculus
rule 2 (Pearl, 2000, Sec. 3.4). As for Eq. 13, P (z, wx0 |x) can
be written as

P (z, wx0 |x) = P (wx0 |z, x)P (z|x)

= P (wx0,z|z, x)P (z|x)

The last step holds since: (1) by the exclusion restrictions
rule, Z = Zx0 ; and (2) by the composition axiom, Wx0 =
Wx0,z if Zx0 = z. Similarly, by the composition axiom, Z =
z ) X = Xz , which gives:

P (wx0,z|z, x)P (z|x) = P (wx0,z|z, xz)P (z|x)

Since W is not connected with X,Z by bi-directed edges
(de-confounded), by the independence restrictions rule,
Wx,z ?? Xz, Z for any x, z. We thus have:

P (wx0,z|z, xz)P (z|x) = P (wx0,z)P (z|x)

= P (w|x0, z)P (z|x)

The last step holds by do-calculus rule 2. We are now ready
to derived identification formulas for counterfactual DE, IE
and SE in the standard model. We can write SEx0,x1

(y) as
following by conditioning on Z,W :

SEx0,x1
(y) = P (Yx0

|x1)� P (y|x0)

=
X

z,w

P (yx0
|x1, z, wx0

)P (z, wx0
|x1) (14)

�
X

z,w

P (y|x0, z, w)P (z, w|x0)

As for P (yx0
|x1, z, wx0

), by the exclusion restrictions rule,
Z = Zx0

= Zx1
. By the composition axiom,

Z = z ) X = Xz, (15)

Zx0
= z )Wx0

= Wx0,z, (16)

Zx0
= z,Wx0

= w ) Yx0
= Yx0,z,w. (17)

We thus have:

P (yx0
|x1, z, wx0

) = P (yx0,z,w|x1z, z, wx0,z) (18)

Since Y and X,Z,W are not connected by bi-directed
edges, the independence restrictions rule gives:

Yx,z,w ?? Xz, Z,Wz,w, (19)

for any x, z, w. This implies

P (yx0,z,w|x1z, z, wx0,z) = P (yx0,z,w). (20)

Replacing P (yx0
|x1, z, wx0

) in Eq. 14 with Eq. 20 gives:X

z,w

P (yx0
|x1, z, wx0

)P (z, wx0
|x1)

�
X

z,w

P (y|x0, z, w)P (z, w|x0)

=
X

z,w

P (yx0,z,w)P (z, wx0
|x1)

�
X

z,w

P (y|x0, z, w)P (z, w|x0)

The above equation, together with Eqs. 11, 12 and 13, proves
the identification formula of SEx0,x1

(y):

SEx0,x1
(y) =

X
z,w

P (y|x0, z, w)P (w|x0, z)(P (z|x1)� P (z|x0)).

By conditioning on Z,W , we write DEx0,x1
(y|x) as

DEx0,x1
(y|x) = P (yx1,Wx0

|x)� P (yx0
|x)

=
X

z,w

P (yx1,w|x, z, wx0
)P (z, wx0

|x1)

�
X

z,w

P (yx0
|x, z, wx0

)P (z, wx0
|x)

=
X

z,w

P (yx1,w|x, z, wx0
)P (z, wx0

|x1) (21)

�
X

z,w

P (yx0,w,z)P (z, wx0
|x)

The last step holds by Eq. 20. As for P (yx1,w|x, z, wx0
),

by the exclusion restrictions rule, Z = Zx0
= Zx1,w. By the

composition axiom, Yx1,w = Yx1,w,z if Zx1,w = z. Together
with Eqs. 15 and 16, we obtain:

P (yx1,w|x, z, wx0
) = P (yx1,w,z|xz, z, wx0,z). (22)

The independence relation in Eq. 19 implies

P (yx1,w,z|xz, z, wx0,z) = P (yx1,w,z). (23)

Replacing P (yx1,w|x, z, wx0
) in Eq. 21 with Eq. 23 gives

X

z,w

P (yx1,w|x, z, wx0
)P (z, wx0

|x1)

�
X

z,w

P (yx0,w,z)P (z, wx0
|x)

=
X

z,w

(P (yx1,w,z)� P (yx0,w,z))P (z, wx0
|x)

Together the above equation with Eqs. 11-13, we prove the
identification formula of DEx0,x1

(y|x):

DEx0,x1
(y|x) =

X
z,w

(P (y|x1, w, z)

� P (y|x0, w, z))P (w|x0, z)P (z|x).

