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Abstract—We develop a method to jointly estimate the carrier
frequency offset (CFO) and the narrowband channel in millimeter
wave (mmWave) MIMO systems operating with one-bit analog-
to-digital converters (ADCs). We assume perfect timing synchro-
nization and transform the underlying CFO-channel optimization
problem to a higher dimensional space using lifting techniques.
Exploiting the sparse nature of mmWave MIMO channels in the
angle domain, we perform the joint estimation by solving a noisy
quantized compressed sensing problem of the lifted version, using
generalized approximate message passing. Simulation results
show that our method is able to recover both the channel and
the CFO using one-bit measurements.

I. INTRODUCTION

Hardware architectures using one-bit ADCs at the receiver
are attractive for mmWave systems, due to the low power
consumption and hardware complexity compared to those with
high resolution ADCs [1]. Analysis of such systems, however,
is challenging because the underlying theory of communication
techniques in MIMO systems with one-bit ADCs is consid-
erably different from the full resolution ones. Furthermore,
efficient signal processing algorithms have to be developed
considering the non-linear quantization effect due to one-bit
ADCs.

At mmWave carrier frequencies, MIMO channels are ap-
proximately sparse in the angle domain, due to the propagation
characteristics of the environment [1]. Exploiting the sparse
nature of mmWave channels, several compressed sensing based
algorithms have been proposed to estimate the channel with
fewer measurements [2] [3]. Prior work has also considered
channel estimation using low resolution ADCs [4]. Most of
these algorithms, however, assume perfect synchronization and
fail to perform well in the presence of carrier frequency
offset. Methods that are compressive and robustly estimate the
channel against synchronization impairments are limited [5]
[6] and primarily focus on analog beamforming architecture
with full resolution ADCs. Furthermore, the algorithms in
[5] and [6] discard the phase of the channel measurements,
and hence cannot be used for receivers with one-bit ADCs.
As far as low resolution receiver architectures are concerned,
a method to jointly estimate the CFO and the single-input-
single-output (SISO) channel using feedback dither control
was proposed in [7]. Our method does not assume any such
feedback and estimates the mmWave MIMO channel while
exploiting the sparse nature of mmWave channels.

In this paper, we propose a compressive joint CFO and
channel estimation algorithm using one-bit measurements. We
consider uniform linear arrays (ULAs) at the transmitter (TX)

and the receiver (RX), with a one-bit ADC architecture at
the RX. We assume perfect timing synchronization and also
that a single oscillator drives all the RF chains at a given
end (TX or RX). The latter assumption is valid when the
RF signal is generated from the same reference oscillator [8].
Therefore, a unique CFO is defined for the MIMO system. Our
methodology involves increasing the dimension of the CFO-
channel estimation problem using lifting [9] and then applying
the Expectation Maximization - Generalized Approximation
Message Passing (EM- GAMP) [10] to recover the lifted vector
from the one-bit measurements. The recovered lifted vector is
then decomposed into vectors corresponding to the CFO and
the channel. Simulation results show that our proposed method
estimates both the CFO and the mmWave MIMO channel
matrix compressively using the one-bit measurements.

Notation: A is a matrix, a is a column vector and
a, A denote scalars. Using this notation A7, A* represent the
transpose, conjugate transpose of A respectively. We use A (%)
to denote the i*" row and A ;) to denote the j*™ column of
A. The symbol ® is used to denote the kroenecker product.
vec (A) is a vector obtained by stacking all the columns
of A. The matrix Uy € CN*V denotes a DFT matrix of
dimension N and is given by Uy (k, ¢) = eI TR for
k,te{1,2,..,N}.

