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The theory of k-regular graphs is closely related to group theory.
Every k-regular, bipartite graph is a Schreier graph with respect
to some group G, a set of generators S (depending only on k) and
a subgroup H. The goal of this paper is to begin to develop such
a framework for k-regular simplicial complexes of general dimen-
sion d. Our approach does not directly generalize the concept of a
Schreier graph, but still presents an extensive family of k-regular
simplicial complexes as quotients of one universal object: the
k-regular d-dimensional arboreal complex, which is itself a simpli-
cial complex originating in one specific group depending only on
d and k. Along the way we answer a question from Parzanchevski
and Rosenthal (2016) on the spectral gap of higher dimensional
Laplacians and prove a high dimensional analogue of Leighton’s
graph covering theorem. This approach also suggests a random
model for k-regular d-dimensional multicomplexes.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Groups play an important role in the study of graphs, especially those with some symmetry, such
as Cayley graphs. However, even general k-regular graphs, i.e., graphs in which the symmetry is
restricted only to the local neighborhoods of vertices, are intimately connected with group theory.
Let G be a group with a set of generators S. Recall that the Schreier graph with respect to a subgroup
H < G, denoted Sch(G/H; S), is the quotient of the Cayley graph Cay(G; S) by the action of H (see

Appendix A).
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Regular graphs are usually Schreier graphs, but not always (see Propositions A.2 and A.3). In
particular, we have the following result:

Proposition 1.1. Every connected, bipartite k-regular graph X is a Schreier graph, namely, there exist a
group G with a subset of generators S and a subgroup H < G, such that X = Sch(G/H; S).

The proof of Proposition 1.1 is straightforward: Let V be the set of vertices of X. Since X is connected,
k-regular and bipartite, one can write the edges of X as the union k disjoint perfect matchings (see
AppendixA). This gives rise to k permutations S = {sq, ..., S} (in fact k involutions) in Sy (the
symmetric group of V). Let Gy be the subgroup of Sy generated by S. The connectedness of X implies
that Gg acts transitively on V, so V can be identified with Gy/Hp, where Hy = Stab(vg) is the stabilizer
group for some fixed vg € V. Furthermore, one can check that X = Sch(Go/Hp; S).

The main goal of this work is to set up a similar framework for d-dimensional k-regular simplicial
complexes (for arbitrary d, k € N), namely, to present simplicial complexes of this type as suitable
quotients of some group. A natural naive way to do it would be to start with the notion of a Cayley
complex of a group. This is the clique complex of the Cayley graph, i.e., a set of (j + 1) vertices
of the Cayley graph forms a j-cell if and only if any two of its members are connected by an edge
in the Cayley graph. The Schreier complex, will be then the clique complex of the Schreier graph.
However, this method is very restrictive as it gives only clique complexes, i.e., those complexes which
are completely determined by their graph structure (the 1-skeleton). Moreover, these complexes are
often non-regular in the usual sense of regularity of complexes, see the following paragraph for a
precise definition.

Let us set now a few definitions and then give our different approach to the above goal: For
n € N = {1,2,...} we use the notation [n] = {1,2,...,n}and [n] = {0,1,...,n}. Let X be a
simplicial complex with vertex set V. This means that X is a non-empty collection of finite subsets of
V, called cells, which is closed under inclusion, i.e., if T € X and o C t, then o € X. The dimension of
acell o is || — 1, and X/ denotes the set of j-cells (cells of dimension j) for j > —1. Without loss of
generality, we always assume that X° = V. The dimension of X, which we denote by d, is the maximal
dimension of a cell in it. We will always assume that d is finite and use the abbreviation d-complex for
a simplicial complex of dimension d. We say that X is pure if every cell in X is contained in at least one
d-cell. Unless stated explicitly, any simplicial complex appearing in this paper is assumed to be pure.
Fora (j + 1)-cell t = {7, ..., Tj41}, its boundary dt is defined to be the set of j-cells {r\{r,-}}’i:(]). In
particular 9v = ¢ forevery v € X® and 99 = 0. The degree of aj-cell o in X, denoted deg(o') = degy (o),
is defined to be the number of (j+ 1)-cells T which contain ¢ in their boundary. The complex X is called
k-regular (or more precisely upper k-regular) if degy (o) = k for every o € X4~1.

Going back to graphs, i.e., d = 1, the last definition recovers the notion of k-regular graphs. Propo-
sition 1.1 showed that such bipartite graphs are Schreier graphs. In fact, the proof of Proposition 1.1
shows a bit more: The elements s € S are all of order 2. Therefore G is a quotient of the infinite
group T(k) = (B1,..., Bk : ,Biz =e, i=1,...,k), the free product of k copies of the cyclic group of
order 2. Let & : T(k) — G be the unique epimorphism sending §; to s; for 1 < i < k. By pushing Hy
backward to T(k), thus obtaining the subgroup H = 7 ~!(Hy), we see that X is actually isomorphic to
Sch(T(k)/H; B), where B = {4, ..., Bj}. Thus, T(k) is a universal object in the sense that all bipartite,
k-regular connected graphs are Schreier graphs of it and are thus quotients of the universal Cayley
graph 9 := Cay(T(k); B). Note that . is simply the k-regular tree.

We would like to generalize this picture to higher dimensions, but as mentioned before, doing
so will lead only to Cayley complexes and Schreier complexes which are clique complexes and are
not necessarily k-regular. We will therefore take a different approach: Let L(k) be the line graph of
&, namely, the graph whose vertices are the edges of .7 and two vertices of L(k) are connected by an
edge, if as edges of .7, they share a common vertex. Denoting by C the cyclic group of order k, one can
verify that L(k) is a 2(k — 1)-regular graph and is, in fact, isomorphic to the Cayley graph Cay(Gy x; S),
where Gy x = Ko *x Ky = (o, o1 : ozg = a’l‘ = e) is the free product of two copies (Kp and K; ) of G, and
the set of generatorsis S = {af), aﬁ :i=1,...,k— 1}. The line graph of every connected, bipartite
k-regular graph is therefore a quotient of this graph.

Starting with the group Gk, one can recover the k-regular tree as follows: The vertices will be
(Ko\G1.k) U (K1\G1 k) and the edges correspond to elements of G; x, where g € G gives rise to an
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edge connecting Kog and K;g. As |Kig| = k for every g € Gy, this is a bipartite, k-regular graph. The
fact that Gy i is a free product of Ky and K; implies that this is the k-regular tree (this will be a special
case of Corollary 5.9).

We generalize this picture to arbitrary dimension d as follows: Let Gg be the free product of
(d + 1) copies of the cyclic group of order k, namely G4 x = Ko * Kj - - - % K4, where K; = C;. From
Ga.x we construct a d-dimensional simplicial complex T, as follows: Define the 0-cells of T, i to be
(g : g € Ggk, i € [d]l}, where fori € [[d]] we define I = Ko * - -+ * Ki_1 * Kiz1 * - - - Ky, and
set Ty to be the pure d-complex! whose d-cells are {{Kzg, K52, ..., Kzg} : g € Gqy). It turns out
that Ty is an arboreal complex in the sense of [ 13]. It is the unique universal object of the category of
k-regular simplicial complexes of dimension d (see Proposition 5.4 for a precise statement). Moreover,
for every d-lower path connected (see Section 3), (d + 1)-partite, k-regular simplicial complex X there
is a surjective simplicial map 7 : Ty — X.

The group Gg acts from the right on the right cosets of K, i.e., the vertices of T, x, and this action
gives rise to a simplicial action of Gg on Tq . If H is a subgroup of Ggx, then we may consider the
quotient Tq /H. As it turns out, the quotient is not always a simplicial complex in the strict sense,
but is rather a multicomplex (see Section 3 for a precise definition). Thus, it is natural to extend the
category we are working with to the category % y of k-regular multicomplexes of dimension d.

However, there is another delicate point here which cannot be seen in dimension 1. Before
explaining it, we need the following definition:

Definition 1.2 (Line Graph). Let X be a d-complex. The line graph of X (also known as the dual
graph of X), denoted ¥(X) = (¥(X), &(X)), is defined by 7(X) = X¢ and £X) = {{r,7'} €
Y(X) x #(X) : TNt e X91). We denote by disty = dist : #(X) x ¥(X) — N U {0} the graph
distance on the line graph.

It can happen that the line graphs of two non-isomorphic complexes are identical. For example, let
X be a d-dimensional simplicial complex with d > 2, and choose two vertices vy, v; € X° which do
not have a common neighbor in the 1-skeleton. If we identify v; and v,, we obtain a new simplicial
complex Y, together with a surjective simplicial map ¢ : X — Y which induces an isomorphism
between the line graphs ¢(X) and (Y ). Furthermore, one can verify that the link of Y at v; = v, is
not connected. See Fig. 3 for an explicit example.

We show in Section 7.3, that the quotient Ty /H, as above is always link-connected (see Section 3.2
for definition) and obtain a one to one correspondence between the link-connected objects fé’éfk in
%a.x and subgroups of G4 x. Along the way, we show that every k-regular multicomplex Y in 4, x has a
unique minimal (branch) cover X € €, with 9(X) = %(Y).

Another application of the main theorem is a high-dimensional analogue of Leighton’s graph
covering theorem. In our context it says that every pair of finite objects in the category % have a
common finite (branch) covering in the category. Interestingly, we do not know how to prove this
combinatorial statement without appealing to our group theoretic machinery.

In Section 10 we present some examples. One of the examples we discuss there, shows that for g a
prime power, the Bruhat-Tits buildings A4 over a local field F of residue class q is a quotient of T g1.
Limiting ourselves to d = 2, and comparing the spectrum of T, 41 which was calculated in [13,16]
and the one of A,, which was described in [5], we deduce a negative answer to a question asked in [13]
about the spectral gap of high-dimensional Laplacians.

The basic idea of this paper is quite simple, but the precise formulation needs quite a lot of notation,
definitions and preparation. This is done in Sections 3-6, while the correspondence is proved in
Sections 7 and 8. In Section 9 we discuss further relations between properties of subgroups and their
associated multicomplexes. In Section 10 we present various examples: we describe the complexes
associated with some natural subgroups of G4 x and the subgroups associated with some interesting
complexes.

Our approach enables one in principle to build systematically all finite, partite k-regular multi-
complexes. First one may generate the link-connected ones as the quotients of Ty by a subgroup,

1 Note thatina pure d-complex one only needs to specify the 0-cells and d-cells in order to recover the whole structure.
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and then, all of them by identifications of cells as above (see also Section 11). In particular, we get a
random model of such complexes (see Section 11). A drawback of our method is that in many cases
(in fact in “most” cases) we get multicomplexes and not complexes. Every such multicomplex gives
rise to a simplicial complex (by ignoring the multiplicity of the cells), but it is not so easy to decide
whether the original object is already a simplicial complex or merely a multicomplex (see Section 9.2
for more on this issue). We plan to come back to this random model in the future.

2. Preliminaries

In this short section, we collect some additional definitions and notation from the theory of abstract
simplicial complexes which are used throughout the paper.

Given a d-complex X and —1 < j < d, the jth skeleton of X, denoted XY, is the set of cells in X
of dimension at most j, that is XU := | JI__,X'. We say that a d-complex X has a complete skeleton if
X = (HV]) for everyj < d.

For a cell o € X, define its coboundary, denoted (o) = 8x(o), tobe d(c) = {r € X : o C
7, |t\o| = 1}, which in particular satisfies degy (o) = |8x(o)|.

For 1 < j < d, we say that X is j-lower path connected if for every o, o’ € X/ there exists a sequence
o=0%0',...,06™ =0 ofj-cellsin X such that 6"~ No’ € X/~ forevery 1 <i < m.

Let X and Y be a pair of d-complexes. We say that ¢ : X — Y is a simplicial map, if ¢ : X° — Y°
is a map, extended to the remaining cells by ¢({oo, ..., 0;}) = {¢(00), . . ., ¢(0;)} such that p(o) € Yi
forevery0 <j<dando € X.

Given p € X, the link of pis a(d — |p|)-dimensional complex defined by

lky(p)={o eX : pllo eX} (2.1)

where we use the notation p LI o when the union is disjoint, i.e. p No = .

Definition 2.1 (Nerve Complex). Let A = (A;)ic; be a family of nonempty sets. The nerve complex of
A, denoted N(.A), is the simplicial complex with vertex set I, such that o € N(A)foro C I if and only

if e, Ai # 0.

3. Multicomplexes and the category %y i

In this section we introduce a category of certain combinatorial objects, which is the main topic of
this paper.

3.1. Multicomplexes

We start by describing the notion of a multicomplex, see also [7]. For a set A and a (multiplicity)
function m : A — N, define A, = {(a,r) : a € A, r_e [m(a)]}. Similarly, for a € A, denote
Am(a) ={(a,r) : r € [m(a)]}. Let V be a countable set and X = (X, m, g) a triplet, where

e X is a simplicial complex with vertex set V,

e m : X — Nis a function (called the multiplicity function) satisfying m(c) = 1foro € XOUX™1,

e g: {((t,r),0) € X, xX : o € 3t} — X, is a map (called the gluing map) satisfying
g((t,r),0) € Xn(o) for every (t,1) € X,, and o € 97. So, g tells us which copy of ¢ is in the
boundary of the rth copy of 7.

Elements of X, are called multicells, and are often denoted by a, b, ¢, . ... We denote by ¢ : X, —> X
the forgetful map, namely, «((t, r)) = 7 for every (z, r) € Xn.

As in the case of simplicial complexes, we define the dimension of a multicell a € X, to be
dim(a) = dimg(a) := dimx(«(a)) = [u(a)] — 1. The set of multicells of dimension j (abbreviated
j-multicells) is denoted by X{'n = {a € X, : dim(a) = j}. Since the multiplicity of 0-cells in any
multicomplex is one by definition, we tacitly identify X° and X° using the identification v <> (v, 1).
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(b) T

({0,1}.1)
({0.1}.2) | )
({0,1},3) /

ot

(d)
a1 = ({0,1,2},1) : az = ({0,1,2},2)
(a1, {0,1}) = ({0,1},3) g9(a2,{0,1}) = ({0,1},2)
(a1, {0,2}) = ({0,2},1) (a2, {0,2}) = ({0,2},1)
g(a1,{1,2}) = ({1,2},1) g(az, {1,2}) = ({1,2},1)

Fig. 1. An example of a triple (X, m, g). (a) Illustration of the complex X (note that unlike most complexes discussed in this
paper, X is not pure). (b) The multiplicity of the edges is described. (c) The multicomplex X contains a unique triangle which has
multiplicity 2 in the multicomplex. The two 2-multicells are illustrated by a wavy and a filled triangle. (d) The gluing function
of the two 2-multicells is described.

For —1 < j < d = dimX, we denote by X9 = | J__,X! the j-skeleton of X,, (see Fig. 1 for an
illustration of a multicomplex).
We define the multiboundary of a multicell a = (z, r) by

gy — {{g(a,a) o edu(a)) if dim(a) >0

) if dim(a) = —1, (3.1)

namely, the set of multicells of dimension dim(a) — 1 which are glued to a.

Using the multiboundary, one can define the set of multicells contained in a given multicell a € X,
as follows: Declare a to be contained in itself, and for j = dim(a) — 1 define b € X, to be contained in
aif and only if b € 3™a. Proceeding inductively from j = dim(a) — 2 toj = —1, declare ¢ € XJ, to be
contained in a if there exists b € X{n“ contained in a such that ¢ € 3™b. Note that this defines a partial
order on the family of multicells which we denote by <.

Definition 3.1 (Multicomplex). Let V be a countable setand X = (X, m, g) be a triplet as above. We say
that X is a multicomplex if it satisfies the following consistency property: for every a = (7, 1) € X,
and every pairb = (o, s)and b’ = (¢’, ") contained in a such that dim(b) = dim(t’)and p := o No’ €
Xdm®=1 it holds that g(b, p) = g(b’, p).