Finally, IEx0,x1
(y|x) equals to

IEx0,x1
(y|x) = P (yx0,Wx1

|x)� P (yx0
|x)

=
X

z,w

P (Yx0,w|x, z, wx1
)P (z, wx1

|x)

�
X

z,w

P (Yx0
|x, z, wx0

)P (z, wx0
|x)

=
X

z,w

P (Yx0,z,w)(P (z, wx1
|x)� P (z, wx0

|x))

Note that in Eqs. 18, 20, 22 and 23, x, x0, x1 can be arbitrary
values, i.e.:

P (yx0,w|x, z, wx1
) = P (yx0

|x, z, wx0
) = P (yx0,z,w)



This gives

IEx0,x1
(y|x) =

X

z,w

P (Yx0,z,w)(P (z, wx1
|x)� P (z, wx0

|x))

Together the above equation with Eqs. 11-13, we prove the
identification formula of IEx0,x1

(y|x):

IEx0,x1
(y|x) =

X
z,w

P (y|x0, w, z)(P (w|x1, z)

� P (w|x0, z))P (z|x).

Proof of Theorem. 3. Let us examine what Causal Expla-
nation Formula yields when applied to the linear-standard
model where

z = uxz, x = αxzz + uxz, w = αwxx+ αwzz + uw,

y = αyxx+ αyzz + αyww + uy.

Without loss of generality, we assume uxz, uy, uw are nor-
mal with zero mean and variance one. We consider the ex-
pectation version of Explanation Formula which replaces
P (Y |x,w, z) with E[Y |x,w, z]. Computing the conditional
expectations E[Y |x,w, z] and E[W |x, z] gives:

E[Y |x,w, z] = E[αyxx+ αyzz + αyww + uy]

= αyxx+ αyzz + αyww

E[W |x, z] = E[αwxx+ αwzz + uw]

= αwxx+ αwzz

Similarly, we can compute conditional expectations
E[Y |x, z] as following:

E[Y |x, z] = E[αyxx+ αyzz + αywW + uy|x, z]

= αyxx+ αyzz + αywE[W |x, z]

= αyxx+ αyzz + αywαwxx+ αywαwzz

and these give us

DEx0,x1
(Y |x) =

X
z,w

(αyxx1 � αyxx0)P (w|x0, z)P (z|x)

= αyx(x1 � x0)

IEx0,x1
(Y |x) =

X
z,w

E[Y |x0, w, z](P (w|x1, z)� P (w|x0, z))P (z|x)

=
X
z,w

(y0 + αyxx+ αyzz + αyww)

· (P (w|x1, z)� P (w|x0, z))P (z|x)

=
X
z

αyw(E[W |x1, z]� E[W |x0, z])P (z|x)

= αywαwx(x1 � x0)

SEx0,x1
(Y )

=
X
z,w

E[Y |x0, w, z]P (w|x0, z)(P (z|x1)� P (z|x0))

=
X
z

E[Y |x0, z](P (z|x1)� P (z|x0))

=
X
z

(y0 + w0 + αyxx++αywαwxx+ (αyz + αywαwz)z)

· (P (z|x1)� P (z|x0))

= (αyz + αywαwz)(E[Z|x1]� E[Z|x0])

= γzx(αyz + αywαwz)(x1 � x0)

where the regression coefficient γzx = ∂
∂x

E[Z|x].