II. SYSTEM MODEL

Consider a narrowband MIMO system with ULAs of Niy
antennas at the TX and N, antennas at the RX . Let f; be
the carrier frequency used at the TX to upconvert the baseband
signal. At the RX, each of the IV, antennas is associated
with an RF chain, which downconverts the received signal
using a carrier frequency fo, that is different from f; due to
the oscillator mismatch. The resultant baseband signal is then
sampled using a pair of one-bit-ADCs as shown in Fig.1. In
practical wireless systems, the frequency difference fo — f1 is
typically in the order of several parts per millions (ppms) of
the carrier frequency f;. Such small error, however, cannot be
ignored as it can be comparable to the bandwidth of the signal.
For a symbol duration of 7T, we define the digital domain
CFO as we = 27 (f2 — f1)T. Although the MIMO system
has multiple RF chains, we have a single CFO (w,.) in our
model because all the RF chains at a given end (TX or RX)
are assumed to be driven by the same oscillator, as illustrated
in Fig.1

We denote the one-bit quantization function Q;(-) as

Q1 (z) = sgn(Re{z}) + jsgn(Im{z}), with sgn(-) denoting
the signum function. Note that the quantization function is



applied element-wise for a vector. Let H € CNe=*Nex be the
channel matrix for the narrowband system. For the n'" transmit
vector T'(,,) € CNex1 within a block of NN, transmissions, the
received vector Y (,,) € CNe*1 at the output of ADCs, is given
by

Y(n) =Qs (e-jwenHT(n) + N(n)) , Vne {O, 1,..., Np — ]_}7
)]

where N is IID gaussian noise with N;; ~ CN (0, 1).

Transmitter Digital
Baseband
Processing

RF
Block

Fig. 1. A MIMO system with two distinct oscillators operating at f1 and fa,
and one-bit ADCs at the receiver. Each ADC pair samples the in-phase and
quadrature-phase components of the baseband signal at a particular antenna.

The narrowband channel is modeled by considering a
propagation environment with N, clusters and K, rays in the
nt" cluster. Let Yr,ms Or.n,m and O, ,, denote the complex
gain, angle-of-arrival and angle-of-departure of the m'" ray
in the n*" cluster. Let A be the carrier wavelength and d be
the antenna spacing in the ULAs at the TX and the RX. With
Wrnm = QL)\dsin(ﬁnn,m), Winm = QKd sin(f n,m) and the
Vandermonde vector

J'(J\’*1)9]T7 )

the MIMO channel matrix H, at baseband is given by

Ay (9) = {L ejea 6j297 e, €

N. K,

*
H= E E TnmAy,, (Wr,n,m) aNt

n=1m=1

. (Wt,n,nL) . (3)

The channel matrix in (3) can be interpreted as a linear
combination of several rank one matrices, each corresponding
to a propagation ray in the environment.

At mmWave frequencies, H in (3) is approximately sparse
when expressed in the angle domain [1]. The channel matrix
would be exactly sparse if the constituent spatial frequencies
in the 2-D Fourier representation, align exactly on the DFT
grid. For our analysis, we assume that the 2-D spatial fre-
quency components of H, of the form (wx,wy) come from

A 271'(er—1)
< Nex? Nex Wy €

a discrete set, i.e, w, € {O 2m

27 4w 27 (Nix—1)
0, Noo) Noo Nit} Therefore, the beamspace repre-
sentation of H given by

H=Uy_CU} @)

is a sparse representation, i.e., C is a sparse matrix and let
s be the number of non-zero entries. For our simulations,
we consider the realistic case in (3), which results in an
approximately sparse matrix C. Furthermore, we choose the

CFO to be maximally off grid to evaluate our algorithm in the
worst possible scenario. Our goal is to estimate the channel
H and the CFO simultaneously, given a training sequence and
the corresponding sampled bits at the RX.

III. JOINT CFO AND CHANNEL ESTIMATION

Let T € CVex*No be a transmit block of length N,,. From
(1) and (2), a compact representation of the received block
Y € CNV=*Ne s given by

Y =0, (HTdiag (aNP (we)) n N) . )
To increase compressibility of the lifted vector (discussed in
III-A), we express a, (w.) in the Fourier basis as a, (we) =

U} b, where b is the N, point DFT of {63“"”} . From
(4) and (5), we have

-0, (diag <U7vp b) T7U%, C'Uy,, + NT) . (6

We define the vectors y,c and n as y = vec (YT),
c = vec(CT) and n = vec (NT). Note that the CFO
and the channel can be perfectly recovered from the true
b and c respectively. The matrices G and J are defined
as G = a, (0)® Uy and J = (Un,, ®U}‘VWT)T_ It
can be seen that a, (0) is just a compact representation

of the all ones vector in [V, dimension. Using the property
vec (PQR) = (RT @ P) vec (Q), we rewrite (6) as

y = 9 (diag (Gb)Jc +n). @)

Finding the solution to (7) is equivalent to solving a quantized
bilinear optimization problem, subject to sparsity of one of
the components (c). We approach this problem by moving
to a higher dimensional space (lifting), followed by solving
a noisy quantized compressed sensing problem and then a
singular value decomposition (SVD).