We say that X is a d-dimensional multicomplex (d-multicomplex) if the associated complex X is
d-dimensional.

Since the 0-cells of a multicomplex always have multiplicity one, the consistency property is
always satisfied for triples (X, m, g), where X is a simplicial complex of dimension d < 2. An
illustration of the consistency property in the 3-dimensional case can be found in Fig. 2.

Remark 3.2. Note that the requirement not to have multiplicity in the 0-cells of a multicomplex
X = (X, m,g), ie. m(v) = 1 forevery v € X° is only made in order to fix a description of the
multicomplex. Indeed, any triplet X = (X, m, g), in which one also allows multiplicity in the 0-cells
can be transformed into a multicomplex by declaring the set of O-cells to be Xr?] and making the
appropriate changes in the cell names. One can verify that this changes the multiplicity of each 0-cell
to 1 while preserving the structure of the multicomplex, namely, the partial order of containment.
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({0,1,2,3},1)

({0,1,2},1) ({0,1,.3},2) ({0,2,3},2) ({1,2,3},3)

({1,2},1) ({0,2},2) ({0,1},2)

Fig. 2. An example of the consistency property in dimension 3. Assume that the complex X is the full complex on 4 vertices
and that (X, m, g) is a triplet which defines a multicomplex. Assuming that g(({0, 1, 2, 3}, 1), {0, 1, 2}) = ({0, 1, 2}, 1) and
g(({0, 1,2, 3}, 1), {0, 1, 3}) = ({0, 1, 3}, 2), the consistency property guarantees that on the joint edge of {0, 1, 2} and {0, 1, 3},
that is {0, 1}, we must have g(({0, 1, 2}, 1), {0, 1}) = g(({0, 1, 3}, 2), {0, 1}).

One can verify that if X is a multicomplex, then for every a € X, there exists a unique bijection
f:{loeX o Cia)} > {beXn : b=<a}suchthat:of isthe identity, that is, for every o C «(a)
there exists a unique multicell b < a with ¢(b) = o.

A d-multicomplex is called pure if each of its multicells is contained in at least one d-multicell.
Throughout the paper we assume that all multicomplexes are pure.

Similarly to the case of simplicial complexes, fora € X,,, we setdz(a) = §(a) = {b € X;,, : a € 3"b},
and define the degree of a cell a € X) by degy(a) = deg(a) := |83(a)|. We say that a d-multicomplex
is k-regular (or more precisely upper k-regular), if the degree of any (d — 1)-multicell in X, is k.

Two multicells of the same dimension are called neighbors if they contain a common codimension
1 multicell.? A sequence of multicells of the same dimension t(0), z(1), ..., t(m) is called a path if
7(r — 1) and 7(r) are neighbors for every 1 < r < m. For 1 < j < d, we say that X is j-lower path
connected if for every pair of j-multicells a, o’ € X{'n, there exists a path from a to a’.

LetX = (X, m,g)and Y = (Y, m’, g’) be a pair of d-multicomplexes. We say that ¢ is a simplicial
multimap from X to Y, if it is a map from X, to Y,y such that the following conditions hold:

o there exists a simplicial map ¢ : X — Y such that: o ¢(a) = ¢(«(a)) for every a € X, that is,
@ extends a simplicial map ¢ by sending each multicell associated with a cell o to a multicell
associated with the cell ¢(o).

o g (¢(a), p(c)) = ¢(g(a, o)) for every a € X, and o € du(a), that is, ¢ preserves the gluing
structure of X by gluing @(a) to the copy of (o) given by @(g(a, o)), for o € di(a).

The simplicial map ¢ associated with the simplicial multimap ¢ is called the base map of ¢. Note that
one can recover the base map of a simplicial multimap @, by sending o € X to ¢ o ¢((o, 1)).

3.2. Link-connected multicomplexes

In this subsection we wish to identify a special family of multicomplexes which we call link-
connected. We start by defining the link of a multicell in a multicomplex. In order to give a simple
description of the links we describe them using the indexing of the multicells in the original multi-
complex. In particular, this might lead to the existence of 0-cells with multiplicity. The description can
be transformed into a “formal” multicomplex, i.e., removing the multiplicity of the 0-cells as explained
in Remarks 3.2 and reindexing the multicells.

Definition 3.3 (Link of a Multicell). LetX = (X, m, g) be a d-multicomplex, let a € X}, be a multicell,
and denote by p = ((a) the corresponding cell in X. The link of ais a(d — |p|)-multicomplex, denoted
by Ikz(a) = (Ikx(a), mq, g4), where

Ikx(a) = {r € X : 3b € X, containing a such that (b) = p LI t}. (3.2)

2 Note that according to the above definition, each multicell is a neighbor of itself.
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Fig. 3. On the left, a link-connected complex. On the right, a complex which is not link-connected (as can be seen by observing
the link of the white 0-cell). Note that the complex on the right is obtained from the complex on the left by identifying a pair
of vertices and that the line graph of both complexes is the same.

The multiplicity of t € lkx(a) is

my(7) = |{b € X, : bcontains aand ¢(b) = p LI t}|. (3.3)

Instead of using the set Ikx(a)m, to denote the multicells, we use the natural indexing induced from
the original multicomplex, that is, we denote the multicells associated with t € lkx(a) by

M,(t) == {(z,i) : (¢ U p, i) contains ain X}, (34)

so that my(7) = |M,(7)|.
Finally, the gluing function g, is defined as follows: given a multicell (, i) in lIkz(a) and o € 97 let
g4((7,1),0) = (0,j), where j is the unique index such that g((z LI p, i), c L p) = (¢ L p, j).

Note that if X has no multiplicity, namely, it is a standard simplicial complex, we recover the
standard definition of the link of a cell.

Definition 3.4 (Link-connected Multicomplex). Let X = (X, m, g) be a d-multicomplex. We say that X
is link-connected if for every a € X{%~? the link Ikg(a) is connected, that is, its 1-skeleton is a connected
multigraph.

Proposition 3.5. Let X = (X, m, g) be a pure d-multicomplex. Then, the following are equivalent:

@) X is link-connected. .
(2) Forevery —1 <j < d—2anda € X!, thelink Iky(a) (whichis a(d—j—1)-dimensional multicomplex)
is (d — j — 1)-lower path connected.

Proof. (1) = (2).Fix—1<j<d—2anda € Xﬁq.We prove the claim by inductionon0 <i<d—j—2
of the following statement:

For every pair of (d — j — 1)-multicells b, b" in lkg(a), there exist | € N U {0} and a sequence
b = by, b1,..., b = b of (d — j — 1)-multicells in lkz(a), such that for every 1 < r < [, the
multicells b, and b,_1 contain a common i-multicell.

For i = 0, this follows from the assumption that X is link connected and pure. Indeed, let b, b’
be as above, and fix a pair of vertices v € b and v’ € b'. Since X is link-connected, one can find a
sequence of vertices v = vy, v1, ..., v; = v’ such that each consecutive pair of vertices belongs to
some common multiedge in Iky(a). For 1 < k < [, let b, be any (d — j — 1)-multicell containing the
multiedge connecting vy and vy, along the path (which must exist since the link is pure), we conclude
that b, by, ..., by, b is the required path of (d — j — 1)-multicells.

Next, assume the statement holds for some 0 <i < d —j — 2 and let b, b’ be a pair of (d —j — 1)-
multicells in kg (a). By assumption, one can find | € N U {0} and sequence of (d — j — 1)-multicells
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b = by, ...,b = b’ in lkg(a), such that, for every 1 < r < [, the multicells b,_; and b, contain a
common i-multicell. Hence, in order to complete the induction step, we only need to show that for
every 1 < r < I, one can find a path of (d — j — 1)-multicells connecting b,_; and b;, such that any
consecutive pair of the multicells shares a common (i + 1)-multicell. To this end, fix 1 < r < [, and
denote by ¢ = (p, s) a common i-multicell contained in b,_; and b,. Using the definition of the link
Ikz(a), we obtain that¢ := (p LI «(a),s) is a (j + i + 1)-multicell in X. Since (a) lkz(c) = lklk)?(a)(c),
(b) by assumption, Ikg(¢) is connected, and (c) b, and b,_; both have corresponding 0-cells v and v’
in the link lkz(¢); it follows that one can find a path v = vy, ..., v, = v’ in lkg(¢), connecting v and
v'. Using the correspondence from the link to its original complex, the path v = vy, ..., v, = v/, can
be lifted from Ikz(c) = lklk)?(a)(c) back to Ikg(a), yielding a sequence of (d — j — 1)-multicells from b
to b, such that each pair of consecutive (d — j — 1)-multicells along the sequence shares a common
(i + 1)-multicell, thus completing the proof of the induction step. N

(2)= (1).Leta X{n be a j-multicell, and let v, v’ be two 0-cells in lkg(a). Since X is pure, one can
find two (d —j— 1)-multicells b, b’ in lk(a) such that v is contained in b and v’ is contained in b’. Using
(2), 0ne can find | € NU {0} and a sequence b = by, by, ..., by = b’ of (d — j — 1)-multicells in lkg(a)
such that o; := «(b;) N ¢(b;i_1) € X792 and g(b;, 0;) = g(b;_1, o;) for every 1 < i < . Defining vy = v,
vy =v',and v; for 1 < i < I— 1to be any vertex in o;, we obtain a sequence of vertices, such that each
consecutive pair of vertices belongs to some common multiedge. Hence lky(a) is connected. O

3.3. Colorable multicomplexes
Next, we turn to discuss the notion of coloring of a d-multicomplex.

Definition 3.6 (Colorable Multicomplexes). A d-complex X is called colorable if there exists a coloring
of its 0-cells by (d + 1) colors, y : X% — [d]), such that the 0-cells contained in any d-cell have
distinct colors. A d-multicomplex X = (X, m, g) is said to be colorable if the associated d-complex X
is colorable.

If X is a colorable d- multicomplex and y : X® — [d] is a coloring, one can extend the colormg to
all the cells and multicells of X as follows. Let 1 < j < d. We color the j-cells of X using ( ) colors
by defining the color of p € X/, denoted y(p), to be {y(v) : v € p} and coloring the j- multlcells by
y(a) = y(«(a)). Note that this is well defined, i.e., all j-cells are colored by exactly (j + 1) colors from
[[d]}, since the multicomplex is pure. With a slight abuse of notation, we use y to denote the coloring
of all cells and multicells of X and X. Since 0-cells of any d-cell are colored with distinct colors, for
every 7 € X9, the map y induces a bijection between {p € X : p C t} and subsets of [d]. Similarly,
forevery a € ng the map y induces a bijection between {b € X, : b < a} and subsets of [d].

3.4. Ordering of a multicomplex

Recall that Cy is the cyclic group of order k, and for a set B denote by Sz the permutation group of B.

Definition 3.7 (k-ordering). Let k,d > 1, and assume that X = (X, m, g) is a d-multicomplex all
of whose (d — 1)-multicells have degree at most k. We call w = (wb)hexd 1 a k-ordering, if for every
be Xd 1 theelement wy : Cy — Ssz(o) is a transitive homomorphism, namely, foreveryb € Xd 1 the
map wy is a group homomorphism satlsfymg the property: for every a, o’ € §(b), there exists /3 e Cy
such that w,(B).a = o, where w,(8).a is the action of the permutation w,(8) on the d-multicell a.

Consider for example the case d = 2 and k = 4. Assume that b is a multiedge contained in four
multitriangles a4, a;, a3 and a4. Since 1 is a generator for Cy, the ordering is completely determined by
wy(1). Furthermore, since the action is transitive, the permutation w,(1) must be a cyclic permutation
over all multitriangles. Thus an example for an 4-ordering is given by wy(1) = (a1, az, a3, a4) € Ssg(6)
which implies that wy(j) is the jth time composition of (a1, a3, a3, as) with itself.
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Remarks 3.8.

(1) One can also consider the case k = oo, constructed in the same way with the group Z instead of
C. In this case one obtains a family of multicomplexes without any restriction on the degrees
of the (d — 1)-multicells. In fact, all the results that follow can be generalized to the case k = oo
by making the appropriate changes in the definitions.

(2) Foracolorable d-multicomplex with coloring y, one can also consider the more general situation
in which the (d — 1)-multicells of the same color are k-ordered where k depends on the color.
As before, our discussion can be extended to cover this case as well by suitable changes in the
definitions.

(3) We choose to work with orderings that are based on the cyclic group for convenience. In fact,
one can set G to be any group of order k and work with orderings of the form w = (@), _yd-1,

where @ : G — Sg(p) is a transitive homomorphism. "
Claim 3.9. If X = (X, m, g) is a d-multicomplex and w is a k-ordering of X, then degg(b) divides k for
every b € X4-1.

Proof. Fix b € X,‘Tﬂ*]. Since wy, : Cx — Ss(p) IS a transitive homomorphism, it follows that degg(b) =
[Ck : N],where N < w,(Cy)is the stabilizer subgroup of a fixed d-multicell containing b. Hence, degy(b)
dividesk. O

Throughout the remaining of this paper, whenever a confusion may not occur, we refer to a k-
ordering simply as an ordering, in which case the appropriate k should be clear from the context.

3.5. The category 4.«

We define % i to be the category of quartets ()7 , ¥, w, dg) Where,

«X = (X, m, g) is a colorable, pure d-dimensional multicomplex which is d-lower path
connected satisfying max 1degy(b) < k.

e yisacoloring of X. _

e wis ak-ordering of X.

e ap € X4 is the root of the multicomplex, i.e., a fixed d-multicell.

bexg,’

ap) and (Y,7,3, %) in %4.x» We say that @ is a morphism from
— Y is a simplicial multimap which preserves the root, coloring

_ Given a pair of objects ()?, Y,
X,y w,a0)to (Y, 7, ®, ) if @
and ordering, namely:

w,
X

L4 Q(ﬂolzaoy
*Yee=vy ~
o Glwy(B).a) = Wye)(B)-¢(a) for every b € X41, a € 8x(b) and B € Cy.

For future use we denote by %éck the set of objects ()N(, Y, , ag) € 64 such that X is link connected.
For example, the complex on the left in Fig. 3 (together with a choice of coloring, ordering and a root)
belongs to (6’2’62 while the complex on the right in Fig. 3 belongs to 96’2,2\%/2’?2.

4. Group action on elements of ¢y j

In this section we describe a left action of a specific group, denoted Gk, on the d-multicells of an
object in the category % k.

4.1. The group Ggq
For natural numbers d > 1 and k > 1, recall that Cj is the cyclic group of order k, and define
Gd,k:>(11<Ck:<Olo,..‘,ad‘0l}<:€f01‘i:0,‘..d> (4.1)
i=0

to be the free product of (d + 1) copies of C;.
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. I I
Every element of Gy, can be written as a word of the form a;m aéajl for some m > 0,
I

li,....ly € Zandjy,...,jm € [d]. The length of the word a?"' o ozjl is defined to be m. We

say that al’" a2 is reduced ifly,..., I, € [k— 1] and j; #],H forevery 1 < — 1. Itis well
known that every eIlement of G4k is represented by a unique reduced word. In partrcular, the identity
is represented by the empty word.

Any word a}r’: .. .a}za;:, representing an element g € Ggy, can be transformed into any other
word (and in particular into the reduced one) representing the same element g using the following
transformations.

(a) Replacing I; by I for some 1 < i < mand [ such that ; = I! mod k.

(b) If j; = ji1 for some 1 < i < m, replacing o ’“ l’ ! by ]11+1,+1

) oy 4.2
(c) Replacing o’ bya?;a?, withj, = j/ = jiand [ + I = I. (42)

liya

(d) Deleting a "ifl; = 0 mod k, or adding o, 0 between a "and ol

4.2. The left action of G4 on d-multicells

Let ()?, Y, , ap) € Gqx With X = (X, m, g). We define an action of G4 on the d-multicells of X
using the coloring y and the ordering w.