TVx0,x1
(Y ) = E[Y |x1]� E[Y |x0]

=
X
z,w

(E[Y |x1, w, z]P (w|x1, z)P (z|x1)� E[Y |x0, w, z]

· P (w|x0, z)P (z|x0))

= (αyx + αywαwx)(x1 � x0) + (αyz + αywαwz)

· (E[Z|x1]� E[Z|x0])

= (αyx + αywαwx + γzx(αyz + αywαwz))(x1 � x0)

Parameters αyx,αyz,αyw,αwx,αwz can be identified with
partial regression coefficients as following:

αyx = γyx.zw, αyz = γyz.xw, αyw = γyw.xz,

αwx = γwx.z, αwz = γwz.x.

We thus obtain identification formulas for counterfactual
DE, IE and SE in the linear-standard model. In particular,
Causal Explanation Formula produces the standard, additive
relation in the linear-standard model, i.e.,

TVx0,x1
(Y ) = SEx0,x1

(Y ) + IEx0,x1
(Y |x) +DEx0,x1

(Y |x)

Proof of Theorem. 4. Note that SEx0,x1
(y),

DEx0,x1
(y|x0) and IEx0,x1

(y|x1) consist of two types
of quantities: P (yx|x

0) and P (yx,W
x0
|x0). The former is

identifiable, and we now consider the latter:

P (yx,W
x0
|x0) =

X

w

P (yx,w|x
0, wx0)P (wx0 |x0)

=
X

w

P (yx,w|x
0, w)P (w|x0)

where P (yx,w|x
0, w) and P (w|x0) are both identifiable.

Therefore, the nested counterfactual P (yx,W
x0
|x0) is also

identifiable.

Appendix II. Analysis of Current Methods

In this section, we will provide the detailed analysis of re-
sults presented in Table. 1. Specifically, we study capabili-
ties and limitations of state-of-art discrimination measures.
For each measure, we formally analyze what types of dis-
crimination it can (cannot) distinctly identify. If not stated,
we assume x0 = 0, x1 = 1.

Total Variation (TV). Recall that the total variation of
event X = x1 on Y = y (with baseline x0) is defined as
TVx0,x1

(y) = P (y|x1) � P (y|x0). TV measures all paths
(causal and non-causal) connecting from the protected at-
tribute X to the outcome Y , formally,

Lemma 3. For a SCM M , if X has no path connecting Y in
the causal diagram G, then TVx0,x1

(y) = 0, for any y, x0 6=
x1.

Lem. 3 is implied by the soundness of d-separation
(Koller and Friedman, 2009, Sec. 3.3.2). This lemma says
that the condition TVx0,x1

(y) 6= 0 is a sufficient test for the
existence of paths connecting X and Y . However, this path
could be either direct, indirect or spurious. In other words,
TVx0,x1

(y) 6= 0 could only detect, but not distinctly identify
underlying discriminatory mechanisms.



Total Effect (TE). The total effect measures the causal ef-
fect of intervention X = x1 on Y = y (with baseline x0),
namely, TEx0,x1

(y) = P (yx1
) � P (yx0

). TE measures ef-
fect transmitted along causal paths connecting from X to Y .
Formally,

Lemma 4. For a SCM M , if X has no causal path connect-
ing Y in the causal diagram G, then TEx0,x1

(y) = 0, for
any y, x0 6= x1.

Proof. If X has no causal path connecting Y , then X is a
non-descendant of Y . This implies that Yx = Y (Halpern,
2000). Thus,

TEx0,x1
(y) = P (yx1

)� P (yx0
) = P (y)� P (y) = 0

Lem. 4 says that one can test the existence of causal paths
between X and Y by checking whether TEx0,x1

(y) 6= 0.
However, this condition fails to capture the existence of
back-door paths, i.e., the spurious discrimination.

Lemma 5. There exists a SCM M where X and Y are not
connected by any causal path, but TEx0,x1

(y) 6= 0 for some
y, x0 6= x1.