A. Lifting the CFO-channel problem

Lifting is a convex relaxation technique that handles bilin-
ear optimization problems by transforming them to a higher
dimensional space [11]. Although computationally intensive,
it recovers both the vectors in a stable manner unlike methods
like alternating minimization that may converge to a local
minima. Let z = diag (Gb)Jc + n denote the unquantized
version of y in (7). The " entry of z can be written as

= (Gb), (Jc), + n;
=GYbIVc +n;
— GObeT (J“)) +n
= (J(i) ® G(i)) vec (bcT) + n,.
We define an NNy N, dimensional compound variable

A ¢

. Hence, the

X = vec (bCT and a measurement matrix

CNexNp X NexNuxNp guch that A = JO) @ GO
unquantized noisy measurements are given by
z=Ax+n. 8)

It may be noticed that sparsity of c¢ directly translates to the
sparsity of the lifted vector x, i.e., the fraction of sparse entries



of ¢ and x is exactly equal to s/NNV;x for a generic or
non-sparse b. When the CFO (w,.) is exactly a multiple of
27/Np, b has a single non-zero entry and x has a lower
sparsity fraction of s/ NNy Ny, thus improving the recovery
performance of our algorithm compared to the generic case.
For our simulations, we assume that the CFO is maximally off
grid to evaluate the worst case performance of our algorithm.
The vectors b and ¢ can be recovered upto a scale factor from
the left and right singular vectors corresponding to the largest
singular value of the matrix version of x, i.e., X reshaped to a
Np X Ny Ny matrix. Lifting followed by the SVD is shown to
perform well for sparse bilinear optimization problems [9]. The
disadvantage, however, is operating in a higher dimensional
space. For instance, we have transformed a NNy + N,
variable problem to a N, N[V, dimension problem, using
lifting. The lifting approach may not be practical in some
applications like joint CFO and wideband channel estimation,
due to high memory and computational complexity.

B. EM-GAMP for the lifted version

Our objective is to estimate the sparse lifted vector x from
the quantized measurements y, given by

y = Qi1 (2)
= Qi (Ax+n), 9

with A defined in Section III-A. There are several methods
to solve the one-bit compressed sensing problem in (9). Most
of them, however, require information about the sparsity of x.
We use EM-GAMP [10] to solve (9) because it can learn the
sparsity level of x and is also robust to leakage effects that arise
due to the use of finite dictionaries. EM-GAMP treats x and y
as realizations of random vectors, say X and ). The matrix A
and the quantization function Q; (.) determine the conditional
probability distribution p (Y|X). The sparse nature of x is
incorporated by assuming a parametrized bernoulli-gaussian
distribution on X. With the random vector interpretation, the
classical MMSE or MAP estimate of &', given ) = y can
be defined. Finding the closed form expressions of these
vector estimates, however, is difficult and iterative algorithms
like belief propagation (BP) have been used to find them.
Furthermore, the factor graph [12] in BP is generally dense for
compressed sensing problems, due to the dense nature of A
in (9), and makes marginalization of the posterior probabilities
computationally intensive.

Approximate message passing (AMP) simplifies this
marginalization using the central limit theorem, thereby trans-
forming all messages to contain mean and variances of gaus-
sian probability density functions [13]. EM-GAMP generalizes
the AMP, by incorporating features like the capability of han-
dling non-linear transformations (like the quantization Q; (.)
in our case) and learning the parameters of the prior distribu-
tion using Expectation Maximization. A detailed treatment on
EM-GAMP applied to the one-bit compressed sensing problem
in (9) can be found in [14].

C. Estimating the CFO and the channel

Let X be the estimate of x = vec (bcT) in (9), obtained
by solving the EM-GAMP and X be the Ny X Nyy Nix matrix

such that vec X(P = %. The estimates b, conj (&) are chosen

to be the left and right singular vectors corresponding to the
largest singular value of X [9]. The channel estimate (upto a
scale factor) can be given by,

H = Uy, CUy, . (10)
where vec (CT) =¢.