Fora € X,i,i € [[d]] and | € Z, define a .a as follows. Let b € Xd 1 be the unique (d — 1)-multicell
in 9™a of color [d]l\{i}. Then, set oz}.a = wb( ) a. Note that b is the unique (d — 1) multicell of color
7that belong to both 3™a and Bma{a. Next, given any g € Gg such thatg = alm . '2 ’1 for some

>0,i1,....im € [dland i, ..., In € Z,setg.a = a" (... (a2 (o] .a))...).

Frrst we show that this mapping is well-defined, 1e that any pair of words representing the
same group element g acts on the d-multicells in the same way. Once this is shown, we immediately
conclude that the mapping defines an action of G4 x on Xr‘i. Letg = afﬁ .. .afja:; and a € X,‘i. Since
we can move from any word representing g to any other via the elementary steps described in (4.2),
it is enough to show that any elementary step does not change the value of g. a. When applying an

elementary change of type (a) we have cxj' = oc]l and in particular wg( J]l) = a)h( ) forevery b € Xd 1

Since the permutations are the same, so is the action they induce. As for an e ementary change of
type (b) or (c), replacrng l’“ 1’ with j; = ji1q by o i+t o vice versa yields the same action as we
now explain. Let a € X and let b e 0™a be the (d — 1)-multicell of color [d]l\{j;} in a’s boundary.
On the one hand, the action of(x i gives the d-multicell al’+l’+1 a= wb(ajll+l‘+1) a. On the other

jl )-q, it follows that the unique (d — 1) multicell contained in oc .a of color
[d\{i} is b. Consequently oz’“ (a]]’ a) = wh(ozj[’“) (a)b(oz}i). ), and hence the resulting d multicell
is o bt o — wb(ozjllﬂ‘“) a, using the fact that w, is a homomorphism from Cy to Sy). Finally, an

elementary change of type (d) does not change the resulting cell as the action defined by ocio is trivial.

i
hand, since o .a = wp(

Claim 4.1. For every ()N(, y,w, ag) € 64k the action of Gy on its d-multicells is transitive.

Proof. Let()?, Y, w, a) € Cak withX = (X, m, g)andleta, d € X,i. Since X is d-lower path connected,
there exists a sequence of d-multicells a = a(0), a(1), ..., a(m) = o' such that forevery 1 <j < m
the d-multicells a(j — 1) and a(j) are glued along a common (d — 1)-multicell. More-precisely, there
exists o(j) € X4~ such that o (j) C «(a(j—1))N (a(j)) and b; := g(a(j), o(j)) = g(a(j — 1), o'(j)). Define
ij € [[d] to be the unique color such that y(b;) = i for 1 < j < m. Furthermore, let [; € [k — 1] be
the unique number such that wb.(af).a(j — 1) = a(j) (which must exist since Wy is transitive). It now

follows from the definition of the action that a’ = alm U akalt, a, which shows that the action is

—1 VAN
transitive, 0O
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Fig. 4. The first four steps of the construction of the universal arboreal complex T ;.

Remark 4.2. Note that the action of Gy is only defined on the d-multicells, and is not a simplicial
action. In particular, there is no action on the 0-cells and it does not preserve the neighboring relation
of multicells.

5. The universal element of %, i

Wesay that(X, y, w, ag) € %41 satisfies the universal property (of %y ;) if for any(Y,7,@,a) € Cdk
there exists a unique morphism ¢ : (X, v, w, ag) = (Y, ¥, ®, dp).

It follows from the definition of the universal object that, if it exists, it is necessarily unique up
to a bijective morphism. Indeed, assume that (X, y, w, ag) € s and (Y, ¥, ®,ap) € €y satisfy
the universal property. Then there exist unique morphisms ¢ : (X, ¥, », a) — (Y,¥,®,ap) and
v o (Y,7,®.d) — (X,y,w,a0). Consequently ¥ o ¢ : (X,y,w,a9) — (X,y,,a0) and
poyr 1 (Y,y,®,a) — (Y, 7, ®, ) are morphisms from (X, ¥, w, ag) and (Y, ¥, @, ap) to themselves
respectively. Since such morphisms are unique by the universal property, and since the identity maps
from X and Y to themselves are morphisms as well, it follows that y» o ¢ = idy and ¢ o ¥ = idy. In
particular, we obtain that ¢ and ¢ are morphisms which are also bijections between the 0-cells of X
and Y, which proves that (X, y, @, ag) and (Y, 3, @, dp) are isomorphic.

5.1. Arboreal complexes

Our next goal is to give an explicit construction for the universal element (which in particular
proves its existence). We start by recalling the definition of arboreal complexes from [13].

Definition 5.1 (Arboreal Complexes [13]). We say that a d-complex is arboreal if it is obtained by the
following procedure: Start with a d-cell 7, and attach to each of its (d — 1)-cells new d-cells, using
a new vertex for each of the new d-cells. Continue by induction, adding new d-cells to each of the
(d — 1)-cells which were added in the last step, using a new vertex for each of the new d-cells. As is
the case for graphs (the case d = 1), for every d, k > 1, this defines a unique k-regular d-dimensional
arboreal complex, denoted Ty x (see Fig. 4 for an illustration).

Remark 5.2. Note that Ty is the k-regular tree. But, the case d > 2 brings a new phenomenon,
although the degree of each (d — 1)-cell in T4k is k by definition, the degree of each j-cell forj < d — 1
is infinite.

The complexes Ty ; were studied in [13,16], and in particular the spectrum and spectral measure of
their Laplacians were calculated. One can verify that the complex Ty j is transitive at all levels, that is,
for any 0 < j < d and any pair of j-cells p, p’, there is a simplicial automorphism of T,y taking p to p'.

Forn > 0, we denote by B, the ball of radius n around 7, that is, the subcomplex of T4 \ containing
all d-cells (and j-cells contained in them) which are attached to T, in the first (n + 1) steps of the
construction (see Fig. 4).
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Fig. 5. The first four steps of the construction of a coloring for the universal arboreal complex T, ,. The colors black, white and
gray are used instead of 0, 1, 2.

The construction of Ty allows us to introduce a coloring of its 0-cells using (d 4+ 1) colors and in
particular show that T is colorable (see Fig. 5). Indeed, denote by (7; )l _o the O-cells of 7 and color
them using a different color for each 0-cell. One can see that there exists a unique way to extend the
coloring to all the vertices of Ty, so that the each d-cell has a single vertex of each color. For future
use, we fix a coloring of the O-cells I" : Tj, — [d]l, which, as explained in Section 3.3, can also be
used to color all the cells in T, . Note that the coloring I” is completely determined by its values on
the 0-cells (7; )l:

One may wish to characterize the complex Ty ; as the unique k-regular d-complex in which for any
pair of d-cells t, 7’ in Ty, there exists a unique non-backtracking path from 7 to t’. However, this does
not determine T, ; uniquely, as any complex obtained from Ty by identification of lower dimensional
cells of the same color yields another complex with the above property. For example, if d = 2, then
one can identify any two vertices of Tq of the same color, which do not share a neighbor. Such an
action does not change the structure of the line graph, i.e., paths between triangles sharing a common
edge, and hence the set of non-backtracking paths in it. Nevertheless, using the results of this paper,
we can prove the following uniqueness result:

Proposition 5.3. Tg is the unique link-connected, k-regular d-complex with the property that for any
pair of d-cells T, t’ in Ty there exists a unique non-backtracking path from t to '.

The proof of Proposition 5.3 is postponed to Section 8. Let 2 = (£2,) 11 be a fixed choice of

A o €(Tq k)
a k-ordering for Ty k.

Proposition 5.4 (Universal Property of Ty ). The quartet (Tqy, I", §2, T) € Gax satisfies the universal
property.

Proof. Let (Y,7,®,d) € Gax With Y = (Y, m,g). Using the ball structure of T;x we prove by
induction that the existence of a unique morphism ¢ : (Tyy, I', 2, 7) — (Y,y,®,d). More
precisely, we prove the following statement by induction on n:

There exists a umque morphlsm ¢ B, —> Y such that: (i) ¢ is a simplicial multimap from
B, to Y, (iiy7 o @ = I on B, (iii) for every ¢ € B, satisfying degg, (o ) = k we have
W5(0)(B)-9(t) = ¢($2,(B).7) for any 7 € 87, (o) and B € Gy, and (iv) (7)) = .

For n = 0, recall that By is the complex composed of a unique d-cell 7. Since condition (iv) forces
us to have ¢(7) = ag and since by condition (ii) the colors must be preserved, there exists a unique
simplicial multimap satisfying the induction assumption, namely, the map sending the unique cell of
color ] contained in 7 to the unique multicell of color J contained in .

Next, assume the induction assumption holds for n. We show that ¢ can be extended to B, in a
unique way so that (i)-(iv) are satisfied. Indeed, given any d-cell © € B,,1\B, there exists a unique
(d — 1)-cell o € By such that 0 C t. Furthermore, there exists a unique v’ € Bﬁ containing o.
Since ¢ was already defined on B, and in particular on o and 7/, we can use them together with the
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ordering @ in order to define the map ¢ for all d-cells containing o. Indeed, using the transitivity
of the ordering 2, one can find (a unique) 8 € C such that £2,(8).t" = t. We then define
o(t) = 9(£2,(B).T") = Wye)(B)-¢(t'). Finally, we extend the definition of ¢ to the new lower-
dimensional cells in B, in the unique possible way which preserves the coloring, i.e., for € B,11\B,
and o C t, define ¢(o) to be the unique multicell contained in ¢(t) such that Y(:¢(c)) = I'(o). The
function @, which is defined now on B, 1, satisfies (i) — (iv) by definition and is the unique such
function. This completes the induction step and hence the proof. O

Remark 5.5. One can think of Ty as a hyperbolic building whose Weyl group is the free product
of (d + 1) copies of the cyclic group of order 2. We thank Shai Evra and Amitay Kamber for this
observation.

5.2. Links of Ty i
Proposition 5.6. Forevery —1<j<d—2andp ¢ Té,k, the link lkr, , (p) is isomorphic to Ty o k-

Proof. Since lky() = X for any complex, we have lkTa,k(@) = Ty which completes the proof for
j = —1. Furthermore, since for any p, p’ € Tq such that p N p’ = W and p U p’ € Ty it holds that
llqde k(p)(p/) = kg, (o U p'), it is sufficient to prove the lemma for p € T(?k as the remaining cases
follow by induction.

Assume next that v € Tik and fix a (d — 1)-dimensional cell ¢ € Ikr, (v) (note that such a cell
exists since Ty is pure). For n € N, denote by B,(v) = B,(v, &) the ball of radius n around & in Ikr,  (v),
that is, the set of (d — 1)-cells in Ik, , (v) whose distance from & in the associated line graph is at most
n, together with the cells contained in them.

Recalling the inductive method for constructing T; x and observing that By(v) = {c'}, it is enough to
show that for every n € Nthe ball B, 1(v)is obtained from B,(v) by attaching to each of the (d—2)-cells
of degree 1 additional (k — 1) new (d — 1)-cells, each using a new 0-cell. We prove this by induction.
For n = 0, since & corresponds to the d-cell @ U v € Ty, and since T, as a transitive structure on
the d-cells, we can assume without loss of generality that ¢ U v = 7. Hence, from the definition of
T, k. each of the (d — 1)-cells in the boundary of o U v is attached to (k — 1) additional d-cells, each of
which uses a new 0-cell.

Next, assume that the assumption holds for B,(v) and observe B, 1(v). Each of the (d — 2)-cells
in B,(v) of degree 1 corresponds to a (d — 1)-cell containing v in B, of degree 1, where without loss
of generality we assume that v U & is the d-cell around which B, is constructed, i.e. 7 = v U 7.
Furthermore, given a (d —2)-cell o € By(v) such that degg (,y(0') = 1and a corresponding (d — 1)-cell
T =vUo € B, we have degy (7) = 1, and exactly (d — 1) of the (d — 2)-cells in the boundary of t
contain v. Using the inductive definition of the balls By, the ball B,,;; is obtained from B, by attaching
to each of the (d — 1)-cells of degree 1 in B, additional (k — 1) distinct d-cells, each of which is using a
new 0-cell. Hence in Ikr, , (v), the resulting ball B, 1(v) is obtained from B, by attaching to each of the
(d — 2)-cells of degree 1 additional (k — 1) distinct (d — 1)-cells, each of which uses a new 0-cell. O

Remark 5.7. Given a representative of the universal element (Tyk, I, £2, 7) and o € Tgy, the link
Ikr, (o) arrives with a natural k-ordering and a coloring (with (d + 1 — |o|) colors) inherited from
(Tax, ', 2, 7).

5.3. The action of Gq x on d-cells of (Tyx, I', 2, T)

As(Tyx, I', $2, T)is an object of 6, x, by Section 4 the group Gg x acts on it from the left transitively.
Recall the line graph ¢(T, k) of Ty and its graph distance dist : #(Tqx) X ¥(Tax) — N U {0} (see
Definition 1.2).

Lemma 5.8.

(1) For every g € Gay, the unique reduced word representing g is of length m if and only if
dist(g.7, 7) = m.
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(2) Forevery representative (Tyx, I", 2, T) of the universal element, the action of Gy x on the d-cells of
Ta.x is simply transitive.

Proof.

(1) Itfollows from the inductive construction of Ty x that dist(z, 7) = mifand only if t € By \Bp—1-
The result will follow once we prove the following two claims:

(a) Foreveryt € T;k such that dist(z, 7) = m, there exists a unique path (called the good
path) 7 = 1(0), (1), ..., t(m) = t of d-cells, with dist(z(j), 7) =jfor0 <j < m.

(b) Letg € G4 and assume w = a;;: . oc?l1 is the reduced word representing g. Then, the path

7(0), ..., =(m), where t(i) = oz;: .. .ajll .T is a good path.

We prove (a) by induction on m. For m = 0 the claim is immediate. Assume the statement
holds for all T € T{, whose distance from 7 is strictly smaller than m and let T € T§,
be a d-cell such that dist(z,7) = m. Due to the inductive construction of T, we know
that t € B \Bn_1 and that t is a neighbor of a unique d-cell ¢’ in B,_4. In particular, any
path from 7 to t must visit 7’. Due to the induction assumption, there exists a unique path
T = 7(0), (1), ..., t(m — 1) = 7/ such that dist(7T, 7(i)) = i for 0 < i < m — 1. Consequently,
the path 7 = 7(0), (1), ..., T(m — 1), T(m) := t is the unique path from 7 to t satisfying the
required properties.

Turning to prove (b), let g € Gg and assume that the path 7(0), ..., t(m) induced by the
reduced word representing g is not a good path, i.e. dist(7, t(i)) # iforsome 1 < i < m.
Denoting by iy > 2 the minimal such i for which dist(7, z(i)) # i (it is impossible for iy to be
equal to 0 or 1 due to the structure of the ball By), it follows that dist(7, t(ip — 1)) = ip — 1,
but dist(7, t(ip)) # ip. Furthermore, since t(ip, — 1) and t(ig) are neighbors, it follows that
diSt(T, T(lo)) € {10 —2, io — 1}

In the first case, namely dist(7, t(ip)) = ip — 2, it follows from the structure of T that

(ip) = (ip — 2). Hence, due to the definition of the action of Gy , it holds that jj,_; = j;,, which
contradicts the assumption that the word is reduced. Similarly, if dist(7", t(ig)) = iy — 1, we
must have that t(ip — 2), t(ip — 1) and t(ig) have a common (d — 1)-cell, which by the definition
of the action, also implies that the word is not reduced.
The transitivity of the action of G4, on the d-cells of Ty x follows from Claim 4.1. Thus, it remains
to show that the action is simple. Assuming otherwise, one can find two distinct group elements
g1, 8 € Gy such thatg,.7 = g,.7. However, each of the reduced words representing g, and g,
respectively induces a good path on T4, which starts in 7 and ends in g;.7 = g.7. Since such
a path is unique, we must conclude that the paths coincide and as aresult thatg; = g,. O

(2

—

Corollary 5.9 (The Cayley Graph of Gq x and the Line Graph of Ty ;). Let S = {af ield], I e[k—1]}.
Given a representative of the universal object (Tqy, I', §2, T), there is a natural graph isomorphism
between the line graph ¥(T, x) and the left Cayley graph Cay(Gqx; S), givenby g — g.T.