Proof. We can prove this lemma by constructing a such
SCM M , where X,Y, U are binary variables in {0, 1},
P (U = 0) = 0.9. Values of y are decided by function
y = x � u (� stands for the “xor” operator), and X fol-
lows a uniform distribution. In this model, X and Y are only
connected by the direct causal path X ! Y . However, for
y = 1, TEx0,x1

(y) is equal to

TEx0,x1
(y) = P (yx1

)� P (yx0
)

= P (U = 0)� P (U = 1) = 0.8

which is not zero.

ETT and Counterfactual Fairness. Recall that the effect
of treatment on the treated (ETT) of event X = x1 on Y = y
is defined as

ETTx0,x1
(y) = P (yx1

|x0)� P (y|x0)

Kusner et al. (2017) defined the counferfactual fairness mea-
sure using ETT conditioned on the sub-population Z =
z,W = w, namely

Definition 8. The counterfactual fairness measure of inter-
vention X = x1 on Y (with baseline x0) conditioned on
Z = z,W = w is defined as:

ETTx0,x1
(y|z, w) = P (yx1

|x0, z, w)� P (y|x0, z, w)

Kusner et al. (2017) showed that the counterfactual fair-
ness measures effects transmitted along causal paths from X
to Y . We here provide an alternative proof.

Lemma 6. For a SCM M , if X has no causal path connect-
ing Y in the causal diagram G, then TEx0,x1

(y) = 0, for
any y, x0 6= x1.

Proof. If X has no causal path connecting Y , then X is a
non-descendant of Y . This implies that Yx = Y (Halpern,
2000). Thus,

ETTx0,x1
(y|z, w) = P (yx1

|x0, z, w)� P (y|x0, z, w)

= P (y|x0, z, w)� P (y|x0, z, w) = 0

Lem. 6 can be seen as a sufficient test
(ETTx0,x1

(y|z, w) 6= 0) for the existence of causal
paths between X and Y . However, the counterfactual
fairness measure fails to capture the existence of spurious
discrimination.

Lemma 7. There exists a SCM M where X and Y are not
connected by any back-door path, but ETTx0,x1

(y|z, w) 6=
0 for some y, z, w and x0 6= x1.

Proof. We can prove this lemma with the same SCM M
constructed in the proof of Lem. 5. In this example, we have
Z = W = ;, and there exists no back-door path between X
and Y . For y = 1, we have:

ETTx0,x1
(y|z, w) = ETTx0,x1

(y) = TEx0,x1
(y) = 0.8

which is not zero.

As a corollary, it is immediate to see that the condition
ETTx0,x1

(y) 6= 0 is also oblivious to the existence of spuri-
ous discrimination.

Natural Direct and Indirect Effect. Pearl (2001) intro-
duced natural direct (NDE) and indirect (NIE) effects to
measure the direct and indirect causal effect of X on Y . For-
mally,

Definition 9 (Natural Diret Effect(NDE)). Given a SCM M ,
the natural direct effect of intervention X = x1 on Y = y
(relative to baseline x0) is defined as:

NDEx0,x1
(Y = y) = P (yx1,Wx0

)� P (yx0
)

Definition 10 (Natural Indirect Effect(NDE)). Given a SCM
M , the natural indirect effect of intervention X = x1 on
Y = y (relative to baseline X = x0) is:

NIEx0,x1
(y) = P (yx0,Wx1

)� P (yx0
) (24)

In fact, NDE and NIE measure, respectively, effects asso-
ciated with direct and indirect causal paths from X to Y .

Lemma 8. For a SCM M , if X has no direct causal
path connecting Y in the causal diagram G, then
NDEx0,x1

(y) = 0, for any y, x0 6= x1.