A coarse estimate of the CFO (w.) is derived from
b, a noisy version of the DFT of a, (we), using &, =

27 (j — 1) /N,, where j = . This estimate,

argmax |bi]
i€{1,2,..,Np}
however, yields a CFO upto a resolution of 27 /N,,. We obtain
a finer estimate for the CFO using a 2N, point DFT of the
estimate of a, (w) , followed by applying an interpolation
technique proposed in [15].

IV. SIMULATION RESULTS

In this section, we evaluate the performance of our pro-
posed method for joint CFO and narrowband channel esti-
mation in mmWave MIMO systems with one-bit ADCs. We
consider the system model in Section II, with ULAs of size
Nix = Nyx = 16, antenna spacing of d = \/2 for each of
the ULAs and a narrowband mmWave channel in (3) with
N. = 2 and 15 rays per cluster. A laplacian distribution
with an angle spread of 10 degrees is chosen for the angle-
of-arrivals and departures of the rays within a cluster. We
consider a symbol rate 7' = 0.5 s and a carrier frequency of
fe = 28 GHz. An IID QPSK training sequence (T) is chosen
with N, = 32 or 64, such that SNR = 10log,, (Ntxrg),
where r is the radius of the QPSK constellation. For an
Ny length training, we get 2N, N, bits of measurements to
perform the joint estimation. Note that the IID QPSK training
can be realized with a TX hardware architecture that is as
simple as an analog beamforming system that uses 2 bit phase
shifters.
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Fig. 2. Average NMSE of the channel estimate obtained using our algorithm,
for an IID QPSK training sequence consisting of 32 and 64 pilots.

The CFO in typical wireless systems is of the order of
parts per millions (ppms) of the carrier frequency. For each of
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Fig. 3. The lower bound on the achievable rate as a function of SNR. It can
be noticed that the rate saturates beyond a certain SNR of 5dB, because only
quantization noise comes into play.
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Fig. 4. MSE of the CFO estimate as a function of SNR for 32 and 64 pilots.
In either case, the CFO was chosen to be maximally off grid to evaluate the
worst case performance of our algorithm.

the training lengths, the CFO (Af,) is chosen to be within the
practical limits and maximally off grid for a DFT bin width of
1/N,T. Therefore, we choose w. = 2w Af.T corresponding
to Af. = 93.75KHz and 109.375 KHz for N, = 32 and 64
respectively. We evaluate our joint estimation algorithm using
the Normalised Mean Square Error (NMSE) of the channel
estimate (H), the lower bound on the achievable rate (R)
and the mean square error (MSE) of the CFO estimate ().
The NMSE of the channel estimate is defined as the average

of |H— ’yI:IHF /||/H|| for several realizations of H, where
v = arg min HH - afIHF for a given H, H. Neglecting the

training overhead due to channel estimation, we evaluate the
lower bound on the achievable rate using the expression in (51)
of [14], which is derived using a linearization approximation of
the quantization function Q; (.). The MSE of the CFO estimate

is given by E [(we — LDE)Q] , where the expectation is found by
the empirical average over several realizations of the channel
matrix and the training. For a benchmark, we estimate the
channel using the standard EM-GAMP using one-bit ADCs,
when there are no synchronization errors. Furthermore, we
show the vulnerability of the standard EM-GAMP to CFO,
by evaluating it in the presence of phase errors. Simulation
results suggest that with few pilots, our algorithm performs
the joint estimation within acceptable limits, even with the
heavily constrained hardware at both the ends.
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VI. CONCLUSION AND FUTURE WORK

We have proposed a joint CFO and channel estimation tech-
nique for narrowband mmWave systems using low resolution
ADC:s at the receivers. The key idea of our paper is to jointly
model the CFO-channel problem using lifting techniques, solve
a noisy quantized compressed sensing problem using EM-
GAMP and recover the components corresponding to CFO and
channel using the SVD. Our method exploits the sparsity of
the mmWave channel matrix in the angle domain and is able to
perform joint estimation compressively. In our future work, we
will also consider frame synchronization in addition to CFO
and channel estimation, address the computational complexity
issues associated with lifting, and extend our work to wideband
systems using low resolution ADCs.
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