Proof. Since Gg acts simply transitive on the d-cells of T, k, which are exactly the vertices of the
line graph ¢(Ty x), it follows that ¥(Tg ) is isomorphic to the Cayley graph of Gg ; with respect to the
generator set S’ = {g € Gy : g£.7 is aneighbor of 77 and g.7 # 77}. Hence, it remains to show that
S’ = S. This follows from Lemma 5.8(1), as the only elements g € G4 such thatg.7 and 7 are distinct
neighbors, that is dist(g.7, g) = 1, are represented by reduced words of length 1 which are exactly
the words o/ fori € [d] and | € [k — 1]. O

5.4. The action of Gy x on general cells of (Tqx, I, 2, T)

Although the group G, x does not act directly from the left on lower-dimensional cells of Tk, one
can use the action of Gg  on d-cells of Ty in order to define an action of G4 on pairs of cells of the
form (p, v) € Tyx X Tgk, where p C t. This is done by setting g.(p, t) to be the pair (o', t’), where
t/ = g.7,and p’ is the fmiquej—cell in g.t whose color is the same as the color of p.
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Despite the fact that the action of G4 on d-cells of Ty  is simply transitive (see Lemma 5.8), it is
possible for certain group elements to stabilize a j-cell p in a pair (p, ), while changing the d-cell
itself (this means in particular that both tr and g.t contain p). We thus wish to study the subgroup

Lyc = 1{g € Gax : &:(p,7) = (p.8.7)} (5.1)

forp € Typand p C 7 € T§,.
Definition 5.10. For ] C [d]], define the subgroup

K= (o : je]) <Gy (5.2)

'We occasionally use the notationfto denote [[d]]\J. Furthermore, fori € [[d]], we use the abbreviation
i for {i}.

Lemma 5.11. Let (Tyx, I', 2, T) be a representative of the universal object. For every T € Tgk andp C 1

Ly =Krp. (5.3)

where we recall that I'(p) is the color of the cell p, see Section 3.3. In particular, L, . depends only on the
color of p and not on the choice of the d-cell .

Proof. The case p = t follows from Lemma 5.8. Hence we assume that p C 7. We first show

that Kr’(}) < L, .. Since KF(?) iigznerated by (“j)jef(?) and L, . is a group, it suffices to show that

(%)) € Lp.x- Fix somej € I'(p). Given T € T4, such that p € 7, let o be the unique (d — 1)-cell
contained in 7 of color j. By the assumption on j, we know that I" (o) C j and hence that p C . Using
the definition of the action on d-cells, oj.7 = w,(e;j).T must contain o and thus also p. This implies
that p is also stabilized by the action of o, i.e. &j.(p, T) = (p, ¢.7), as required.

Next, we show that L, ; < Kf(\). Assume g € L, ., then g.(p, 7) = (p, g.7) and thus in particular
p € o :=g.tNt.Consider the mﬂ? of o.Since t\o, (g.7)\o € lkx(o)and s since lkx(o)is isomorphic to
the universal arboreal complex Ty_ |, « (See Proposition 5.6), it follows that there is a path y of (d—|o|)-
cells, connecting t\o and (g.7)\o in Ikx(o). This path can be pulled back to Ty k, thus creating a path
of d-cells t = t(0), (1), ..., r(m) = g.t such that ¢ C (i) for every 0 < i < m. Defining j; € [d]
and l; € [[k— 1] for 1 < i < mto be the unique integers such that t(i) = a}lf .7(i— 1) (which must exist
since t(i— 1)Nt(i)is a (d — 1)-cell) we conclude that (x;: .. oz;; .t = g.7.Recalling that G4y acts freely
on Tik, this implies g = a;: .. .a}}. Finally, since for every 1 < i < mwe haveo C t(i — 1) N (i)
it follows that j; € 1"/(0\) c 1"/(;) forevery 1 < i < m. Thusg = oz;;” .. .a}} € Kr/(;) < Kr/(;) as
required. O

The last lemma allows us to generalize Corollary 5.9 and define a bijection between general cells
of Ty x and certain cosets of the group Gg .

Definition 5.12 (Cosets in Gq ;). For —1 <j < dlet
M = {I6g : g € Gy, ] € [ld] such that || =j + 1}, (5.4)
where K; is defined as in Definition 5.10. Also, set M := Uf:_le.

Corollary 5.13. Given a representative of the universal object (Tqx, I", §2, T), for every —1 < j < d, there
is a natural bijection ¥; : M/ — T, given by

the unique cell in
wi(Kg) = 1

= . (5.5)
g.T whose color is J.

For future use, we denote by ¥ : M — T, the map, whose restriction to M/ is ¥ forevery —1 <j < d.
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Proof. We start by proving that ¥ is well defined. Assume that for someJ, J* C [[d] such that |J| = |J'|
and some g, g’ € Ggx we have Kjg = Kpg'. Theng € Kpg' = Kpg C Kpg' = Kg = Kp € K.
Applying the same argument in the opposite direction we conclude that K; = Ky and hence that
J =J'. Next, observe that K5g = Kf/g/ = K5g’ and therefore that gg' ' e K. Recalling the definition
of ¥; we obtain that ¥j(K;g) is the unique j-cell p in g.7 such that I"(p) = J, and similarly that
¥i(Kpg') = ¥(Kg') is the unique j-cell p’ in g'.7 such that I'(p’) = J. However, since gg' ' e K5,
it follows from Lemma 5.11 that the unique j-cell in g’.7 whose color is J is the same as the unique
j-cellin (gg’~").(g".T) = g.7 whose color is J, that is p = p’. This completes the proof that ¥; is well
defined. )

Next, we show that the map is onto. Let p € Té_k, and assume that I"(p) = J. Since Ty is pure, one
can find a d-cell T containing p. By Lemma 5.8, any d-cell of Ty (and in particular ) can be written
in the form g.7 for some g € Gy . Hence, ¥j(Kjg) = p.

Finally, we show that the map is injective. Assume that p = ¥;(K;g) = lI/j(Kf,g’). It follows from
the definition of the map ¥; that ] = J', since otherwise the colors of the j-cells ¥;(K;g) and lI/j(I<]7g/)
are not the same and in particular the cells are distinct. Furthermore, the d-cells g.7 and g’.7 have p
as a common j-cell such that I'(p) = J. This implies that gg/_1 € L, . and therefore by Lemma 5.11
thatgg ™' e Kyanr(p) = K. Consequently, Kf,g/ =Kg = Kj(gg’_l)g’ = K5g, which proves that the
map is injective. O

5.5. The right action of Gq x on Ty x, and Gy x invariant coloring and ordering

Let (Tqx, I, £2, T) be a representative of the universal object. Using Corollaries 5.9 and 5.13, one
can define the right action of G4, on the d-cells of T, i as the right action of G4 x on the corresponding
left Cayley graph. Formally, given a representative of the universal object (Ty, I, §2, T), denote by
Yy : Gap — Tgk = ¥(Tq) the graph bijection introduced in Corollary 5.9, given by ¥,(g) = g.7 for
every g € Gy . Then, forg € Ggrand t € Tgk define 7.g to be lIId(II/d_l(T)g*1 )-

Since the action is the right action on a left Cayley graph, it preserves the graph structure and in
particular dist(t, t') = dist(r.g, v".g) for every 7,7’ € T, and g € Gqy, where dist is the graph
distance in the line graph ¢(T4 ). Furthermore, if we color the edges of Cay(Gg; S) by S, using the
color s for edges of the form {g, sg}, then the right action also preserves the edge color.

Unlike the left action of G4 x on Tf « Which cannot be extended directly to the lower dimensional
cells (see Section 5.4), the right action can be extended to act on all cells of T4 k- Indeed, given any
cell p € Ty define p.g as follows: choose any d-cell T containing p, and set p.g to be the unique
cell in t.g whose color is I'(p). This is well defined since the right action preserves the structure of
the edge-colored Cayley graph. Note that the right action preserves the coloring of the cells in T, ; by
definition, and that for every choice of ] C [[d]), it is transitive on cells of color J. Another way to see
this is to use Corollary 5.13: the right action of Gy x on the j-dimensional cells of color J is equivalent
to the right action of Gg x on Kj\Gg k.

Due to the existence of a coloring preserving right action of G4 x on all the cells of Ty, it is natural
to seek orderings which are preserved under the right group action. Formally, we call an ordering £2
of Ty x a Gy k-invariant ordering if for every o € Tff, T e€d(o)and g € Gy,

(£2;(B).1).8 = 254(B)(r.8). VB € (56)

The last equation gives a simple way to define an invariant ordering for T4 ; by defining the ordering
on the (d — 1)-cells of 7" and using (5.6) to define the ordering on the remaining (d — 1)-cells of Tg .
Formally, for 0 < i < d, denote by X; the unique (d — 1)-cell of 7 whose color is i and define the
ordering:

Q5.(a).T =T, Vi e [d], | € [k — 1],
(5.7)
265(B)(1.8) = (2,(B).1).g, VB EC gE€Gar 0 €Ty, 0 CTeT],
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This defines the ordering completely since the right action of Gy is transitive on cells of the same
dimension and color. One can verify that if t € Tik and o C t is the unique (d — 1)-cell of color i in
it, then there exists a unique g € G4 such that t = 7.g and 0 = X;.g. Hence,

2,(a}).T = 25,4(a}).(T-g) = (25,()).T).g = T-0lg. (5.8)

Throughout the remainder of this paper we assume that any ordering £2 of Ty x is G4 x-invariant, i.e. it
satisfies (5.7).

6. Group interpretation of Ty j

In this section we describe two additional constructions of the universal object Ty . The first uses
the group Gg and the results proved in the previous section on its action on Ty . This hints at the
construction for general subgroups of G4y discussed in the next section. Using the first construction,
one can introduce a second one which is based on the notion of a nerve complex (see Definition 2.1).
Since a significant portion of the proofs for both constructions is a special case (for the subgroup
H = (e) < Gy ) of the more general theory (presented in Sections 7-9), the proofs are postponed.

Recall the definition of M (see Definition 5.12) and for —1 < j < d,let ® : M — fz_](;\f?) be
the map

o(Kg) ={kkg :ie]}, V] C [d]l, g € Gax- (6.1)

One can verify (see Lemma 7.2) that the map @ is well defined and that @(k5g) € (]j\f?

J C [d] is of sizej + 1.

) whenever

Definition 6.1 (The Simplicial Complex X4 ). Using the set M and the map @, we define the simplicial
complex X, with vertex set M° as follows: X = {#}, X, = M® and for 1 <j < d

X, = (o6g) : Kg € M) (6.2)

It is not difficult to check that X, is indeed a d-dimensional simplicial complex with vertex set
M. In addition, there is a bijection between j-cells of X4, and elements in M, that is, the map
@,y : M — X}, is a bijection.

In conclusion, combining the discussion above with Corollary 5.13 we immediately obtain:

Theorem 6.2 (The Complex X is the Universal Object). The d-complex X, is isomorphic to Ty .
Furthermore, for any choice of a representative of the universal object (T, I', §2, T') one can endow
X4,k with a natural coloring, k-ordering and a root such that the map ¥ o o1 Xax — Ta is a bijective
morphism (in the sense of the category ¢y ), where ¥ is as defined in Corollary 5.13, and @ is as defined
in Eq. (6.1).

Note that Theorem 6.2 is a particular case of Theorem 7.11 for the subgroup H = (e).
Using the construction of Ty x via Gg x, we can also describe Ty, as a nerve complex.

Theorem 6.3 (T, as a Nerve Complex). For v = I6g € M° define A, = (g’ € Gyx : K6g = Kg').
Then, the nerve complex N'((Ay),crq0) is a d-dimensional simplicial complex which is isomorphic to T .

As before, this is a particular case of Theorem 9.1 for the subgroup H = (e).
6.1. Links of Ty x described by the group Gq

Combining Proposition 5.6 and Theorem 6.2 we can give a group description of the links in Ty
using the group Gg . _

Let(Tqk, I', §2, T)be arepresentative of the universal object, and fixacello € Tj’k of color I'(0) =
J. Assume first that ® (o) = Ke. Then, the set of cells in T, ;, containing o is in correspondence with
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the cosets Kjg € M such that] C I and K; = Kjg, or equivalently, /] C I and g € K;. Furthermore, all
the cells in the link of o are colored by the colors [[d]|; := [[d]]\/, and the color of the cell corresponding
to Kg is [[dl,\I = ([dI\)\I = (IdIN\UN) = TdI\(T\)).

Let G{i,k = siefa Ki < Ga.x be the subgroup of generated by (aj)jeﬁd]]]. Note that

° G{L « Is isomorphic to Gg_j_1 k.
e By Theorem 6.2, Gq_j_1 i gives rise to the simplicial complex Tq_;j_; ; using the map .
e By Proposition 5.6 The link of o is isomorphic to Ty—_j_1 .

Hence we can also use the group G4 x in order to describe the link of o', namely, K;g’ withJ < I and
g’ € K < Gg, corresponds to the coset K[[d]]]\(,\])g/ in G{, «» Which in turn corresponds to a cell in the
link of o '

Finally, in the general case, i.e. ® (o) = KGg forageneralg € Gy, we can give a natural structure,
by an appropriate conjugation by g.

7. From subgroups of G, i to elements of ¢ i

The goal of this section is to introduce a method for constructing elements of %, x using subgroups
of Gy . Let H < Gqx be a subgroup of Gg . Since Gqy is in bijection with the d-cells of Tq , and Gq k
acts on Ty from the right by simplicial automorphisms which preserve coloring, ordering and gluing
of cells, one can define the quotient complex T, x/H associated with H as follows: Define the 0-cells
of Ty /H to be the orbits of the action of H (from the right) on the 0-cells of T4 . Next, declare a
set of O-cells in Ty /H to form a cell in the quotient complex, if there exist representatives of the
0-cells in T(Rk in the corresponding orbits, which form a cell in Ty . The cells in Ty /H arrive with a
natural multiplicity and gluing, namely, the multiplicity of a cell o in T4 /H is the number of choices
of representatives for 0-cells along the orbits up to an H equivalence, and the gluing is induced from
the inclusion relation in Ty k. As it turns out, the resulting object in € x is always link-connected, that
is, it belongs to (Kéfk. This fact is proven in Section 7.3 and is used later on to characterize each quotient
complex as a certain universal object (see Section 8).

7.1. Construction of the multicomplex from Gy i

We start by introducing the quotient multicomplex T4 /H, which is defined directly from the
group Gy, and the subgroup H. Let (Ty, I', £2, T) be a representative of the universal object of %y i
and H < Gg . Recall the definition of the subgroups K; (Definition 5.10) and of the sets M (see
Definition 5.12).

Definition 7.1 (Equivalence Classes of Cosets of Gq ). For —1 < j < d, define an equivalence relation on
cosets in M by declaring Kjg and Kpg' to be equivalent if {Kjgh : h € H} = {Kpg’'h : h € H}. For
Kg € M we denote by (K521 the equivalence class of Kjg and define

M(H) = {[Kgln : g € Gar. J € [d]l such that |J| =j + 1}, (7.1)
Finally, denote M(H) = Ufzq/\/lj(H).