Proof. By definition,

NDEx0,x1
(y) = P (yx1,Wx0

)� P (yx0
)

=
X

z,w

P (yx1,w|z, wx0
)� P (yx0

|z, wx0
)P (z, wx0

)

=
X

z,w

P (yx1,z,w|z, wx0
)� P (yx0,z,w|z, wx0

)P (z, wx0
)

In this last step, Z = Zx = Zx,w for any x by the exclusion
restrictions rule. Yx = Yx,w = Yx,z,w if Z = Zx = Zx,w =
z and Wx = w for any x, z, w (the composition axiom).
Since X has no direct causal path connecting Y , by the ex-
clusion restrictions rule, Yx,z,w = Yz,w for any x, z, w. We
thus haveX

z,w

P (yx1,z,w|z, wx0
)� P (yx0,z,w|z, wx0

)

=
X

z,w

P (yz,w|z, wx0
)� P (yz,w|z, wx0

) = 0



Lemma 9. For a SCM M , if X has no indirect
causal path connecting Y in the causal diagram G, then
NIEx0,x1

(y) = 0, for any y, x0 6= x1.

Proof. Since X has no indirect causal path connecting Y ,
the mediators W = ;. We can obtain

NIEx0,x1
(y) = P (yx0,Wx1

)� P (yx0
)

= P (yx0
)� P (yx0

) = 0

Lems. 8 and 9 suggest that one could distinctly identify
direct discrimination and indirect discrimination by check-
ing, respectively, the condition NDEx0,x1

(y) 6= 0 and
NIEx0,x1

(y) 6= 0. We next show that direct (indirect) dis-
crimination is the only type of discrimination detected by
NDE (NIE).

Lemma 10. There exists a SCM M where X and Y are
not connected by any indirect causal or back-door path, but
NDEx0, x1(y) 6= 0 for for some y, x0 6= x1.

Proof. Consider the SCM M constructed in the proof of
Lem. 5. In this model, X and Y are only connected by the
direct causal path X ! Y . However, for y = 1, NDE is
equal to:

NDEx0,x1
(y) = TEx0,x1

(y) = 0.8

which is not zero.

Lemma 11. There exists a SCM M where X and Y are
not connected by any direct causal or back-door path, but
NIEx0, x1(y) 6= 0 for some y, x0 6= x1.

Proof. Consider a SCM M , where X,Y,W,U are binary
variables in {0, 1}, P (U = 0) = 0.9. Values of Y are de-
cided by function y = w � u (� stands for the “xor” oper-
ator), values of W are decided by w = x and X follows a
uniform distribution. In this model, X and Y are only con-
nected by the indirect causal path X ! W ! Y . However,
for y = 1, NIE is equal to:

NIEx0,x1
(y) = P (yx0,Wx1

)� P (yx0
)

= P (U = 0)� P (U = 1) = 0.8

which is not zero.

Controlled Direct Effect (CDE). The controlled direct
effect (CDE) measures the sensitivity of Y to (interven-
tional) variations of X while physically holding all the other
observed variables W fixed. Formally

Definition 11 (CDE Fairness). Given a SCM M , for any
z, w, the controlled direct effect of intervention X = x1 on
Y = y (relative to baseline x0) is defined as:

CDEx0,x1
(yz,w) = P (yx1,z,w)� P (yx0,z,w)

We use CDEs to define a qualitative measure to capture
the presence of direct causal path X ! Y , i.e., direct dis-
crimination.

Lemma 12. For a SCM M , if X has no direct causal
path connecting Y in the causal diagram G, then
CDEx0,x1

(yz,w) = 0, for any y, z, w and x0 6= x1.

Proof. Since X has no direct causal path connecting Y ,
by the exclusion restrictions rule (Pearl, 2000, Sec. 7.3.2),
Yx,z,w = Yz,w for any x, z, w. We thus have

CDEx0,x1
(yz,w) = P (Yx1,z,w)� P (yx0,z,w)

= P (yz,w)� P (yz,w) = 0

Lem. 14 implies that the condition CDEx0,x1
(Yz,w) 6= 0

is a sufficient test for identifying direct discrimination. How-
ever, we next show this condition is unable to detect indirect
and spurious discrimination.