Note that, for j = d, one has {gh : h € H} = gH, and therefore the equivalence classes [g]y are in

correspondence with the left cosets gH, that is, one may identify M%(H) with {gH : g € Gq}. Hence

|MUH)| =[G : HI.

Lemma 7.2. If [Kgly = [Kf,g’]H, then ] = J'. Furthermore, if [I5g]y = [IGg'ly and I C ], then
[K5g1y = (K58 1y. In particular, [Kgly = [K6g ]y for everyi € ].

Proof. Assume that K5gln = [Kf,g/]H. As in the proof of Corollary 5.13, this implies that K = Ky and
therefore ] = J'.

Assume next that [Kg]y = [Kjg']y and I C J. Then, there exists h € H such that K5g = Kjg'h. As
K C K3, the same holds for I, i.e., K5g = IKg’h, which implies [K5g]y = [IGg']y. O
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Let ® = @y : M(H) > Uji_l(/\;.‘i(]”)) be the map

D([Kgly) = {lKGgly - i€]}, V< [d], g € Gak- (7.2)

Note that due to Lemma 7.2 this map is indeed well defined. Also, note that, ®(M/(H)) C (/‘;‘i(lH )) and
that the restriction of @ to MY is the identity.

Definition 7.3 (The Complex X4 x(H)). For H < G, define %;i(H) = {#}and for0 <j < dlet

) (H) = (@([Kgln) © [K5gly € MI(H)). (73)

Finally, set

d
XaulH) = | & (H). (7.4)
j=—1

Note that X3 ,(H) = M°(H) since the restriction of & to M°(H) is the identity map.

Lemma 7.4 (X4 (H) has a Complex Structure). Let (Tyx, I', §2, T) be a representative of the universal
element and H < Ggq k. Then X4 x(H) is a pure d-complex which is colorable and d-lower path connected.

Proof. Let 0 € X¥4(H)and p C o. Due to the definition of X4 x(H), there exist] C [d]] and g € Gg
such that o = &([KGgly) = {[K5gly : i € J}. Hence p = {[Ggln : i€ J'} for some ]’ C J, and
we obtain p = P([Kpgln) thatis, p € X4(H). This completes the proof that X, x(H) is a simplicial
complex with vertex set M°(H).

A similar argument shows that X, x(H) is pure. Indeed, let o € X4x(H). As before, there exist
J] € [dll and g € Gy such that o = @([I(Tg]H) = {[Kgly : i € J}.Hence, v = &([gly) =
{[Il5g]y : i€ [d]} is a d-cell containing o

Next, we show that X, x(H) is colorable. Define yy : xqu(H) — [[d]l by yu([Ig]n) = i. Note that
due to Lemma 7.2 this is a well defined map. Since any d-cell of X4 x(H) is of the form &([gly) =
{[K58]1H, [IGE]H, - . ., [K;g]y} for some g € Gy, it follows that the 0-cells of any d-cell in X4 x(H) are
colored by (d + 1) distinct colors. Hence yy is a valid coloring, and in particular X4 (H) is colorable.

Finally, we show that X, x(H) is d-lower path connected. Let 7, v/ € %g_k(H). Then t = &([gly)
and v = &([g'ly) for some g,g’ € Gy Writing g’g~" as a reduced word al{: .. .agafll with
it,...,im € [[d] and Iy, ...,l, € [k — 1] and abbreviating w, = ail:..‘ail} for0 < r < m we
claim that the sequence T = 7(0), t(1), ..., t(m) = t’ with 7(r) = ®([w;g]y) is a path from 7 to
7’ (up to the fact that it is possible for two consecutive d-cells in it to be the same). We only need to
check that t(j)N t(j — 1) is either a (d — 1)-cell or that (j — 1) = ©(j). To this end, note that for every
g € Gyy,everyie [d] andevery!l € [k — 1]

o(Igln) N D([oigln) = (K58, - - -, Ggln} N {[Ksatigln, - . ., [Kaarlglu). (7.5)

Using the definition of the subgroups Kz (see Definition 5.10) we conclude that [KGg]y = [K?ozlfg]H for
every r # i. Hence &([g]y) N ®([eigly) € X5 (H)if [K6gly # [Keigly and @([gly) = P([eigly) if
[K6gly = [IGelg ]y, thus completing the proof. O

Using the simplicial complex X4 (H), we turn to construct an element of %, ; whose underlying
simplicial complex is X4 ,(H), and is equivalent to the quotient multicomplex described at the
beginning of the section. In order to describe the multicomplex it remains to define its multiplicity my
and gluing gy functions, as well as its ordering and root. The multiplicity associated with the complex,
arises from the fact that although the map @y is onto, it is in general not injective, that is, it is possible
that |<1>§1(o)| > 1for some o € X4 x(H) (for further discussion of this fact see Section 9.2).



A. Lubotzky et al. / European Journal of Combinatorics 70 (2018) 408-444 427
Definition 7.5 (Multiplicity). Define the multiplicity function my : X4x(H) — N by

mu(o) = @5 (o), Yo € Xqu(H). (7.6)
Note that by the definition of the complex X4 x(H), it is always the case that m(v) = 1forv € %(d),k(H)'

Since the multiplicity is manifested by the map & and the relation between M(H) and X4 x(H), it
is more natural to use the elements of M(H) as “indexes” for the multicells associated with X x(H)
instead of the natural numbers.> Hence, from here onward, we use M’ to denote the j-multicells of
the multicomplex associated with X4 x(H), for 1 <j < d.

Definition 7.6 (Gluing). Define the gluing function, gy : {(a,0) € M(H) x Xqx(H) : 0 € 0®(a)} —
M(H) as follows: Note that for a = [Kjgly and o € 9®(a), there exists a unique [ € J, such that
o=a( [ng]y)- Then, set

an([lGg1n. o) = [KRgln, (7.7)
for this unique [ € J.

The gluing function is well defined due to Lemma 7.2. Furthermore, recalling the definition of a
multiboundary, our choice of gluing gives

O"Kiglh = {[Kngln = 1]} (7.8)

Throughout the remainder of the paper we denote by %d,k(H) the multicomplex (X4 «(H), my, gn).
Note that %d, (H )Nis indeed a multicomplex as it satisfies the consistency condition. Indeed, let [K;g ]y
be a multicell in X4 x(H), and let [K5g 1y, [Kpg]y be a pair of multicells contained in it (thatis, I, I’ € J)
satisfying |I| = |I’|. If in addition the corresponding cells satisfy o = ®([IGg]y) N D([Kygln) €
%‘d'_ll:z(H), then gn([KGg1n, o) = [K81n = 9n([Kpgln, o), that is, the gluing is consistent.

Claim 7.7. For everyi € [d]l and g € Ggq, the d-multicells containing the (d — 1)-multicell [Kig]y are
8([Kigln) = {[elgly : | € [k — 11}. In particular, the degree of any (d — 1)-multicell is at most k.

Remark 7.8. In fact, combining Claim 3.9 and Lemma 7.10, one can show that the degree of any
(d — 1)-cell divides k.

Proof. Let a = [Kigly € MY"'(H)be a (d — 1)-multicell. It follows from the definition of the gluing
function that [a}g]H for I € [k — 1] are d-multicells containing a. If [g']y is a d-multicell containing
a, then [Kig'ly = [Kigly = a. In particular, g’ = afgho for some hy € H and ! € [[k — 1], and hence
{g’h : h € H} = {alghoh : h € H} = {algh : h € H}, thatis, [g']y = [e!g]y. This proves that there
are no other d-multicells containing the (d — 1)-multicell [[6g]y. O

Next, we turn to define an ordering for the multicomplex id,k(H ). The ordering of id,k(H )isinduced
from the ordering of (Tyk, I", £2, T).

Definition 7.9 (Ordering). We define wy = (@ )pepqa-1y) s follows. Given a (d — 1)-multicell
[Kigly € M?~1(H) and a d-multicell [e/g]y € M?(H) containing it, define
oy (@)-loigln = o "gly,  Vm e [k —1]. (7.9)

Lemma 7.10. wy is a valid k-ordering for id,k(H )-

3 If one insists on working with the set Xg y(H)n,, instead of M(H), this can be done by fixing an arbitrary map F : M(H) —
X4,k(H)m, such that F restricted to @~ (o) is a bijection from &~ !(o') to X4 k(H)my (o), forevery o € X4 k(H).
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My

Tk M(H)

Fig. 6. The map [Ty is a composition of the map ¥ ~! and the quotient map by H.

Proof. We start by showing that wy is well defined. Assume first that [Kig]ly = [Kig']ly are two
representatives of the same (d — 1)-multicell and note that in this case g’ = ] gh for somer € [[k— 1]
and h € H. In addition, the d-multicell [a/g]y represented in terms of g’ is given by [a/gly =
[ala;"g'h~ "y = [} "g']y. Thus it is enough to show that g, (@™).[elg 1y = o, (™).} g Tu.
This is indeed the case, since
oy () lajgly = [of™"gly = [of "o g'hly
= "8 ln = g (@) loy g Tn.
It remains to show that wy is indeed an ordering, that is, for every (d — 1)-multicell [K;g]y, the
map kg, © Ck = Ss(ikigly) iS a transitive homomorphism. The fact that wikg),, is a homomorphism
follows from the fact that it is defined using the action of Gy k. As for the fact that wik.g),, is transitive,
it follows from observing that for any (d — 1)-multicell [Ig]y, one can obtain any d-multicell of the
form [e"g ]y when starting from the d-multicells gH by applying w1, («"), and noting that those
are all the d-multicells containing [Gg]y (see Claim 7.7). O

(7.10)

_ Finally, we define the root to be the d-multicell [e]y. Combining all of the above we conclude that
(X4.x(H), Yu. wn, [ely) is an object in the category %, and that the quotient map /H is a simplicial
multimap.

7.2. The multicomplexes %d, k as quotients of the universal object

Having completed the construction of the object (%d,k(H), VH, WH, [e]ly) € €4k associated with a
subgroup H of Gq x, we turn to discuss the unique morphism in the sense of the category ¢\ from
the universal object to it. This morphism is in fact the promised quotient map from Ty to Ty /H.
In particular, we prove that the multicomplex associated with the subgroup H = (e) is simply the
universal object itself (thus proving Theorem 6.2).

Theorem 7.11 (The Quotient Map). Let (Tqx, I", §2, T) be a representative of the universal element of
%ax and H < Gg . Then the unique morphism from (Tyx, I', $2, T) to (Xa.x(H), Yu, wu, [ely) is given by
the map 0 — [¥ ~'(o)]y, where ¥ is the bijection defined in Corollary 5.13.

Note that in the case H = (e) the resulting morphism from (Ty, I", £2, 7) to (3~€d,k(e)\‘, Ve, We, €)
is simply the map ¥, which by Corollary 5.13 is a bijection. Hence, (T, I, £2, 7) and (X4.k(€), Ve,
we, €) are isomorphic in the category 4 x, which completes the proof of Theorem 6.2.

Proof. Denote by ITy : Ty — M(H) the map Ty(o) = [¥~'(0)]ly and note that ITy is the
composition of the map ¥ ~! with the quotient map by H induced from the equivalence relation
(see Fig. 6). In particular, this implies that I7y is well defined. Indeed, for every o € Ty, there
exists a unique coset Kjg such that ¥ (K;g) = o. Furthermore, if IGg = Kf/g/, then by definition
(KGg1n = [K;,g’]H which proves that the map is well defined.

Next, we show that [Ty is a simplicial multimap.* Since Ty is a complex, and in particular has no
multiplicity in the cells, it suffices to show that ITy(o) = {ITy(vo), ..., [Tu(v;)} € M(H) for every

4 Note that this can also be seen from the fact that Iy is a composition of an isomorphism with the quotient map /H which
is a simplicial multimap.
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o = {vg, ..., v} € Ty Let o be as above and assume that v o) = Kg with] = {ip, ..., ij} and
g € Gg. Due to the definition of ¥ (see Corollary 5.13) the color of ¢ is J and hence, without loss of
generality, we can assume that the color of v; is i, for 0 < r < j. Using the definition of ¥ once more,
together with the fact that v, is the unique 0-cell in o of color i,, we obtain that ¥ ~!(v,) = Krg for
every 0 <1 < j,and hence [Ty(vr) = [K;gln- Recalling that the O-cells of the multicell /74(o') = [Kg1u
are {[K;gln, - - [K ~g |y} by definition (see the definition of @), this completes the proof that ITy is a
51mp11c1al multlmap

It remains to show that ITy preserves the coloring, the root and the ordering. Starting with the
coloring, the previous argument implies that for every ¢ € Ty such that ¥ (o) = Kg, with
J = {io, ..., i}, the color of o is J. However, the color of the multicell [K;g]u is defined to be J as
well (see Lemma 7.4 for the definition of ). The map ITy preserves the root since ¥(e) = 7, which
implies that I7y(7) = [e]y. Finally, turning to deal with the ordering, let o € Ti;l andt € Tj_k such
thato C . Assume further that ¥ ~!(o) = Kig, which, by the definition of the map ¥, implies that
(1) =d! g for some | € [k — 1]|. Since the action of G4, on T from the left and right is the same
(asit corresponds to the unit element in Gg ) it follows thato = Xj.gand t = T.«¢; g, where X is the
unique (d — 1)-cell of 7 of colori. Hence, using the assumption that the ordering 2 is invariant under
the right action of G4 i (see (5.7)) for every m € [k — 1]]

My(2,(a).7) = My(25,4(M)(T-tlg)) = Mu((25,(e).T).ctlg)
= My(T-a"eg) = My(a""g.T) = [o] "gly (7.11)
= Ol (o). [igln = Oy (@) ITu(T)

as required. O

7.3. Link-connectedness of quotient complexes
Proposition 7.12. For every H < Ggq , the multicomplex id,k(H ) is link-connected.

Proof. Due to Proposition 3.5 it suffices to show that the link of each j-multicell is (d — j — 1)-lower
path connected. Leta = [Kjg]y be aj-multicell of%d W(H)with —1 < j < d—2.ThelinkY = lkxd,(H (a)
isa(d—j— 1) dlmensmnal multicomplex, whose i-multicells (for —1 < i < d —j — 1) are in
correspondence with elements [Kg']y € MHTI(H) for ] € [ satisfying [Kjg’]H = [K5g]n. Let v’
and b” be two (d —j — 1)-multicells in Y and denote by [g']y and [g”]y the corresponding d—multicells
in X4 x(H). Since both [g']y and [g”]y contain a, we have [Kjg’]H = [Kgln = [ng”]H. Observing the
corresponding d-cells in M, by Theorem 7.11, one can find h’, i € H such that the d-cells ¥ ~'(g’h’)
and ¥ ~1(g”h”) contain K5g. As K;g corresponds to a j-cell of Ty x, and since the link of a j-cell in Ty x is
isomorphic to Ty—j—1  (see Proposition 5.6), we conclude that: (a) the link Ik, , (¥ ‘1(I<7g)) is(d—j—1)-
lower path connected, (b)g’h’ and g”h” have corresponding (d—j— 1)—cells in the link lde‘k(lI/‘l(qu)).
Combining (a) and (b), one can find a path of (d —j — 1)-cells in Ikr, , (¥~ (KAg)) which in turn yields a
path of d-cells in Ty  from g’h’ to g"h”, all of whose d-cells contain the j- cell K;g. Projecting this path
to 3€d «(H), one obtains a path of d-multicells from [g'h']y = [g']y to J;g”h”]H [g”14, all of which
contain the j-multicell [K;g]n. Finally, projecting this path to the link Y, we conclude that there is a
path of (d — j — 1)-multicells from b’ to b” in the link, thus completing the proof. O

8. From simplicial complexes to subgroups and back

In this section we discuss how to associate a subgroup of G4 x to objects of ¢ x and study the relation
between the original object and the quotient object obtained from the associated subgroup.

8.1. Classification of objects in €y

Recall that we have an action from the left as well as from the right of the group Gg on the
d-multicells of every object in the category %,  (see Section 4). While the action from the right acts
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by automorphisms of the category, i.e., preserving the coloring, the ordering etc., this is not the case
for the action from the left. In other words, the action from the left is not in the category j k.

Definition 8.1 (The Associated Subgroup). For ()7 , ¥, W, ag) € ¢4k define

H((X, Y, w,a0)) ={g € Gy : g.a0 = ap}. (8.1)

Since H(()?, Y, w, ag)) is the stabilizer of ay, it is a subgroup of G, that we will call the subgroup
associated with (X, y, w, ap).

Note that #((Tq, I", £2, T)) is the trivial subgroup.

Theorem 8.2 (Classification of Objects in ?ﬁf,{). Let (Tqx, I', §2, T) be a representative of the universal
object.

(1) Forany H < Gg, the subgroup associated with the multicomplex @d,k(H), VH, wy, [ely) is H, that
is,

H((Zax(H), vi, wn, [eln)) = H. (8.2)

(2) Forevery X,y 0,q0) € €0 the object of ¢y associated with H((X, v, w, ag)) is isomorphic to
(X, y,w, ap), that is

X, v, o, a0) = (Fax(H), v, o, [eln), (8.3)

where H = H((X, v, w, ag)).

In particular, we obtain a correspondence between subgroups of Gqx and the link-connected objects in
Cd.k-

Proof.

(1) The main identity needed for the proof of (8.2) is

g.lelu = [gln, Vg € Gak, (8.4)

where the action of Gq is the one defined by the group action on the d-multicells of id,k(H ).
Indeed, if (8.4) holds, then

H(Zar(H), vi, on, [eln)) = {g € Gax : g.[elu = [elu}

8.5
= {8 €Gux : [gln =[elu} =H (83)

thus completing the proof.

We turn to prove (8.4). Since g can be written as a word in «, . .., &g it is enough to show
that ;.[g]y = [oig]y forany g € Gy and i € [d]. The last equality is now a consequence of the
definition of the action and the ordering. Indeed, for any i € [d]land g € Gy

@i.[g]ln = gy, (@i).[g]h = [aigly (8.6)

as required. _ N

(2) Assume X = (X, m, g). We construct the isomorphism from (X4 (H), yu, wn, [e]ly) to (X, v,
o, ag) in several steps: (i) a map between 0-cells, (ii) extension to a simplicial map from X x(H)
to X, (iii) extension to a simplicial multimap from X, x(H) to X, and finally, (iv) showing that the
resulting simplicial multimap is a bijective morphism, whenever X is link-connected. (i) Recall
that the 0-cells have no multiplicity in any complex and define ¢ : X3 ,(H) — X° by

the unique 0-cell of

8.7
g.ap whose color is i. 87)

p(liGgln) =
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First, we show that ¢ is well defined. Indeed, if [K;g]y = [I6g 5, then g’ = wgh for some w € K;
and h € H and therefore g’.ag = wgh.ap = wg.ap = w.(g.ap), where for the second inequality
we used the fact that any element of H stabilizes ay. Recalling the definition of the action, for any
element of w’ € I and any a € X,,, it holds that w’.a and a contain the same 0-cell whose color
is i. In particular g.ap and g’.agp = w.(g.ap) contain the same 0-cell whose color is i, implying
that p([Kg ) = ¢([Kg I ).
(ii) Next, we extend the definition of ¢ to a11 cells in X4 (H) by ¢({oo,...,0})
{p(00), ..., ¢(0j)} for every o = {0y, ..., 0} € Td « We claim that ¢ is a simplicial map.
In order to prove this, one only needs to venfy that o({[Kpgln, - - [I(Ag]H}) is a j-cell in X for
every choice of g € Gy and distinct g, ..., i € [d]. Usmg the deﬁmtlon of ¢ for O-cells, one
can verify that <p({[K gly, .. [K}g]H}) is the set of 0-cells of g.ap whose colors are i, iy, . . ., ij.
Using the forgetful map ¢ from multicells to cells defined in Section 3, since the colors are
distinct and since ¢(g.ap) is a d-cell of X (which is closed under inclusion), we conclude that
e({[K;&ln., - - -, [I(Ag] })is aj-cell in X.
(iii) A final extension of ¢ to amap ¢ : xd (H) — X is defined as follows. For 0 <j<d,]JcCld]
satisfying |J| =j+ 1and g € Gy define

the unique j-multicell contained

o([K =
o([K5gln) in g.ag whose color is J.

(8.8)
Using a similar argument to the one above, we obtain that @ is an extension of the map ¢.
Furthermore, this map is well defined due to the definition of H and the fact that the action
of elements in K; from the left on d-multicell stabilizes the (|J| — 1)-cell of color J.

(iv) Let us now show that ¢ is a bijection of multicomplexes. Indeed, since the action of G, on
the d-multicells of X is transitive (see Claim 4.1), it follows that the map is onto. As for injectivity,
we separate the proof to the case of d-multicells and to lower dimensional multicells. Starting
with the former, note that if 9([g]y) = @([g']y), then g.ap = g/.ao and hence g7 'g’.ap = ao.
Recalling the definition of the subgroup H, we obtain that g~'g’ € H, or equivalently [g]y =
[g'1y. Turning to deal with general multicells, if <p([1<]g]H) = ¢([K>g'l4), then ] = J', because
otherwise the colors or dimension of the multicells are different and in particular there is no
equality. Note that the equality ¢([Kg]y) = @([Kg']y) implies that the d-multicells g.ap and
g’.ap contain the same (|J| — 1)-multicell of color J, denoted b. Therefore, in the link lkz(b),
there are (d — dim b — 1)-multicells ¢ and ¢’ which correspond to the d-multicells g.ao and g’.ag
respectively. Recalling that X is link-connected and using Proposition 3.5, we conclude that there
exists a path of (d — dim b — 1)-multicells in lkg(b) from ¢ to ¢’ such that each pair of consecutive
multicells along the path contains a common (d — dim b — 2)-multicell. Lifting this path to X,
one obtains a path of d-multicells from g.ag to g’.ao such that each consecutive pair contains a
common (d — 1)-multicell, and each of the d-multicells contains the multicell b. Recalling the
definition of the action of Gy  (see Section 4) this implies the existence of w € K such that
wg.ap = w.(g.a9) = g’.ap. Hence, by the same argument used for d-multicells [wgly = [g']x,
and therefore (K81 = [ng’]H.

Finally, we note that ¢ preserves the coloring ordering and root. The coloring is preserved due
to the definition of ¢ and the choice of coloring yy for cells in X4 (H). Similarly, the root is
preserved, due to the definition of ¢. As for the ordering, due to the definition of wy, see (7.9),
one needs to show that for everyi € [d]l,g € Ggxandl, m € [k — 1]

[ I+m

@( gln) = og(ieg) (@ a)).@([o"gln). (8.9)

Starting with the left hand side, 5([ozf+mg] ) is the unique d-multicell oz,ng.ao. As for the right
hand side, denoting by b the unique (d — 1)-multicell contained in &"g.aq whose color is [[d]]\{,
this can be rewritten as wy(« ’) (a"g.ag) which by the definition of the action on (X Y, w, dg)is
equal to a Mg.apaswell. O
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8.2. Some implications of Theorem 8.2

Proposition 8.3. For every subgroup H < Gq, the line graph of %d,k(H ) is isomorphic to the Schreier
graph Scr(G/H; S), where S = {a! : i € [d], I € [k — 1]}.

Proof. Since Gy acts transitively on the d-multicells of (3~€d, «(H), vu, wy, [e]y), and since the stabilizer
of [e]y is the subgroup H, it follows that %(%d,k(H)) is isomorphic to the Schreier graph of G4 x/H with
respect to the generator set S’ = {g € G4 : g.[ely is a neighbor of [e]y}. Hence, it remains to show
that S’ = S. First, note that S C §’, since the definition of the left action on %d,k(H ) guarantees that the
d-multicells [e]y and a!.[e]H contain the same (d — 1)-multicell of color i, that is, a{.[e]H and [e]y are
neighboring d-cells in the line graph. As for the other direction, assume that g € S’. Then, g.[e]y is a
neighbor of [e]y in the line graph, that is, they contain a common (d — 1)-multicell. Recalling that the
(d—1)-multicells contained in [e]y are ([Kie]n )iefey and using Claim 7.7, we conclude that [g]y = [a!]H

for some | € [k — 1]), thus proving thatS’ € S. O

Combining Proposition 8.3 and Theorem 8.2 we obtain

Corollary 8.4.

(1) Foreveryd,kand H < Ggq there exists a d-multicomplex, whose line graph is isomorphic to the
Schreier graph Sch(Gq x/H; S), where S = {of : i € [d], I € [k — 1]}.

(2) Every pure, link-connected d-multicomplex X, such that deg(b) divides k for every (d — 1)-multicell
b is isomorphic to %d,k(H)for some H < Gg k.

Remark 8.5. Let ()? ,¥,w,a) € 6y and denote by H the corresponding subgroup of Gg . It follows
from the work of [9, Corollary 4.1] that the line graph of X is transitive if and only if H is length-
transitive (see [9, Definition 4.3]). It is interesting to ask, whether one can find a condition on H that
guarantees transitivity of the line graphs of the skeletons of X. Similarly, let H;, H, be two subgroups
of Gg 1. It is shown in [9, Theorem 4.1] that the line graphs of %d.k(Hl) and 3~€d,k(H2) are isomorphic if
and only if H; and H; are length-isomorphic (see [9, Definition 4.2]). It is interesting to ask whether
one can find corlditions on H; and H, that guarantee isomorphism of the line graphs of the skeletons
of X4 x(Hy) and Xg x(Hy).

Using Theorem 8.2 we may also deduce Proposition 5.3. Indeed, the assumption that Ty is
pure d-dimensional, k-regular and has the non-backtracking property described in Proposition 5.3
determines the line graph of T, x completely. Hence, by Theorem 8.2 there exists a unique object in
(@”‘fk up to isomorphism whose line graph is the line graph of T, x, which must be Ty j itself.

Another corollary of Theorem 8.2 is the following:

Corollary 8.6. For every pair of finite objects (X1, y1, w1, a1) and (Xa, y2, wa, a3) in €4k, there exists a
finite (Y, y, w, a) € %jfk with surjective morphisms 7r; : (Y, v, w, a) > (X, i, wi, a;), i =1, 2.

Proof. If H; and H, are subgrougs of G4 associated with (X1, y1, w1, a1) and (Xa, y2, wa, az) respec-
tively, then take (Y, y, , a) = (Xq,x(H3), Vi3, @n;, [€]n; ), where H3 = Hi N H,. O

Corollary 8.6 is a kind of analogue of Leighton’s graph covering theorem (see [10]) asserting that
two finite graphs with the same universal cover have a common finite cover. It should be noted
however, that in our case T, is usually not the universal cover of neither X; nor X,. Moreover,
in general the fundamental groups 71(X;) and 71(X5) can be very different and, in particular, not
commensurable to each other (i.e., do not have isomorphic finite index subgroups) as is the case for
graphs. Therefore, Corollary 8.6 is not totally expected. In fact we do not know how to prove it by
direct combinatorial methods.
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8.3. The link-connected cover

Theorem 8.7. For every ()N(, Y,w,00) € %y there exists a unique (up to isomorphism) object
(Y,y,®,4d9) € %4 with an epimorphism & : (Y,V,®,a) — (X, y, w, ap) satisfying the following
properties

(1) Yis link- connected. N
(2) Forevery (Z V, o, ao) € %d ‘, and every eplmorphlsmgo (Z v,w,a0) > (X, y, w, ag), there exists
an epimorphism r : (Z Y, w,ag) —> (Y ¥, ,dg) such that w o = .

Furthermore, the map m induces an isomorphism between the line graphs of X and Y, and the object
(Y.7.@.30) is given by (Xau(H). yur. on. [eln).

Given (X , ¥, w, ay) € Gy We call the unique object satisfying Theorem 8.7 the link-connected cover
of (X, v, w, ag) and denote it by LCC((X, v, w, ag)).

Proof. Let ()?, y,w,a0) € %4k and denote H = H(()?, ¥, w, a9)). By repeating the argument in
Theorem 8.2(2), one can show that the simplicial multimap 7 : X4x(H) — X

the unique j-multicell contained

(8.10)
in g.ag whose color isJ.

n(GEgln) =
is a surjective morphism % , which is injective at the level of d-cells. Furthermore, by Proposition 7.12,
X4.k(H) is link-connected.

Next, we show that (3€a k(H) V4, Wy, [e]y) satisfies property (2). Assume that( Y, ,09) € %fk
and ¢ : (Z V,w,dg) —> (X Y, w, ao) is an epimorphism in the  category. Since (Z Y,w,d) € %d "
it follows from Theorem 8.2 that (Z ¥, @, dg) is isomorphic to (xd k(H"), ywr, wpr, [ely), where H' =
H((Z ¥, @, ap)). Since there is an epimorphism from (Z, ¥, @, do) onto (X, y, w, ao), there is also an
eplmorphlsm from (3€d «(H), v, wyr, [e]ly’) onto (X Y, o, ao) Furthermore, since the line graph of
(X, y, w, ag) is isomorphic to Sch(Gy/H; S), where S = {a ied—-1],1 € [k — 1]}, we
must have that H' < H. Consequently, there exists an eplmorphlsm from (3€d «(H), yw, H', [e]y) onto

(Xqk(H), yu, wn, [e]n), given by ¥ ([Kgln') = [K58]n.
The uniqueness of the object in the theorem up to isomorphism follows from property (2). O

Let ()7, Y,w,a) € %y and denote H = NH(()?, Y, w, ag)). Due to~the last theorem, the link-
connected cover of (X, ¥, w, ap), denoted LCC((X, v, w, ag)) is given by (X4 x(H), vy, wu, [e]n). As the
explicit construction of the subgroup H associated with an object (X, ¥, , ap) might be somewhat
involved, let us point out a direct combinatorial way to construct LCC((X, y, w, ag))outof (X, v, w, ap).

The algorithm. Let ()N(, Y, ,a9) € Gax withX = (X, m, g).
e Runoverjfromd — 2to —1
e Runover b € X/,
o If Ikz(b) is not connected
e split b into [ new copies by, ..., b, where [ is the number of connected
component of 1ky(b) and change the multiplicity function m accordingly.
echange the gluing function g, so that each of the multicells in X, associated with
the ith connected component of 1ky(b), is glued to b; instead of b,
forevery 1 <i <L
Note that by following the above algorithm, one obtains a new multicomplex in which the line
graph is not changed and the link of each multicell is connected, that is, we recover the link-connected
cover of (X, y, w, ag).

9. Further relations between subgroups and multicomplexes

In this section we wish to study further relations between subgroups of G4\ and elements of € .
More precisely, we study the following questions:
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1. When does X4 x(H) have a natural representation as a nerve complex?

2. When is the multicomplex associated with a subgroup H actually a complex?
3. For which subgroups H is the multicomplex upper k-regular?

4. When is the (d — 1)-skeleton of X, ; complete?

9.1. Representation of X4 x(H) as a nerve complex

Theorem 9.1. Let H < Ggy. For v = [Kg]y € 3€2~k(X), define A, = {g’ € Gy : [Kgly = [I6g' 1y} and
let A= (Av)vexgyk(xy Then

Xak(H) = N(A), (9.1
where N(A) is the nerve complex defined in Definition 2.1, i.e., the base complex of 3~Ed,k is equal to the
nerve complex of the system A.

Remark 9.2. Combining Theorems 7.11 and 9.1 with H = (e), we obtain Theorem 6.3.