Lemma 13. There exists a SCM M where X and Y are
not connected by any indirect causal or back-door path, but
CDEx0, x1(y) 6= 0 for for some y, x0 6= x1.

Proof. Consider the SCM M constructed in the proof of
Lem. 5.In this model, X and Y are only connected by the
direct causal path X ! Y . However, for y = 1, CDE is
equal to:

CDEx0,x1
(y) = TEx0,x1

(y) = 0.8

which is not zero.

Average QII Datta, Sen, and Zick (2016) introduced the
average QII measure to capture the degree of direct in-
fluence of input X on outcome Y – the expected change
in Y induced by two independent stochastic interventions
do(W ⇠ P (w)) and do(X ⇠ P (x)). 1 P (w) and P (x) are
marginals of the observational distribution P (x, y, w), i.e.:

Definition 12 (Average QII). The average QII of X on Y is
defined as:

QIIX(Y ) = E[Y ]� E[YX⇠P (x),Z,W⇠P (z,w)]

QII can be used to construct a sufficient test for detecting
the existence of direct discrimination when all parents of Y
are observed.

Lemma 14. For a SCM M , if X has no direct causal path
connecting Y in the causal diagram G and all parents of Y
are observed, then QIIX(Y ) = 0.

Proof. By definition,

QIIX(Y ) = E[Y ]� E[YX⇠P (x),Z,W⇠P (z,w)]

=
X

x,z,w

E[Y |x, z, w]P (x, z, w)� E[Yx,z,w]P (x)P (z, w)

Since all parents of Y are observed, E[Y |x, z, w] =
E[Yz,w], which gives:

X

x,z,w

E[Y |x, z, w]P (x, z, w)� E[Yx,z,w]P (x)P (z, w)

=
X

x,z,w

E[Yx,z,w](P (x, z, w)� P (x)P (z, w))

1Values of X are sampled from the distribution P (x).



Since X has no direct causal path connecting Y , by the ex-
clusion restrictions rule, Yx,z,w = Yz,w for any x, z, w. We
thus have:

X

x,z,w

E[Yx,z,w](P (x, z, w)� P (x)P (z, w))

=
X

x,z,w

E[Yz,w](P (x, z, w)� P (x)P (z, w))

=
X

z,w

E[Yz,w](
X

x

P (x, z, w)�
X

x

P (x)P (z, w))

=
X

z,w

E[Yz,w](P (z, w)� P (z, w)) = 0

However, in general settings (e.g., the extended model),
the condition QIIX(Y ) 6= 0 is not a sufficient test of iden-
tifying any type of discrimination.

Lemma 15. There exists a SCM M where X and Y are not
connected by any path, but QIIX(Y ) 6= 0.

Proof. Consider a SCM M where X,Y, Z,W,U are binary
variables in {0, 1} and U follows a uniform distribution. Val-
ues of Z are decided by the function z = u and values of Y
are decided by the function y = z � u. X,W follows arbi-
trary independent distributions P (x), P (w). Values of Y are
equal to:

y = z � u = u� u = 0,

which implies that E[Y ] = 0. Since P (u) is a uniform
distribution and z = u, the marginal P (z) is also an uni-
form distribution. Since Z is the only parent of Y , the ex-
clusion restrictions rule gives Yx,z,w = Yz . The quantity
E[YX⇠P (x),Z,W⇠P (z,w)] is thus equal to

E[YX⇠P (x),Z,W⇠P (z,w)] =
X

x,z,w

E[Yx,z,w]P (x)P (z, w)

=
X

z

E[Yz]
X

x,w

P (x)P (z, w) =
X

z

E[Yz]P (z)

Values of Yz are decided by the function y = z � u, where
z and u follow an independent uniform distribution respec-
tively. Thus,

X

z

E[Yz]P (z) =
X

z,u

I{z � u = 1}P (z)P (u) = 0.5

where I{·} is an indicator function. By definition, QIIX(Y )
is equal to

QIIX(Y ) = E[Y ]� E[YX⇠P (x),Z,W⇠P (z,w)] = �0.5

which is not zero.