Proof. Observe that the 0-cells of both complexes are 3€g’k(H ) = MO(H) by definition. Given
0 € Xqx(H), onecanfindg € Gqy and ig,...,i; € [[d] such that o = {[K;8lu, - - -, [K,-Ajg]H} and
therefore

J
ge ﬂAvr, (9.2)
r=0
where we denote v, = [K;gly for 0 < r < j. In particular N:OAUT # (), which implies 0 =
{Uo, ey Uj} (S N(.A)
Turning to prove inclusion in the other direction, assume that o = {vo, ..., v}, with v, = [K; g ]n

for 0 < r < jis acell in N(A). Then, by the definition of the nerve complex J # m:OAUr* which
implies that one can find g € Ggx such that [K;gly = [K;g:n, Or equivalently v, = [Kpg]y for every

0 < r < j.Denoting ] = {ip, ..., i}, the multicell [KGgln in %d,k(H), has {[K;Og]H, e [Kﬁg]H} =
{vo, ..., v} = o asacorresponding cell in X4 x(H), which gives o0 € X4(H). O

9.2. The intersection property of subgroups

_ LetH < Gy and (3~€d,k(H), Vi, wh, [ely) € %y the corresponding object in the category, with
Xgk(H) = (Xqx(H), my, gu). Recall that a multicell in Xq(H) is of the form [KGg]y for some | =
{io, ..., i} € [[d]l and g € Ggy, and that the corresponding cell in X4 x(H) is {[Kag]H, AU [Kgg]H}.
In particular, it was shown in Lemma 7.2 that [Gglh = [Kjg/]H implies [Kp-gly = [Kag/]H for every
0 < r <j. The other direction does not always hold, i.e., it is possible that [Krgly = [K;g'14 for every
0 <r<jbut Geln # [Kjg’]H. This is in fact the source of multiplicity in the multicomplex, namely,
the multiplicity of a cell {[Kag]H, ..., [K;g]n} is equal to the number of equivalence class [Kjg/] n with
J = {io, ..., ij} whose corresponding cell is {[K3 g1, . . ., [Kgg]H}.

Corollary 9.3. (idlyk(H), Vi, oy, [ely) € Cax is a complex, namely, my = 1, if and only if for every choice
of ] ={io,....ij}and g, g € G

Gglh = (K8l & [Kogly = [Kog'ln, YO <1 <. (9.3)

Definition 9.4. We say that H < Gy satisfies the intersection property if for every 0 < j < d, every
J={io,....5;} S dland g € Gy

J
() Avcars = Alkgly (94)
r=0
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where for a multicell (K81 we denote

Atgry = 18’ € Gax : KGgln = [K6gIn}. (9.5)

Note that for 0-cells Alkegly for the set used to represent the d-complex X4 x(H) as a nerve complex.

Proposition 9.5. Let H < Ggy. Then, id,k(H ) is a simplicial complex if and only if H satisfies the
intersection property. In particular, if H < Gq, then Xq(H) is a simplicial complex if and only if for
every choice of jand ] as above ﬂlr:oA[K;]H = A[KﬂH, i.e., one needs to check (9.4) only for g = e.

Proof. First, assume that X4 (H) is a complex and note that by Lemma 7.2, Aiggly S ﬂ’rZOA[K;g]H
forevery] = {io, ..., §;} C [dll and g € Gy . Thus, it suffices to prove inclusion in the other direction.
To this end, let ] = {ip,...,i;} C [[d]l and g € Ggx, and assume that g’ € ﬂ’r:OA[KiAg]H. Then
[Krg'lh = [Kpgln for 0 < r < j and hence, by Corollary 9.3, (KGgln = [Kjg’]H. and in rparticular
g’ (S ‘A[Kj‘g]H'

Next, assume that H satisfies the intersection property and let g, g’ € Gyx and ] = {io, ..., i} C
[[d]l such that [Kzgly = [Kag/]H forevery 0 < r < j, thatis g’ € A[K;gly for every 0 < r < j. The
intersection property implies that g’ Alkeglyy ie, [Kglu = [K5g']lu, and hence, by Corollary 9.3, that
id,k(H) is a complex.

Finally, assume that H < Ggy and that H satisfies the intersection property for every | =
{io, ..., i} C [[d] with respect to neutral element e. Since H is a normal subgroup, there is a natural
action of G4 i from the right on the cosets (which are the group elements of G, x/H) and hence for an
arbitrary element g € G4 we have

J J
Gglh = [KGlw.g " = (\IKplug ™' = |IKpglu, (9.6)
r=0 r=0
which proves the intersection property and hence that %d, x(H)is a complex. O

9.3. Regularity of the multicomplex

By Claim 3.9, the degree of every (d — 1)-multicell in an object of ¢ x always divides k. We turn to
discuss which conditions on H guarantee that these degrees are exactly k.

Lemma 9.6. Given H < Ggq, the multicomplex (%d.k(H), VH, wy, [eln) is upper regular of degree k if and
only if
(i) NgHg ' =fe},  Vield], g € Gy (9.7)

In particular, if H is a normal subgroup of Ggx, the complex is upper k-regular if and only if («;) "\H = {e}
forevery i e [[d]l, which happens if and only if for every i € [d]], the order of the image of «; in Gqx/H is
exactly k.

Proof. Let H < Gg. Recall that a (d — 1)-multicell of %d,k(H) is of the form [K;g]y for some i € [[d]
and g € Ggy, and that by Claim 7.7, the d-multicells containing it are {[afg]H}leuk_lﬂ. Consequently,
the degree of [IGg]y is at most k, and is precisely k if and only if

lolgly # [a/gly,  V¥r,le[k— 1] suchthatr # 1. (9.8)
However, for distinct r, [ € [k — 1] we have [ai’g]H = [o]g]y if and only ifozf_r egHg . O
9.4. Multicomplexes with full skeleton

The skeleton is complete if and only if for every 0 < j < d, everyJ = {ip, ..., ij} C [d] and every
g0, ..., & € Ggr,onecanfind g € Gy such that
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[Koglu = [Kegly, YO <1 <j. (9.9)
The proof of this fact is left to the reader.

10. Examples

10.1. The subgroup Mg k

For a word w = ak’; .. .af} representing an element in Gg and i € [d]] define 6;(w) to be the sum
of the exponents of «; in w modulo k, namely, 6;(w) = erlllj]lij:i mod k. Since (x;‘ is the trivial group
element for every i € [[d]), it follows that 6;,(w) = 6;(w’) for any pair of words w, w’ representing the
same group element. Thus we can define 9;(g), for g € Gy and i € [[d]), using any word representing
it. Also, note that 6; for i € [[d]] is a homomorphism from Gg4  to Z/kZ.

Proposition 10.1. Let

Md,k = {g S Gd,k . 9,(g) = 0, Vi S [[d]]} (10.1)

Then, M = My, is a normal subgroup of G\ of index ki1, satisfying Gax/Max = (Z/kZ)**1, In addition,
X4.k(Mg k) is isomorphic the complete (d 4 1)-partite d-complex all of whose parts have size k.

Proof. Since My, = ﬂiem ker 6;, the group Mg\ is normal. Next, we show that for every ] =
{io, ..., i} C [dland g, g’ € Guyi

gy = [Kg'ly & 6(g)=6i(g). Vie). (10.2)

Indeed, assume that (K58l = [Kjg’]M for some g, g’ € Gq . Then there exist w € K and h € M such
that g = wg’h. Since 6;(h'h") = 6;(h’) + 6;(h”) mod k for every i € [d] and h’, h” € M, it follows that
foreveryi € J

0i(g) = Oi(wg'h) = Oi(w) + 6i(g") + 6i(h) = 6i(g') mod k, (10.3)

where for the last equality we used the definition of M and the fact that 6;(w) = Oforany w € K C K
In the other direction, assume that 0;(g) = 6;(g’) for every i € J, then 6;(g’'g~!) = 0 for everyi € J.

Denoting w = []ge; " * e K, it follows that g~'wg’ € M, thatis g’ = w~'gh for some h € M,
which implies [Kg]y = [K58'Iu- ~

Combining (10.2) and Proposition 9.5 we conclude that X,,(M) is a complex, i.e., has no
multiplicity.

Finally, we turn to study the structure of the complex. The 0-cells of the complex are given by
[Kgly for some i € [[d]l and g € Ggqy. Hence, using (10.2), there are exactly k distinct 0-cells of
each color. Since the complex X, (M) is pure and colorable, in order to show that it is the complete
(d + 1)-partite d-complex, it is enough to show that the d-cells of X, x(M) are all the possible d-cells.
To this end, choose one 0-cell from each color. Due to (10.2), we can assume without loss of generality
that the 0-cell of color i is of the form [K;air"]M for some r; € [k — 1]. It now follows from (7.2) that

the d-cell [a . .. a}'a’]m is a d-cell with the chosen 0-cells. O

10.2. Coxeter complexes

Let W beagroupand S = {s; : i € I} C W a set of generators of W, all of its elements are of
order 2. For each pair (s,t) € S x S, let ms denote the order of st. The matrix M = (mg )s ¢es iS an
S x S symmetric matrix with entries in NU {oo}, with 1’s on the diagonal and entries which are strictly
bigger than 1 off the diagonal. A group W is called a Coxeter group, if there exists S as above such that
(S|R) is a presentation of W, where R = {(st)™t : s, t € S}.In this case, we call M the Coxeter matrix
of (W, S).

Coxeter groups have been extensively studied, see for example [1,3] and the references therein.
Some of their basic properties are summarized in the following lemma.
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Lemma 10.2 (/3] Theorem 4.1.6). Let (W, S = (s;)ic;) be a Coxeter group.

e Forevery] C I, the group W; = (s; : i €]) is a Coxeter group.
e Forevery],]' €I, we have W; N Wy = Wjqyr.
e Forevery],]' C I, we have (W), Wy) = Wyyy.

The Coxeter complex. To every Coxeter group (W, S) one can associate a simplicial complex X(W, S),
called the Coxeter complex, via the following procedure: The 0-cells of the complex are defined to be
the cosets Wow fori € I and w € W, where i = I\{i}. For every coset Wyw, with | = {ip, ...,ij} € I
add to the complex the cell (W w, ..., Wgw}.

Remark 10.3. In certain books (see e.g. [3]) the Coxeter complex is defined somewhat differently, but
the outcome is simply the barycentric subdivision of the above complex.

Proposition 10.4. Let (W, S) be a Coxeter group. Let ¢ be a one to one map from {oy, .. ., a;s/—1} onto
S, hence inducing an epimorphism @ from Gis_1 , onto W, and let H = ker @. Then

Xisi—1.2(H) = Xjsi-1.2(H) = X(W, S). (10.4)

that is, Coxeter complexes are quotients of Tis|—1,2.

Proof. This follows from the fact that Gs-12/H = W together with Proposition 9.5 and
Lemma 10.2. O

10.3. The flag complexes S(d, q)

Letd > 3 and q € N a prime power. Let F = F, be the field with g-elements and V = F¢. The flag
complex S(d, q) is defined to be the (d — 2)-dimensional complex whose 0-cells are non-trivial proper
subspaces of V and {Wp, ..., W;} is an i-cell of S(d, q) if and only if, up to reordering of the vertices
Wo C W; € ... C W, Note that S(d, g) comes with a natural coloring y of its 0-cells by (d — 1) colors,
namely, y(W) = dim(W) for W e S(d, q)°. Note that due to the definition of the cells in S(d, q), the
coloring y is indeed a coloring in the sense of Section 3, which makes S(d, q) into a colorable complex.
Furthermore, note that the degree of any (d — 3)-cell o in S(d, q) is ¢ + 1, the number of ways “to
complete” the sequence of subspaces defining o, to a full sequence of subspaces. As a result we can
consider S(d, q) with the coloring y and some ordering w to be an element of the category €y—» ¢+1.

Unfortunately, we do not know of any natural choice for the ordering of S(d, q), which makes it
difficult to give a simple description of the subgroup Hp,g < Ggx associated with it. Note that by
Theorem 7.11 and the action of GL4(FF,) on the (d — 2)-cells we have

PGLy(Fq)/B = S(d, q)" 2 = Gy_2,q+1/Hnag, (10.5)

where B is the Borel subgroup of PGL4(F). In particular, the index of Hpag which equals the number of

(d — 2)-cells in S(d, q), i.e., the number of complete flags in F¢, is ]_[?:2 ‘(’;%11

10.4. Bruhat-Tits buildings of type Kd(q)

Let F be alocal non-Archimedean field with residue class q. Let & = PGLy,1(F) and let B(F) = By(F)
be the Bruhat-Tits building associated with it. This is a building of type A4(q). The building B(F) can
be defined in several different ways. The following description shows that the link of every vertex
of B(F) is the complex S(d + 1, q) described in the previous subsection and in particular that B(F) is
(q + 1)-regular. Let © be the ring of integers in F. For every F-basis {8y, . .., B4} of F©*! consider the
O-lattice L = OBy + - - - + OB4. We say that two such lattices L, and L, are equivalent if there exists
0 # u € Fsuch that Ly = ul,. The set of equivalence classes of lattices is the vertex set of B(F).
Put an edge between [L;] and [L,] if there exist representatives L} € [L;] and L, € [L;] such that
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L} C L) C L}, where 7 is a uniformizer of O (e.g. for F = Q, and O = Z, the p-adic integers, 7 can
be taken to be p). The simplicial complex B(F) is then defined to be the clique complex with respect
to the above adjacency relation.

It is known, see [2], that B(F) is a locally finite, contractible (d — 1)-dimensional simplicial complex,
all of its (d — 2)-cells are of degree q + 1. Furthermore, the links of its vertices are all isomorphic to
S(d+1, gq)and so itis link-connected. Thus by Theorem 8.2 is isomorphic to Ty ¢+1/H for a suitable H.

This quotient can be used to answer in the negative a question asked in [13]. In order to describe
the question some additional definitions are needed. For a d-dimensional simplicial complex X, let
2%1(X; R) be the vector space of (d — 1)-forms

QUIXR) ={f: X' 5 R : f(@) = —f(0), VoeXxih, (10.6)

where Xi‘l is the set of oriented (d — 1)-cells and & is the oriented cell o with the opposite orientation
too.
Define A* to be the linear operator on 29~ '(X; R) given by

A*f(o) = deglo)f(0) = Y f(o"), (10.7)

o'~o

where two oriented (d — 1)-cells o, o’ are called neighbors (denoted o ~ o) if their union is a d-cell
on which they induce the opposite orientation.

Remarks 10.5.

(1) AT defined above is the same operator as the one obtained via the composition of the appro-
priate boundary and coboundary operators, see [13].
(2) If X is a graph, i.e., d = 1, this recovers the standard graph Laplacian.

Finally, we define the spectral gap of A™ to be the minimum of the spectrum on the non-trivial
eigenfunctions, that is

A(X) = min Spec(A™|ga-1y), (10.8)

where B%~! denotes the space of (d — 1) R-coboundaries. We refer the reader to [13, Section 3] for
additional details and further discussion on the spectral gap.

Turning back to the question: If X and Y are graphs and # : X — Y is a covering then
A(X) > A(Y).If X is connected, this fact can be seen from the interpretation of A(X) as lim sup,,_, . .k —
/number of closed paths from vy to itself, where v is any vertex in the graph. Indeed, any closed
path in X from vy to itself corresponds to a closed path in Y, so A(X) is as least as big as A(Y).

In [13] it was asked whether the same holds for general simplicial complexes, i.e., if X and Y are
d-dimensional simplicial complexes and 7 : X — Y is a covering map, is A(X) > A(Y)?

We can now see that this is not the case. The spectrum of A™ of Ty, was calculated in [13], from
which one can see that

M(Tap) = 0 2<k<d
T Vk+d—1-2dk—1) k>d+1.

On the other hand, for the building B(F) = B,(F) of PGL3(F) and of its finite Ramanujan quotients, it
was shown in [5] that
ABF)=q+1—2/q+ 1. (10.10)

Thus for d = 2 and k = q + 1 we obtain that A(B(F)) > A(T), which implies a negative answer to
the question above.

(10.9)

Remark 10.6. The counter example w : T, 441 — By(F) can be replaced by a finite counter
example: Indeed, using a deep result of Lafforgue [8], it was shown in [11] that when F is of positive
characteristic, B,(F) has finite quotients which are Ramanujan complexes. For such a complex Y, the
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spectrum of the upper Laplacian is contained in the spectrum of the upper Laplacian of B,(F) (see
also [4]). Hence, A(Y) > g + 1 — 2/q + 1. On the other hand, by a general result in the same spirit as
[13, Corollary 3.9] T; ¢+1 can be approximated by finite quotients X; of it, whose spectrum converges to
that of T, 441. Moreover, one can choose X; so that for each one of them there is a surjective morphism
m; : X; — Y.Indeed, let H be the finite index subgroup of G = G, ;1 associated with Y, and then take
H; to be a decreasing chain of finite index subgroups of H with ();Hi = {e}. Such a chain exists since
G, and hence also H, is residually finite. Then X; = X4 «(H;) will have this property. Therefore, for large
enough i, A(X;)) < MTag11) +e=q+2—V2q+¢& < 1+q—2/G< MY).

11. Random multicomplexes

The correspondence established in Sections 7 and 8 between the link-connected objects in % x
with n distinct d-multicells and the subgroups of G4 of index n enables us to present a convenient
model for random elements of €y .

The subgroups of index nare in 1 to (n — 1)! correspondence with the transitive action of the group
Ga.k on the set [n] of n elements. This is a general fact that holds for every group G. Indeed, for every
such transitive action of G, let H be the stabilizer of 1 € [n], which is an index n subgroup since the
action is transitive. Conversely, if H is an n-index subgroup of G, then the action of G gives a transitive
action on a set with n elements—the left cosets of H in G. Now, every bijection from this set of cosets of
H to [n] which sends H to 1 gives rise to a transitive action of G on [n] with H being the stabilizer of 1.
There are (n — 1)! such bijections. The reader is referred to [ 12] for an extensive use of this argument.

As Gg i is a free product of (d + 1) cyclic groups K; = <a,-|a}‘ = e), a homomorphism ¢ : Gy —
Spny is completely determined by the images of («;)iepqy. Each such ¢(¢;) should be a permutation
of order k, namely, a product of disjoint cycles of lengths dividing k. Conversely, every choice of
(d + 1) such permutations Sy, ..., B4 determines a unique homomorphism from Gy x to Sp;. These
homomorphisms are not necessarily transitive but they are so with high probability, when chosen
independently and uniformly at random, as longasd > 2ord = 1and k > 3. This can be
proved directly by estimating the probability of a proper subset A C [n] to be invariant under such
permutation, and summing over all possible A’s.

So, all together a typical choice of such ;s leads to a k-regular multicomplex.

We plan to come to the study of this random model of multicomplexes in a followup paper.

Remark 11.1. As mentioned before, the results of this paper are true also for k = oo, in which case
we get a random model for all d-dimensional colorable, link-connected multicomplexes by choosing
(d 4 1) random permutations of Spy;.
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Appendix A. Regular graphs as Schreier graphs

The concept of a Cayley graph is a very important one for graph theory and group theory alike.
Let G be a group and let S be a set of generators. Assume, moreover, that S is symmetric: s € S &
s7! € S.Then Y := Cay(G; S), the Cayley graph of G with respect to S, is defined by V(Y) = G and
E(Y) = {{g,sg} : g € G, s € S}. Cayley graphs are |S|-regular graphs, but the overwhelming majority
of regular graphs are not Cayley graphs. By allowing S and the edge set E(Y) to be multisets, the same
definition yields a multigraph, called the Cayley multigraph of G with respect to S.

It is natural to seek an algebraic construction for regular graphs that can generate all or almost
all regular graphs. This is one of the motivations for the study of Schreier graphs, which are a vast
generalization of Cayley graphs. There are several competing definitions of a Schreier graph in the
literature, each with its own advantages and disadvantages.
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Let G be a group, H < G a subgroup and S a set of generators as above. One way to define the
Schreier graph X := Sch(G/H; S)istotake V = G/H and E = {{gH, sgH} : g € G,s € S}. Note that E
is a set, rather than a multiset, and so X is a graph (although it may contain loops). The disadvantage
is that X may not be regular. In general, all that can be said about the vertex degrees is that they are
between 1 and |S]|.

Another possibility is to take E to be a multiset, with one edge between gH and sgH for every
s € S. Using this definition, X is a 2|S|-regular multigraph, and in fact every regular multigraph of
even degree is a Schreier graph in this sense [6]. The problem is that this definition does not allow one
to generate regular graphs and multigraphs of odd degree.

Consistent with our approach in this paper, we prefer what we believe is the most natural
definition, i.e., we define X as the quotient of the Cayley multigraph Y = Cay(G; S) by the action
of the subgroup H. The group G acts on Y from the right by multiplication, and moreover this action
preserves the graph structure, that is, {y1, y2}.& = {y1.2~',y2.g" !} is an edge in Y if and only if
{y1,y2} is an edge. We define now X = Sch(G/H; S) to be the multigraph whose vertices V(X) are the
orbits of vertices of Y, namely G/H, and whose edges, E(X), are the orbits of Y’s edges with respect to
the action of H, where an orbit [{y1, y2}]n := {{y1,y2}.h : h € H} connects the vertices y;H and y,H.
Thus, E(X) is a multiset which may contain loops and multiple edges. The natural projection from G
to G/H induces a surjective graph homomorphism from Y to X.

Let us now define 2-factors and perfect matchings in a multigraph, in a way which is perhaps not
the most common in the literature: A perfect matching in a multigraph G = (V, E) is a subset F C E
of edges such that each vertex belongs to either a unique loop or to a unique edge in F. A 2-factor of
G is a multisubset of edges such that every vertex v € V either belongs to a unique loop or to exactly
two edges in F.

Proposition A.1. A connected k-regular multigraph X is a Schreier graph if and only if its edges form
a disjoint union of perfect matchings and 2-factors. In fact, it is a union of m perfect matchings and f
2-factors with m + 2f = k.

Proof. We first show that every graph X = (V, E) whose edge set is the disjoint union of perfect
matchings and 2-factors is a Schreier graph. The proof is essentially the same as the proof of
Proposition 1.1.

LetE = J;F;UUJ;M;, where the {F;}; and {M;}; are pairwise disjoint 2-factors and perfect matchings
respectively. By choosing a cyclic ordering for each cycle in such a 2-factor, we can associate each F;
with two permutations t;, T,.‘l € Sy. We associate every perfect matching M; with an involution
gj € Sy.

Let S be the multiset {z;, ti’1 }i U {g;};, let Go be the subgroup of Sy generated by S, and set Hy to be
the stabilizer of some vertex vy. Then one can check that X = Sch(Gy/Ho; S).

Conversely, we show that the edges of a Schreier graph form a disjoint union of perfect matchings
and 2-factors.

Let G be a group, let H < G, and let S be a symmetric set of generators not containing the identity
element e.LetS, = {s € S : s> = e}, and let S’ = S\S,. We color the edges of the Cayley graph
Y = Cay(G; S) as follows: There is a color ¢ for each element s € S, a color ¢y = ¢,-1 for each pair of
elements {s’, 5/71} C §’, and we color an edge {g, rg} using the color ¢ if r € {s, s~!}. Note that every
y € V(Y)is adjacent to one edge of color c; if s € S,, and to two edges of color ¢; if s € S'. Let F; be the
set of edges of color c;.

Consider now the Schreier graph X = Sch(G/H; S). Note first that the action of G on the edges of
Y preserves the coloring. Thus, the coloring of the edges of Y induces a coloring of the edges of X.
Consequently, the images F; of F; are disjoint from each other for different colors. We will show that
if s € S,, then F; is a perfect matching, while for s € S’ it is a 2-factor. As these sets are disjoint, this
will complete the proof.

Note that if an edge of X of color c; is adjacent to a vertex gH, then it must connect gH to either sgH
or to s~ 'gH. Now, for s € S, and a given vertex gH of X, there is a unique edge attached to it of color
¢, namely {gH, sgH}. If gH = sgH (i.e., g~ 'sg € H), then this is a loop, but in either case F; is a perfect
matching.
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Finally, fix s € S” and a vertex gH in X. The image of F; gives rise to potentially two edges coming
out of gH, {gH, sgH} and {gH, s~ 'gH}. Now, assume first that gH = sgH. In this case we also have
gH = s~ 'gH, and so F; induces a loop around gH. Note that this is a single loop, rather than a double
loop, since here g~ 's~!g € H and therefore [{g, sg}ly = [{g,s 'g}]y. If sgH = s~ 'gH, but they are
different from gH, then F; induces a cycle of length 2 between gH and sgH. Note that in this case the
two edges do not coincide, because [{g, sg}]y = [{g, s~'g}]y implies that eithers = s~ or gH = sgH.
If the three vertices gH, sgH, and s~'gH are all different, then the degree of gH in F; is clearly 2. Hence,
we deduce that F; is a 2-factor as required. O

We now observe that most, but not all, regular graphs are Schreier graphs.

Proposition A.2.

1. Let G = (U U V, E) be a k-regular bipartite multigraph. Then |U| = |V| and E is the disjoint union
of k perfect matchings, and hence a Schreier graph.

2. Forevery even k > 2, every connected k-regular graph is a Schreier graph.

3. For k > 3, with probability 1 — o(1) a random k-regular graph on n vertices chosen uniformly at
random is a Schreier graph. Here k is fixed and n tends to infinity.

Proof.
1. The fact that |[U| = |V| follows from a double count of the edges: The number of edges is equal
to the sum of the degrees of vertices in U, so |[E| = k - |V|. By the same argument, |[E| = k - |U]|,
andso |U| = |V]|.

For the second part of the proposition, it is sufficient to show that every k-regular bipartite graph
G = (U UV, E) contains a perfect matching M. Since the remaining graph, whose edge set is
E\M, is (k — 1)-regular, the result follows by induction on k.

We recall Hall’s marriage theorem, which states that a bipartite graph H = (U L1 V, E) contains
a matching of cardinality |U| if and only if for every X € U we have |[Ny(X)| > |X]|, where Ny(X)
denotes the neighborhood of X in H. Hall's theorem also holds for multigraphs.

Since G is k-regular, for every set X C U the number of edges adjacent to X is k - |X|. On the
other hand, this is clearly a lower bound on the number of edges adjacent to N(X), and so we
have k - |X| < k - |[Ng(X)|, which implies that G has a matching of size |U|. Since |U| = |V|, this
is a perfect matching.

2. This was proved in [6] with a different definition on Schreier graphs, but in fact, their proof
relies on Petersen’s theorem [ 14], which states that every k-regular graph, for even k > 2, is an
edge-disjoint union of 2-factors. Therefore, by Proposition A.1, it is also Schreier according to
our definition.

3. When k is even, all k-regular graphs are Schreier graphs as observed above. When k is odd, the
number n of vertices in the graph must be even. It was shown by Wormald and Robinson ([ 15],
Theorem 3) that in this case when n tends to infinity, with probability 1 — o(1) the edge set
of a random k-regular graph on n vertices has a decomposition into perfect matchings, so by
Proposition A.1 it is a Schreier graph. O

Proposition A.3. For odd k > 3, there exists a connected k-regular graph that is not a Schreier graph.

Proof. This follows from a construction of a k-regular graph G that contains neither a perfect matching
nor a 2-factor.

Let G’ be the complete balanced k-regular tree of depth 3. That is, the root r has k childrenx;, . . ., X,
every node that is not the root or a leaf has (k — 1) children, and there is a path of length 3 from each
leaf to the root. Note that the degree of every vertex in G’ is k, except for the leaves, whose degrzee is
1.For 1 < i < k, let T; denote the set of vertices whose ancestor is x;, and let L; := {1}, e lgkfl) } be
the (k — 1)% leaves in T;.

We obtain a k-regular graph G from G’ by adding the edges of a (k — 1)-regular graph on the vertex
set L; for every 1 < i < k. Here we are relying on the basic fact that there exists an r-regular graph on
n vertices if and only if n > r and rn is even (see Fig. 7 for an illustration of the case k = 3).
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Fig. 7. Anillustration of a graph which is 3-regular, but is not a Schreier graph.

Now, G has the following two properties:

e Forevery 1 < i <k, the only edge from T; to V(G)\T; is {r, x;}.
e The cardinality of T; is 1+ (k — 1) + (k — 1)?, which is an odd number.

The first property implies that G does not contain a 2-factor. Indeed, any 2-factor must have a cycle
that contains the root, and the first property implies that the root does not belong to any cycle.

The second property implies that G does not contain a perfect matching: Assume to the contrary
that M is a perfect matching in G. Let x;, be the vertex that is matched to the root r in M, and let
Jjo # io. Then the vertices in Tj, must be matched to each other, since the only edge from Tj,to V(G)\Tj,
is {r, xj,}. However, the cardinality of this vertex set is odd, and as in our graphs there are no loops,
they cannot be matched to each other. O

Appendix B. List of notations

)l

deg(o)

Ck

9(X) = (7(X), €(X))
diStX

X0

8

j-lower path connected

Simplicial map
Ikx(p)

{1,2,...,n}.

{0,1,2,...,n}.

A generic d-dimensional simplicial complex with
vertex setV.

j-dimensional cells in X.

The degree of the cell 0.

The cyclic group of order k.

The line graph of X, see Definition 1.2.

The distance function on the graph ¢(X).

The j-th skeleton of X, see Section 2.

The coboundary operator, see Section 2.

See Section 2 for the definition in simplicial complexes and
Section 3.1 for multicomplexes.

See Section 2.

The link of p in X, see (2.1).



A. Lubotzky et al. / European Journal of Combinatorics 70 (2018) 408-444

Nerve complex

X=(X,m,qg)

L Xy > X
X,
am
=

Multicomplex
85

degg(a)

Simplicial multimap
Ikz(a)

Link connected multicomplex

Colorable multicomplex
k-ordering
Gk

Eiy

Gak

Universal object of 6 k
Arboreal complex

Tk

B,

r,s

Ly

K

-~

J

Mj

¥ and ¥

Ga k-invariant ordering
[

Xdk

H

(K€

M(H) and AM/(H)
Py

Xq.k(H)

my

9H

See Definition 2.1.

A generic multicomplex with multiplicity function m
and gluing function g.

The forgetful map, see Section 3.1 for the definition.
The j-multicells of the multicomplex X.

The multiboundary, see (3.1) for the definition.
Containment partial order in a multicomplex.
See Section 3.1.

See Definition 3.1.

The coboundary operator for a multicomplex.
See Section 3.1.

The degree of a multicell a in a multicomplex X.
See Section 3.1.

See Section 3.1.

The link of a multicell. See Definition 3.3.

See Definition 3.4.

See Definition 3.6.

See Definition 3.7.

The category of colorable d-multicomplexes with coloring,
ordering and fixed d-multicell. See Section 4.
Link connected objects in €y .

See (4.1).

See Section 5.

See Definition 5.1.

The k-regular d-dimensional arboreal complex.
The ball of radius n in Ty k.

Generic coloring and ordering of Ty .

See (5.1).

See Definition 5.10.

[dl\.

See Definition 5.12.

See Corollary 5.13.

See (5.7).

See (6.1).

See Definition 6.1.

A generic subgroup of G .

The equivalence class of Kjg. See Definition 7.1.
See Definition 7.1.

See (7.2).

See Definition 7.3.

See Definition 7.3.

See Definition 7.6.
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Xax(H) (X4 x(H), My, gn).
yy and wy Coloring and ordering for X4 «(H). See proof of Lemma 7.4
and Definition 7.9.
H((X, ¥y, w, ag)) See Definition 8.1.
LCC((X, y, w, ag)) See Section 8.3.
Intersection property See Section 9.2.
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