Appendix III. Parametrizations

In this section, we provide full parametrizations for simula-
tions in the paper.

Discrimination Detection

Standard Fairness Model. Recall that in the religious dis-
crimination example, a company makes hiring decisions Y
and can potentially use the following attributes that are avail-
able in its database: 1) the religious belief X , 2) the educa-
tional background Z, and 3) the location W of the applicant.
Fig. 1(a) is the causal model for this setting. X,Y, Z,W are
binary variables taking values in {0, 1}. Z following a uni-
form distribution such that P (Z = 0) = 0.5. Values of X
are decided by function x = ¬z, and values of W are de-
cided by function w = x. The hiring decision Y is made
solely based on Z, s.t., y = fy(z) = z. Noting that educa-
tion is critical for business success, the same is considered a
legitimate reason for hiring (path X  Z ! Y is justified).

Extended Fairness Model. Consider a instance M of
Extended fairness model, where X,Y, Z,W,U1, U2 2
{0, 1}. U1, U2 are exogenous variables following distribu-
tions P (U1 = 0) = 0.9 and P (U2 = 0) = 0.1. Values of
X,Y, Z,W are decided by, respectively, functions

x = u1, y = x� z � w � u1 � u2,

z = u1, w = x� z � u1,

where � stand for the “xor” operator.

Discrimination Explanation

For simulations in this section, we consider a logistic model
similar to the one treated in (MacKinnon et al., 2007). Let
us retain the linear model in Eqs. with one modification:
the outcome will be a threshold-based indicator of the lin-
ear outcome Y in the linear-standard model. Formally, we
regard

Y ⇤ = γxyx+ γzyz + γwyw + uy

as a latent variable, and define the outcome Y as

y = I{γ0 + γxyx+ γzyz + γwyw + uy},

where I{·} is an indicator function, and γ0 is some unknown
threshold level. For simulations in the paper, we use param-
eters γxy = γwy = γzy = γxw = γzx = 0.5. If Uy follows
the logistic distribution,

P (Uy < u) = L(u) ,
1

1 + e�u
.

Thus, P (Y = 1|x,w, z) attains the form

P (Y = 1|x,w, z) =
1

1 + e�(γ0+γxyx+γwyw+γzyz)

= L(γ0 + γxyx+ γwyw + γzyz)

We assume that Uz, Uw are normal with zero mean and in-
finitesimal σz << 1,σw << 1.

Given this logistic model, we will now compute the TV
and counterfactual DE, IE and SE associated with the tran-
sition from x0 = 0 to x1 = 1. From the Causal Explanation



Formula in the standard model (Thm. 2), we have:

DEx1,x0
(Y |x1)

=

Z
∞

−∞

Z
∞

−∞

[L(γ0 + γwyw + γzyz)� L(γ0 + γxy + γwyw + γzyz)]

· fW |X(w|x1)fZ|X(z|x1)dwdz

= L(γ0 + γwy + γzy)� L(γ0 + γxy + γwy + γzy) + 0(σ2

z + σ
2

w)

IEx0,x1
(Y |x0)

=

Z
∞

−∞

Z
∞

−∞

[L(γ0 + γwyw + γzyz)]

· [fW |X(w|x1)� fW |X(w|x1)]fZ|X(z|x1)dwdz

= L(γ0 + γwy + γzy)� L(γ0 + γzy) + 0(σ2

z + σ
2

w)

SEx0,x1
(Y )

=

Z
∞

−∞

Z
∞

−∞

[L(γ0 + γwyw + γzyz)]

· fW |X(w|x0)[fZ|X(z|x1)� fZ|X(z|x0)]dwdz

= L(γ0 + γzy)� L(γ0) + 0(σ2

z + σ
2

w)

where 0(σ2
z + σ

2
w)! 0 as σz,σw ! 0.
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